Kernel methods for testing three-variable interactions

Arthur Gretton

Gatsby Computational Neuroscience Unit

Tokyo, March 2014

The problem: Do local field potential (LFP) signals change when measured near a spike burst?

The problem: Do local field potential (LFP) signals change when measured near a spike burst?

The problem: Do local field potential (LFP) signals change when measured near a spike burst?

- How do you detect dependence. . .
- ... in a discrete domain? [Read and Cressie, 1988]

- How do you detect dependence. . .
- ... in a discrete domain? [Read and Cressie, 1988]

- How do you detect dependence. . .
- ... in a discrete domain? [Read and Cressie, 1988]

P(A,T)	On time	Late
Alarm	0.27	0.03
No alarm	0.07	0.63

- How do you detect dependence. . .
- ... in a discrete domain? [Read and Cressie, 1988]

P(A,T)	On time	Late
Alarm	0.10	0.20
No alarm	0.24	0.46

- How do you detect dependence. . .
- ... in a discrete domain? [Read and Cressie, 1988]

 X_1 : Honourable senators, I have a question for the Leader of the Government in the Senate with regard to the support funding to farmers that has been announced. Most farmers have not received any money yet.

 X_2 : No doubt there is great pressure on provincial and municipal governments in relation to the issue of child care, but the reality is that there have been no cuts to child care funding from the federal government to the provinces. In fact, we have increased federal investments for early childhood development.

. . .

 Y_1 : Honorables sénateurs, ma question s'adresse au leader du gouvernement au Sénat et concerne l'aide financiére qu'on a annoncée pour les agriculteurs. La plupart des agriculteurs n'ont encore rien reu de cet argent.

 Y_2 :Il est évident que les ordres de gouvernements provinciaux et municipaux subissent de fortes pressions en ce qui concerne les services de garde, mais le gouvernement n'a pas réduit le financement qu'il verse aux provinces pour les services de garde. Au contraire, nous avons augmenté le financement fédéral pour le développement des jeunes enfants.

. . .

Are the French text extracts translations of the English ones?

Detecting a higher order interaction

• How to detect V-structures with pairwise weak (or nonexistent) dependence?

Detecting a higher order interaction

• How to detect V-structures with pairwise weak (or nonexistent) dependence?

Detecting a higher order interaction

- How to detect V-structures with pairwise weak (or nonexistent) dependence?
- $X \perp\!\!\!\perp Y, Y \perp\!\!\!\perp Z, X \perp\!\!\!\perp Z$

Overview

- Kernel metric on the space of probability measures: Maximum Mean Discrepancy $MMD(\mathbf{P}, \mathbf{Q})$
 - Distance between means of (nonlinear) features
 - Function revealing differences in distributions
 - Dependence detection: \mathbf{P}_{xy} vs $\mathbf{P}_x \mathbf{P}_y$ using $MMD(\mathbf{P}_{xy}, \mathbf{P}_x \mathbf{P}_y)$

Overview

- Kernel metric on the space of probability measures: Maximum Mean Discrepancy $MMD(\mathbf{P}, \mathbf{Q})$
 - Distance between means of (nonlinear) features
 - Function revealing differences in distributions
 - Dependence detection: \mathbf{P}_{xy} vs $\mathbf{P}_x \mathbf{P}_y$ using $MMD(\mathbf{P}_{xy}, \mathbf{P}_x \mathbf{P}_y)$
- Detecting three-way interactions
 - Parents with weak individual influence, strong combined influence
 - Avoid difficult problem of conditional dependence testing
 - Generalization of independence test

Kernel distance between distributions

- Simple example: 2 Gaussians with different means
- Answer: t-test

Feature mean difference

- Two Gaussians with same means, different variance
- Idea: look at difference in means of features of the RVs
- In Gaussian case: second order features of form $\varphi(x) = x^2$

Feature mean difference

- Two Gaussians with same means, different variance
- Idea: look at difference in means of features of the RVs
- In Gaussian case: second order features of form $\varphi_x = x^2$

Feature mean difference

- Gaussian and Laplace distributions
- Same mean *and* same variance
- Difference in means using higher order features

• Are **P** and **Q** different?

• Are **P** and **Q** different?

• Maximum mean discrepancy: smooth function for **P** vs **Q**

$$MMD(\mathbf{P}, \mathbf{Q}; F) := \sup_{f \in F} \left[\mathbf{E}_{\mathbf{P}} \mathbf{f}(\mathsf{x}) - \mathbf{E}_{\mathbf{Q}} \mathbf{f}(\mathsf{y}) \right].$$

• Maximum mean discrepancy: smooth function for **P** vs **Q**

$$MMD(\mathbf{P},\mathbf{Q};F) := \sup_{f \in F} \left[\mathbf{E}_{\mathbf{P}} \mathbf{f}(\mathsf{x}) - \mathbf{E}_{\mathbf{Q}} \mathbf{f}(\mathsf{y}) \right].$$

• What if the function is **not smooth**?

$$MMD(\mathbf{P}, \mathbf{Q}; F) := \sup_{f \in F} \left[\mathbf{E}_{\mathbf{P}} \mathbf{f}(\mathsf{x}) - \mathbf{E}_{\mathbf{Q}} \mathbf{f}(\mathsf{y}) \right].$$

• What if the function is **not smooth**?

$$MMD(\mathbf{P}, \mathbf{Q}; F) := \sup_{f \in F} \left[\mathbf{E}_{\mathbf{P}} \mathbf{f}(\mathsf{x}) - \mathbf{E}_{\mathbf{Q}} \mathbf{f}(\mathsf{y}) \right].$$

• Maximum mean discrepancy: smooth function for P vs Q

$$\mathrm{MMD}(\mathbf{P},\mathbf{Q};F) := \sup_{f \in F} \left[\mathbf{E}_{\mathbf{P}} \mathbf{f}(\mathsf{x}) - \mathbf{E}_{\mathbf{Q}} \mathbf{f}(\mathsf{y}) \right].$$

• Gauss **P** vs Laplace **Q**

• Maximum mean discrepancy: smooth function for ${\sf P}$ vs ${\sf Q}$

$$MMD(\mathbf{P}, \mathbf{Q}; F) := \sup_{f \in F} \left[\mathbf{E}_{\mathbf{P}} \mathbf{f}(\mathsf{x}) - \mathbf{E}_{\mathbf{Q}} \mathbf{f}(\mathsf{y}) \right].$$

- Classical results: $MMD(\mathbf{P}, \mathbf{Q}; F) = 0$ iff $\mathbf{P} = \mathbf{Q}$, when
 - F =bounded continuous [Dudley, 2002]
 - F = bounded variation 1 (Kolmogorov metric) [Müller, 1997]
 - F = bounded Lipschitz (Earth mover's distances) [Dudley, 2002]

• Maximum mean discrepancy: smooth function for ${\sf P}$ vs ${\sf Q}$

$$MMD(\mathbf{P}, \mathbf{Q}; F) := \sup_{f \in F} \left[\mathbf{E}_{\mathbf{P}} \mathbf{f}(\mathsf{x}) - \mathbf{E}_{\mathbf{Q}} \mathbf{f}(\mathsf{y}) \right].$$

- Classical results: $MMD(\mathbf{P}, \mathbf{Q}; F) = 0$ iff $\mathbf{P} = \mathbf{Q}$, when
 - F =bounded continuous [Dudley, 2002]
 - F = bounded variation 1 (Kolmogorov metric) [Müller, 1997]
 - -F = bounded Lipschitz (Earth mover's distances) [Dudley, 2002]
- MMD(P, Q; F) = 0 iff P = Q when F = the unit ball in a characteristic RKHS F Sriperumbudur et al. (2010), Gretton et al. (2012), Sejdinovic et al. (2013)

Functions in the RKHS

- \mathcal{F} RKHS from \mathcal{X} to \mathbb{R} with positive definite kernel $k(x_i, x_j)$
- $\mathcal{F} = \overline{\operatorname{span}\{k(x,\cdot)|x \in \mathcal{X}\}}$
 - Example: $f(x) = \sum_{i=1}^{m} \alpha_i k(x_i, x)$ for arbitrary $m \in \mathbb{N}, \alpha_i \in \mathbb{R}, x_i \in \mathcal{X}.$

• Feature map of $x \in \mathbb{R}^2$, written φ_x

$$\varphi_x^{(p)} = \begin{bmatrix} x_1^2 & x_2^2 & x_1 x_2 \sqrt{2} \end{bmatrix} \qquad \qquad \varphi_x^{(g)} = \begin{bmatrix} \dots \sqrt{\lambda_i} e_i(x) \dots \end{bmatrix} \in \ell_2$$

• Feature map of $x \in \mathbb{R}^2$, written φ_x

$$\varphi_x^{(p)} = \begin{bmatrix} x_1^2 & x_2^2 & x_1 x_2 \sqrt{2} \end{bmatrix} \qquad \qquad \varphi_x^{(g)} = \begin{bmatrix} \dots \sqrt{\lambda_i} e_i(x) \dots \end{bmatrix} \in \ell_2$$

• Inner product between feature maps:

$$\left\langle \varphi_x^{(p)}, \varphi_y^{(p)} \right\rangle_{\mathcal{F}} = \langle x, y \rangle^2 \qquad \left\langle \varphi_x^{(g)}, \varphi_y^{(g)} \right\rangle_{\mathcal{F}} = \exp\left(-\lambda \|x - y\|^2\right)$$

• Feature map of $x \in \mathbb{R}^2$, written φ_x

$$\varphi_x^{(p)} = \begin{bmatrix} x_1^2 & x_2^2 & x_1 x_2 \sqrt{2} \end{bmatrix} \qquad \qquad \varphi_x^{(g)} = \begin{bmatrix} \dots \sqrt{\lambda_i} e_i(x) \dots \end{bmatrix} \in \ell_2$$

• Inner product between feature maps:

$$\left\langle \varphi_x^{(p)}, \varphi_y^{(p)} \right\rangle_{\mathcal{F}} = \langle x, y \rangle^2 \qquad \left\langle \varphi_x^{(g)}, \varphi_y^{(g)} \right\rangle_{\mathcal{F}} = \exp\left(-\lambda \|x - y\|^2\right)$$

• In general,

$$\langle \varphi_{x_1}, \varphi_{x_2} \rangle_{\mathcal{F}} = k(x_1, x_2)$$

for positive definite k(x, y)

Kernels are inner products of feature maps

• Function in RKHS:

$$f(x) = \sum_{i=1}^{m} \alpha_i k(x_i, x) = \sum_{i=1}^{m} \alpha_i \langle \varphi_{x_i}, \varphi_x \rangle_{\mathcal{F}} = \langle f, \varphi_x \rangle_{\mathcal{F}} \qquad f = \sum_{i=1}^{m} \alpha_i \varphi_{x_i}$$

Probabilities in feature space: the mean trick

The kernel trick

• Given $x \in \mathcal{X}$ for some set \mathcal{X} , define feature map $\varphi_x \in \mathcal{F}$,

$$\varphi_x = \left[\dots \sqrt{\lambda_i} e_i(x) \dots\right] \in \ell_2$$

• For positive definite k(x, x'),

$$k(x, x') = \langle \varphi_x, \varphi_{x'} \rangle_{\mathcal{F}}$$

• The kernel trick: $\forall f \in \mathcal{F}$,

$$f(x) = \langle f, \varphi_x \rangle_{\mathcal{F}}$$

Probabilities in feature space: the mean trick

The kernel trick

• Given $x \in \mathcal{X}$ for some set \mathcal{X} , define feature map $\varphi_x \in \mathcal{F}$,

$$\varphi_x = \left[\dots \sqrt{\lambda_i} e_i(x) \dots \right] \in \ell_2$$

• For positive definite k(x, x'),

$$k(x, x') = \langle \varphi_x, \varphi_{x'} \rangle_{\mathcal{F}}$$

• The kernel trick: $\forall f \in \mathcal{F}$,

$$f(x) = \langle f, \varphi_x \rangle_{\mathcal{F}}$$

The mean trick

• Given \mathbf{P} a Borel probability measure on \mathcal{X} , define feature map $\mu_{\mathbf{P}} \in \mathcal{F}$

$$\mu_{\mathbf{P}} = \left[\dots \sqrt{\lambda_i} \mathbf{E}_{\mathbf{P}} \left[e_i(X) \right] \dots \right] \in \ell_2$$

• For positive definite k(x, x'),

 $\mathbf{E}_{\mathbf{P},\mathbf{Q}}k(X,Y) = \langle \mu_{\mathbf{P}}, \mu_{\mathbf{Q}} \rangle_{\mathcal{F}}$

for $X \sim \mathbf{P}$ and $Y \sim \mathbf{Q}$.

• The mean trick:

$$\mathbf{E}_{\mathbf{P}}(f(X)) = \mathbf{E}_{\mathbf{P}} \left[\langle \varphi_X, f \rangle_{\mathcal{F}} \right]$$
$$=: \langle \mu_{\mathbf{P}}, f \rangle_{\mathcal{F}}$$

Feature embeddings of probabilities

For all $f \in \mathcal{F}$, The kernel trick:

$$f(x) = \langle f, \varphi_x \rangle_{\mathcal{F}}$$

The mean trick:

 $\mathbf{E}_{\mathbf{P}}(f(X)) = \langle \boldsymbol{\mu}_{\mathbf{P}}, f \rangle_{\mathcal{F}}$

 $\mu_{\mathbf{P}}$ gives you expectations of all RKHS functions

When k characteristic, then $\mu_{\mathbf{P}}$ unique, e.g. Gauss, Laplace, ...
• The (kernel) MMD:

 $\mathrm{MMD}^2(\mathbf{P},\mathbf{Q};F)$

$$= \left(\sup_{f \in F} \left[\mathbf{E}_{\mathbf{P}} f(\mathbf{x}) - \mathbf{E}_{\mathbf{Q}} f(\mathbf{y}) \right] \right)^2$$

Function view vs feature mean view

• The (kernel) MMD:

$$\begin{split} \mathrm{MMD}^2(\mathbf{P},\mathbf{Q};F) \\ &= \left(\sup_{f \in F} \left[\mathbf{E}_{\mathbf{P}} f(\mathsf{x}) - \mathbf{E}_{\mathbf{Q}} f(\mathsf{y}) \right] \right)^2 \end{split}$$

use

$$\begin{split} \mathbf{E}_{\mathbf{P}}(f(\mathsf{x})) &= \mathbf{E}_{\mathbf{P}}\left[\langle \varphi_{x}, f \rangle_{\mathcal{F}}\right] \\ &=: \langle \mu_{\mathbf{P}}, f \rangle_{\mathcal{F}} \end{split}$$

• The (kernel) MMD:

 $\mathrm{MMD}^2(\mathbf{P},\mathbf{Q};F)$

$$= \left(\sup_{f \in F} \left[\mathbf{E}_{\mathbf{P}} f(\mathbf{x}) - \mathbf{E}_{\mathbf{Q}} f(\mathbf{y}) \right] \right)^2$$
$$= \left(\sup_{f \in F} \langle f, \mu_{\mathbf{P}} - \mu_{\mathbf{Q}} \rangle_{\mathcal{F}} \right)^2$$

use

$$\begin{aligned} \mathbf{E}_{\mathbf{P}}(f(\mathbf{x})) &= \mathbf{E}_{\mathbf{P}}\left[\langle \varphi_x, f \rangle_{\mathcal{F}}\right] \\ &=: \langle \mu_{\mathbf{P}}, f \rangle_{\mathcal{F}} \end{aligned}$$

• The (kernel) MMD:

$\mathrm{MMD}^2(\mathbf{P},\mathbf{Q};F)$

$$= \left(\sup_{f \in F} \left[\mathbf{E}_{\mathbf{P}} f(\mathbf{x}) - \mathbf{E}_{\mathbf{Q}} f(\mathbf{y}) \right] \right)^{2}$$
 use
$$= \left(\sup_{f \in F} \langle f, \mu_{\mathbf{P}} - \mu_{\mathbf{Q}} \rangle_{\mathcal{F}} \right)^{2}$$
$$= \left\| \mu_{\mathbf{P}} - \mu_{\mathbf{Q}} \right\|_{\mathcal{F}}^{2}$$

Function view and feature view equivalent

$$\mathrm{MMD}^{2} = \|\mu_{\mathbf{P}} - \mu_{\mathbf{Q}}\|_{\mathcal{F}}^{2} = \langle \mu_{\mathbf{P}} - \mu_{\mathbf{Q}}, \mu_{\mathbf{P}} - \mu_{\mathbf{Q}} \rangle_{\mathcal{F}}$$

$$\mathrm{MMD}^{2} = \|\mu_{\mathbf{P}} - \mu_{\mathbf{Q}}\|_{\mathcal{F}}^{2} = \langle \mu_{\mathbf{P}} - \mu_{\mathbf{Q}}, \mu_{\mathbf{P}} - \mu_{\mathbf{Q}} \rangle_{\mathcal{F}}$$

$$\begin{aligned} \text{MMD}^2 &= \|\mu_{\mathbf{P}} - \mu_{\mathbf{Q}}\|_{\mathcal{F}}^2 &= \langle \mu_{\mathbf{P}} - \mu_{\mathbf{Q}}, \mu_{\mathbf{P}} - \mu_{\mathbf{Q}} \rangle_{\mathcal{F}} \\ &= \langle \mu_{\mathbf{P}}, \mu_{\mathbf{P}} \rangle + \langle \mu_{\mathbf{Q}}, \mu_{\mathbf{Q}} \rangle - 2 \langle \mu_{\mathbf{P}}, \mu_{\mathbf{Q}} \rangle \end{aligned}$$

$$\mathrm{MMD}^{2} = \|\mu_{\mathbf{P}} - \mu_{\mathbf{Q}}\|_{\mathcal{F}}^{2} = \langle \mu_{\mathbf{P}} - \mu_{\mathbf{Q}}, \mu_{\mathbf{P}} - \mu_{\mathbf{Q}} \rangle_{\mathcal{F}}$$

$$\begin{aligned} \text{MMD}^2 &= \|\mu_{\mathbf{P}} - \mu_{\mathbf{Q}}\|_{\mathcal{F}}^2 &= \langle \mu_{\mathbf{P}} - \mu_{\mathbf{Q}}, \mu_{\mathbf{P}} - \mu_{\mathbf{Q}} \rangle_{\mathcal{F}} \\ &= \langle \mu_{\mathbf{P}}, \mu_{\mathbf{P}} \rangle + \langle \mu_{\mathbf{Q}}, \mu_{\mathbf{Q}} \rangle - 2 \langle \mu_{\mathbf{P}}, \mu_{\mathbf{Q}} \rangle \end{aligned}$$

$$\mathrm{MMD}^{2} = \|\mu_{\mathbf{P}} - \mu_{\mathbf{Q}}\|_{\mathcal{F}}^{2} = \langle \mu_{\mathbf{P}} - \mu_{\mathbf{Q}}, \mu_{\mathbf{P}} - \mu_{\mathbf{Q}} \rangle_{\mathcal{F}}$$

$$MMD^{2} = \|\mu_{\mathbf{P}} - \mu_{\mathbf{Q}}\|_{\mathcal{F}}^{2} = \langle \mu_{\mathbf{P}} - \mu_{\mathbf{Q}}, \mu_{\mathbf{P}} - \mu_{\mathbf{Q}} \rangle_{\mathcal{F}}$$
$$= \langle \mu_{\mathbf{P}}, \mu_{\mathbf{P}} \rangle + \langle \mu_{\mathbf{Q}}, \mu_{\mathbf{Q}} \rangle - 2 \langle \mu_{\mathbf{P}}, \mu_{\mathbf{Q}} \rangle$$
$$= \langle \mathbf{E}_{\mathbf{P}} \varphi_{x}, \mathbf{E}_{\mathbf{P}} \varphi_{x} \rangle + \dots$$

$$\mathrm{MMD}^{2} = \|\mu_{\mathbf{P}} - \mu_{\mathbf{Q}}\|_{\mathcal{F}}^{2} = \langle \mu_{\mathbf{P}} - \mu_{\mathbf{Q}}, \mu_{\mathbf{P}} - \mu_{\mathbf{Q}} \rangle_{\mathcal{F}}$$

$$MMD^{2} = \|\mu_{\mathbf{P}} - \mu_{\mathbf{Q}}\|_{\mathcal{F}}^{2} = \langle \mu_{\mathbf{P}} - \mu_{\mathbf{Q}}, \mu_{\mathbf{P}} - \mu_{\mathbf{Q}} \rangle_{\mathcal{F}}$$
$$= \langle \mu_{\mathbf{P}}, \mu_{\mathbf{P}} \rangle + \langle \mu_{\mathbf{Q}}, \mu_{\mathbf{Q}} \rangle - 2 \langle \mu_{\mathbf{P}}, \mu_{\mathbf{Q}} \rangle$$
$$= \langle \mathbf{E}_{\mathbf{P}} \varphi_{x}, \mathbf{E}_{\mathbf{P}} \varphi_{x} \rangle + \dots$$
$$= \mathbf{E}_{\mathbf{P}} \langle \varphi_{x}, \varphi_{x'} \rangle + \dots$$

$$\mathrm{MMD}^{2} = \|\mu_{\mathbf{P}} - \mu_{\mathbf{Q}}\|_{\mathcal{F}}^{2} = \langle \mu_{\mathbf{P}} - \mu_{\mathbf{Q}}, \mu_{\mathbf{P}} - \mu_{\mathbf{Q}} \rangle_{\mathcal{F}}$$

$$MMD^{2} = \|\mu_{\mathbf{P}} - \mu_{\mathbf{Q}}\|_{\mathcal{F}}^{2} = \langle \mu_{\mathbf{P}} - \mu_{\mathbf{Q}}, \mu_{\mathbf{P}} - \mu_{\mathbf{Q}} \rangle_{\mathcal{F}}$$
$$= \langle \mu_{\mathbf{P}}, \mu_{\mathbf{P}} \rangle + \langle \mu_{\mathbf{Q}}, \mu_{\mathbf{Q}} \rangle - 2 \langle \mu_{\mathbf{P}}, \mu_{\mathbf{Q}} \rangle$$
$$= \langle \mathbf{E}_{\mathbf{P}} \varphi_{x}, \mathbf{E}_{\mathbf{P}} \varphi_{x} \rangle + \dots$$
$$= \mathbf{E}_{\mathbf{P}} \langle \varphi_{x}, \varphi_{x'} \rangle + \dots$$
$$= \mathbf{E}_{\mathbf{P}} k(x, x') + \mathbf{E}_{\mathbf{Q}} k(y, y') - 2\mathbf{E}_{\mathbf{P},\mathbf{Q}} k(x, y)$$

$$\mathrm{MMD}^{2} = \|\mu_{\mathbf{P}} - \mu_{\mathbf{Q}}\|_{\mathcal{F}}^{2} = \langle \mu_{\mathbf{P}} - \mu_{\mathbf{Q}}, \mu_{\mathbf{P}} - \mu_{\mathbf{Q}} \rangle_{\mathcal{F}}$$

MMD in terms of kernels:

$$MMD^{2} = \|\mu_{\mathbf{P}} - \mu_{\mathbf{Q}}\|_{\mathcal{F}}^{2} = \langle \mu_{\mathbf{P}} - \mu_{\mathbf{Q}}, \mu_{\mathbf{P}} - \mu_{\mathbf{Q}} \rangle_{\mathcal{F}}$$
$$= \langle \mu_{\mathbf{P}}, \mu_{\mathbf{P}} \rangle + \langle \mu_{\mathbf{Q}}, \mu_{\mathbf{Q}} \rangle - 2 \langle \mu_{\mathbf{P}}, \mu_{\mathbf{Q}} \rangle$$
$$= \langle \mathbf{E}_{\mathbf{P}} \varphi_{x}, \mathbf{E}_{\mathbf{P}} \varphi_{x} \rangle + \dots$$
$$= \mathbf{E}_{\mathbf{P}} \langle \varphi_{x}, \varphi_{x'} \rangle + \dots$$
$$= \mathbf{E}_{\mathbf{P}} k(x, x') + \mathbf{E}_{\mathbf{Q}} k(y, y') - 2\mathbf{E}_{\mathbf{P},\mathbf{Q}} k(x, y)$$

Empirical estimate: given i.i.d. $X := \{x_1, \ldots, x_m\}$

$$\widehat{\mathbb{E}}_{\mathbf{P}}k(x,x') = \frac{1}{m(m-1)} \sum_{i=1}^{m} \sum_{j\neq i}^{m} k(x_i,x_j)$$

Statistical hypothesis testing

- Two hypotheses:
 - H_0 : null hypothesis ($\mathbf{P} = \mathbf{Q}$)
 - H_1 : alternative hypothesis ($\mathbf{P} \neq \mathbf{Q}$)

- Two hypotheses:
 - H_0 : null hypothesis ($\mathbf{P} = \mathbf{Q}$)
 - H_1 : alternative hypothesis ($\mathbf{P} \neq \mathbf{Q}$)
- Observe samples $\boldsymbol{x} := \{x_1, \ldots, x_m\}$ from **P** and \boldsymbol{y} from **Q**
- If empirical $\widehat{\text{MMD}}^2$ is
 - "far from zero": reject H_0
 - "close to zero": accept H_0

- When $\mathbf{P} = \mathbf{Q}$, U-statistic degenerate: Gretton et al. (2012)
- Distribution is

$$\widehat{\mathrm{MMD}}^2 \sim \sum_{l=1}^{\infty} \lambda_l \left[z_l^2 - 2 \right]$$

- Given $\mathbf{P} = \mathbf{Q}$, want threshold T such that $\mathbf{P}(\widehat{\mathrm{MMD}}^2 > T) \leq \alpha$
- Permutation for empirical CDF [Arcones and Giné, 1992]
- Pearson curves by matching first four moments [Johnson et al., 1994]
- Large deviation bounds [Hoeffding, 1963, McDiarmid, 1989]
- Consistent test using kernel eigenspectrum Gretton et al. (2009)

MMD for independence

• Dependence measure: Gretton et al. (2008)

$$\left(\sup_{f} \left[\mathbf{E}_{\mathbf{P}_{XY}} f - \mathbf{E}_{\mathbf{P}_{X}\mathbf{P}_{Y}} f \right] \right)^{2} = \sup_{\|f\| \leq 1} \left\langle f, \mu_{\mathbf{P}_{XY}} - \mu_{\mathbf{P}_{X}\mathbf{P}_{Y}} \right\rangle^{2}_{\mathcal{F} \times \mathcal{G}}$$
$$= \|\mu_{\mathbf{P}_{XY}} - \mu_{\mathbf{P}_{X}\mathbf{P}_{Y}}\|^{2}_{\mathcal{F} \times \mathcal{G}} := MMD(\mathbf{P}_{XY}, \mathbf{P}_{X}\mathbf{P}_{Y})$$

MMD for independence

• Dependence measure: Gretton et al. (2008)

$$\left(\sup_{f} \left[\mathbf{E}_{\mathbf{P}_{XY}} f - \mathbf{E}_{\mathbf{P}_{X}\mathbf{P}_{Y}} f \right] \right)^{2} = \sup_{\|f\| \leq 1} \left\langle f, \mu_{\mathbf{P}_{XY}} - \mu_{\mathbf{P}_{X}\mathbf{P}_{Y}} \right\rangle_{\mathcal{F} \times \mathcal{G}}^{2}$$
$$= \|\mu_{\mathbf{P}_{XY}} - \mu_{\mathbf{P}_{X}\mathbf{P}_{Y}}\|_{\mathcal{F} \times \mathcal{G}}^{2} := MMD(\mathbf{P}_{XY}, \mathbf{P}_{X}\mathbf{P}_{Y})$$

Experiment: dependence testing for translation

- Translation example: [NIPS07b] Canadian Hansard (agriculture)
- 5-line extracts,
 k-spectrum kernel, k = 10,
 repetitions=300,
 sample size 10
- Empirical $MMD(\mathbf{P}_{XY}, \mathbf{P}_{X}\mathbf{P}_{Y})$:

 $\frac{1}{n^2} \left(H \frac{K}{K} H \circ H \frac{L}{L} H \right)_{++}$

... no doubt there is great pressure on provincial and municipal governments in relation to the issue of child care, but the reality is that there have been no cuts to child care funding from the federal government to the provinces. In fact, we have increased federal investments for early childhood development...

K

... il est évident que les ordres de gouvernements provinciaux et municipaux subissent de fortes pressions en ce qui concerne les services de garde, mais le gouvernement n'a pas réduit le financement qu'il verse aux provinces pour les services de garde. Au contraire, nous avons augmenté le financement fédéral pour le développement des ieunes enfants...

L

- k-spectrum kernel: average Type II error 0 ($\alpha = 0.05$)
- Bag of words kernel: average Type II error 0.18

Lancaster (3-way) Interactions

V-structure Discovery

Assume $X \perp Y$ has been established. V-structure can then be detected by:

• CI test: $\mathbf{H}_{\mathbf{0}}: X \perp Y \mid Z$ (Zhang et al 2011) or

V-structure Discovery

Assume $X \perp Y$ has been established. V-structure can then be detected by:

- CI test: $\mathbf{H}_{\mathbf{0}}: X \perp Y \mid Z$ (Zhang et al 2011) or
- Factorisation test: $\mathbf{H}_{\mathbf{0}} : (X, Y) \perp Z \lor (X, Z) \perp Y \lor (Y, Z) \perp X$ (multiple standard two-variable tests)
 - compute *p*-values for each of the marginal tests for $(Y, Z) \perp X$, $(X, Z) \perp Y$, or $(X, Y) \perp Z$
 - apply Holm-Bonferroni (**HB**) sequentially rejective correction (Holm 1979)

V-structure Discovery (2)

- How to detect V-structures with pairwise weak (or nonexistent) dependence?
- $\bullet \ X \perp\!\!\!\perp Y, Y \perp\!\!\!\perp Z, X \perp\!\!\!\perp Z$

V-structure Discovery (2)

- How to detect V-structures with pairwise weak (or nonexistent) dependence?
- $\bullet \ X \perp\!\!\!\perp Y, \, Y \perp\!\!\!\perp Z, \, X \perp\!\!\!\perp Z$

- $X_1, Y_1 \overset{i.i.d.}{\sim} \mathcal{N}(0, 1),$
- $Z_1 | X_1, Y_1 \sim \operatorname{sign}(X_1 Y_1) Exp(\frac{1}{\sqrt{2}})$
- $X_{2:p}, Y_{2:p}, Z_{2:p} \overset{i.i.d.}{\sim} \mathcal{N}(0, \mathbf{I}_{p-1})$
- (Note: violates faithfulness)

V-structure Discovery (3)

Figure 1: CI test for $X \perp Y \mid Z$ from Zhang et al (2011), and a factorisation test with a **HB** correction, n = 500

[Bahadur (1961); Lancaster (1969)] Interaction measure of $(X_1, \ldots, X_D) \sim P$ is a signed measure ΔP that vanishes whenever P can be factorised in a non-trivial way as a product of its (possibly multivariate) marginal distributions.

• D = 2: $\Delta_L P = P_{XY} - P_X P_Y$

[Bahadur (1961); Lancaster (1969)] Interaction measure of $(X_1, \ldots, X_D) \sim P$ is a signed measure ΔP that vanishes whenever P can be factorised in a non-trivial way as a product of its (possibly multivariate) marginal distributions.

•
$$D = 2$$
: $\Delta_L P = P_{XY} - P_X P_Y$

•
$$D = 3:$$
 $\Delta_L P = P_{XYZ} - P_X P_{YZ} - P_Y P_{XZ} - P_Z P_{XY} + 2P_X P_Y P_Z$

[Bahadur (1961); Lancaster (1969)] Interaction measure of $(X_1, \ldots, X_D) \sim P$ is a signed measure ΔP that vanishes whenever P can be factorised in a non-trivial way as a product of its (possibly multivariate) marginal distributions.

•
$$D = 2$$
: $\Delta_L P = P_{XY} - P_X P_Y$

• D = 3: $\Delta_L P = P_{XYZ} - P_X P_{YZ} - P_Y P_{XZ} - P_Z P_{XY} + 2P_X P_Y P_Z$

[Bahadur (1961); Lancaster (1969)] Interaction measure of $(X_1, \ldots, X_D) \sim P$ is a signed measure ΔP that vanishes whenever P can be factorised in a non-trivial way as a product of its (possibly multivariate) marginal distributions.

•
$$D = 2$$
: $\Delta_L P = P_{XY} - P_X P_Y$

• D = 3: $\Delta_L P = P_{XYZ} - P_X P_{YZ} - P_Y P_{XZ} - P_Z P_{XY} + 2P_X P_Y P_Z$

Case of $P_X \perp P_{YZ}$

[Bahadur (1961); Lancaster (1969)] Interaction measure of $(X_1, \ldots, X_D) \sim P$ is a signed measure ΔP that vanishes whenever P can be factorised in a non-trivial way as a product of its (possibly multivariate) marginal distributions.

•
$$D = 2$$
: $\Delta_L P = P_{XY} - P_X P_Y$

•
$$D = 3:$$
 $\Delta_L P = P_{XYZ} - P_X P_{YZ} - P_Y P_{XZ} - P_Z P_{XY} + 2P_X P_Y P_Z$

 $(X,Y) \perp Z \lor (X,Z) \perp Y \lor (Y,Z) \perp X \Rightarrow \Delta_L P = 0.$...so what might be missed?

[Bahadur (1961); Lancaster (1969)] Interaction measure of $(X_1, \ldots, X_D) \sim P$ is a signed measure ΔP that vanishes whenever P can be factorised in a non-trivial way as a product of its (possibly multivariate) marginal distributions.

•
$$D = 2$$
: $\Delta_L P = P_{XY} - P_X P_Y$

•
$$D = 3:$$
 $\Delta_L P = P_{XYZ} - P_X P_{YZ} - P_Y P_{XZ} - P_Z P_{XY} + 2P_X P_Y P_Z$

 $\Delta_L P = 0 \Rightarrow (X, Y) \perp Z \lor (X, Z) \perp Y \lor (Y, Z) \perp X$

Example:

P(0,0,0) = 0.2	P(0,0,1) = 0.1	P(1,0,0) = 0.1	P(1, 0, 1) = 0.1
P(0, 1, 0) = 0.1	P(0, 1, 1) = 0.1	P(1, 1, 0) = 0.1	P(1, 1, 1) = 0.2

A Test using Lancaster Measure

• Test statistic is empirical estimate of $\|\mu_{\kappa} (\Delta_L P)\|_{\mathcal{H}_{\kappa}}^2$, where $\kappa = k \otimes l \otimes m$:

$$\|\mu_{\kappa}(P_{XYZ} - P_{XY}P_{Z} - \cdots)\|_{\mathcal{H}_{\kappa}}^{2} = \langle \mu_{\kappa}P_{XYZ}, \mu_{\kappa}P_{XYZ}\rangle_{\mathcal{H}_{\kappa}} - 2 \langle \mu_{\kappa}P_{XYZ}, \mu_{\kappa}P_{XY}P_{Z}\rangle_{\mathcal{H}_{\kappa}} \cdots$$

Inner Product Estimators

$\nu \setminus \nu'$	P_{XYZ}	$P_{XY}P_Z$	$P_{XZ}P_{Y}$	$P_{YZ}P_X$	$P_X P_Y P_Z$
P_{XYZ}	$(\mathbf{K} \circ \mathbf{L} \circ \mathbf{M})_{++}$	$\left(\left(\mathbf{K}\circ\mathbf{L} ight)\mathbf{M} ight)_{++}$	$\left(\left(\mathbf{K}\circ\mathbf{M} ight)\mathbf{L} ight)_{++}$	$((\mathbf{M} \circ \mathbf{L}) \mathbf{K})_{++}$	$tr(\mathbf{K}_{+} \circ \mathbf{L}_{+} \circ \mathbf{M}_{+})$
$P_{XY}P_Z$		$(\mathbf{K} \circ \mathbf{L})_{++} \mathbf{M}_{++}$	(MKL) ₊₊	(KLM)++	$(\mathbf{KL})_{++}\mathbf{M}_{++}$
$P_{XZ}P_Y$			$\left(\mathbf{K}\circ\mathbf{M} ight)_{++}\mathbf{L}_{++}$	(KML) ₊₊	$(\mathbf{KM})_{++}\mathbf{L}_{++}$
$P_{YZ}P_X$				$(\mathbf{L} \circ \mathbf{M})_{++} \mathbf{K}_{++}$	$(\mathbf{LM})_{++}\mathbf{K}_{++}$
$P_X P_Y P_Z$					$\mathbf{K}_{++}\mathbf{L}_{++}\mathbf{M}_{++}$

Table 1: V-statistic estimators of $\langle \mu_{\kappa}\nu, \mu_{\kappa}\nu' \rangle_{\mathcal{H}_{\kappa}}$

Inner Product Estimators

$\nu \setminus \nu'$	P_{XYZ}	$P_{XY}P_Z$	$P_{XZ}P_{Y}$	$P_{YZ}P_X$	$P_X P_Y P_Z$
P_{XYZ}	$(\mathbf{K} \circ \mathbf{L} \circ \mathbf{M})_{++}$	$\left(\left(\mathbf{K}\circ\mathbf{L} ight)\mathbf{M} ight)_{++}$	$\left(\left(\mathbf{K}\circ\mathbf{M} ight)\mathbf{L} ight)_{++}$	$((\mathbf{M} \circ \mathbf{L}) \mathbf{K})_{++}$	$tr(\mathbf{K}_{+} \circ \mathbf{L}_{+} \circ \mathbf{M}_{+})$
$P_{XY}P_Z$		$(\mathbf{K} \circ \mathbf{L})_{++} \mathbf{M}_{++}$	(MKL) ₊₊	(KLM)++	$(\mathbf{KL})_{++}\mathbf{M}_{++}$
$P_{XZ}P_{Y}$			$\left(\mathbf{K}\circ\mathbf{M}\right)_{++}\mathbf{L}_{++}$	(KML) ₊₊	$(\mathbf{KM})_{++}\mathbf{L}_{++}$
$P_{YZ}P_X$				$(\mathbf{L} \circ \mathbf{M})_{++} \mathbf{K}_{++}$	$(\mathbf{LM})_{++}\mathbf{K}_{++}$
$P_X P_Y P_Z$					$\mathbf{K}_{++}\mathbf{L}_{++}\mathbf{M}_{++}$

Table 2: V-statistic estimators of $\langle \mu_{\kappa}\nu, \mu_{\kappa}\nu' \rangle_{\mathcal{H}_{\kappa}}$

$$\left\|\mu_{\kappa}\left(\Delta_{L}P\right)\right\|_{\mathcal{H}_{\kappa}}^{2} = \frac{1}{n^{2}}\left(H\mathbf{K}H \circ H\mathbf{L}H \circ H\mathbf{M}H\right)_{++}.$$

Empirical joint central moment in the feature space

Example A: factorisation tests

Figure 2: Factorisation hypothesis: Lancaster statistic vs. a two-variable based test (both with **HB** correction); Test for $X \perp Y | Z$ from Zhang et al (2011), n = 500

Example B: Joint dependence can be easier to detect

•
$$X_1, Y_1 \stackrel{i.i.d.}{\sim} \mathcal{N}(0, 1)$$

• $Z_1 = \begin{cases} X_1^2 + \epsilon, & w.p. 1/3, \\ Y_1^2 + \epsilon, & w.p. 1/3, \\ X_1Y_1 + \epsilon, & w.p. 1/3, \end{cases}$ where $\epsilon \sim \mathcal{N}(0, 0.1^2)$.

- $X_{2:p}, Y_{2:p}, Z_{2:p} \overset{i.i.d.}{\sim} \mathcal{N}(0, \mathbf{I}_{p-1})$
- dependence of Z on pair (X, Y) is stronger than on X and Y individually
- Satisfies faithfulness
Example B: factorisation tests

Figure 3: Factorisation hypothesis: Lancaster statistic vs. a two-variable based test (both with **HB** correction); Test for $X \perp Y | Z$ from Zhang et al (2011), n = 500

Interaction for $D \ge 4$

• Interaction measure valid for all *D* (Streitberg, 1990):

$$\Delta_S P = \sum_{\pi} (-1)^{|\pi|-1} (|\pi|-1)! J_{\pi} P$$

- For a partition π , J_{π} associates to the joint the corresponding factorisation, e.g.,

$$J_{13|2|4}P = P_{X_1X_3}P_{X_2}P_{X_4}.$$

Interaction for $D \ge 4$

• Interaction measure valid for all *D* (Streitberg, 1990):

$$\Delta_S P = \sum_{\pi} (-1)^{|\pi|-1} (|\pi|-1)! J_{\pi} P$$

- For a partition π , J_{π} associates to the joint the corresponding factorisation, e.g.,

$$J_{13|2|4}P = P_{X_1X_3}P_{X_2}P_{X_4}.$$

 Interaction measure valid for all D (Streitberg, 1990):

$$\Delta_S P = \sum_{\pi} (-1)^{|\pi|-1} (|\pi|-1)! J_{\pi} P$$

- For a partition π , J_{π} associates to the joint the corresponding factorisation, e.g.,

$$J_{13|2|4}P = P_{X_1X_3}P_{X_2}P_{X_4}.$$

joint central moments (Lancaster interaction) vs. joint cumulants (Streitberg interaction)

Total independence test

- Total independence test:
 - $\mathbf{H}_{\mathbf{0}}: P_{XYZ} = P_X P_Y P_Z \text{ vs. } \mathbf{H}_1: P_{XYZ} \neq P_X P_Y P_Z$

Total independence test

- Total independence test: $\mathbf{H_0}: P_{XYZ} = P_X P_Y P_Z$ vs. $\mathbf{H_1}: P_{XYZ} \neq P_X P_Y P_Z$
- For $(X_1, \ldots, X_D) \sim P_{\mathbf{X}}$, and $\kappa = \bigotimes_{i=1}^D k^{(i)}$:

• Coincides with the test proposed by Kankainen (1995) using empirical characteristic functions: similar relationship to that between dCov and HSIC (DS et al, 2013)

Example B: total independence tests

Figure 4: Total independence: $\Delta_{tot}\hat{P}$ vs. $\Delta_L\hat{P}$, n = 500

Conclusion

- Kernel metric on the space of probability measures: Maximum Mean Discrepancy $MMD(\mathbf{P}, \mathbf{Q})$
 - Distance between means of (nonlinear) features
 - Function revealing differences in distributions
 - Dependence detection: \mathbf{P}_{xy} vs $\mathbf{P}_x \mathbf{P}_y$ using $MMD(\mathbf{P}_{xy}, \mathbf{P}_x \mathbf{P}_y)$
- Detecting three-way interactions
 - Parents with weak individual influence, strong combined influence
 - Avoid difficult problem of conditional dependence testing
 - Generalization of independence test

Co-authors

- Wicher Bergsma
- Karsten Borgwardt
- Kenji Fukumizu
- Dino Sejdinovic
- Bharath Sriperumbudur
- Bernhard Schoelkopf
- Alex Smola

Selected references

Characteristic kernels and mean embeddings:

- Smola, A., Gretton, A., Song, L., Schoelkopf, B. (2007). A hilbert space embedding for distributions. ALT.
- Sriperumbudur, B., Gretton, A., Fukumizu, K., Schoelkopf, B., Lanckriet, G. (2010). Hilbert space embeddings and metrics on probability measures. JMLR.
- Gretton, A., Borgwardt, K., Rasch, M., Schoelkopf, B., Smola, A. (2012). A kernel two- sample test. JMLR.
- Sejdinovic, D., Sriperumbudur, B., Gretton, A., Fukumizu, K. (2013). Equivalence of distance-based and rkhs-based statistics in hypothesis testing. Annals of Statistics.

Two-sample, independence, conditional independence tests:

- Gretton, A., Fukumizu, K., Teo, C., Song, L., Schoelkopf, B., Smola, A. (2008). A kernel statistical test of independence. NIPS
- Fukumizu, K., Gretton, A., Sun, X., Schoelkopf, B. (2008). Kernel measures of conditional dependence.
- Gretton, A., Fukumizu, K., Harchaoui, Z., Sriperumbudur, B. (2009). A fast, consistent kernel two-sample test. NIPS.
- Gretton, A., Borgwardt, K., Rasch, M., Schoelkopf, B., Smola, A. (2012). A kernel two- sample test. JMLR
- Sejdinovic, D., Sriperumbudur, B., Gretton, A., and Fukumizu, K. (2013). Equivalence of distance-based and RKHS-based statistics in hypothesis testing. Annals of Statistics.

Three-variable interaction tests:

• Sejdinovic, D., Gretton, A., and Bergsma, W. (2013). A Kernel Test for Three-Variable Interactions. NIPS.

Local departures from the null

What is a hard testing problem?

Local departures from the null

What is a hard testing problem?

• As m increases, distinguish "closer" **P** and **Q** with same Type II error

What is a hard testing problem?

- As m increases, distinguish "closer" P and Q with same Type II error
- Example: $f_{\mathbf{P}}$ and $f_{\mathbf{Q}}$ probability densities, $f_{\mathbf{Q}} = f_{\mathbf{P}} + \delta g$, where $\delta \in \mathbb{R}$, g some *fixed* function such that $f_{\mathbf{Q}}$ is a valid density
 - If $\delta \sim m^{-1/2}$, Type II error approaches a constant

More general local departures from null

• Example: $f_{\mathbf{P}}$ and $f_{\mathbf{Q}}$ probability densities, $f_{\mathbf{Q}} = f_{\mathbf{P}} + \delta g$, where $\delta \in \mathbb{R}$, g some *fixed* function such that $f_{\mathbf{Q}}$ is a valid density

4

4

4

0 X 2

-2

-6

-4

6

6

6

Local departures from the null

What is a hard testing problem?

- As we see more samples *m*, distinguish "closer" **P** and **Q** with same Type II error
- Example: $f_{\mathbf{P}}$ and $f_{\mathbf{Q}}$ probability densities, $f_{\mathbf{Q}} = f_{\mathbf{P}} + \delta g$, where $\delta \in \mathbb{R}$, g some fixed function such that $f_{\mathbf{Q}}$ is a valid density - If $\delta \sim m^{-1/2}$, Type II error approaches a constant
- ...but other choices also possible how to characterize them all?

What is a hard testing problem?

- As we see more samples *m*, distinguish "closer" **P** and **Q** with same Type II error
- Example: $f_{\mathbf{P}}$ and $f_{\mathbf{Q}}$ probability densities, $f_{\mathbf{Q}} = f_{\mathbf{P}} + \delta g$, where $\delta \in \mathbb{R}$, g some fixed function such that $f_{\mathbf{Q}}$ is a valid density - If $\delta \sim m^{-1/2}$, Type II error approaches a constant
- ...but other choices also possible how to characterize them all?

General characterization of local departures from \mathcal{H}_0 :

- Write $\mu_{\mathbf{Q}} = \mu_{\mathbf{P}} + g_m$, where $g_m \in \mathcal{F}$ chosen such that $\mu_{\mathbf{P}} + g_m$ a valid distribution embedding
- Minimum distinguishable distance [JMLR12]

$$\|g_m\|_{\mathcal{F}} = cm^{-1/2}$$

More general local departures from null

VS

- More advanced example of a local departure from the null
- Recall: $\mu_{\mathbf{Q}} = \mu_{\mathbf{P}} + g_m$, and $||g_m||_{\mathcal{F}} = cm^{-1/2}$

References

- Z Anderson, P. Hall, and D. Titterington. ysis, 50:41-54,functions using kernel-based density estimates. Journal of Multivariate Analmeasuring discrepancies between two multivariate probability density 1994.Two-sample test statistics for
- ≤ . Arcones and E. of Statistics, 20(2):655-674, 1992. Giné. On the bootstrap of u and v statistics. The Annals
- R. M. Dudley. Real analysis and probability. Cambridge University Press, Cambridge, UK, 2002.
- ₹. ables. Journal of the American Statistical Association, 58:13–30, 1963. Hoeffding. Probability inequalities for sums of bounded random vari-
- ≥ Ihler and D. McAllester. Particle belief propagation. In AISTATS, pages 256-263, 2009.
- Z L. Johnson, S. tions. Volume 1. John Wiley and Sons, 2nd edition, 1994. Kotz, and N. Balakrishnan. Continuous Univariate Distribu-
- Ω McDiarmid. torics, pages 148–188. Cambridge University Press, 1989. On the method of bounded differences. In Survey in Combina-
- \geq Müller. tions. Advances in Applied Probability, 29(2):429-443, 1997. Integral probability metrics and their generating classes of func-
- Ŧ. Read and N. Cressie. ysis.Springer-Verlag, New York, 1988. Goodness-Of-Fit Statistics for Discrete Multivariate Anal-
- Ashutosh Saxena, Sung H. tion from a single still image. (1):53-69, 2007.Chung, and Andrew Y. Ng. 3-d depth reconstruc-International Journal on Computer Vision, 76
- Ľ Song, A. propagation. volume 10 of JMLR workshop and conference proceedings, 2011. Gretton, D. Bickson, I. Low, and Conference on Artificial Intelligence and Statistics, sion. In Proc. Intl. Conference on Artificial Intelligence and Statistics, D. Bickson, Y. Low, and C. Kernel belief
- Ŀ Sudderth, A. 2003 propagation. Ihler,Ihler, W. Freeman, and A. Willsky. Nonparametric belief In Proc. IEEE Conf. Computer Vision and Pattern Recognition, Nonparametric belief
- Masashi Sugiyama, Ichiro Takeuchi, Taiji Suzuki, 2010.via least-squares density ratio estimation. rotaka Hachiya, and Daisuke Okanohara. Conditional density estimation InAISTATS, pages Takafumi Kanamori, 781 -788 Hi-