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Introduction and Review
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Graphical Models – Rough Sketch

Graphical models
Graph:  G = (V, E)   V: the set of nodes,   E: the set of edges
In graphical models, 

the random variables are represented by the nodes.
statistical relationships between the variables are represented by 
the edges.
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Purpose of using Graphical Models

Intuitive and visual representation
A graph is an intuitive way of representing and visualizing the 
relationships among variables. 

Independence / conditional independence
A graph represents conditional independence relationships among 
variables. 

Causal relationships, decision making, diagnosis system, etc.

Efficient computation
With graphs, efficient propagation algorithms can be defined. 

Belief-propagation, junction tree algorithm
Which parts of the modeling block efficient computation?
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Independence

For simplicity, it is assumed that the distribution of a random variable 
X has the probability density function pX(x). 

Independence
X and Y are independent 

)()(),( ypxpyxp YXXY =⇔

X Y(           )
X Y

Dawid’s notation
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Conditional Independence

Conditional probability
Conditional probability density of Y given X

Conditional independence
X and Y are conditionally independent given Z

∑
==

y XY

XY

X

XY
XY yxp

yxp
xp

yxpxyp
),(

),(
)(

),()|(|

X Y | Z(                )

)|()|()|,( ||| zypzxpzyxp ZYZXZXY =⇔
def.

)|(),|( || zxpzyxp ZXYZX =⇔

for all z with pZ(z) > 0.

X Y | Z for all (y,z) with pYZ(y,z) > 0.

If we already know Z, additional information on Y 
does not increase the knowledge on X. 

Def.
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Conditional Independence - Examples

Speeding Fine       Type of Car

Speeding Fine       Type of Car  |  Speed

Ability of Team A        Ability of Team B

Ability of Team A        Ability of Team B  | Outcome of Team A and B

(perhaps)
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Conditional Independence

Another characterization of cond. independence
Proposition 1

Corollary 2

X Y | Z

there exist functions f(x,z) and g(y,z) such that 

),(),(),,( zygzxfzyxpXYZ =
for all x, y and  z with pZ(z) > 0.

X Y

there exist functions f(x) and g(y) such that 
)()(),( ygxfyxpXY = for all x, y.
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Conditional Independence
Proof of Prop.1.

Clear from the definition. 
For any x, y, and z with pZ(z) > 0, 

We have

Thus,
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Undirected Graph and 
Markov Property
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Undirected Graph

Undirected Graph
G = (V, E) : undirected graph
V: finite set

, the order is neglected.

Example:  

Graph terminology
Complete:  A subgraph S of V is complete

if any a and b (        ) in S are connected 
by an edge.  

Clique:  A clique is a maximal complete 
subset w.r.t. inclusion. 

VVE ×⊂ (a, b) = (b, a) a

b c

d

},,,{ dcbaV =
)},(),,(),,(),,{( dbdccbbaE =

ba ≠
a

b c

d
(a,b,d): complete, 

but not a clique
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Probability and Undirected Graph

Probability associated with an undirected graph
G = (V, E) : undirected graph.      V = {1,…,n}

: random variables indexed by the node set V. 

The probability distribution of X is associated with G if there is a non-
negative function ψC(XC) for each clique C in G such that

An undirected graph does not specify a single probability, but 
defines a family of probabilities.
In other words, it puts restrictions by the conditional 
independence relations represented by the graph. 

),,( 1 nXXX K=

∏=
clique :

)()(
C

CC XXp ψ

Notation:  for a subset S of V, SaaS XX ∈= )(
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Probability and Undirected Graph

p(X) is associated with an undirected graph G if and only if it admits

Example

b

c
d

e

a
),,(),,(),(1)( 321 edcdcbca XXXXXXXX

Z
Xp ψψψ=

∏=
clique :

)(1)(
C

CC X
Z

Xp ψ

‘p factorizes w.r.t. G.’

ψC: factor (or potential)

Z: normalization constant
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Markov Property

Undirected graph and Markov property
Separation:  

G = (V, E) : undirected graph. 
A, B, S: disjoint subsets of V.
S separates A from B if every path 
between any a in A and b in B intersects with S. 

Theorem 3
G = (V, E) : undirected graph. 
X: random vector with the distribution associated with G. 
If S separates A from B, then 

XA XB |  XS

(Proof: next lecture.)

2

3
4

5

1

S
B

A
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Markov Property

Example

{c, d} separates {b} and {e}

{c} separates {a} and {b}

b

c
d

e

a

),,(),,(),(1)( 321 edcdcbca XXXXXXXX
Z

Xp ψψψ=

Xb Xe |  X{c,d}

Xa Xb |  Xc

),,(),,(),(1),,,( 321 edcdcb
X

caedcb XXXXXXXX
Z

XXXXp
a

ψψψ∑=

),,(),,()(~1
321 edcdcbc XXXXXXX

Z
ψψψ=

),,(),,(1
dcedcb XXXgXXXf

Z
=

{ }∑=
ed XX

edcdcbcacba XXXXXXXX
Z

XXXp
,

321 ),,(),,(),(1),,( ψψψ

),(),(1
1 cbca XXgXX

Z
ψ=

Use prop.1.

Use prop.1.
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Markov Property

Global Markov Property
G = (V, E) : undirected graph 
X: random vector indexed by V.

X satisfies global Markov property relative to G if                       holds 
for any triplet (A,B,S) of disjoint subsets of V such that S
separates A from B. 

The previous theorem tells 
if the distribution of X factorizes w.r.t. G, then X satisfies global 
Markov property relative to G. 

Remark:  Both of ‘factorize’ and ‘global Markov property’ are the 
properties regarding a relation between the probability p(X) and 
the undirected graph G. 

XA XB |  XS
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Markov Property

Hammersley-Clifford theorem  (see e.g. Lauritzen. Th.3.9)

Theorem 4 
G = (V, E) : undirected graph 
X: random vector indexed by V.
Assume that the probability density function p(X) of the distribution 
of X is strictly positive.

If X satisfies global Markov property w.r.t. G, then X factorizes w.r.t. 
G, i.e.  p(X) admits the factorization:

.)()(
clique :
∏=

C
CC XXp ψ

Factorization Global Markov
Th. 3

Th. 4
(with positivity)
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Directed Acyclic Graph and 
Markov Property
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Directed Acyclic Graph

Directed Graph
G = (V, E) : directed graph
V: finite set   -- nodes

: set of edges

Example:  

Directed Acyclic graph (DAG)
Directed graph with no cycles.

Cycle:  directed path starting and ending at the same node.

VVE ×⊂

a

b c

d
},,,{ dcbaV =

)},(),,(),,(),,{( dbdccbbaE =
Orient the edge (a,b) by a b
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DAG and Probability

Probability associated with a DAG
A DAG defines a family of probability distributions

b

c
d

e

a

),|(),|(),|()()(
),,,,(

dcecbdbacba

edcba

XXXpXXXpXXXpXpXp
XXXXXp

=

∏
=

=
n

i
ipain XXpXXp

1
)(1 )|(),,( K

: parents of node i. { }EjiVjipa ∈∈= ),(|)(

Example:

p is said to be associated with DAG G, or p factorizes w.r.t. G. 
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Conditional Independence with DAG

Three basic cases
(1) 

(2) 

a c b )|()|()(),,( cbacacba XXpXXpXpXXXp =

Xa Xb |  Xc

)|()(),()|()( caccaaca XXpXpXXpXXpXp ==
)|()|()(),,( cbcaccba XXpXXpXpXXXp =

)|()|()|,( cbcacba XXpXXpXXXp =

Note

a
c

b
)|()|()(),,( cbcaccba XXpXXpXpXXXp =

Xa Xb |  Xc

Note: ),,( cba XXXp are the same for (1) and (2).
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Conditional Independence with DAG

(3) a

c

b ),|()()(),,( bacbacba XXXpXpXpXXXp =

Xa Xb |  Xc Xa Xb

Allergy Cold

Sneeze

If you often sneeze, but you do 
not have cold, then it is more 
likely you have allergy (hay fever).

Note: ),,( cba XXXp are different from (1) and (2).in (3) 

head-to-head
(or v-structure)
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D-Separation

Blocked: 
An undirected path π is said to be blocked by a subset S in V
if there exists a node c on the path such that either 
(i)               and c is not head-to-head in π (                   or                   ),

(ii)                    and                

Sc∈ c c

c .))(}({ φ=∩∪ Scdec

c

b

a

c b

a

b

a

S

π π π

π is blocked by S π is blocked by S

S
S

π is NOT blocked by S

Examples

head-to-head
} |{)( jiVjide tofrompathdirected∃∈=Descendent: 
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D-Separation

d-separate:
A, B, S:  disjoint subsets of V.
S d-separates A from B if every undirected path between a in A
and b in B is blocked by S. 

d-separation and conditional independence
Theorem 5

X: random vector with the distribution associated with DAG G.
A, B, S:  disjoint subsets of V.
If S d-separates A from B, then 

XA XB |  XS

(Proof not shown in this course.  See Lauritzen 1996, 3.23&3.25)
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D-Separation

Example

S = φ.
a c b is blocked (with c).
a c d b is blocked (with d) 
a c e d b is blocked (with e)

a c d is blocked (with c).
a c b d is blocked (with b) 
a c e d is blocked (with e or c)

b

c
d

e

a
Xa Xb

Xa Xd |  X{b,c}
b

c
d

e

a
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Comparison: UDG and DAG

Limitation of undirected graph

a b

c

a b

c

DAG If 
any UDG is not able to 
express 

),|()()(),,( bacbacba XXXpXpXpXXXp =

Xa Xb.

Xa Xc , Xb Xc , Xa Xb | Xc ,

Xa Xb | XcXa Xb ,
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Comparison: UDG and DAG

Limitation of DAG
a

cb

d

Undirected graph

),(),(),(),(
),,,(

dcdbcaba

dcba

XXpXXpXXpXXp
XXXXp

=

No DAG expresses these conditional independence relationships. 

Xa Xd |  X{b,c} Xb Xc |  X{a,d}

If every node had the form           , the graph 
would be a cycle.  Thus, there must be a v-structure.   
Conditional independence of the parents of the v-structure given 
the other two nodes cannot 
be expressed by a DAG. 

[Sketch of the proof.]
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Mini Summary on UDG and DAG

Undirected graph

Probability associated with G,
(p(X) factorizes w.r.t. G) 

p(X) factorizes w.r.t. G

X is global Markov relative to G.
(i.e. if S separates A from B, 

then                        .)  

Directed acyclic graph (DAG)

Probability associated with G
(p(X) factorizes w.r.t. G)

p(X) factorizes w.r.t. G

X is d-global Markov relative to G.
(i.e. if S d-separates A from B, 

then                        .)  

b

c
d

e

ab

c
d

e

a

∏
=

=
n

i
ipain XXpXXp

1
)(1 )|(),,( K∏=

clique :
)(1)(

C
CC X

Z
Xp ψ

XA XB |  XS XA XB |  XS
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Appendix: Terminology on Graphs

Undirected graph   G = (V, E)
Adjacent:   a and b in V are adjacent if
Neighbor:    

DAG    G = (V, E)
Parents: 
Children:

Ancestors: 

Descendents:   

)( ba ≠ .),( Eba ∈
}.),(|{)( EbaVbane ∈∈=

a

}.),(|{)( EabVbapa ∈∈=
}.),(|{)( EbaVbach ∈∈=

}. to frompath directed|{)( abVbaan ∃∈=

}. to frompath directed|{)( baVbade ∃∈=

a

c

ne(a)

an(a)

de(c)
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Factor Graph and Markov Property
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Factor Graph

Factor graph G = (V, E)
V = (I, F):   two types of nodes

I: variable nodes
F: factor nodes

E: undirected edges

An edge exists only between a factor node and 
a variables node.

A factor graph is in general called bipartite graph. 

A bipartite graph is an undirected graph G = (V, E) such that

i

j l

k

b
a

c
– variable node
– factor node

.,, 212121 VVEVVVVV ×⊂=∩∪= φ

.VVFIE ×⊂×⊂
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Probability and Factor graph

Factor graph to represent factorization 
: random vector indexed by a finite set I. 

The density of the distribution of X factorizes as 

The factor graph G = (V, E) representing the factorization is given by
V = (I, F)

IiiXX ∈= )(

∏
∈

=
Fa

a
a Xf

Z
Xp )(1)( )( F: finite set.   

Z: normalization constant

fa: non-negative function of a subset of {X1,…,Xn}

,)()(
aIii

a XX ∈=

}|),{( aIiFIaiE ∈×∈=

}),(|{: EaiIiIa ∈∈=where
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Probability and Factor graph

Example
I = {1,2,3,4,5}
F = {a,b,c}

A probability is often given by a factorized form, i.e., a product of 
factors with a small number of variables. 

2

3

45

1

c

b
a

),,(),,(),(1)( 54343231 XXXfXXXfXXf
Z

Xp cba=
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Markov Property of Factor Graph

ne(i): neighbor of a variable node i

A path in a factor graph is a sequence of 
variables nodes such that any consecutive 
two nodes are neighbors. 
e.g.  2 – 3 – 5. 

Factorization global Markov property

Theorem 6
Assume the probability of X factorizes w.r.t. a factor graph G. 
S, A, B: disjoint subsets of the variable nodes I.
If every path between any a in A and b in B intersects with S, 

then

}.},{,|{)( aIjiFaIjine ⊂∈∃∈= 2

3

45

1

c

b
a

ne(4)

XA XB |  XS
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Markov Property of Factor Graph

Example 1 

Example 2

),(),(1)( 3231 XXgXXf
Z

Xp =

2

3

45

1

c

b
a

231 gf

X1 X2 |  X3

),,(),,(),(1)( 54343231 XXXfXXXfXXf
Z

Xp cba=

X1 X5 |  X{3,4}

Direct confirmation
∑=

2

)(),,,( 5431
X

XpXXXXp ),,(),,(),(1
54343231

2

XXXfXXXfXXf
Z c

X
ba ∑=

),,(),(),(1
5434331 XXXfXXgXXf

Z ca=

),,(),,(1
543431 XXXXXX

Z
ψϕ= (Prop.1)
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Comparison of Factor Graph and other 
graphs

Factor graph and UDG

All the variable nodes in (i), (ii), and (iii) have the same neighbors, 
and thus the same conditional independence relationships (no 
conditional independence). 
The factor graph representations of (i) and (ii) are different. 

1 2

3
c

a
b

1 2

3

),(),(

),(1)(

3132

21

XXfXXf

XXf
Z

Xp

cb

a= ),,()( 321 XXXpXp =

1 2

3
),,()( 321 XXXpXp =

Factor graphs Undirected graph

UDG cannot distinguish 
the factorization in (i) and (ii)

(i) (ii) (iii)
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Comparison of Factor Graph and other 
graphs

Factor graph and DAG

DAG

),|()()(),,( 21321321 XXXpXpXpXXXp =

1 2

3

c

a b

1 2

3

Factor graph

Independence of 1 and 2
cannot be represented.
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More on Markov Property
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Markov Properties Revisited

Markov properties for an undirected graph
G = (V, E) : undirected graph.      
X: random vector indexed by V.

Local Markov
X satisfies local Markov property relative to G
if for any node a

Pairwise Markov
X satisfies pairwise Markov property relative to G
if any non-adjacent pair of nodes (a, b) satisfies

Xa )())(}({\ | aneaneaV XX ∪

Xa Xb },{\| baVX

a
ne(a)

))(}({\ aneaV ∪

b

a
},{\ baV
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Markov Properties Revisited

Theorem 7
Factorization          global Markov           local Markov 

pairwise Markov

proof)   factorization             global Markov   :    Theorem 3.
global Markov           local Markov    :    easy.
local Markov            pairwise Markov   :    needs some math

(Exercise).

Hammersley-Clifford asserts that the pairwise Markov property 
means factorization w.r.t. the graph under positivity of the density. 
(Theorem 4 assumes ‘global Markov’, but the assertion holds under   
‘pairwise Markov’ assumptoin.)

Similar notions are defined for directed and factor graphs.

⇒ ⇒

⇒
⇒

⇒

⇒
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Proof for Undirected Case

We show a slight generalization of Theorem 3.
Theorem 8

Let G = (V, E) be an undirected graph.  If the distribution of X
factorizes as 

then X satisfies global Markov property relative to G, i.e., for a 
triplet (S, A, B) such that S separates A from B, the conditional 
independence                      holds. 

Proof
Let

XA XB | XS

,)(1)(
complete :
∏=

C
CC X

Z
Xp ψ

},, ,|\{~ φππ =∩∃∈∃∈= SdaAaSVdA  to  from path
).~(\~ SAVB ∪=

S BA

A~

B~
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Proof for Undirected Case

Obviously
and since S separates A from B, 

We can show for any complete subgraph C
or                     holds.

If              there is nothing to prove.  
Assume                
Suppose that the above assertion does not hold, then 

Let                and  
Because a and b are in the complete subgraph C, there is an 
edge e connecting a and b.  Since there is a path π from 
a to A without intersecting S.  Connecting π and e makes a path 
from b to A without intersecting S, which contradicts with the 
definition of     and     .

S BA

A~

B~

,~AA⊂

.~BB ⊂

ASC ~∪⊂ BSC ~∪⊂

.SC ⊄
,SC ⊂

CAa ∩∈ ~.~~ φφ ≠∩≠∩ BCAC and .~ CBb ∩∈

A~ B~

,~Aa∈

e
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Proof for Undirected Case

From this fact, 

which means

and thus

∏∏∏
∪⊂∪⊂

==
BSD

D
DD

ASC
C

CC
C

CC XX
Z

X
Z

Xp
~complete :~complete :complete :

)()(1)(1)( ψψψ

|  XS ,AX ~ BX ~

XA XB |  XS .
Q.E.D.

),(),( ~~ SBSA XXgXXf=

(Proposition 1)
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Converting Factor Graph to UDG

Neighborhood structure by a factor graph make an undirected graph. 

Each factor in (A) does not correspond to a clique in U, 
but to a complete subgraph in U.   

In general, p(X) factorizes as 

for the converted undirected graph U. 

(A)L),(),,(),,(),(1)( 5154343231 XXfXXXfXXXfXXf
Z

Xp dcba=

Factor graph G

2

3

45

1

c

b
a

d

2

3

45

1

Undirected graph U

,)(1)(
complete :
∏=

C
CC X

Z
Xp ψ
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Proof for Factor Graph

Proof of Theorem 6 (‘Factorization Global Markov’ for factor graph)

From the above observation, the proof is done by Theorem 8. 
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Practical Examples

Markov random field for image analysis

Mixture model and hidden Markov model

Conditional random field for sequential data (Lafferty et al. 2001) 

i j
( )∏

∈
−=

Eji
jiij XXU

Z
Xp

),(
),(exp1)(

Observation

Hidden label sequence
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Summary

A graph represents the conditional independence relationships 
among random variables.

There are many types of graph to represent probabilities.
Undirected graph

Directed graph

Factor graph

Factorization of the probability distribution w.r.t. a graph means 
Markov Property of the distribution relative to the graph.  
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