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Motivation and Results

A large dimensional problem in a small dimensional space

Input vs feature space metric: kernel method is a strong tool to
deal with nonlinear problems by linear methods, but metric structure
of input space is broken
⇒ General framework to incorporate input space metric

Robustness: Lp regularization (p ≤ 1) is popular for the sparseness,
but we focus more on Lp cost function for robustness
⇒ Sparse property of the optimal solution

PCA vs MCA: kernel PCA does not always give satisfiable results
⇒ Comparative results (discussion) of kernel PCA and MCA
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Fitting methods

Purpose of fitting: object recognition, denoising etc.

There are (at least) two kinds of line/hypersurface fitting to sample
points

Regression y = f (x) = aTx
Distinctive treatment between y and x
Minimization of E [(y − f (x))2]
Dimension reduction aTx = 0
All components of x are treated equally
Minimization of distance between points and line
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Fitting by dimension reduction

Minimization of distance between points and subspace (MCA)

Equivalently, find the subspace that preserves variance of data points
as much as possible (PCA)

Equivalence of Principal Component Analysis (PCA) and Minor
Component Analysis (MCA)

Solution is obtained by solving eigenvalue problem

(XTX )a = λa
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Extension to Riemannian space

In many applications, we need to consider non-Euclidean space

Hypersphere (directional data, geology, economics; Fujiki+2007)

Grassmann-Stiefel manifold (subspace data, independent component
analysis; Nishimori+2005)

Statistical manifold (statistics, optimization, control; Akaho2004)

Shotaro Akaho (AIST) Robust nonlinear curve ftting 2014/03/14 8 / 47



. . . . . .

Extension to Riemannian space

Riemannian space with metric G (x)

Extension to distance to the length of geodesic (hard to evaluate)

Local approximation by the norm on the tangent space at xi
∥x− xi∥2Gi

= (x− xi )
TGi (x− xi ), Gi = G (xi )

In spite of this approximation, dimension reduction problem cannot be
solved by a simple eigenvalue problem.
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Quadratic curve fitting

Quadratic curve fitting

a0 + a1x1 + a2x2 + a3x
2
1 + a4x1x2 + a5x

2
2 = 0

Feature map reduces the nonlinear problem to linear problem
x 7→ ϕ(x) = (1, x1, x2, x1

2, x1x2, x2
2)

Linear fitting on 6 dimensional feature space
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Input space versus feature space

Linear method on feature space minimizes the distance in feature
space.

However, the distance is not equal to the distance between points and
the curve in the input space

There are not many researches focusing on input space (Schölkopf
1999)
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Locally linear approximation of function

Projection from a point to a curve is difficult in general
(local minimum/maximum, saddle)

Linear approximation of f (x∗i ) = 0 around xi
(Akaho1993)

0 = f (x∗i ) ≃ f (xi ) +∇f (xi )
T (x∗i − xi )

The closest point x∗i to xi w.r.t. metric Gi , satisfying the constraint
above is given by

∥x∗i − xi∥2Gi
=

f (xi )
2

∥∇f (xi )∥2G−1
i
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Locally linear approximation of function

Applying to f (x) = aTϕ(x) leads to the sum of input space distance

∑
i

∥x∗i − xi∥2Gi
=

∑
i

aTϕiϕ
T
i a

aT∇ϕiG
−1
i ∇ϕT

i a
, ϕi = ϕ(xi )

Sum of ratio of quadratic forms

Successive iteration method

at+1 = argmin
∥a∥=1

aT

[∑
i

1

wi
ϕiϕ

T
i

]
a, wi = aTt ∇ϕiG

−1
i ∇ϕT

i at ,
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Example

u ∼ u[−2, 2], x1 = u + ϵ1, x2 = u2 + ϵ2

-5 0 5

0

5

10

-5 0 5

0

5

10

Feature space Input space

Shotaro Akaho (AIST) Robust nonlinear curve ftting 2014/03/14 15 / 47



. . . . . .

Table of contents

...1 Fitting as a dimension reduction

...2 Feature map and minimization of the input space distance

...3 Maximization of the input space margin (Robust classification)

...4 Robust fitting by Lp cost minimization (0 < p ≤ 1)

...5 Fitting problem in very high dimensional feature space

Shotaro Akaho (AIST) Robust nonlinear curve ftting 2014/03/14 16 / 47



. . . . . .

Toward higher dimensions

Higher dimensional case (e.g. Reproducing Kernel Hilbert Space)

First, we consider support vector machine (not curve fitting, but finds
optimal separating hypersurface)

Fitting problem is discussed later
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Support vector machine

SVM finds an optimal hyperplane that maximizes margin in the
feature space

Maximize the margin in the input space by the approximation of
distance in the input space

Approach: the same formulation as conventional SVM except
introducing a linear approximation of distance (+ additional linear
expansions; Akaho2004)

w Φ(x)=1

w Φ(x)=-1

w Φ(x)=0
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Approximation of distance

Approximate the distance not around xi but a
better estimate x̂i

∥di∥2Gi
=

(aT{ϕ(x̂i )−∇ϕ(x̂i )d̂i})2

∥aT∇ϕ(x̂i )∥2G−1
i

di = x∗i − xi , d̂i = x̂i − xi

x̂i is initialized by xi and it can be iteratively
improved (discussed later)

xi

xi

xi

f(x)=0

^

*

di

dî
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Margin constraint

Separating hyperplane is invariant under scalar transformation of a, so
we assume

min
i

∥di∥2Gi
=

1

∥a∥2

Then maximizing margin is equivalent to minimizing ∥a∥2 (quadratic
regularization) under the above constraints with sign

yi
aT{ϕ(x̂i )−∇ϕ(x̂i )d̂i})

∥aT∇ϕ(x̂i )∥2G−1
i

≥ 1

∥a∥
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Linearization of constraints

Suppose an approximate solution â is given, we approximate the
constraint by linear inequality of a

aT [yi{ϕ(x̂i )−∇ϕ(x̂i )d̂i} − η̂i ] ≥ ĝi

where ĝi : scalar function, η̂i : linear function of ∇ϕ(x̂i ) and â

Quadratic optimization with linear constraint leads to

L(a) = aTa−
n∑

i=1

αi

(
aT [yi{ϕ(x̂i )−∇ϕ(x̂i )d̂i} − η̂i ]− ĝi

)
where αi is a Lagrange multiplier
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Support Vectors

Differentiating L(a) by a, we have

a =
n∑

i=1

αi [yi{ϕ(x̂i )−∇ϕ(x̂i )d̂i} − η̂i ]

Sparsity (some αi are exactly 0 as in SVM)

Classification function f (x) = aTϕ(x):
if we assume â is a linear function of ϕ(x̂i ) and ∇ϕ(x̂i ),

f (x) =
∑
i

{aiϕ(x̂i )Tϕ(x) + bi∇ϕ(x̂i )
Tϕ(x)}

(Since η̂i is a linear function of â and ϕ(x̂i ))
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Kernelization

Reproducing kernel Hilbert space

Kernel function (strictly it should be written as an inner product)

k(x, x′) = ϕ(x)Tϕ(x′)

Derivative of kernel function

∇xk(x, x
′) = ∇ϕ(x)Tϕ(x′),

∇x∇x′k(x, x
′) = ∇ϕ(x)T∇ϕ(x′)
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Kernel trick

Kernel trick enables us to choose positive semidefinite function as a
kernel function instead of taking inner product in the feature space

Example (Gaussian kernel)

k(x, x′) = exp(−β∥x− x′∥2)
∇xk(x, x′) = −2βk(x, x′)(x− x′),
∇x∇x′k(x, x′) = 2βk(x, x′)(I − 2β(x− x′)(x− x′)T ),

Kernel version of classification function

f (x) =
∑
i

{aik(x̂i , x) + bi∇k(x̂i , x)}
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Estimation of x̂i

x̂i can be improved for a fixed parameter of curve â

x
[l+1]
i = h(x

[l ]
i , â, xi ,Gi )

It may converge to a local minimum, a local maximum, or a saddle
point. How about the convergence property?

Property of the iterative solution: Let x∗i be an equilibrium state
of the iteration step, it is a critical point of the projection point (a
local minimum/maximum, or saddle point). If it is a local maximum
or saddle, the algorithm is always unstable
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Estimation of x̂i

For a local minimum, the curvature of the hypersurface determines the
stability (we can slow down the iteration step to avoid the instability)

stable region

unstable region

local maximum(unstable)

local minimum(stable)

local minimum(unstable)

unstable region

ε1
xixi*

εj

di
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Example

Through experiments for synthetic and some benchmark datasets, we
showed that the input space margin and generalization performance
increased by a proposed method
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Robustness and sparseness

Typical optimization formulation for fitting

E =
∑
i

Cost(xi , f ) + λReg(f )

Regularization: we don’t discuss in detail here
SVM: L2, Lasso: L1 (sparse prior)

Cost:
-SVM: Hinge loss of [yf (x)− 1]+
-Ordinary regression: Quadratic loss (y − f (x))2

-Fitting by dimension reduction: Quadratic (vertical) distance
-Here: p-th power (vertical) distance (robust + sparseness)
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p-th power deviation

Euclidean distance from a d-dim point xi to a hyperplane
aTx+ a0 = 0, ∥a∥ = 1 is given by |aTxi + a0|
Minimizing the mean p-th power of the Euclidean distance

Rp(a) =
n∑

i=1

wi |aTxi + a0|p

R1 norm (Ding2006)

R0 is meaningless (the same cost values)

We can prove Lp 0 < p ≤ 1 case is completely sparse (the optimal
hyperplane passes through d points)
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Proof sketch

The parameter (aT , a0) is on a cylinder Q = Sd × R: convex in Rd+1

against the origin
Parameter space is devided by n hyperplanes aTxi + a0 = 0, each P is
convex in Rd+1. ⇒ P ∩ Q is convex against the origin
The (weighted) p-th deviation takes concave contour against origin
The minimum of the objective function is obtained in the boundary of
P ∩ Q
The procedure is performed recursively, and the (local) minimum is
obtained at one of the vertex of P
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Example
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Example
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Example
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Curve fitting in RKHS

We want to extend the curve fitting in high dimensional space

PCA vs MCA (in low dimensional case, it is almost equivalent)

In infinite dimensional case, the difference taking higher eigenvalues
and discarding lower eigenvalues is large

Note: finding a dimension reduction map u = f (x) and finding a low
dimensional structure x ′ = g(x) in the input space are slightly
different
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Minor component analysis

In the first part of my talk, we considered the hyperplane aTϕ(x) = 0
which is obtained by MCA

MCA is attractive because to find the optimal hyperplane was
somewhat reasonable in SVM

But in MCA case, it is hard because of too much degree of freedom
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PCA vs MCA

The image of input space in feature space is very sparse
PCA (small number of projection axes)
MCA (small number of noise reduction axes)
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Two kinds of regularization

Tikhonov (SVM)

min
f

∑
i

Cost(f (xi )) + λΩ(∥f ∥)

f ∈ RKHS, Ω is a nondecreasing function

Ivanov-like (PCA, MCA) not precisely Ivanov

min
f

∑
i

Cost(f (xi )) s.t. ∥f ∥ = const
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Representer theorem

Representer theorem is a key theorem for RKHS, which reduces the
dimensionality from infinite to finite

Representer theorem 1: As for Tikhonov regularization

min
f

∑
i

Cost(f (xi )) + λΩ(∥f ∥),

For any Cost function, the optimal f is in the form

fopt(x) =
∑
i

αik(xi , x)
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Ivanov-like

Representer theorem 2: As for Ivanov-like regularization

min
f

∑
i

Cost(f (xi )) s.t. ∥f ∥ = const

If the Cost function satisfies decreasing property
(Cost(c1f (x)) ≤ Cost(c2f (x)) when c1 ≥ c2 > 0), the optimal f is in
the form

fopt(x) =
∑
i

αik(xi , x)

PCA (minus of variance of f (xi )) satisfies, but MCA (variance of
f (xi )) does not! Even data out of samples can be good for MCA.
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Approach from PCA

Kernel PCA does not work as one would expect (cf. manifold
learning)

For noise reduction, we need to solve “preimage problem” that is
difficult to solve

Even if preimage is found, it is not always what we want
(non-smooth, more dimension is needed)

The structures of projection and preimage are different in nonlinear
case
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Preimage

Finding a dimension reduction map u = f (x) and finding a low
dimensional structure x ′ = g(x) in the input space are slightly different in
nonlinear case
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Example

Preimage is somewhat unstable and not smooth
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Approach from MCA

Kernel MCA achieves smoother curve/surface

Too many freedom (even in the sample space)
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Example

MCA gives too many good curves! (their linear combination as well;
Fujiki+2013)
Further out of sample points will increase the freedom
Does sparsity help to choose a good curve? → open
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Concluding remarks

The method to incorporate input space metric is proposed

Finding the projection point to hypersurface is more stable than
finding the preimage

Lp cost function is effective when many outliers exist

MCA has a potential to give a good curve fitting, but choosing a good
curve obtaining good generalization performance is not established
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