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Nonlinearity and high-dimensionality

– Nonlinear / higher-order information in high-dimensional data.
Biology, documents, social networks, ….

– Extracting nonlinear information of data
Common practice:

(X, Y, Z)  (X, Y, Z, X2, Y2, Z2, XY, YZ, ZX, …)

– Computational problem for high dimensional data

e.g. Up to the 2nd order for 10,000 dim data

Dim of feature space:  

10000C1 + 10000C2 = 50,005,000 (!) 
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Nonparametric inference
– Smoothing kernel: KDE, local polynomial fitting

݄ିௗܭሺݔ/݄ሻ
– Characteristic function:   ܧሾ݁ఠሿ
– Spline, wavelet, order statistics, etc, etc, 

Curse of dimensionality
• Smoothing kernel: usually not strong for high-dimensional data
• Characteristic function: Integral on high-dimensional spaces is 

difficult.

Kernel method: a new approach to nonparametric inference. 
Computationally efficient, good performance for high-dimensional data 
in theory and practice.



Outline
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Introduction
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Kernel methods: a big picture
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Feature space (functional space)

xi


H

 xｊ
Space of original data

feature map

Do linear analysis in the feature space.

Φ: 				Ω			 → ,ܪ				 ݔ ↦ Φሺݔሻ

• Support	vector	machine	is	known	most	.
• This	talk:	more	recent	advances	for	nonparametric	inference.	

Φ ݔ
Φ ݔ



Positive definite kernel
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Def. : set. k	:  x  R
k is positive definite if k is symmetric, and for any

the matrix                         (Gram matrix)  satisfies

– Examples on Rm: 
• Gaussian RBF kernel

• Laplace kernel

• Polynomial kernel

	ܿଵ, … , ܿ ∈ ,܀
݊ ∈ ,ۼ ,ଵݔ	 … , ଵݔ ∈ ,	

݇ ܺ, ܺ


∑ ܿ ܿ݇ ܺ, ܺ

,ୀଵ 				 0.

݇ீ ,ݔ ݕ ൌ exp െ
1
ଶߪ2 ݔ|| െ ଶ||ݕ

݇ ,ݔ ݕ ൌ exp െߙ ݔ| െ |ݕ


ୀଵ

݇ ,ݔ ݕ ൌ ݕ்ݔ  ܿ ௗ ሺܿ  0, ݀ ∈ ሻۼ

ሺߙ  0ሻ

ሺߪ  0ሻ



Reproducing kernel Hilbert space
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Feature space = reproducing kernel Hilbert space (RKHS)

Positive definite kernel ݇ on uniquely defines a RKHS Hk ሺAronzajn
1950ሻ.

• Function space: functions on .  
• Very special inner product: for any ݂ ∈ ܪ

c.f.  L2 space
• Its dimensionality may be infinite (Gaussian, Laplace).

Note: from reproducing property 

(reproducing	property)݂, ݇ሺ	·	, ሻݔ ൌ ݂ሺݔሻ

݇ 	·	, ݔ , ݇ሺ	⋅	, ሻݕ ൌ ݇ሺݔ, ሻݕ



Mapping data into RKHS
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Computation	with	Gram	matrices	of	size	n.

– Feature Map
Φ:Ω → ,ܪ 	ݔ	 ↦ 	݇ሺ⋅, ሻݔ

– Data transform
ଵܺ, … , ܺ 				↦ 					Φ ଵܺ , … ,Φሺܺሻ:     functional data

– Inner product
For ݂ ൌ ∑ Φߙ ܺ , ݃ ൌ ∑ Φߚ ܺ 	 ∈ ,ܪ

݂, ݃ ൌ  ݇ߚߙ ܺ, ܺ ൌ


,ୀଵ

βܩ்ߙ

(artificially made)
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ଵܺ
ଵ

ଵܺ
ଶ 	⋯ ଵܺ



⋮ 	⋮						⋱ ⋮
ܺଵ ܺଶ 		⋯ ܺ



ଵܺ
ଵ

ଵܺ
ଶ

⋯
…

ܺଵ

ܺଶ
⋮ ⋱ ⋮
ଵܺ
 ⋯ ܺ



p

n


ଵܺ
ଵ

ଵܺ
ଶ 	⋯ ଵܺ



⋮ 	⋮						⋱ ⋮	
ܺଵ ܺଶ 		⋯ ܺ



ଵܺ
ଵ

ଵܺ
ଶ

⋯
…

ܺଵ

ܺଶ
⋮ ⋱ ⋮
ଵܺ
 ⋯ ܺ





n  ୨
Φሺ ଵܺ ሻଵ Φሺ ଵܺ ሻଶ ⋯							

⋮ 	⋮						 	
Φሺܺ ሻଵ Φሺܺ ሻଶ ⋯							

Φሺ ଵܺ ሻଵ

Φሺ ଵܺ ሻଶ
⋯
…

Φሺܺ ሻଵ

Φሺܺ ሻଶ
⋮ ⋮

⋮ ⋮

dimܪ

n

Covariance matrix

Gram matrix



11

 RKHS    low-cost computation
Linear methods on ܪ are computable by Gram matrices of size ݊
(sample size).   

• Suitable for high-dimensional data of moderate sample size.
c.f. power expansion / L2 basis expansion.

Remark: If sample size ݊ is large, low rank approximation of 
Gram matrices works well.  

» Incomplete Cholesky factorization (Fine & Scheinberg 2001)
» Nyström approximation (Williams & Seeger 2000). 



Representing probabilities 
with kernels 
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Mean on RKHS
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X: random variable taking value on a measurable space P
k: pos.def. kernel on .       H: RKHS defined by k.

Def. kernel mean on H :

– Reproducing expectations
݂,݉ ൌ ܧ ݂ ܺ 	 for any ݂ ∈ .ܪ

– Kernel mean can express higher-order moments of X. 
Suppose ݇ ,ݑ ݔ ൌ ܿ  ܿଵݔݑ  ܿଶ ݔݑ ଶ  ⋯ ܿ  0 , e.g.,  ݁௨௫

c.f. moment generating function

݉ ≔ ܧ Φ ܺ ൌ ܧ ݇ 	⋅	, ܺ ൌ  ݇ 	⋅, ݔ ݀ܲ ݔ 				 ∈ ܪ

݉ ݑ ൌ ܿ 		ܿଵܧ ܺ 	ݑ 	ܿଶܧ ܺଶ ଶݑ 	 ⋯



Characteristic kernel
(Fukumizu et al. JMLR 2004, AoS 2009; Sriperumbudur et al. JMLR2010)
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Def. A bounded pos. def. kernel k is called characteristic if 

is injective, i.e.,   ܧ~ ݇ 	⋅	, ܺ ൌ ~ொܧ ݇ 	⋅	, ܻ ⇔ 		ܲ ൌ ܳ.

݉ with a characteristic kernel uniquely determines a probability.

Examples: Gaussian, Laplace kernel  
(polynomial: not characteristic.)

c.f. characteristic functions ܧሾ݁௨ሿ.   
Kernel mean  advantage in efficient computation.

P → ,ܪ 				ܲ ↦ ݉



Nonparametric inference with kernels
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Principle:  with characteristic kernels,
Inference on ܲ ⇒ Inference on ݉

• Two sample test   	݉ ൌ ݉ொ	? 
(Gretton et al. JMLR 2012)

• Independence test  ݉ ൌ ݉ ⊗݉	?
– Close connection to distance covariance, which is a 

popular dependence measure (Székely, Rizzo, Bakirov 2007)
(Sejdinovic, Sriperumbudur, Gretton, Fukumizu, AoS 2013)

• Bayesian Inference  this talk.



Covariance
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(X , Y) : random vector taking values on XൈY. 
(HX, kX), (HY , kY): RKHS on X and Y, resp.

Def. (uncentered) covariance operators ܥ:ܪ → ܪ:ܥ ,ܪ → ܪ

Reproducing property

Simply, extension of covariance matrix (linear map)

ܥ ൌ ܧ Φ ܺ Φ ܻ ் , ܥ ൌ ܧ Φ ܺ Φ ܺ ்

ܸ ൌ ܧ ்ܻܺ

〈݃, 〈݂ܥ ൌ ܧ ݂ ܺ ݃ ܻ for	all	݂ ∈ ,ܪ ݃ ∈ .ܪ



Empirical estimators
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Given ଵܺ, ଵܻ, , … , ܺ, ܻ 	~	ܲ, i.i.d.,
Empirical Estimator:

– Typically Gram matrix expression is obtained. 
e.g. 

– ݊-consistency (in norm) and CLT are guaranteed. (Berlinet & 
Thomas-Agnan 2004, Gretton et al. 2005) 

ෝ݉ ൌ
1
݊ ݇ 	⋅, ܺ



ୀଵ
, መ݂ܥ ൌ

1
݊ ݇ 	⋅, ܻ 〈݇ ⋅, ܺ , ݂〉



ୀଵ

መܥ ுௌ
ଶ ൌ ሿܩܩሾݎܶ

ൌ
1
݊ ݇ 	⋅, ܻ ݂ ܺ



ୀଵ



Conditional probabilities
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Conditional kernel mean
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– ܺ, ܻ: Gaussian random vectors (∈ ܴ, ܴℓ, resp.)

– With characteristic kernels, for general ܺ and ܻ, 

argmin
∈ோℓൈ

න ܻ െ ܺܣ ଶ݀ܲሺܺ, ܻሻ 		ൌ 		 ܸ ܸ
ିଵ
	

ܧ Φ ܻ ܺ ൌ ݔ ൌ ܥܥ
ିଵ
Φሺݔሻ

argmin
ி∈ு⊗ுೊ

න Φ ܻ െ ܨ ܺ ுೊ
ଶ ݀ܲሺܺ, ܻሻ ൌ ܥܥ

ିଵ

ܧ ܻ ܺ ൌ ݔ ൌ ܸ ܸ
ିଵ
ݔ

Representing the conditional probability of ܻ given ܺ ൌ .ݔ
In practice, regularized inverse must be used.

Φ,ܨ〉 ܺ 〉
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– How to use the conditional kernel mean?

• Nonparametric estimator of regression

c.f. Gaussian process / kernel ridge regression

• Conditional independence (Fukumizu et al. JMLR 2004, AoS 2009, 
NIPS 2010)

• Bayesian inference (discussed later)

– Note: for consistency, kernel is fixed, regularization coefficient 
ߝ → 0.	 c.f. smoothing kernel. 

ܓ ሺ⋅ሻ ൌ ݇ ⋅, ଵܺ , … , ݇ ⋅, ܺ
் ∈ 		,ܪ

 ൌ ݃ ଵܻ , … , ݃ ܻ
் ∈ ܴ

ܺ|ሾ݃ሺܻሻܧ ൌ ሿݔ ൌ ሻݔ்ሺܓ ܩ  ܫߝ ିଵ

regularization coefficient	:ߝ



Comparison: nonparametric regression
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Assume ܻ is 1 dim., and kernel is used only for ܺ


Gaussian process / kernel ridge regression

– Consistency 1 (Eberts & Steinwart 2011)

If ݇ is Gaussian, and  ܧ ܻ ܺ ∈ ଶܹ
ఈ

ܲ ,	(under some technical 
assumptions) for any  > 0, 

Note: ܱ ݊ି
మഀ

మഀశ is the optimal rate for a linear estimator 
(Stone 1982). 

ܺ|ሾܻܧ ൌ ሿݔ ≔ ሻݔ்ሺܓ ܩ  ܫߝ ିଵܻ

ܧ ሾܻ|ܺሿܧ 	െ ሾܻ|ܺሿܧ ଶ ൌ ܱ ݊ି
ଶఈ

ଶఈାାఘ 										 ݊ → ∞

* ଶܹ
ఈ

ܲ : Sobolev space	of	order	ߙ.
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– Consistency 2  (case: ܧ ܻ ܺ ∈ (ܪ

Suppose ܧ ܻ ܺ ∈ ܴሺܥ
ఉ ሻ with ߚ  0, Then, with a characteristic 

kernel ݇,	

• The rates do not depend on ݉ (dim of ܺሻ, since the analysis 
can be done within the RKHS.

• || ⋅ ||ு is stronger than || ⋅ ||௦௨.  Thus, 

ሾܻ|ܺሿܧ െ ܧ ܻ ܺ ு

ଶ ൌ ܱ ݊ି୫୧୬
ଵ
ଶ,	

ఉ
	ఉାଵ

sup
௫

ܧ ܻ ܺ ൌ ݔ െ ܺ|ሾܻܧ ൌ ሿݔ ൌ ܱ ݊ି୫୧୬
ଵ
ସ,	

ఉ
	ଶఉାଶ



Numerical studies
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Comparisons
ܻ ൌ 1/ 1.5  | ܺ| ଶ  ܼ, 							ܺ	~	ܰ 0, ௗܫ ,		ܼ~ܰ 0, 0.1ଶ

݊ = 100,   500 runs

Kernel ridge regression
with Gaussian kernel

Local linear regression 
with Epanechnikov kernel
(‘locfit’ in R is used) 

Bandwidth parameters 
are chosen by CV. 

0 2 4 6 8 10
0

0.005

0.01

0.015

Dimension of X

M
ea

n 
sq

ua
re

 e
rr

or
s

 

 

Kernel method
Local linear



Kernel method for Bayesian 
inference
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Kernel realization of Bayes’ rule
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 Bayes’ rule

Π: 	prior	with	p. d. f	ߨ
 .ሻ: conditional probability (likelihood)ݔ|ݕሺ

 Kernel realization:
Goal: estimate the kernel mean of the posterior

given
– ݉ஈ: kernel mean of prior Π,
– ,ܥ ,: covariance operators for ሺܺܥ ܻሻ		~	ܲ,

where ܲ is the joint probability to give ሺݔ|ݕሻ by conditioning.

ݍ ݔ ݕ ൌ
 ݕ ݔ ሻݔሺߨ

ሻݕሺݍ , ݍ	 ݕ ൌ න ݕ ݔ ߨ ݔ .ݔ݀

݉௦௧|௬∗: ൌ න݇ሺ⋅, ݍሻݔ ݔ ∗ݕ ݔ݀



Kernel Bayes’ Rule
(Fukumizu, Song, Gretton JMLR2014)
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Input:   ଵܺ, ଵܻ , … , ܺ, ܻ 	~	ܲ	 (to give cond. probability).   
ෝ݉ஈ ൌ ∑ Φߛ ܷ 	ℓ

ୀଵ (prior)  a consistent estimator of ݉ஈ.

1. [Expression of ݍ ,ݔ ݕ ൌ  ݕ ݔ ߨ ݔ :   regression ሺ ܻ, ܺ , ܷఊሻ	|ܺ		]
Compute 

2. [Conditioning:          regression with ܹ,ܼ ,ݔሺݍ	~ [ሻݕ
Compute 

Output: estimator for kernel mean of posterior given observation ݕ∗

Λ ൌ Diag ݊/ܩ  ܫߝ ିଵܩߛ 

ܴௐ| ൌ Λܩ Λܩ ଶ 	 ܫߜ
ିଵΛ.

ෝ݉௦௧|௬∗ ⋅ ൌ ܓ ⋅ ்ܴௐ|ܓ ∗ݕ ൌݓ ∗ݕ ݇ሺ⋅, ܺሻ


ୀଵ

,ߝ * :ߜ regularization	coefficients



Inference with KBR
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 Weighted sample expression

ෝ݉௦௧|௬∗ ⋅ ൌ ݓ ∗ݕ ݇ሺ⋅, ܺሻ


ୀଵ
Equivalent to the kernel mean of 

ݓ ∗ݕ ߜ



ୀଵ
which is a signed measure (not necessarily a probability). 
Some weights may be negative. 

– ∑ ݓ ∗ݕ → 1
ୀଵ ሺ݊ → ∞ሻ	in probability under mild assumption. 

(௫: Dirac’s deltaߜ)



How to use?
– Expectation:  if గ


∈ Range ܥ and ݂ ∈ ଶሺܮ ܲሻ satisfies  

 ݂ሺݔሻ ݕ ݔ ߨ ݔ ݔ݀ ∈ Rangeሺܥሻ,

e.g.
• ݂ ݔ ൌ ܫ ݔ : ∑ ∈ݓ → posterior prob. of set ܤ.
• ݂ ݔ ൌ :ݔ ∑ ݓ ܺ

 → th-ݎ	 moment of posterior.
(More general discussions in Kanagawa and Fukumizu, AISTATS 2014)  

– Point estimation (quasi-MAP):

Solved numerically
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ݓ ∗ݕ ݂ ܺ



ୀଵ

→ 		  ݂ ݔ ݍ ݔ ∗ݕ ,ݔ݀ ݊ → ∞ .

ොݔ ൌ argmin௫ ෝ݉௦௧|௬∗ െ Φ ݔ
ு
	

(consistent)
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– Completely nonparametric way of computing Bayes rule.
• No parametric models are needed, but data or samples are 

used to express the probabilistic relations. 
• Bayesian inference is done with matrix computation. 

Examples: 
1. Nonparametric HMM

 ܺ, ܻ ൌ ,ሺܺ ܻሻ∏  ௧ܻ ܺ௧ ݍ ܺ௧ ܺ௧ିଵ்
௧ୀଵ

 ௧ܻ ܺ௧ and /or ݍሺܺ௧|ܺ௧ିଵሻ are 
unknown, but data are available. 

2. Explicit form of likelihood ሺݔ|ݕሻ or prior ߨ is unavailable, 
but sampling is possible.
c.f. Approximate Bayesian Computation (ABC)
(Kernel ABC: Nakagome, Mano, Fukumizu 2013)

X0 X1 X2 X3 XT

Y0 Y1 Y2 Y3 YT

…
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 Practical example
State ܺ௧ ∈ ଷ：2-D coordinate and orientation of a robot܀
Observation	 ௧ܻ：image sequence.

Training sample ܺ௧, ௧ܻ ݐ： ൌ 1,… , ܶ

Estimate the location of a robot from 
image sequences

– Observation:  ௧ܻ ܺ௧ሻ
Very difficult to model with 
a simple parametric model.
 KBR !



Convergence rate
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Theorem (Fukumizu, Song, Gretton 2012)

Let ݂ ∈ ܹ,ܼ ,	ܪ ~ܳ	with p.d.f.  ݕ ݔ ߨ ݔ .	
Assumptions:
- ෝ݉ஈ െ ݉ஈ ு ൌ ܱ ݊ିఈ for some 0 ൏ ߙ  1/2.

- ሻݔሺߨ	 ⁄ሻݔሺ ∈ Range ܥ
ଵ/ଶ for some ߚ  0.

- ܧ ݂ ܼ ܹ ൌ⋅ ∈ Range ଶܥ for some ߥ  0.	

Then, with ߝ ൌ ݊ିଶఈോଷ and ߜ ൌ ݊ି଼ఈോଶ	,	 for any ݕ, 

 Remark: the rate depending on the smoothness of the functions 
ߨ ⁄ 	and ܧ ݂ ܼ ܹ ൌ⋅ is also available.

 If ߙ ൌ 1 2⁄ ,	the rate is ݊ିସ/ଶ (very slow, unsatisfactory....).

ܓ்ܴ| ݕ െ ܧ ݂ ܼ ܹ ൌ ݕ ൌ ܱሺ݊
ି଼ఈଶሻ ݊ → ∞ .



Choice of kernel and hyperparameter
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– Parameters to be chosen for kernel methods: kernel (parameters 
in kernel) and regularization parameter for regression and KBR.

– In general, cross-validation is recommended, if possible. 
• Straightforward in supervised setting. 
• Make a relevant supervised problem and apply CV (e.g. 

HMM). 

Supports
- CV has been used successfully for SVM. 

- The rate ܱሺ݊
ି మഀ
మഀశାఘሻ	for the regression is attained with 

parameter choice by validation (Eberts & Steinwart 2011). 



Example: KBR for nonparametric HMM
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– Assume:		
௧ሻݔ|௧ݕሺ and/or ݍሺݔ௧|ݔ௧ିଵሻ	is not known.
But, data ܺ௧, ௧ܻ ௧ୀ

் is available 
in training phase.

Examples:
• Measurement of hidden states is expensive, 
• Hidden states are measured with time delay.

– Testing phase (e.g., filtering, e.g.):
given ݕ, … , .௦ݔ	state	hidden	estimate	௧,ݕ
KBR point estimator: argmin௫ೞ ෝ݉௫ೞ|௬బ,…,௬ െ Φ ݔ

ு

– General sequential inference uses Bayes’ rule   KBR 
applied.

X0 X1 X2 X3 XT

Y0 Y1 Y2 Y3 YT

…



Numerical examples
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(a)Noisy rotation
௧ݑ
௧ݒ ൌ cos	ሺߠ௧ሻ

sin	ሺߠ௧ሻ
 ܼ௧, ௧ାଵߠ ൌ arctan

௧ݒ
௧ݑ

 0.3,

௧ܻ ൌ ,௧ݑ ௧ݒ ்  ௧ܹ,	
ܼ௧, ௧ܹ	~	ܰ 0, ଶܫ0.04 	 ݅. ݅. ݀.

Filtering with the point estimator by KBR.

KBR	does	NOT	know	
the	dynamics,	while	
the	EKF	and	UKF	use
it.	
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(b) Noisy oscillation 
௧ݑ
௧ݒ ൌ ሺ1  0.4 sin ௧ߠ8

cos ௧ߠ
sin	ሺߠ௧ሻ

 ܼ௧, ௧ାଵߠ ൌ arctan
௧ݒ
௧ݑ

 0.4,

௧ܻ ൌ ,௧ݑ ௧ݒ ்  ௧ܹ,	
ܼ௧, ௧ܹ	~	ܰ 0, ଶܫ0.04 	 ݅. ݅. ݀.
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Camera angles
– Hidden ܺ௧: angles of a video camera located at a corner of a room.
– Observed ௧ܻ: movie frame of a room + additive Gaussian noise.
– ܺ௧: 3600 downsampled frames of 20 x 20 RGB pixels (1200 dim. ). 
– The first 1800 frames for training, and the second half for testing.

noise KBR	(Trace) Kalman
filter(Q)

2 = 10-4 0.15 േ൏ 0.01 0.56 േ 0.02
2 = 10-3 0.21േ0.01 0.54 േ 0.02

Average	MSE	for	camera	angles	(10	runs)

To	represent		SO(3)	model,	Tr[AB‐1]	for	KBR,	
and	quaternion	expression	for	Kalman filter	
are	used	.



Robot localization (Re)
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COLD (COsy Localization Dataset, IJRR 2009)
State ܺ௧ ∈ ଷ：2-D coordinate and orientation of a robot܀
Observation	 ௧ܻ：image sequence（SIFT feature, 4200dim）

Training sample ܺ௧, ௧ܻ ݐ： ൌ 1,… , ܶ

Estimate the location of a robot from 
image sequences

– Observation:  ௧ܻ ܺ௧ሻ difficult to model.
 KBR

– State transition: linear Gaussian
Kernel Monte Carlo, 

(Kanagawa, Nishiyama, KF. 2013)
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NAI:		naïve	method
(closest	image	
in	training	data)

NN:	PF	+	K‐nearest	
neighbor

(Vlassis,	Terwijn,	Kröse 2002)

KBR:	KBR	+	KBR

KMC:	KBR	+	Monte	Carlo
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#	training	sample	
=	200

:	true	location

:		estimate

red	(+)/	blue	(‐)	circles:			weights	on	the	training	sample



Conclusions and discussions
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 “Kernel methods”: useful, general tool for 
nonparametric inference. 
– Suitable for high-dimensional data.

• Efficient computation with Gram matrices.
• Good performance for high-dimensional data. 

– Can be used for representing probabilities and conditional 
probabilities.

– “Nonparametric” way for general Bayesian inference with matrix 
computation.

 Theoretical study is yet to be done
– How can we justify the good performance of high-dimensionality 

theoretically?  
Large dimensional asymptotics?  
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