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Introduction and Review



Graphical Models — Rough Sketch

Graphical models

o Graph: G=(V,E) V:the setof nodes, E:the setof edges
o In graphical models,
the random variables are represented by the nodes.

statistical relationships between the variables are represented by
the edges.

Directed graph Undirected graph Factor graph



Purpose of using Graphical Models

Intuitive and visual representation

A graph is an intuitive way of representing and visualizing the
relationships among variables.

Independence / conditional independence

A graph represents conditional independence relationships among
variables.

- Causal relationships, decision making, diagnosis system, etc.

Efficient computation
With graphs, efficient propagation algorithms can be defined.
—> Belief-propagation, junction tree algorithm
Which parts of the modeling block efficient computation?



Independence

For simplicity, it is assumed that the distribution of a random variable
X has the probability density function py(x).

Independence

o XandY are independent (X1LY)
X1Y

S Py (X Y) =Py (X) Py (Y) Dawid's notation



Conditional Independence

Conditional probabillity
o Conditional probability density of Y given X

Pxy (X ¥) _ Pxy (X,Y)
Px (X) 2., Pxy (X,Y)

Def. Pyx (Y[X)=

Conditional independence
o XandY are conditionally independent givenZ  (X1Y |Z)

é?li Pxviz (X, ylz)= Pxz (x| 2) Py|z (ylz)
| for all z with p,(z) > 0.

0 XUWY|Z & Pz (XIY,2)=pyz(X[2)  forall (y,z) with py,(y,z) > 0.

If we already know Z, additional information on Y
does not increase the knowledge on X.



Conditional Independence - Examples
o Speeding Fine }{\Type of Car (perhaps)
o Speeding Fine || Type of Car | Speed
o Ability of Team A 1l Ability of Team B

o Ability of Team A j:l\ Ability of Team B | Outcome of Team A and B



Conditional Independence

Another characterization of cond. independence

Proposition 1

XY |Z
-

there exist functions f(x,z) and g(y,z) such that

Pxvz (X, Y,2) = T(X,2)g(y, 2)
for all x, y and z with p,(z) > 0.

Corollary 2

XY
—

there exist functions f(x) and g(y) such that
Pxy (X, ¥) = T(x)g(y) for all x, v.




Conditional Independence

o Proof of Prop.1.
—> Clear from the definition.
& Forany x,y, and z with p,(z) >0,

pz(2) =2, Pxvz(z,y,2) =, , f(z,2)9(y, 2)
= (>, f(z,2) (X, 9(y, 2))

We have ( ; ool
_ bPxvyz\%,Yy,z) 2)g(y, 2
pxy|z(z,y|z) = pz(z) S f@ ) S, 9(y.2)
(z|z) = pxz(z,2) _ 2yPxvz(@y,2)  f(@2) 20 0(y2)
Px|z pz(2) pz(2) S flz,2) W
py 12 (ylz) = Py z(Y,?) _ > . Pxvz(z,y,2) _ S Flar2)g(y, 2)
Y|z pz(z) pz(z) > Sa2) Zy g(y, 2)
Thus,

pxwz(%?J\Z) = pX|Z(*T’Z)pY|Z(y’Z)



Undirected Graph and
Markov Property
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Undirected Graph

Undirected Graph
o G =(V, E):undirected graph
V: finite set
E cV xV, the order is neglected. (a, b) = (b, a) (a)

Example: V ={a,b,c,d}
E ={(a,b),(b,c),(c,d),(b,d)}

Graph terminology

o Complete: A subgraph S of V is complete
if any a and b (a=#b) in S are connected
by an edge.

o Clique: A clique is a maximal complete

subset w.r.t. inclusion. (a,b,d): complete,
but not a clique

11



Probability and Undirected Graph

Probability associated with an undirected graph
G =(V, E) : undirected graph. V={1,...,n}
X =(Xy,...,X,) :random variables indexed by the node set V.

The probability distribution of X is associated with G if there is a non-
negative function y(X.) for each clique C in G such that

p(X)= [lwc(Xc)

C:clique

Notation: for a subsetSof V, X.=(X,).s

o An undirected graph does not specify a single probability, but
defines a family of probabilities.
In other words, it puts restrictions by the conditional

independence relations represented by the graph.
12



Probability and Undirected Graph

p(X) is associated with an undirected graph G if and only if it admits

P(X) =5 TTve(Xe)

C:clique

Z: normalization constant

‘p factorizes w.r.t. G’

. factor (or potential)

Example

1
p(X) :zl/jl(xa’ Xc)WZ(Xbi Xci Xd)')”3(XC’ Xd 1 Xe)
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Markov Property

Undirected graph and Markov property A
Separation:
G = (V, E) : undirected graph.
A, B, S: disjoint subsets of V.

S separates A from B if every path
between any a in A and b in B intersects with S.

Theorem 3
G = (V, E) : undirected graph.
X: random vector with the distribution associated with G.
If S separates A from B, then

Xa L Xg| Xq

(Proof: next lecture.)

14



Markov Property

o Example

1
PIX) = ya(Xay X Jya (Xo, Xoo X Jys (Xer Xy, Xe)

{c d} separates {b} and {e} => X, 1L X, | X

1
P(Xp, X1 X2 Xe) = 201 (Xa X o (X, Xoa X Jwa(Xe, Xg Xe)
Xa

1=
=X W2 (g Xe X s (Xer X Xo)
1

:Zf(Xb,XC,Xd)g(Xe,XC,Xd) Use prop.1.

{c} separates {a} and {b} = X_ 11 Xy, | X,
p(xaixb’xc)z;Wl(xa’XC)XZ;({WZ(Xb’XC’Xd)W3(XC'Xd’xe)}

w1 (Xa, Xo)9(Xy, X,) Use prop.1.
15
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Markov Property

Global Markov Property
G = (V, E) : undirected graph
X: random vector indexed by V.

X satisfies global Markov property relative to G if X, 1L X5 | X holds
for any triplet (A,B,S) of disjoint subsets of V such that S
separates A from B.

The previous theorem tells
if the distribution of X factorizes w.r.t. G, then X satisfies global
Markov property relative to G.

Remark: Both of ‘factorize’ and ‘global Markov property’ are the

properties regarding a relation between the probability p(X) and
the undirected graph G.
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Markov Property

Hammersley-Clifford theorem (see e.g. Lauritzen. Th.3.9)

Theorem 4
G =(V, E) : undirected graph
X: random vector indexed by V.

Assume that the probability density function p(X) of the distribution
of X is strictly positive.

If X satisfies global Markov property w.r.t. G, then X factorizes w.r.t.
G, i.e. p(X) admits the factorization:

pP(X)= [lwc(Xe).

C:clique

Th. 3
[ Factorization Global Markov J

Th. 4
(with positivity)
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Directed Acyclic Graph and
Markov Property

18



Directed Acyclic Graph

Directed Graph

o G=(V,E):directed graph
V: finite set -- nodes
E cV xV : set of edges

Example: V ={a,b,c,d}
E ={(a,b),(b,c),(c,d),(b,d)}

Orient the edge (a,b) bya > b

a Directed Acyclic graph (DAG)
Directed graph with no cycles.
Cycle: directed path starting and ending at the same node.

19



DAG and Probability

Probability associated with a DAG
o A DAG defines a family of probability distributions

pa(i)={jeV|(i, j) €E} : parents of node i.

p is said to be associated with DAG G, or p factorizes w.r.t. G.

Example:

p(X,. X, Xo, Xg, X,)
= P(X) P(Xp) P(X | X, Xp) P(Xg [ Xy, X)X | Xy Xy)

20




Conditional Independence with DAG

Three basic cases
(1) p(xa’ Xb’ Xc) = p(xa) p(xc | Xa) p(xb | Xc)
XaJ-I- Xb | Xc

Note p(xa) p(xc | Xa) - p(Xa’ xc) — p(Xc) p(xa | Xc)
= p(Xa’ Xb’ Xc) — p(Xc) p(Xa | Xc) p(Xb | Xc)

p(xa’ Xb | Xc) - p(xa | Xc) p(Xb | Xc)

(2)
@ G @ p(xa’ Xb’ Xc) = p(xc) p(xa | Xc) p(xb | Xc)

Xy AL X, | X,

Note: Pp(X,,X,,X,) are the same for (1) and (2).
21



Conditional Independence with DAG

(3) @ @ p(xa! Xb’ Xc) — p(xa) p(xb) p(xc | Xa’ Xb)
©

head-to-head Xa :N\ Xb | Xc Xa 1L Xb

(or v-structure)

Note: p(X,,X,,X.) in(3) are different from (1) and (2).

If you often sneeze, but you do

not have cold, then it is more
@ likely you have allergy (hay fever).

22



D-Separation

Blocked:

An undirected path zis said to be blocked by a subset S in V
if there exists a node ¢ on the path such that either

(i) ceS andcis not head-to-head in 7 (O——-0O or O«—@—0),

(i) O-@+~O and ({crude(c) NS =¢.
head-to-head
Descendent: de(i) ={j €V | 3directed path fromi to j}

1S blocked by S 1S blocked by S 1S NOT blocked by S
23



D-Separation

d-separate:
A, B, S: disjoint subsets of V.

S d-separates A from B if every undirected path between a in A
and b in B is blocked by S.

d-separation and conditional independence

Theorem 5
X: random vector with the distribution associated with DAG G.

A, B, S: disjoint subsets of V.
If S d-separates A from B, then

Xall Xg| X

(Proof not shown in this course. See Lauritzen 1996, 3.23&3.25)

24



D-Separation

Example
0 X, AL X,

S=4¢.
a 2> ¢ < bis blocked (with c).
a—> c—>d < bis blocked (with d)

a—>c—>e<d< bisblocked (with e)

- Xa 1L Xd | X{b,c}

a - ¢ = dis blocked (with c).
a—>c < b < dis blocked (with b)
a—>c > e < dis blocked (with e or ¢)

25



Comparison: UDG and DAG

Limitation of undirected graph

p(xa! Xb’ Xc) = p(xa) p(xb) p(xc | Xa’ Xb)

(a) (e . b

DAG IF X X, Xo X, X X | X,

any UDG is not able to
Kadl Xy, Ko Xy [ X express X_ 1L X,.

26



Comparison: UDG and DAG

Limitation of DAG

Undirected graph e
p(xa’xb’XC’Xd) Q e
— p(xa’ Xb) p(xa’ Xc) p(xb’ Xd)p(xc’ Xd)

Xa 1 Xd | X{b,c} Xb A Xc | X{a,d}

No DAG expresses these conditional independence relationships.

[Sketch of the proof.] If every node had the form —()—, the graph
would be a cycle. Thus, there must be a v-structure.
Conditional independence of the parents of the v-structure given

the other two nodes cannot
be expressed by a DAG. C@p :‘;ii: @
27



Mini Summary on UDG and DAG

Undirected graph

o Probability associated with G,
(p(X) factorizes w.r.t. G)

p(X) == TIwe(Xe)

Z C:clique

o p(X) factorizes w.r.t. G
—

X is global Markov relative to G.

(i.e. if S separates A from B,
then X, 1l Xz| X-)

Directed acyclic graph (DAG)

o Probability associated with G
(p(X) factorizes w.r.t. G)

P(Xy,. s X)) :f{ POXi | X pagiy)

o p(X) factorizes w.r.t. G
—
X is d-global Markov relative to G.
(i.e. if S d-separates A from B,
then X, 11 X, | X, -
28



Appendix: Terminology on Graphs

Undirected graph c=(v,E)

o Adjacent: aandbinV (a=b) are adjacent if (a,b) € E.

o Neighbor: ne(a) ={beV |(a,b) € E}. O ne(a)
()

DAG G=(,E) @)

o Parents: pa(a)={beV |(b,a) e E}.

o Children: ch(a)={beV |(a,b) e E}.

an(a)
o Ancestors:
an(a) ={b eV | 3directed path from b to a}. ﬂé
o Descendents:
de(a) ={b €V | 3 directed path from a to b}. de(c)
& 29



Factor Graph and Markov Property

30



Factor Graph

o Factor graph G = (V, E)
V=(I,F): two types of nodes
I variable nodes
F: factor nodes

E: undirected edges
EclxFcVxV.

An edge exists only between a factor node and
a variables node.

Q — variable node
— factor node

A factor graph is in general called bipartite graph.

A bipartite graph is an undirected graph G = (V, E) such that

V =V,UV,, V,"V, =¢, EcV,xV,.

31



Probability and Factor graph

Factor graph to represent factorization
o X =(X;),, : random vector indexed by a finite set I.

The density of the distribution of X factorizes as

p(X):EH f_(X @) F: finite set.
L acF Z: normalization constant

f.: non-negative function of a subset of {X,,..., X}
X® =(X,)i.,, where 1 ={iel|(i,a)eE}

i 1
iel,

o The factor graph G = (V, E) representing the factorization is given by
V=(,F)
E={(i,a)elxF|iel}

32



Probability and Factor graph

Example
| = {1,2,3,4,5} @
F={ab,c} 3

b
POX) = (X Xa) Xz X o) £ (X, X X &

o A probability is often given by a factorized form, i.e., a product of
factors with a small number of variables.

33



Markov Property of Factor Graph

o ne(i): neighbor of a variable node |

ne(i)={jel|JaecF i jcl,} © 32

o A path in a factor graph is a sequence of $—b
variables nodes such that any consecutive ®1c \®
two nodes are neighbors.

e.g. 2-3-5. ne(4)

o Factorization - global Markov property

Theorem 6
Assume the probability of X factorizes w.r.t. a factor graph G.
S, A, B: disjoint subsets of the variable nodes |I.

If every path between any a in A and b in B intersects with S,
then XAJ_I_ XB| XS

34



Markov Property of Factor Graph

o Example 1

1
p(X):zf(XLXB)g(XZ’X?)) @ f @ g @
X, 1L X, | X,

o Example 2 CQ
1
p(X) :z fa(xl’ X3) fb(XZ’ X3’ X4) fc(x3’ X4’ X5)

;
Xi AL Xs | X0y o0 @

Direct confirmation
p(Xy, X5, X4, Xs) = zp(x>— fa (X5 X Z (X X, X)X, X, Xs)

;f(x K90 X)X Ko )

; o(Xy, Xg, X w (X5, X,, X))  (Prop.l) 5




Comparison of Factor Graph and other
graphs
Factor graph and UDG

Factor graphs Undirected graph
(1) (i1) (il1)
@2 @_ @ @Q@
C 3
p(X) :; f (X, X,) p(X) = p(Xy, X, X5) p(X) = p(Xy, X5, X5)

UDG cannot distinguish
fo (X2, X3) o (Xq, Xs) the factorization in (i) and (ii)
o All the variable nodes in (i), (i), and (iii)) have the same neighbors,

and thus the same conditional independence relationships (no
conditional independence).

o The factor graph representations of (i) and (ii) are different. 36



Comparison of Factor Graph and other
graphs

Factor graph and DAG
P(X1, X5, X3) = p(X) p(X,) p(X3 | Xy, X,)

DAG Factor graph
golNon
C

Independence of 1 and 2
cannot be represented.

37



More on Markov Property
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Markov Properties Revisited

Markov properties for an undirected graph
G = (V, E) : undirected graph.
X: random vector indexed by V. V \ ({a}une(a))

o Local Markov
X satisfies local Markov property relative to G

if for any node a
Xa J-I- XV\({a}une(a)) | Xne(a)

o Pairwise Markov
X satisfies pairwise Markov property relative to G
If any non-adjacent pair of nodes (a, b) satisfies

Xa Xy | XV\{a,b}

ne(a)

V \{a,b}



Markov Properties Revisited

Theorem 7

Factorization — global Markov —> local Markov
— pairwise Markov

proof) factorization —> global Markov : Theorem 3.
global Markov —> local Markov : easy.
local Markov —> pairwise Markov : needs some math
(Exercise).

o Hammersley-Clifford asserts that the pairwise Markov property
means factorization w.r.t. the graph under positivity of the density.
(Theorem 4 assumes ‘global Markov’, but the assertion holds under

‘pairwise Markov’ assumptoin.)

o Similar notions are defined for directed and factor graphs.
40



Proof for Undirected Case

We show a slight generalization of Theorem 3.
Theorem 8
Let G =(V, E) be an undirected graph. If the distribution of X

factorizes as 1
p(X)== [lwc(Xc)

Z C:complete

then X satisfies global Markov property relative to G, i.e., for a
triplet (S, A, B) such that S separates A from B, the conditional
independence X, 1L X; | X5 holds.

o Proof ~
A={d eV \S|Jac A3zpathfromatod, 7S =g},
B=V\(AUS).

41



Proof for Undirected Case

Obviously Ac A,
and since S separates A from B,

We can show for any complete subgraph C |
CcSUA or CcSuB holds.

/If C < S, there is nothing to prove. N

Assume C ¢« S.

Suppose that the above assertion does not hold, then.
CnAzgandCnB=g. LetacAnCand beBNC.
Because a and b are in the complete subgraph C, there is an
edge e connecting a and b. Since ae€ A, there is a path zfrom
a to A without intersecting S. Connecting 7 and e makes a path
from b to A without intersecting S, which contradicts with the p

\_ definition of A and B . 5




Proof for Undirected Case

From this fact,

p(x):i I_IWC(XC):i [lvc(Xe) Tlwo(Xp)

Z C:complete C:complete D:complete
CcSUA DcSuB

= f(XA,XS)g(Xg,XS)

which means
Xz AL X5 X, (Proposition 1)

and thus

Xo Ll Xg| Xs. -

43



Converting Factor Graph to UDG

Neighborhood structure by a factor graph make an undirected graph.

p(X) :% fa(xl’ X3) fb(X2’ X3, X4) fc(x3’ X4, Xs) fd (X1’ Xs) (A)

g N A
@;\%i = @“@‘e

C

Factor graph G Undirected graph U

Each factor in (A) does not correspond to a clique in U,
but to a complete subgraph in U.

In general, p(X) factorizes as

pP(X) :i [Twe (Xe),

C:complete

for the converted undirected graph U.
44



Proof for Factor Graph

o Proof of Theorem 6 (‘Factorization - Global Markov’ for factor graph)

From the above observation, the proof is done by Theorem 8.

45



Practical Examples

o Markov random field for image analysis

p(X) == [Texp(-U, (X;. X))

(i,))eE

o  Mixture model and hidden Markov model

o Conditional random field for sequential data (Lafferty et al. 2001)

(O )

Hidden label sequence
g g g Observation

46



Summary

o A graph represents the conditional independence relationships
among random variables.

o There are many types of graph to represent probabilities.

Undirected graph i

Directed graph

Factor graph %@@

Factorization of the probabillity distribution w.r.t. a graph means
Markov Property of the distribution relative to the graph.

47
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