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Nonlinearity and high-dimensionality

— Nonlinear / higher-order information in high-dimensional data.
Biology, documents, social networks, ....

— Extracting nonlinear information of data
Common practice:

(X,Y,2)> (X, Y, Z, X%, Y2 2% XY, YZ, ZX, ...)
— Computational problem for high dimensional data

e.g. Up to the 2nd order for 10,000 dim data

Dim of feature space:
10000C1 * 10000C2 = 90,005,000 (!)




B Nonparametric inference
— Smoothing kernel: KDE, local polynomial fitting
h=%K(x/h)
— Characteristic function: E[e'®X]
— Spline, wavelet, order statistics, etc, etc,

- Curse of dimensionality
« Smoothing kernel: usually not strong for high-dimensional data

» Characteristic function: Integral on high-dimensional spaces is
difficult.

—2>Kernel method: a new approach to nonparametric inference.

Computationally efficient, good performance for high-dimensional data
In theory and practice.



Outline

1. Introduction
2. Representing probabilities with kernels

3. Conditional probabilities

4. Kernel methods for Bayesian inference
5. Conclusions
References:

B K. Fukumizu, L. Song, A. Gretton (2014) Kernel Bayes' Rule: Bayesian
Inference with Positive Definite Kernels. Journal of Machine Learning
Research. 14:3753-3783.

B Song, L., Gretton, A., and Fukumizu, K. (2013) Kernel Embeddings of
Conditional Distributions. IEEE Signal Processing Magazine 30(4), 98-111

4



Introduction



Kernel methods: a big picture

I ox) N
q) [ J CI)(X)
o Xie ™ feature map o M)
Q o Xj © -
Space of original data Feature space (functional space)

Do linear analysis in the feature space.

d: QO - H, x — D(x)

e Support vector machine is known most.
e This talk: more recent advances for nonparametric inference.



Positive definite kernel

Def. Q:set. £: QOxXQ >R
kis positive definite if kis symmetric, and for any n € N, x4, ...,x; € Q,
C1,.,Cn €ER, the matrix (k(Xi,Xj))_. (Gram matrix) satisfies
lj

l] 1ClC]k(Xu ]) = 0.

— Examples on R™: 1
« Gaussian RBF kernel  kg(x,y) = exp (—thnx — y||2> (0 > 0)

m
« Laplace kernel k;(x,y) = exp (—az |x; — yil) (a > 0)
i=1

« Polynomial kernel kp(x,v) = (xTy + ¢)4 (c=0,d €N)



Reproducing kernel Hilbert space

Feature space = reproducing kernel Hilbert space (RKHS)

Positive definite kernel k on Q uniquely defines a RKHS H, (Aronzajn
1950).

» Function space: functions on Q.
» Very special inner product: for any f € H,

(f, k(-,x)) = f(x) (reproducing property)
c.f. L?space
* [ts dimensionality may be infinite (Gaussian, Laplace).

Note: from reproducing property

(k(-,2), k() = k(x,y)



Mapping data into RKHS

— Feature Map
®:Q - Hy, x » k(,x)
— Data transform
XXy, » ®d(X;p), ..., P(X,): functional data
(artificially made)

— Inner product

For f =2, a;®(X;), g = X BiP(X;) € Hy,
n

(£.9)= ) aifjle(XyX;) =" GyB

ij=1

Computation with Gram matrices of size n.



Xi Xy

X? X2

p :1 :n

X7 XP|
dim&
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Covariance matrix

x?P]
—_ TlVXX
Xn.
o(X, )] Gram matrix

P (X, )

= (k(X0, X))

10



B RKHS - low-cost computation

Linear methods on H;, are computable by Gram matrices of size n
(sample size).

« Suitable for high-dimensional data of moderate sample size.
c.f. power expansion / L? basis expansion.

Remark: If sample size n is large, low rank approximation of

Gram matrices works well.
» Incomplete Cholesky factorization (Fine & Scheinberg 2001)

» Nystrom approximation (Williams & Seeger 2000).
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Representing probabilities
with kernels
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Mean on RKHS

X: random variable taking value on a measurable space Q2, ~ P.
k: pos.def. kernel on Q. H: RKHS defined by k.

Def. kernel mean onH :

mp = E[®(X)] = E[k(-,X)] = [ k(- x)dP(x) € H,

— Reproducing expectations
(f,mp) = E[f(X)] for any f € H.

— Kernel mean can express higher-order moments of X.
Suppose k(u,x) = ¢y + cqux + c,(ux)?* + - (¢; =0), e.g., e¥¥

mp(w) =cy + ctE[XJu + c,E[X%]u? + -
c.f. moment generating function
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Characteristic kernel

(Fukumizu et al. IMLR 2004, AoS 2009; Sriperumbudur et al. IMLR2010)

Def. A bounded pos. def. kernel k is called characteristic if
P - Hkr P - Mmp
Is injective, i.e., Ex.plk(-,X)] =Eyolk(-,Y)] & P =Q.
mp With a characteristic kernel uniquely determines a probability
Examples: Gaussian, Laplace kernel

(polynomial: not characteristic.)

c.f. characteristic functions E[e™X].
Kernel mean - advantage in efficient computation.
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Nonparametric inference with kernels

Principle: with characteristic kernels,
Inferenceon P = Inference on mp

* Two sample test 2> mp =mg ?
(Gretton et al. IMLR 2012)

* Independence test 2 myy = my Q@ my ?

— Close connection to distance covariance, which is a
popular dependence measure (Székely, Rizzo, Bakirov 2007)
(Sejdinovic, Sriperumbudur, Gretton, Fukumizu, AoS 2013)

» Bayesian Inference - this talk.
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Covariance

(X, Y) : random vector taking values on Q, xQ),.
(Hy, ky), (Hy, ky): RKHS on Q, and Q,, resp.

Def. (uncentered) covariance operators Cyy: Hy = Hy, Cyx: Hy = Hy

Cyx = E[(DY(X)CDX(Y)T]’ Cxx = E[CDX(X)CDX(X)T]

Reproducing property
(9, Cyxf) =E[f(X)g(Y)] forall f € Hy, g € Hy.

Simply, extension of covariance matrix (linear map) V., = E[XYT]
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Empirical estimators

G'Ven (Xll Yl’ ), reny (Xn, YTL) ~ P, ||d,
Empirical Estimator:

1o A 1o
Ma=2 ) KCXD, Crxf =2 k(L YOKCXD,f)

i=1

1 n
=)k GF)

— Typically Gram matrix expression is obtained.

°9 ||éYX||12_IS = Tr|GxGy]

- /n-consistency (in norm) and CLT are guaranteed. (Berlinet &
Thomas-Agnan 2004, Gretton et al. 2005)
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Conditional probabilities
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Conditional kernel mean

- X, Y: Gaussian random vectors (€ R™, R?, resp.)

~1
argminJIIY—AXllzdP(X, Y) = Vyx Vyx

AeRtxm
-1
EY|X = x] = VyxVxx x

— With characteristic kernels, for general X and Y,

. 2 -1
argmin [ [0y (V) = FAOI13, dP(X, ) = CyxCyx
FEHxQHy
(F, ®x (X))

[ E[@d(V)|X =x] = CYXCXX_lq)X(x) J

Representing the conditional probability of Y given X = x.
In practice, regularized inverse must be used.
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— How to use the conditional kernel mean?

« Nonparametric estimator of regression
E[gMIX = x] = kx(x)(Gx + euln) '8

T
kX () - (kX(.rxl)) ---;’If(X('an)) € H)T(l;
g=(9(1),...9(¥a)) €R
£,: regularization coefficient

c.f. Gaussian process / kernel ridge regression

« Conditional independence (Fukumizu et al. JIMLR 2004, AoS 2009,
NIPS 2010)

» Bayesian inference (discussed later)

— Note: for consistency, kernel is fixed, regularization coefficient
&, = 0. c.f. smoothing kernel.
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Comparison: nonparametric regression

Assume Y is 1 dim., and kernel is used only for X

K E[Y|X = x] = K5 (x)(Gy + £n,) 1Y

Gaussian process / kernel ridge regression

— Consistency 1 (Eberts & Steinwart 2011)

If ky is Gaussian, and E[Y|X] € W5*(Px), (under some technical
assumptions) for any p > 0,

E|E[Y|X] —E[Y|X]| = 0,\n ~zatmtP) (n - o)

Note: 0, (n za+m) IS the optimal rate for a linear estimator
(Stone 1982).

* W5*(Px): Sobolev space of order a.
21



— Consistency 2 (case: E[Y|X] € Hy)

Suppose E[Y|X] € R(Cfx) with f = 0, Then, with a characteristic
kernel ky,

|E[Y|X] - E[Y|X]||2X = 0, (n‘mi“{%' %})

e The rates do not depend on m (dim of X), since the analysis
can be done within the RKHS.

* || - |lg,is stronger than || - [[s,,. Thus,

sup|E[Y|X = x] — E[Y|X = x]| = O, (n_min&' Zé)’”})
X
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Numerical studies

B Comparisons
Y=1/(15+||IX|1))+Z  X~N(0,1), Z~N(0,0.1%)

n =100, 500 runs 0.015 ‘ ‘
— Kernel method
— Local linear
Kernel ridge regression i
with Gaussian kernel S 001
Local linear regression g
with Epanechnikov kernel &
(‘locfit’ in R is used) g 0.005-
Bandwidth parameters o —— 7
are chosen by CV. 0 |
0 2 4 6 8 10

Dimension of X
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Kernel method for Bayesian
Inference
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Kernel realization of Bayes’ rule

B Bayes' rule

a(xly) = p(y|x)m(x)

q(y)

’ q(y) = fp(ylx)n(x)dx.

[I: prior withp.d.fm
p(y|x): conditional probability (likelihood).

B Kernel realization:
Goal: estimate the kernel mean of the posterior

Mpost|y.: = ij(’;x)Q(xly*)dx

given
- mp:. kernel mean of prior II,
- Cyxyx, Cyx: covariance operators for (X,Y) ~ P,
where P is the joint probability to give p(y|x) by conditioning.
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Kernel Bayes’ Rule

(Fukumizu, Song, Gretton JIMLR2014)
Input: (X, Y7),...,(X,,Y,) ~P (to give cond. probability).
g = Y5-1v;Px(U;)  (prior) a consistent estimator of my;.

1. [Expression of q(x,y) = p(y|x)m(x): €« regression ((Y,X),U,) |X ]
Compute A = Diag[(Gx/n + e,1,,) " Gxyy |

2. [Conditioning: & regression with (W, Z)~ q(x, y)]
Compute Ry, = AGy((AGy)? + 8,l,) A

* &,, Oyt Tegularization coefficients

Output: estimator for kernel mean of posterior given observation y,

mpost|y*(') — kX(')TRW|ZkY(Y*) — z Wi (y*)kX("Xi)

=1
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Inference with KBR

B \Weighted sample expression

n
Ppostly, () = ) Wiy lex( Xo)
i=1
Equivalent to the kernel mean of
n
Z w; (¥.)6x, (6, Dirac’s delta)
i=1

which is a signed measure (not necessarily a probability).
Some weights may be negative.

- Yt w;(y,) = 1 (n - o0) in probability under mild assumption.
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B How to use”?
— Expectation: if % € Range(Cyy) and f € L2(Py) satisfies
J f)pylx)m(x)dx € Range(Cyy),

Z wi @) f X)) = [ f)qxly)dx,  (n— ). (consistent)
i=1

e.g.
o f(x) =Iz(x): Yx,epw; — posterior prob. of set B.

e f(x)=x": ¥,w;X] - r-th moment of posterior.
(More general discussions in Kanagawa and Fukumizu, AISTATS 2014)

— Point estimation (quasi-MAP):

X = argminx”mpostly* - cI)X(x)”HX

Solved numerically
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— Completely nonparametric way of computing Bayes rule.

* No parametric models are needed, but data or samples are
used to express the probabilistic relations.

e Bayesian inference is done with matrix computation.

Examples: Xy X; X, X

1. Nonparametric HMM i i i i @

p(X,Y) = p(Xo, Yo) [Ti=1 (Ve | X )q (X | X¢—1) Yo ¥, Y, Y,

p(Y;|X;) and /or q(X;|X;-1) are
unknown, but data are available.

2. Explicit form of likelihood p(y|x) or prior r is unavailable,
but sampling is possible. A
c.f. Approximate Bayesian Computation (ABC)

/
(Kernel ABC: Nakagome, Mano, Fukumizu 2013) /\ //\
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B Practical example
State X, € R3:2-D coordinate and orientation of a robot
Observation Y; : image sequence.

Training sample (X;,Y;):t=1,..,T

Estimate the location of a robot from
Image sequences

— Observation: p(Y;|X;)

Very difficult to model with
a simple parametric model.

- KBR'!
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Convergence rate

Theorem (Fukumizu, Song, Gretton 2012)
Let f € Hy , (Z, W)~Q with p.d.f. p(y|x)m(x).
Assumptions:
- |lmg —mpllg, = 0,(n"%) for some 0 < a < 1/2.

- m(x)/px(x) € Range (C;)/(Z) for some f = 0.
- E[f(Z)|W =-] € Range(C%y) for some v > 0.

Then, with &, = n=2%/3 and §,, = n=8%/27 | for any vy,

8«

fxRxyky ) —E[f(2D)IW =y] = 0,(n"27) (n~ ).

B Remark: the rate depending on the smoothness of the functions
n/pyx and E[f(Z)|W =:-] is also available.

B If o = 1/2,the rate is n=*/27 (very slow, unsatisfactory....).
31



Choice of kernel and hyperparameter

— Parameters to be chosen for kernel methods: kernel (parameters
In kernel) and regularization parameter for regression and KBR.

— In general, cross-validation is recommended, if possible.
« Straightforward in supervised setting.

* Make a relevant supervised problem and apply CV (e.g.
HMM).

Supports
- CV has been used successfully for SVM.

2a

- The rate 0, (n"za+m "P) for the regression is attained with
parameter choice by validation (Eberts & Steinwart 2011).
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Example: KBR for nonparametric HMM

— Assume: Xo KXo X X5 X
p(y,|x,) and/or q(x.|x,_1) is not known. m
But, data (X,,Y,)I_,is available
in training phase. Yo Yo Yo Y3 Yr

Examples:

 Measurement of hidden states is expensive,
« Hidden states are measured with time delay.

— Testing phase (e.g., filtering, e.g.):
given y,, ..., ¥, estimate hidden state x;.
>KBR point estimator: argminy [|.,3,,...5. — P,
X

— General sequential inference uses Bayes' rule = KBR
applied.

33



Numerical examples

(a)Noisy rotation

Uy COS(Qt)) B v
(vt) o (Sin(Ht) + Zy, 0:+1 = arctan ” + 0.3,
Y, = (ug, v)" + W,

Filtering with the point estimator by KBR.

—EKBF f—————————

e I KBR does NOT know
: ' - | the dynamics, while
8 the EKF and UKF use
Z it.
3

I T I
FI---I- -I-L-I*I-I‘-I-L-IL-Il-ﬂ

200 400 600 800 1000
Training sample size
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(b) Noisy oscillation

u . cos(6;) v,
(Uz) = (1 + 0.4 Sln(88t) (Slﬂ(@f)) + th 9t+1 = arctan (_> + 04_’

Ut
Yy = (ug, ve)" + W,
Z,, W, ~ N(0,0.04L,) (i.i.d.)

—KBF

0.09} el
|||||||I_]—KP
@
S 0.08}
%]
W
= . .
= o
Z0.07} % ° 5.
P | Che8a ) °
S Ll o
o _%‘E}]\O
= CE’%“G%;G °%p° Go
0.06} Q8. - @% . O@%E‘co
&5 C0s oo 2 %
% Bl ey
"2e%) o

200 400 600 800
Training data size
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B Camera angles
— Hidden X;: angles of a video camera located at a corner of a room.
— Observed Y;: movie frame of a room + additive Gaussian noise.
- X;: 3600 downsampled frames of 20 x 20 RGB pixels (1200 dim. ).
— The first 1800 frames for training, and the second half for testing.

noise KBR (Trace) Kalman
filter(Q)

o2 =104 0.154+< 0.01 0.56 + 0.02

o2 =103 0.21+0.01 0.54 + 0.02

Average MSE for camera angles (10 runs)

To represent SO(3) model, Tr[AB-1] for KBR,
and quaternion expression for Kalman filter
are used .
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Robot localization (Re)
B COLD (COsy Localization Dataset, IJRR 2009)

State X, € R3:2-D coordinate and orientation of a robot
Observation Y, :image sequence (SIFT feature, 4200dim)

Training sample (X;,Y;):t=1,..,T

Estimate the location of a robot from
Image sequences

— Observation: p(Y;|X;) difficult to model.
- KBR
— State transition: linear Gaussian

Kernel Monte Carlo,
(Kanagawa, Nishiyama, KF. 2013) i




Root Mean Square Ermor (10 runs)

ra L] - wh
w b s

L

P—

o

o

U

Wy ra

[

Vision—-based Mobile Robot Localizaton

NAI: | naive method

—&— NAI
— NN

——KBR |

——- KEMC

(closest image
in training data)

NN: PF + K-nearest

neighbor
(Vlassis, Terwijn, Krose 2002)

KBR:(KBR + KBR

200 300 400 500 600 700 800 900 1000
Traiming Sample Size

KMCt KBR + Monte Carlo
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% ° | .
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g 3 =
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: o
o i 2
# training sample g & €

=200

o oo o

=4=: true location

= +d}@+n

: estimate : : :

red (+)/ blue (-) circles: weights on the training sample
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Conclusions and discussions

B “Kernel methods”: useful, general tool for

nonparametric inference.

— Suitable for high-dimensional data.
« Efficient computation with Gram matrices.
« Good performance for high-dimensional data.

— Can be used for representing probabilities and conditional
probabilities.

— “Nonparametric” way for general Bayesian inference with matrix
computation.

B Theoretical study Is yet to be done

— How can we justify the good performance of high-dimensionality
theoretically?

Large dimensional asymptotics?
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