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Finite Mixture Model
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Mixture Model

Graphical model of finite mixture model

Z: discrete variable taking value in {1,2,…,K}
X: either discrete or continuous

Z

X

Hidden variable (unobservable)

Observable variable

blank circle – hidden variable

colored circle – observable

Convention in this course:

The distribution of X depends
on the hidden variable Z. 
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Mixture Model

Probability density of finite mixture model
Joint probability

Marginal of X
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Examples of Mixture Model

The components pk are often taken from a popular family of 
probabilities.

Gaussian mixture model

where 

Mixture of binomials, mixture of chi-squares, etc
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Gaussian Mixture Model
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Application of Mixture Model

Gaussian Mixture
Modeling of clustered data
Statistical foundation of analyzing clustering
Outlier detection, etc....

Others
Mixture of binomial distributions:

Statistical model for linkage analysis in genetics.
The ratio of combination may be different over different groups.

Estimation of the parameter from data will be discussed later (Part IV). 
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Hidden Markov Model
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Hidden Markov Model (HMM)

Graphical model of HMM

Probability density of HMM

Z0 Z1 Z2 Z3 ZT

X0 X1 X2 X3 XT

Zi: hidden state, often discrete

Xi: observable
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Hidden Markov Model

State transition
The probability p(Zt | Zt-1) is 
the transition probabilities of K states.

They are often time-invariant:

Transition diagram

Z0 Z1 Z2 Z3 Z4

X0 X1 X2 X3 X4
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Hidden Markov Model

Example
Gaussian hidden Markov model

p(Xt | Zt = j ) is Gaussian 

If the hidden state is generated independently, 
HMM is equal to a mixture model. 

If the state is continuous, the model is often called state-space 
model. 
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Applications of HMM

Speech signal processing
Speech signals are often modeled by HMM. 
Speech recognition etc. 

(See, e.g., tutorial: Rabiner. Proc. IEEE, 77(2), 257–286, 1989.)

Genome sequence
DNA: symbol sequence of {A, T, G, C}
Protein sequence: symbol sequence of 20 amino acids 

(See, e.g., Durbin, Eddy, Krogh, Mitchison. Biological Sequence 
Analysis: Probabilistic Models of Proteins and Nucleic Acids. 
Cambridge University Press, 1999.)

Natural language processing 
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Prediction, Smoothing, Filtering

Inference with HMM
Prediction:

Smoothing:

Filtering:
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Prediction, Smoothing, Filtering

Computational difficulty
To obtain

we need to compute

Direct computation requires Kt operations – exponential on t. 

Efficient algorithms    (discussed later in Part III and IV)
Computation of p(X):  forward-backward algorithm
Computation of most likely hidden sequence:  Viterbi algorithm
Estimation of parameters:  Baum-Welch algorithm
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How to Work with Graphical Models
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How to Work with Graphical 
Models?

Determining structure 
Structure given by modeling 

e.g. Mixture model, HMM 
Structure learning Part IV

Parameter estimation
Parameter given by some knowledge
Parameter estimation with data such as MLE or Bayesian 
estimation Part IV

Inference
Computation of posterior and marginal probabilities   Part III
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