
1

Kenji Fukumizu

The Institute of Statistical Mathematics
Graduate University for Advanced Studies

Workshop on Mathematical Approaches to Large-Dimensional Data 
Analysis 

2014 March 13 – 15.  ISM, Tokyo

Nonparametric Bayesian Inference 
with Positive Definite Kernels



Nonlinearity and high-dimensionality

– Nonlinear / higher-order information in high-dimensional data.
Biology, documents, social networks, ….

– Extracting nonlinear information of data
Common practice:

(X, Y, Z)  (X, Y, Z, X2, Y2, Z2, XY, YZ, ZX, …)

– Computational problem for high dimensional data

e.g. Up to the 2nd order for 10,000 dim data

Dim of feature space:  

10000C1 + 10000C2 = 50,005,000 (!) 
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Nonparametric inference
– Smoothing kernel: KDE, local polynomial fitting

݄ିௗܭሺݔ/݄ሻ
– Characteristic function:   ܧሾ݁௜ఠ௑ሿ
– Spline, wavelet, order statistics, etc, etc, 

Curse of dimensionality
• Smoothing kernel: usually not strong for high-dimensional data
• Characteristic function: Integral on high-dimensional spaces is 

difficult.

Kernel method: a new approach to nonparametric inference. 
Computationally efficient, good performance for high-dimensional data 
in theory and practice.
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Introduction
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Kernel methods: a big picture
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Feature space (functional space)

xi


H

 xｊ
Space of original data

feature map

Do linear analysis in the feature space.

Φ: 				Ω			 → ,ܪ				 ݔ ↦ Φሺݔሻ

• Support	vector	machine	is	known	most	.
• This	talk:	more	recent	advances	for	nonparametric	inference.	

Φ ௜ݔ
Φ ௝ݔ



Positive definite kernel
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Def. : set. k	:  x  R
k is positive definite if k is symmetric, and for any

the matrix                         (Gram matrix)  satisfies

– Examples on Rm: 
• Gaussian RBF kernel

• Laplace kernel

• Polynomial kernel

	ܿଵ, … , ܿ௡ ∈ ,܀
݊ ∈ ,ۼ ,ଵݔ	 … , ଵݔ ∈ ,	

݇ ௜ܺ, ௝ܺ
௜௝

∑ ܿ௜ ௝ܿ݇ ௜ܺ, ௝ܺ
௡
௜,௝ୀଵ 				൒ 0.

݇ீ ,ݔ ݕ ൌ exp െ
1
ଶߪ2 ݔ|| െ ଶ||ݕ

݇௅ ,ݔ ݕ ൌ exp െߙ෍ ௜ݔ| െ |௜ݕ
௠

௜ୀଵ

݇௉ ,ݔ ݕ ൌ ݕ்ݔ ൅ ܿ ௗ ሺܿ ൒ 0, ݀ ∈ ሻۼ

ሺߙ ൐ 0ሻ

ሺߪ ൐ 0ሻ



Reproducing kernel Hilbert space
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Feature space = reproducing kernel Hilbert space (RKHS)

Positive definite kernel ݇ on uniquely defines a RKHS Hk ሺAronzajn
1950ሻ.

• Function space: functions on .  
• Very special inner product: for any ݂ ∈ ௞ܪ

c.f.  L2 space
• Its dimensionality may be infinite (Gaussian, Laplace).

Note: from reproducing property 

(reproducing	property)݂, ݇ሺ	·	, ሻݔ ൌ ݂ሺݔሻ

݇ 	·	, ݔ , ݇ሺ	⋅	, ሻݕ ൌ ݇ሺݔ, ሻݕ



Mapping data into RKHS
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Computation	with	Gram	matrices	of	size	n.

– Feature Map
Φ:Ω → ,௞ܪ 	ݔ	 ↦ 	݇ሺ⋅, ሻݔ

– Data transform
ଵܺ, … , ܺ௡ 				↦ 					Φ ଵܺ , … ,Φሺܺ௡ሻ:     functional data

– Inner product
For ݂ ൌ ∑ ௜Φߙ ௜ܺ , ݃ ൌ ∑ ௜Φߚ ௜ܺ 	 ∈ ௞,௜௜ܪ

݂, ݃ ൌ ෍ ௝݇ߚ௜ߙ ௜ܺ, ௝ܺ ൌ
௡

௜,௝ୀଵ

௑βܩ்ߙ

(artificially made)
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ଵܺ
ଵ

ଵܺ
ଶ 	⋯ ଵܺ

௣

⋮ 	⋮						⋱ ⋮
ܺ௡ଵ ܺ௡ଶ 		⋯ ܺ௡

௣

ଵܺ
ଵ

ଵܺ
ଶ

⋯
…

ܺ௡ଵ

ܺ௡ଶ
⋮ ⋱ ⋮
ଵܺ
௣ ⋯ ܺ௡

௣

p

n

௑௑
ଵܺ
ଵ

ଵܺ
ଶ 	⋯ ଵܺ

௣

⋮ 	⋮						⋱ ⋮	
ܺ௡ଵ ܺ௡ଶ 		⋯ ܺ௡

௣

ଵܺ
ଵ

ଵܺ
ଶ

⋯
…

ܺ௡ଵ

ܺ௡ଶ
⋮ ⋱ ⋮
ଵܺ
௣ ⋯ ܺ௡

௣

݌

n ௜ ୨
Φሺ ଵܺ ሻଵ Φሺ ଵܺ ሻଶ ⋯							

⋮ 	⋮						 	
Φሺܺ௡ ሻଵ Φሺܺ௡ ሻଶ ⋯							

Φሺ ଵܺ ሻଵ

Φሺ ଵܺ ሻଶ
⋯
…

Φሺܺ௡ ሻଵ

Φሺܺ௡ ሻଶ
⋮ ⋮

⋮ ⋮

dimܪ

n

Covariance matrix

Gram matrix
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 RKHS    low-cost computation
Linear methods on ܪ௞ are computable by Gram matrices of size ݊
(sample size).   

• Suitable for high-dimensional data of moderate sample size.
c.f. power expansion / L2 basis expansion.

Remark: If sample size ݊ is large, low rank approximation of 
Gram matrices works well.  

» Incomplete Cholesky factorization (Fine & Scheinberg 2001)
» Nyström approximation (Williams & Seeger 2000). 



Representing probabilities 
with kernels 
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Mean on RKHS
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X: random variable taking value on a measurable space P
k: pos.def. kernel on .       H: RKHS defined by k.

Def. kernel mean on H :

– Reproducing expectations
݂,݉௉ ൌ ܧ ݂ ܺ 	 for any ݂ ∈ .௞ܪ

– Kernel mean can express higher-order moments of X. 
Suppose ݇ ,ݑ ݔ ൌ ܿ଴ ൅ ܿଵݔݑ ൅ ܿଶ ݔݑ ଶ ൅ ⋯ ܿ௜ ൒ 0 , e.g.,  ݁௨௫

c.f. moment generating function

݉௉ ≔ ܧ Φ ܺ ൌ ܧ ݇ 	⋅	, ܺ ൌ ׬ ݇ 	⋅, ݔ ݀ܲ ݔ 				 ∈ ௞ܪ

݉௉ ݑ ൌ ܿ଴ 	൅	ܿଵܧ ܺ 	ݑ ൅	ܿଶܧ ܺଶ ଶݑ 	൅ ⋯



Characteristic kernel
(Fukumizu et al. JMLR 2004, AoS 2009; Sriperumbudur et al. JMLR2010)
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Def. A bounded pos. def. kernel k is called characteristic if 

is injective, i.e.,   ܧ௑~௉ ݇ 	⋅	, ܺ ൌ ௒~ொܧ ݇ 	⋅	, ܻ ⇔ 		ܲ ൌ ܳ.

݉௉ with a characteristic kernel uniquely determines a probability.

Examples: Gaussian, Laplace kernel  
(polynomial: not characteristic.)

c.f. characteristic functions ܧሾ݁௜௨௑ሿ.   
Kernel mean  advantage in efficient computation.

P → ,௞ܪ 				ܲ ↦ ݉௉



Nonparametric inference with kernels
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Principle:  with characteristic kernels,
Inference on ܲ ⇒ Inference on ݉௉

• Two sample test   	݉௉ ൌ ݉ொ	? 
(Gretton et al. JMLR 2012)

• Independence test  ݉௑௒ ൌ ݉௑ ⊗݉௒	?
– Close connection to distance covariance, which is a 

popular dependence measure (Székely, Rizzo, Bakirov 2007)
(Sejdinovic, Sriperumbudur, Gretton, Fukumizu, AoS 2013)

• Bayesian Inference  this talk.



Covariance
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(X , Y) : random vector taking values on XൈY. 
(HX, kX), (HY , kY): RKHS on X and Y, resp.

Def. (uncentered) covariance operators ܥ௒௑:ܪ௑ → ௑ܪ:௑௑ܥ ,௒ܪ → ௑ܪ

Reproducing property

Simply, extension of covariance matrix (linear map)

௒௑ܥ ൌ ܧ Φ௒ ܺ Φ௑ ܻ ் , ௑௑ܥ ൌ ܧ Φ௑ ܺ Φ௑ ܺ ்

௒ܸ௑ ൌ ܧ ்ܻܺ

〈݃, 〈௒௑݂ܥ ൌ ܧ ݂ ܺ ݃ ܻ for	all	݂ ∈ ,௑ܪ ݃ ∈ .௒ܪ



Empirical estimators
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Given ଵܺ, ଵܻ, , … , ܺ௡, ௡ܻ 	~	ܲ, i.i.d.,
Empirical Estimator:

– Typically Gram matrix expression is obtained. 
e.g. 

– ݊-consistency (in norm) and CLT are guaranteed. (Berlinet & 
Thomas-Agnan 2004, Gretton et al. 2005) 

ෝ݉௑ ൌ
1
݊෍ ݇ 	⋅, ௜ܺ

௡

௜ୀଵ
, መ௒௑݂ܥ ൌ

1
݊෍ ݇௒ 	⋅, ௜ܻ 〈݇ ⋅, ௜ܺ , ݂〉

௡

௜ୀଵ

መ௒௑ܥ ுௌ
ଶ ൌ ௒ሿܩ௑ܩሾݎܶ

ൌ
1
݊෍ ݇௒ 	⋅, ௜ܻ ݂ ௜ܺ

௡

௜ୀଵ



Conditional probabilities
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Conditional kernel mean
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– ܺ, ܻ: Gaussian random vectors (∈ ܴ௠, ܴℓ, resp.)

– With characteristic kernels, for general ܺ and ܻ, 

argmin
஺∈ோℓൈ೘

න ܻ െ ܺܣ ଶ݀ܲሺܺ, ܻሻ 		ൌ 		 ௒ܸ௑ ௑ܸ௑
ିଵ
	

ܧ Φ ܻ ܺ ൌ ݔ ൌ ௑௑ܥ௒௑ܥ
ିଵ
Φ௑ሺݔሻ

argmin
ி∈ு೉⊗ுೊ

න Φ௒ ܻ െ ܨ ܺ ுೊ
ଶ ݀ܲሺܺ, ܻሻ ൌ ௑௑ܥ௒௑ܥ

ିଵ

ܧ ܻ ܺ ൌ ݔ ൌ ௒ܸ௑ ௑ܸ௑
ିଵ
ݔ

Representing the conditional probability of ܻ given ܺ ൌ .ݔ
In practice, regularized inverse must be used.

Φ௑,ܨ〉 ܺ 〉
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– How to use the conditional kernel mean?

• Nonparametric estimator of regression

c.f. Gaussian process / kernel ridge regression

• Conditional independence (Fukumizu et al. JMLR 2004, AoS 2009, 
NIPS 2010)

• Bayesian inference (discussed later)

– Note: for consistency, kernel is fixed, regularization coefficient 
௡ߝ → 0.	 c.f. smoothing kernel. 

௑ܓ ሺ⋅ሻ ൌ ݇௑ ⋅, ଵܺ , … , ݇௑ ⋅, ܺ௡
் ∈ 		,௑௡ܪ

܏ ൌ ݃ ଵܻ , … , ݃ ௡ܻ
் ∈ ܴ௥

ܺ|෠ሾ݃ሺܻሻܧ ൌ ሿݔ ൌ ሻݔ௑்ሺܓ ௑ܩ ൅ ௡ܫ௡ߝ ିଵ܏

regularization coefficient	௡:ߝ



Comparison: nonparametric regression
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Assume ܻ is 1 dim., and kernel is used only for ܺ


Gaussian process / kernel ridge regression

– Consistency 1 (Eberts & Steinwart 2011)

If ݇௑ is Gaussian, and  ܧ ܻ ܺ ∈ ଶܹ
ఈ

௑ܲ ,	(under some technical 
assumptions) for any  > 0, 

Note: ௣ܱ ݊ି
మഀ

మഀశ೘ is the optimal rate for a linear estimator 
(Stone 1982). 

ܺ|෠ሾܻܧ ൌ ሿݔ ≔ ሻݔ௑்ሺܓ ௑ܩ ൅ ௡ܫ௡ߝ ିଵܻ

ܧ ෠ሾܻ|ܺሿܧ 	െ ሾܻ|ܺሿܧ ଶ ൌ ௣ܱ ݊ି
ଶఈ

ଶఈା௠ାఘ 										 ݊ → ∞

* ଶܹ
ఈ

௑ܲ : Sobolev space	of	order	ߙ.
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– Consistency 2  (case: ܧ ܻ ܺ ∈ (௑ܪ

Suppose ܧ ܻ ܺ ∈ ܴሺܥ௑௑
ఉ ሻ with ߚ ൒ 0, Then, with a characteristic 

kernel ݇௑,	

• The rates do not depend on ݉ (dim of ܺሻ, since the analysis 
can be done within the RKHS.

• || ⋅ ||ு೉ is stronger than || ⋅ ||௦௨௣.  Thus, 

෠ሾܻ|ܺሿܧ െ ܧ ܻ ܺ ு೉

ଶ ൌ ௣ܱ ݊ି୫୧୬
ଵ
ଶ,	

ఉ
	ఉାଵ

sup
௫

෠ܧ ܻ ܺ ൌ ݔ െ ܺ|ሾܻܧ ൌ ሿݔ ൌ ௣ܱ ݊ି୫୧୬
ଵ
ସ,	

ఉ
	ଶఉାଶ



Numerical studies

23

Comparisons
ܻ ൌ 1/ 1.5 ൅ | ܺ| ଶ ൅ ܼ, 							ܺ	~	ܰ 0, ௗܫ ,		ܼ~ܰ 0, 0.1ଶ

݊ = 100,   500 runs

Kernel ridge regression
with Gaussian kernel

Local linear regression 
with Epanechnikov kernel
(‘locfit’ in R is used) 

Bandwidth parameters 
are chosen by CV. 
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Kernel method for Bayesian 
inference
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Kernel realization of Bayes’ rule
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 Bayes’ rule

Π: 	prior	with	p. d. f	ߨ
 .ሻ: conditional probability (likelihood)ݔ|ݕሺ݌

 Kernel realization:
Goal: estimate the kernel mean of the posterior

given
– ݉ஈ: kernel mean of prior Π,
– ,௑௑ܥ ,௒௑: covariance operators for ሺܺܥ ܻሻ		~	ܲ,

where ܲ is the joint probability to give ݌ሺݔ|ݕሻ by conditioning.

ݍ ݔ ݕ ൌ
݌ ݕ ݔ ሻݔሺߨ

ሻݕሺݍ , ݍ	 ݕ ൌ න݌ ݕ ݔ ߨ ݔ .ݔ݀

݉௣௢௦௧|௬∗: ൌ න݇௑ሺ⋅, ݍሻݔ ݔ ∗ݕ ݔ݀



Kernel Bayes’ Rule
(Fukumizu, Song, Gretton JMLR2014)
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Input:   ଵܺ, ଵܻ , … , ܺ௡, ௡ܻ 	~	ܲ	 (to give cond. probability).   
ෝ݉ஈ ൌ ∑ ௝Φ௑ߛ ௝ܷ 	ℓ

௝ୀଵ (prior)  a consistent estimator of ݉ஈ.

1. [Expression of ݍ ,ݔ ݕ ൌ ݌ ݕ ݔ ߨ ݔ :   regression ሺ ܻ, ܺ , ܷఊሻ	|ܺ		]
Compute 

2. [Conditioning:          regression with ܹ,ܼ ,ݔሺݍ	~ [ሻݕ
Compute 

Output: estimator for kernel mean of posterior given observation ݕ∗

Λ ൌ Diag ݊/௑ܩ ൅ ௡ܫ௡ߝ ିଵܩ௑௎ߛ 

ܴௐ|௓ ൌ Λܩ௒ Λܩ௒ ଶ 	൅ ௡ܫ௡ߜ
ିଵΛ.

ෝ݉௣௢௦௧|௬∗ ⋅ ൌ ௑ܓ ⋅ ்ܴௐ|௓ܓ௒ ∗ݕ ൌ෍ݓ௜ ∗ݕ ݇௑ሺ⋅, ௜ܺሻ
௡

௜ୀଵ

,௡ߝ * :௡ߜ regularization	coefficients



Inference with KBR
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 Weighted sample expression

ෝ݉௣௢௦௧|௬∗ ⋅ ൌ ෍ݓ௜ ∗ݕ ݇௑ሺ⋅, ௜ܺሻ
௡

௜ୀଵ
Equivalent to the kernel mean of 

෍ݓ௜ ∗ݕ ௑೔ߜ

௡

௜ୀଵ
which is a signed measure (not necessarily a probability). 
Some weights may be negative. 

– ∑ ௜ݓ ∗ݕ → 1௡
௜ୀଵ ሺ݊ → ∞ሻ	in probability under mild assumption. 

(௫: Dirac’s deltaߜ)



How to use?
– Expectation:  if గ

௣೉
∈ Range ௑௑ܥ and ݂ ∈ ଶሺܮ ௑ܲሻ satisfies  

׬ ݂ሺݔሻ݌ ݕ ݔ ߨ ݔ ݔ݀ ∈ Rangeሺܥ௒௒ሻ,

e.g.
• ݂ ݔ ൌ ஻ܫ ݔ : ∑ ௜௑೔∈஻ݓ → posterior prob. of set ܤ.
• ݂ ݔ ൌ :௥ݔ ∑ ௜ݓ ௜ܺ

௥ →௜ th-ݎ	 moment of posterior.
(More general discussions in Kanagawa and Fukumizu, AISTATS 2014)  

– Point estimation (quasi-MAP):

Solved numerically
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෍ݓ௜ ∗ݕ ݂ ௜ܺ

௡

௜ୀଵ

→ 		 ׬ ݂ ݔ ݍ ݔ ∗ݕ ,ݔ݀ ݊ → ∞ .

ොݔ ൌ argmin௫ ෝ݉௣௢௦௧|௬∗ െ Φ௑ ݔ
ு೉
	

(consistent)
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– Completely nonparametric way of computing Bayes rule.
• No parametric models are needed, but data or samples are 

used to express the probabilistic relations. 
• Bayesian inference is done with matrix computation. 

Examples: 
1. Nonparametric HMM

݌ ܺ, ܻ ൌ ,ሺܺ଴݌ ଴ܻሻ∏ ݌ ௧ܻ ܺ௧ ݍ ܺ௧ ܺ௧ିଵ்
௧ୀଵ

݌ ௧ܻ ܺ௧ and /or ݍሺܺ௧|ܺ௧ିଵሻ are 
unknown, but data are available. 

2. Explicit form of likelihood ݌ሺݔ|ݕሻ or prior ߨ is unavailable, 
but sampling is possible.
c.f. Approximate Bayesian Computation (ABC)
(Kernel ABC: Nakagome, Mano, Fukumizu 2013)

X0 X1 X2 X3 XT

Y0 Y1 Y2 Y3 YT

…
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 Practical example
State ܺ௧ ∈ ଷ：2-D coordinate and orientation of a robot܀
Observation	 ௧ܻ：image sequence.

Training sample ܺ௧, ௧ܻ ݐ： ൌ 1,… , ܶ

Estimate the location of a robot from 
image sequences

– Observation: ݌ ௧ܻ ܺ௧ሻ
Very difficult to model with 
a simple parametric model.
 KBR !



Convergence rate
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Theorem (Fukumizu, Song, Gretton 2012)

Let ݂ ∈ ܹ,ܼ ,	௑ܪ ~ܳ	with p.d.f. ݌ ݕ ݔ ߨ ݔ .	
Assumptions:
- ෝ݉ஈ െ ݉ஈ ு೉ ൌ ௣ܱ ݊ିఈ for some 0 ൏ ߙ ൑ 1/2.

- ሻݔሺߨ	 ⁄ሻݔ௑ሺ݌ ∈ Range ௑௑ܥ
ଵ/ଶ for some ߚ ൒ 0.

- ܧ ݂ ܼ ܹ ൌ⋅ ∈ Range ௑௑ଶܥ for some ߥ ൒ 0.	

Then, with ߝ௡ ൌ ݊ିଶఈോଷ and ߜ௡ ൌ ݊ି଼ఈോଶ଻	,	 for any ݕ, 

 Remark: the rate depending on the smoothness of the functions 
ߨ ⁄௑݌ 	and ܧ ݂ ܼ ܹ ൌ⋅ is also available.

 If ߙ ൌ 1 2⁄ ,	the rate is ݊ିସ/ଶ଻ (very slow, unsatisfactory....).

௒ܓ௑்ܴ௑|௒܎ ݕ െ ܧ ݂ ܼ ܹ ൌ ݕ ൌ ௣ܱሺ݊
ି଼ఈଶ଻ሻ ݊ → ∞ .



Choice of kernel and hyperparameter
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– Parameters to be chosen for kernel methods: kernel (parameters 
in kernel) and regularization parameter for regression and KBR.

– In general, cross-validation is recommended, if possible. 
• Straightforward in supervised setting. 
• Make a relevant supervised problem and apply CV (e.g. 

HMM). 

Supports
- CV has been used successfully for SVM. 

- The rate ௣ܱሺ݊
ି మഀ
మഀశ೘ାఘሻ	for the regression is attained with 

parameter choice by validation (Eberts & Steinwart 2011). 



Example: KBR for nonparametric HMM
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– Assume:		
௧ሻݔ|௧ݕሺ݌ and/or ݍሺݔ௧|ݔ௧ିଵሻ	is not known.
But, data ܺ௧, ௧ܻ ௧ୀ଴

் is available 
in training phase.

Examples:
• Measurement of hidden states is expensive, 
• Hidden states are measured with time delay.

– Testing phase (e.g., filtering, e.g.):
given ݕ෤଴, … , .௦ݔ	state	hidden	estimate	෤௧,ݕ
KBR point estimator: argmin௫ೞ ෝ݉௫ೞ|௬෤బ,…,௬෤೟ െ Φ ݔ

ு೉

– General sequential inference uses Bayes’ rule   KBR 
applied.

X0 X1 X2 X3 XT

Y0 Y1 Y2 Y3 YT

…



Numerical examples
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(a)Noisy rotation
௧ݑ
௧ݒ ൌ cos	ሺߠ௧ሻ

sin	ሺߠ௧ሻ
൅ ܼ௧, ௧ାଵߠ ൌ arctan

௧ݒ
௧ݑ

൅ 0.3,

௧ܻ ൌ ,௧ݑ ௧ݒ ் ൅ ௧ܹ,	
ܼ௧, ௧ܹ	~	ܰ 0, ଶܫ0.04 	 ݅. ݅. ݀.

Filtering with the point estimator by KBR.

KBR	does	NOT	know	
the	dynamics,	while	
the	EKF	and	UKF	use
it.	
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(b) Noisy oscillation 
௧ݑ
௧ݒ ൌ ሺ1 ൅ 0.4 sin ௧ߠ8

cos ௧ߠ
sin	ሺߠ௧ሻ

൅ ܼ௧, ௧ାଵߠ ൌ arctan
௧ݒ
௧ݑ

൅ 0.4,

௧ܻ ൌ ,௧ݑ ௧ݒ ் ൅ ௧ܹ,	
ܼ௧, ௧ܹ	~	ܰ 0, ଶܫ0.04 	 ݅. ݅. ݀.



36

Camera angles
– Hidden ܺ௧: angles of a video camera located at a corner of a room.
– Observed ௧ܻ: movie frame of a room + additive Gaussian noise.
– ܺ௧: 3600 downsampled frames of 20 x 20 RGB pixels (1200 dim. ). 
– The first 1800 frames for training, and the second half for testing.

noise KBR	(Trace) Kalman
filter(Q)

2 = 10-4 0.15 േ൏ 0.01 0.56 േ 0.02
2 = 10-3 0.21േ0.01 0.54 േ 0.02

Average	MSE	for	camera	angles	(10	runs)

To	represent		SO(3)	model,	Tr[AB‐1]	for	KBR,	
and	quaternion	expression	for	Kalman filter	
are	used	.



Robot localization (Re)
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COLD (COsy Localization Dataset, IJRR 2009)
State ܺ௧ ∈ ଷ：2-D coordinate and orientation of a robot܀
Observation	 ௧ܻ：image sequence（SIFT feature, 4200dim）

Training sample ܺ௧, ௧ܻ ݐ： ൌ 1,… , ܶ

Estimate the location of a robot from 
image sequences

– Observation: ݌ ௧ܻ ܺ௧ሻ difficult to model.
 KBR

– State transition: linear Gaussian
Kernel Monte Carlo, 

(Kanagawa, Nishiyama, KF. 2013)
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NAI:		naïve	method
(closest	image	
in	training	data)

NN:	PF	+	K‐nearest	
neighbor

(Vlassis,	Terwijn,	Kröse 2002)

KBR:	KBR	+	KBR

KMC:	KBR	+	Monte	Carlo
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#	training	sample	
=	200

:	true	location

:		estimate

red	(+)/	blue	(‐)	circles:			weights	on	the	training	sample



Conclusions and discussions
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 “Kernel methods”: useful, general tool for 
nonparametric inference. 
– Suitable for high-dimensional data.

• Efficient computation with Gram matrices.
• Good performance for high-dimensional data. 

– Can be used for representing probabilities and conditional 
probabilities.

– “Nonparametric” way for general Bayesian inference with matrix 
computation.

 Theoretical study is yet to be done
– How can we justify the good performance of high-dimensionality 

theoretically?  
Large dimensional asymptotics?  
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