
教師なし構文解析の進展

最先端構文解析とその周辺

統計数理研究所 2012.12.19

能地 宏
東京大学大学院 情報理工学系研究科

修士2年

今日の話

‣ 教師なし構文解析とは何か
- 問題の意義
- 何故教師なしで考えるのか？

‣ 教師なし係り受け解析における代表的なモデルの紹介（次ページ）
- モデルの考え方
- 現状，どれぐらいうまくいくのか
- 今後の展望

モデル化の方針

‣ PCFGに変換した上で，手を加えていく
- Klein & Manning (2002)
- Dependency Model with Valence (Klein & Manning, 2004)
- 拡張がたくさん
- Extended Model
- Lexicalized Model
- Parameter Tying ⇒ Shared Logistic, Phylogenetic Model, Multilingual Setting, etc

‣ その他のモデル
- Projective Tree を生成する別の生成モデル
- Common Cover Link (Seginer 2007)

教師なし解析の目的

‣ 工学的目的
- 現在，構文解析を行うためには，ツリーバンクなどの，教師データが必要
- しかし，ツリーバンクの存在する，言語/ドメインは限られる
- ツリーバンクの存在しない言語の解析
- ツイッターなどの新しいドメインの解析をどうするか？
- 半教師あり学習をするにしても，教師なしの性能の良い生成モデルを定義しておく
ことは意味がある

‣ 科学的目的
- 人間が言語を獲得する仕組みは何も明らかにされていない
- 教師なし解析がうまくいけば，そこで用いたような情報を，赤ちゃんが使って
いるかもしれない，という手掛かりになる
- 言語をよく説明出来るモデル ⇒ 言語のある側面の本質を備えている

係り受け解析

‣ 単語同士の係り関係を導出する
‣ Treebankなどの人手で作った正解データと比較する
‣ headとargument
- head : 部分木の中で，最も重要な意味を表す単語
- argument : headに付属する単語

There is no asbestos in our products now

この構造を，正解データを用いずに導出
できるか？

Projectivity

‣ 係り受け解析でよく用いられる仮定
‣ 文のなかで，係り関係が交差しない

‣ 多くの言語，多くの文で成り立つ性質
‣ 考える解空間の大きさを大きく狭めることが出来る
- 今日紹介する多くのモデルで仮定されている

projective Non-projective

問題設定自体がはらんでいる問題

‣ 係り関係は人間が定めたもの
‣ headとは何か，というのは言語学的に非常に難しい問題

‣ Treebank でも，言語によって正解の方針が異なる
- 例： 限定詞と名詞
- The country での head は（通常）country
- デンマーク語でのアノテーションは逆向き
- 英語でも，The が head であるという主張もある (Abney, 1987)

とりあえずの策と，最終的な目標

‣ 色々問題は含んでいるが，言語学者のアノテーションは，ある種の本質を
捉えている

‣ それを再現出来るようになることは，言語理解にとって重要といえる

‣ アプリケーションによる評価
- 既存の教師ありによる解析よりも，ある種のアプリケーションでは，良い性能を
示せるかもしれない（機械翻訳など）
- ほとんど見ない ⇒ 精度が出ないから？

‣ 言語が統計的に処理出来るのであれば，それに従ってheadとは何かを
人間の主観なしに定義することが出来るはず

‣ 教師なし学習の究極的な目標？

DMVまでの歴史

これ以降研究が盛んに…

無向での評価

2001 Paskin
Grammatical bigram

39.7Paskin

すべて隣にかける 53.2

2004 Klein & Manning
DMV Klein & Manning 54.4

1992 Carroll & Charniak
PCFG & EM

extremely poor result

41.7ランダム

Grammatical bigram (Paskin, 2002)

‣ Projective Tree に対する生成モデル
- 木をランダムに生成（一様分布）
- 親ノードの単語から，子ノードの単語が生成される

‣ 大量の生の文書（300万文）から
EMでパラメタを学習

This

is

not

the

case
p(G)p(w|G) � p(w|G)

= p(is|root)�
p(This|is, L)�

p(not|is, R)�
p(case|is, R)�

p(not|case, L)

DMVはなぜうまくいったか

‣ (Paskin, 2001) の問題点
- 木はランダムに生成されるため，共起しやすい単語同士が結びつく
‣ 単語同士の関係ではなく，品詞同士の関係をモデル化する
‣ valence = 各単語（品詞）の取りうるargumentの数をモデル化する
‣ Smart Initialization （これが結構重要）

a new year begin in new york
DT JJ NN VB IN NN NN

IN NN NN IN NN NN

× ○
(Carroll & Charniak,2001)

Dependency Model with Valence

‣ 品詞の上で，Projectiveな係り受け関係を導出する生成モデル
- 見やすくするため，単語で説明
‣ Valence情報を組み込んでいる
- 各品詞がargumentをいくつ取るか？

単語　 の下の部分木の確率w p(yw|w)

This

is

not

the

case

$

p(T) = p(y$|$)

= p(is|$)p(yis|is)

‣ Valence
- STOP or CONTINUE を決める際，各方向の最初の子供かどうかで
異なる分布を用いる（外側から決まることに注意）

‣ Head automaton の一種 (Alshawi, 1996)

This

is

not

the

case

$

p(yis|is) =

p(This|L, is)p(yThis|This)�
p(CONT|L, is, v = 0)�

p(STOP|L, is, v = 1)�

p(CONT|R, is, v = 0)�

p(not|R, is)p(ynot|not)�
p(CONT|R, is, v = 1)�

p(STOP|R, is, v = 1)

p(case|R, is)p(ycase|case)�

文のheadとして　を生成

右に子がいない状態でSTOP

右に子がいない状態でCONTINUE

右に子がいる状態でSTOP

右に子がいる状態でCONTINUE

右に単語　を生成

左に子がいない状態でSTOP

左に子がいない状態でCONTINUE

左に子がいる状態でSTOP

左に子がいる状態でCONTINUE

左に単語　を生成

DMVのパラメタ
p(w|$)

p(STOP|R, w, v = 0)

p(CONT|R, w, v = 0)

p(CONT|R, w, v = 1)

p(w�|L, w)

p(w�|R, w)

p(STOP|L, w, v = 0)

p(CONT|L, w, v = 0)

p(STOP|R, w, v = 1)

p(CONT|L, w, v = 1)

p(STOP|L, w, v = 1)

w

w�

w�

注意

‣ (Klein&Manning, 2004)，(Klein, 2005)，(Spitkovsky, 2010 etc)
などは，各 head に一番近い argument から，順番に決めていく

‣ (Smith, 2006)，(Cohen, 2008, 2009)，(Headden III, 2009) などは，各
head に最も遠いargumentから順番に決めていく

‣ 両者に違いはないが，Extended Model（後述）では結果が異なる
‣ 最近の論文は後者で実装しているものが多いので，以降 後者で説明

h

head inward

h

head outward

DMVにおけるValence

‣ 子を生成するときに，止まる，止まらないの選択を行う
- (Collins, 1999) をシンプルしたもの
- 子の数は，二項分布に従う
- 少ない子の数が好まれる．その違いを，方向と，親の品詞に応じてモデル化

‣ 他のモデル化の方針は？
- 例えば，子の数が多項分布に従う，としてはダメなのか
- 生成モデルとしては考えられるが，Head automaton でなくなる
- Head automatonをPCFGに変換することで，CYK / Inside Outside が使える

h

Head automaton
= 左右それぞれの
　状態遷移がFSA

PCFGへの変換

This

is

not

the

case

$

R0[is]

S

Rc[is]

R1[is] R0[case]

Rc[is]

L0[not]

not

L0[case]

the case
R0[not]R1[is]

L0[is]

Lc[is]

is

L1[is]R0[this]

L0[this]

This

ルールとパラメタの対応
p(w|$)

p(STOP|R, w, v = 0)

p(CONT|R, w, v = 0)

p(CONT|R, w, v = 1)

p(w�|L, w)

p(w�|R, w)

p(STOP|L, w, v = 0)

p(CONT|L, w, v = 0)

p(STOP|R, w, v = 1)

p(CONT|L, w, v = 1)

p(STOP|L, w, v = 1)

S � R0[w]

R0[w] � L0[w]

R0[w] � Rc[w]

R1[w] � Rc[w]

R1[w] � L0[w]

Rc[w] � R1[w]R0[w]

L0[w] � w

L0[w] � Lc[w]

L1[w] � w

L0[w] � Lc[w]

Lc[w] � R0[w]L1[w]

パラメタの推定

‣ PCFGへ変換したので，一般的な推定法（EM）で機械的にパラメタの推定
が可能

‣ 各ルールとパラメタは，一対一に対応している
- E-step : 各ルールの期待値を計算
- M-step : 正規化して，新しいパラメタとする

i

s

jh

p�(STOP|R, DT, v = 0) �
�

s

c(STOP|R, DT, v = 0, s)

c(STOP|R, DT, v = 0, s)

=

�ns

i=1

�ns

j=1

�j
h=i:wh=DT inside(i, j, L0, h)outside(i, j, R0, h)p(STOP|R, DT, v = 0)

p(s)

の更新p(STOP|R, DT, v = 0)

DMVの結果

‣ Penn Treebank WSJ から，10単語以下の文章を全て抜き出す
- 推定されたパラメタを用いて，訓練データ自体を Viterbi パース
- 精度 = (headを正しく判定出来た単語の数) / (全単語数)

‣ 短い文章のほうが解析が簡単なので，まずはこれを解析出来るモデルを
目指す，という方針

RANDOM

R-ADJ

DMV

30.1

33.6

43.2

エラーの傾向

‣ 矢印の向きを間違えることが多い
‣ しかし DT NN の head の位置については議論がある
‣ NNP NNP ⇒ 人名のhead は first / last name のどちら？

90 CHAPTER 6. DEPENDENCY MODELS

English using DMV
Overproposals Underproposals

DT← NN 3083 DT→ NN 3079
NNP← NNP 2108 NNP→ NNP 1899
CC→ ROOT 1003 IN← NN 779
IN← DT 858 DT→ NNS 703
DT← NNS 707 NN→ VBZ 688
MD→ VB 654 NN← IN 669
DT→ IN 567 MD← VB 657
DT→ VBD 553 NN→ VBD 582
TO→ VB 537 VBD← NN 550
DT→ VBZ 497 VBZ← NN 543

English using CCM+DMV
Overproposals Underproposals

DT← NN 3474 DT→ NN 3079
NNP← NNP 2096 NNP→ NNP 1898
CD→ CD 760 IN← NN 838
IN← DT 753 NN→ VBZ 714
DT← NNS 696 DT→ NNS 672
DT→ IN 627 NN← IN 669
DT→ VBD 470 CD← CD 638
DT→ VBZ 420 NN→ VBD 600
NNP→ ROOT 362 VBZ← NN 553
NNS→ IN 347 VBD← NN 528

Figure 6.5: Dependency types most frequently overproposed and underproposed for En-
glish, with the DMV alone and with the combination model.

DMVの拡張

‣ DMVはとてもシンプルなモデル
- 最低限の valence 情報を組み込んだモデル

‣ 08,09 年ぐらいから，様々な拡張が盛んに
- (Cohen & Smith, 2008) : ベイズモデル，VBで推定
- (Cohen & Smith, 2009) : Shared Logistic Normal
- (Headden et al., 2009) : Extended Valence Grammar (EVG), Lexicalized EVG
- (Blunsom & Cohn, 2010) : TSG + DMV
- (Gillenwater et al., 2010) : Sparsity constrained Model
- (Tu & Honavar, 2012) : Unambiguilty resolution

Extended Valence Grammar

‣ PCFGを拡張することで，より豊富な情報を捉えよう，という方針
‣ DMVではargumentの生成に関して，順番を考慮しない

the big hungry dog

hungryとdogに依存関係があるとき，
hungryはdogの隣に出現しやすいだろう．

* hungry the dog

品詞でも同じことが言える？
(Headden, et al., 2009)

Extended Valence Grammar

‣ 各headに最も近いargumentと，そうでないargumentに関する分布を
変化させる

‣ PCFGの一部を書き換えることで，対応可能

R0[is]

S

Rc[is]

R1[is] R0[case]

Rc[is]

L0[not]

not

L0[case]

the case
R0[not]

This is

R0[is]

S

Rc[is]

Rc2[is]

R0[case]

L0[case]

the case

R1[is]

Rc[is]

Rc1[is]

This is
L0[not]

not

Lexicalized EVG

‣ これまでのモデルは，全て品詞同士の関係しか見ない
‣ 品詞同士でよく表れる関係を捉える

‣ Penn Treebankの場合，品詞数は45
‣ 自動詞/他動詞 の違いもきちんと捉えられない

‣ headの単語を用いて，argumentの品詞を推定

This is not the case
DT VBZ RB DT NN

p(NN|R, is, VBD, v)p(case|NN)

Head automatonで表現可能
単語の情報は非常にスパース
⇒スムージングを行う

(Headden, et al., 2009)

LEVGまでの結果

‣ Penn Treebank
- Section 2-21を訓練データ（長さ10以下）
- Section 23 をテストデータ（長さ10以下）
- Kleinの論文では0-24の全てを使うが，最近は訓練とテストに分ける方が多い

DMV

EVG

EVG+smoothed

LEVG+smoothed

shared logistic
normal

TSG+DMV

43.2

53.3

65

68.8

62.4

67.7

‣ 一般のEMアルゴリズム

‣ 　　 を，　と　 に関して交互に最適化F (q, �) q �

E-step:

M-step:

qt+1 = arg max
q

F (q, �) = arg min
q

KL(q(Y)||p(Y |X))

Unambiguity Regularization

log p(X|�) � F (q, �) =
�

Y

q(Y) log
p(X, Y)

q(Y)

F (q, �) =
�

Y

q(Y) log(p(X)p(Y |X)) �
�

Y

q(Y) log q(Y)

= log p(X|�) �
�

Y

q(Y) log
q(Y)

p(Y |X)

= log p(X|�) � KL(q(Y)||p(Y |X))

�t+1 = arg max
�

F (qt+1, �) = arg max
�

log �p(X, Y)�qt+1

(Tu and Honaver, 2012)

‣ 代わりに次の量を最大化する

‣ Posterior regularization と呼ばれる (Gillenwater, et al., 2010)
‣ を求める際，そのエントロピーが小さくなるような制約を入れている

Unambiguity Regularization

H(yi) = �
�

yi

q(yi) log q(yi)

q

F (q, �) = log(X|�) �
�

KL(q(Y)||p(Y |X)) + �
�

i

H(yi)

�

自然言語のUnambiguity

‣ 自然言語の文章は曖昧か？ ⇒ 多くの文章は，1つの解釈しか持たない
‣ ある文に対して，
- （左）Berkeley Parser，（右）PCFGのEMによる推定
 で，100 Best parses にそれぞれ，どれだけの確率を割り当てたか

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

100 Best Parses

P
ro

ba
bi

lit
y

Figure 1: The probabilities of the 100 best parses of the
example sentence.

natural language sentence, the probability mass of
the parses is concentrated to a tiny portion of all pos-
sible parses. This is not surprising in light of the fact
that the main purpose of natural language is commu-
nication and in the course of language evolution the
selection pressure for more efficient communication
would favor unambiguous languages.

To highlight the unambiguity of natural language
grammars, here we compare the parse probabilities
shown in Figure 1 with the parse probabilities pro-
duced by two other probabilistic context-free gram-
mars. In figure 2(a) we show the probabilities of the
100 best parses of the example sentence produced
by a random grammar. The random grammar has a
similar number of nonterminals as in the Berkeley
parser, and its grammar rule probabilities are sam-
pled from a uniform distribution and then normal-
ized. It can be seen that unlike the natural language
grammar, the random grammar produces a very uni-
form probability distribution over parses. Figure
2(b) shows the probabilities of the 100 best parses
of the example sentence produced by a maximum-
likelihood grammar learned from the unannotated
Wall Street Journal corpus of the Penn Treebank us-
ing the EM algorithm. An exponential decrease can
be observed in the probabilities, but the probabil-
ity mass is still much less concentrated than in the
case of the natural language grammar. Again, we
confirmed this observation by repeating the exper-
iments on many other natural language sentences.
This suggests that both the random grammar and the
maximum-likelihood grammar are far more ambigu-
ous on natural language sentences than true natural

language grammars.

3 Learning with Unambiguity
Regularization

Motivated by the preceding observation, we want to
incorporate into learning an inductive bias in favor
of grammars that are unambiguous on natural lan-
guage sentences. First of all, we need a precise defi-
nition of the ambiguity of a grammar on a sentence.
Assume a grammar with a fixed set of grammar rules
and let � be the rule probabilities. Let x represent a
sentence and let z represent the parse of x. One natu-
ral measurement of the ambiguity is the information
entropy of z conditioned on x and �:

H(z|x, �) = �
�

z

p�(z|x) log p�(z|x)

The lower the entropy is, the less ambiguous the
grammar is on sentence x. When the entropy
reaches 0, the grammar is strictly unambiguous on
sentence x, i.e., sentence x has a unique parse ac-
cording to the grammar.

Now we need to modify the objective function
of grammar learning to favor low ambiguity of the
learned grammar in parsing natural langauge sen-
tences. One approach is to use a prior distribu-
tion that favors grammars with low ambiguity on
the sentences that they generate. Since the likeli-
hood term in the objective function would ensure
that the learned grammar will have high probability
of generating natural language sentences, combin-
ing the likelihood and the prior would lead to low
ambiguity of the learned grammar on natural lan-
guage sentences. Unfortunately, adding this prior
to the objective function makes learning intractable.
Hence, here we adopt an alternative approach using
the posterior regularization framework (Ganchev et
al., 2010). Posterior regularization biases learning
in favor of solutions with desired behavior by con-
straining the model posteriors on the unlabeled data.
In our case, we use the constraint that the probability
distributions on the parses of the training sentences
given the learned grammar must have low entropy,
which is equivalent to requiring the learned grammar
to have low ambiguity on the training sentences.

Let X = {x1, x2, . . . , xn} denote the set of train-
ing sentences, Z = {z1, z2, . . . , zn} denote the set

1326

0 20 40 60 80 100
0

1

2

3

4

5

6

x 10−24

100 Best Parses

P
ro

ba
bi

lit
y

(a)

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3
x 10−3

100 Best Parses

P
ro

ba
bi

lit
y

(b)

Figure 2: The probabilities of the 100 best parses of the example sentence produced by (a) a random grammar and (b)
a maximum-likelihood grammar learned by the EM algorithm.

of parses of the training sentences, and � denote the
rule probabilities of the grammar. We use the slack-
penalized version of the posterior regularization ob-
jective function:

J(�) = log p(�|X)

�min
q,�

�
KL(q(Z)||p�(Z|X)) + �

�

i

�i

�

s.t. �i,H(zi) = �
�

zi

q(zi) log q(zi) � �i

where � is a nonnegative constant that controls the
strength of the regularization term; q is an auxil-
iary distribution such that q(Z) =

�
i q(zi). The

first term in the objective function is the log poste-
rior probability of the grammar parameters given the
training corpus, and the second term minimizes the
KL-divergence between the auxiliary distribution q
and the posterior distribution on Z while constrains
q to have low entropy. We can incorporate the con-
straint into the objective function, so we get

J(�) = log p(�|X)

�min
q

�
KL(q(Z)||p�(Z|X)) + �

�

i

H(zi)

�

To optimize this objective function, we can per-
form coordinate ascent on a two-variable function:

F (�, q) = log p(�|X)

�
�

KL(q(Z)||p�(Z|X)) + �
�

i

H(zi)

�

There are two steps in each coordinate ascent itera-
tion. In the first step, we fix q and optimize �. It can
be shown that

�� = arg max
�

F (�, q)

= arg max
�

Eq[log(p�(X,Z)p(�))]

This is equivalent to the M-step in the EM algorithm.
The second step fixes � and optimizes q.

q� = arg max
q

F (�, q)

= arg min
q

�
KL(q(Z)||p�(Z|X)) + �

�

i

H(zi)

�

It is different from the E-step of the EM algorithm
in that it contains an additional regularization term
�

�
i H(zi). Ganchev et al. (2010) propose to use

the projected subgradient method to solve this op-
timization problem in the general case of posterior
regularization. In our case, however, it is possible to
obtain an analytical solution as shown below.

First, note that the optimization objective of this
step can be rewritten as the sum over functions of
individual training sentences.

KL(q(Z)||p�(Z|X)) + �
�

i

H(zi) =
�

i

fi(q)

where

fi(q) = KL(q(zi)||p�(zi|xi)) + �H(zi)

=
�

zi

�
q(zi) log

q(zi)1��

p�(zi|xi)

�

1327

(Tu and Honaver, 2012)

‣ 通常Posterior regularizationは勾配法などで近似する

‣ 事後分布のエントロピーを小さくするような仮定を置くと，解析的に
解ける

‣ 結果
- 従来のEMアルゴリズムで，Eステップの前にパラメタを 　 乗すれば良いだけ！
- 従来研究で，Hard-EMの性能が良いことが示されていた
- Hard-EMは，このモデルで　　 と置いた場合に相当する
- 制約の強さを最大にした場合（最も曖昧でないような学習を行う）

Unambiguity Regularization

1
1��

� = 1

結果

‣ UR-Annealing ：σの値を1から0へ徐々に下げていく
‣ 英語で現在の state-of-the-art を達成

ization for mean-field variational inference is:

F (q(�), q(Z)) = log p(X)

�
�

KL(q(�)q(Z)||p(�,Z|X)) + �
�

i

H(zi)

�

where �i, H(zi) = �
�

zi

q(zi) log q(zi)

We can perform coordinate ascent that alternately
optimizes q(�) and q(Z). Since the regularization
term does not contain q(�), the optimization of q(�)
is exactly the same as in the standard mean-field
variational inference. To optimize q(Z), we have

q�(Z) =

arg min
q(Z)

�
KL(q(Z)||�p(X,Z)) + �

�

i

H(zi)

�

where �p(X,Z) is defined as

log �p(X,Z) = Eq(�)[log p(�,Z,X)] + const

Now we can follow a derivation similar to that in the
setting of MAP estimation with unambiguity regu-
larization, and we can obtain a similar result but with
p�(zi|xi) replaced with �p(xi, zi) in each of the four
cases.

Note that if Dirichlet priors are used over gram-
mar rule probabilities �, then �p(xi, zi) can be rep-
resented as the product of a set of weights in
mean-field variational inference (Kurihara and Sato,
2004). Therefore in order to compute q�(zi), when
0 < � < 1, we simply need to raise all the weights
to the power of 1

1�� before running the normal step
of computing q�(zi) in standard mean-field varia-
tional inference; and when � � 1, we can simply
use the weights to find the best parse of the training
sentence and assign probability 1 to it.

4 Experiments

We tested the effectiveness of unambiguity regular-
ization in unsupervised learning of a type of depen-
dency grammar called the dependency model with
valence (DMV) (Klein and Manning, 2004). We
report the results on the Wall Street Journal cor-
pus (with section 2-21 for training and section 23
for testing) in section 4.1–4.3, and the results on
the corpora of eight additional languages in section

Testing Accuracy
Value of � � 10 � 20 All
0 (standard EM) 46.2 39.7 34.9
0.25 53.7 44.7 40.3
0.5 51.9 42.9 38.8
0.75 51.6 43.1 38.8
1 (Viterbi EM) 58.3 45.2 39.4

Table 1: The dependency accuracies of grammars learned
by our approach with different values of �.

4.4. On each corpus, we trained the learner on the
gold-standard part-of-speech tags of the sentences
of length � 10 with punctuation stripped off. We
started our algorithm with the informed initialization
proposed in (Klein and Manning, 2004), and termi-
nated the algorithm when the increase in the value
of the objective function fell below a threshold of
0.001%. To evaluate a learned grammar, we used the
grammar to parse the testing corpus and computed
the dependency accuracy which is the percentage of
the dependencies that are correctly matched between
the parses generated by the grammar and the gold
standard parses. We report the dependency accu-
racy on subsets of the testing corpus corresponding
to sentences of length � 10, length � 20, and the
entire testing corpus.

4.1 Results with Different Values of �

We compared the performance of our approach with
five different values of the parameter �: 0 (i.e., stan-
dard EM), 0.25, 0.5, 0.75, 1 (i.e., Viterbi EM). Table
1 shows the experimental results. It can be seen that
learning with unambiguity regularization (i.e., with
� > 0) consistently outperforms learning without
unambiguity regularization (i.e., � = 0). The gram-
mar learned by Viterbi EM has significantly higher
dependency accuracy in parsing short sentences. We
speculate that this is because short sentences are less
ambiguous and therefore a strong unambiguity regu-
larization is especially helpful in learning the gram-
matical structures of short sentences. On the testing
sentences of all lengths, � = 0.25 achieves the best
dependency accuracy, which suggests that control-
ling the strength of unambiguity regularization can
contribute to improved performance.

1330

Testing Accuracy
� 10 � 20 All

DMV Model
UR-Annealing 63.6 53.1 47.9
UR-Annealing&Prior 66.6 57.7 52.3
PR-S (Gillenwater et al., 2010) 62.1 53.8 49.1
SLN TieV&N (Cohen and Smith, 2009) 61.3 47.4 41.4
LN Families (Cohen et al., 2008) 59.3 45.1 39.0

Extended Models
UR-Annealing on E-DMV(2,2) 71.4 62.4 57.0
UR-Annealing on E-DMV(3,3) 71.2 61.5 56.0
L-EVG (Headden et al., 2009) 68.8 - -
LexTSG-DMV (Blunsom and Cohn, 2010) 67.7 - 55.7

Table 2: The dependency accuracies of grammars learned
by our approach (denoted by “UR”) with annealing and
prior, compared with previous published results.

4.2 Results with Annealing and Prior

We annealed the value of � from 1 to 0 when run-
ning our approach. We reduced the value of � at
a constant speed such that it reaches 0 at iteration
100. The results of this experiment (shown as “UR-
Annealing” in Table 2) suggest that annealing the
value of � not only helps circumvent the problem of
choosing an optimal value of �, but may also lead to
substantial improvements over the results of learn-
ing using any fixed value of �.

Dirichlet priors with the hyperparameter � set to a
value less than 1 are often used to induce parameter
sparsity. We added Dirichlet priors over grammar
rule probabilities and ran the variational inference
version of our approach. The value of � was set to
0.25 as suggested by previous work (Cohen et al.,
2008; Gillenwater et al., 2010). When tested with
different values of �, adding Dirichlet priors with
� = 0.25 consistently boosted the dependency ac-
curacy of the learned grammar by 1–2%. When the
value of � was annealed during variational inference
with Dirichlet priors, the dependency accuracy was
further improved (shown as “UR-Annealing&Prior”
in Table 2).

The first part of Table 2 also compares our re-
sults with the best results that have been published in
the literature for unsupervised learning of the DMV
model (with different priors or regularizations than
ours). It can be seen that our best result (unambigu-
ity regularization with annealing and prior) clearly
outperforms previous results. Furthermore, we ex-

pect our approach to be more computationally ef-
ficient than the other approaches, because our ap-
proach only inserts an additional parameter expo-
nentiation step into each iteration of standard EM or
variational inference, in contrast to the other three
approaches all of which involve additional gradient
descent optimization steps in each iteration.

4.3 Results on Extended Models

It has been pointed out that the DMV model is very
simplistic and cannot capture many linguistic phe-
nomena; therefore a few extensions of DMV have
been proposed, which achieve significant improve-
ment over DMV in unsupervised grammar learn-
ing (Headden et al., 2009; Blunsom and Cohn,
2010). We examined the effect of unambiguity reg-
ularization on E-DMV, an extension of DMV (with
two different settings: (2,2) and (3,3)) (Headden et
al., 2009; Gillenwater et al., 2010). As shown in
the second part of Table 2, unambiguity regular-
ization with annealing on E-DMV achieves better
dependency accuracies than the state-of-the-art ap-
proaches to unsupervised parsing with extended de-
pendency models. Addition of Dirichlet priors, how-
ever, did not further improve the accuracies in this
setting. Note that E-DMV is an unlexicalized ex-
tension of DMV that is relatively simple. We spec-
ulate that the performance of unambiguity regular-
ization can be further improved if applied to more
advanced models like LexTSG-DMV (Blunsom and
Cohn, 2010).

4.4 Results on More Languages

We examined the effect of unambiguity regulariza-
tion with the DMV model on the corpora of eight
additional languages2. The experimental results of
all the nine languages are summarized in Table 3. It
can be seen that learning with unambiguity regular-
ization (i.e., with � > 0) outperforms learning with-
out unambiguity regularization (i.e., � = 0) on eight
out of the nine languages, but the optimal value of
� is very different across languages. Annealing the
value of � from 1 to 0 does not always lead to fur-
ther improvement over using the optimal value of �

2The corpora are from the PASCAL Challenge on
Grammar Induction (http://wiki.cs.ox.ac.uk/
InducingLinguisticStructure/SharedTask).

1331

(Tu and Honaver, 2012)

DMV + unambiguity での解析結果

‣ 簡単なDMV + σ=0.25 での結果を示す（精度：57.8)
‣ Annealing したところ，良い結果が得られなかった（バグ？）

A Lorilled spokewoman said This is an old story
DT NNP NN VBD DT VBZ DT JJ NN

A Lorilled spokewoman said This is an old story
DT NNP NN VBD DT VBZ DT JJ NN

Drexel remains confident of its future creditworthiness
NNP VBZ JJ IN PRP$ JJ NN

Drexel remains confident of its future creditworthiness
NNP VBZ JJ IN PRP$ JJ NN

DMVとは異なる方針

‣ これまでのDMVの拡張は，全てInside Outsideを用いることの出来る
Head automatonモデル

‣ 最近，いくつかこれ以外の方針が提案されている
- (Brody, 2010) : アラインメントのIBMモデルを用いる
- (Marecek, 2012) : reducibility + Projectiveな木を作るGibbsサンプリング

‣ Head automatonにとらわれないモデル化が可能
‣ 問題点
- 推論をどうするか？
- Projectivityを満たす木を作れるか

IBMモデルを用いた教師なし解析

‣ IBMモデルとDMVとの類似点
- IBMモデル１：よく出現する単語の組を対応付ける
- IBMモデル２：単語の出現場所に応じて対応付ける（valence？）
- IBMモデル３：各単語が結びつく，target側の単語数をモデル化（valence）

Figure 2: Left: An example of an unlabeled dependency parse of a sentence. Right: The same parse, in the form of
an alignment between a head words (top) and their dependents (bottom).

3.2 Comparing IBM & DMV Assumptions

Lexical Association The core assumption of IBM
Model 1 is that the lexical identities of the En-
glish and French words help determine whether they
should be aligned. The same assumption is made in
all the dependency models mentioned in Section 2
regarding a head and its dependent (although DMV
uses word classes instead of the actual words).

Location IBM Model 2 adds the consideration
of difference in location between the English and
French words when considering the likelihood of
alignment. One of the improvements contributing
to the success of DMV was the notion of distance,
which was absent from previous models (see Sec-
tion 3 in Klein and Manning 2004).

Fertility IBM Model 3 adds the notion of fertil-
ity, or the idea that different words in the source lan-
guage tend to generate different numbers of words in
the target language. This corresponds to the notion
of valence, used by Klein and Manning (2004), and
the other major contributor to the success of DMV
(ibid.).

Null Source The IBM models all make use of
an additional “null” word in every sentence, which
has special status. It is attached to words in the
translation that do not correspond to a word in the
source. It is treated separately when calculating
distance (since it has no location) and fertility. In
these characteristics, it is very similar to the “root”
node, which is artificially added to parse trees and
used to represent the head of words which are not
dependents of any other word in the sentence.

In examining the core assumptions of the IBM
models, we note that there is a strong resemblance
to those of DMV. The similarity is at an abstract
level since the nature of the relationship that each
model attempts to detect is quite different. The
IBM models look for an equivalence relationship be-
tween lexical items in two languages, whereas DMV
addresses functional relationships between two el-
ements with distinct meanings. However, both at-
tempt to model a similar set of factors, which they
posit will be important to their respective tasks1.
This similarity motivates the work presented in the
rest of the paper, i.e, exploring the use of the IBM
alignment models for dependency parsing. It is im-
portant to note that the IBM models do not address
many important factors relevant to the parsing task.
For instance, they have no notion of a parse tree, a
deficit which may lead to degenerate solutions and
malformed parses. However, they serve as a good
starting point for exploring the alignment approach
to parsing, as well as discovering additional factors
that need to be addressed under this approach.

3.3 Experimental Framework

We developed a Gibbs sampling framework for
alignment-based dependency parsing2. The tradi-
tional approach to alignment uses Expectation Max-
imization (EM) to find the optimal values for the
latent variables. In each iteration, it considers all
possible alignments for each pair of sentences, and

1These abstract notions (lexical association, proximity, ten-
dencies towards few or many relations, and allowing for unasso-
ciated items) play an important role in many relation-detection
tasks (e.g., co-reference resolution, Haghighi and Klein 2010).

2Available for download at:
http://people.dbmi.columbia.edu/

�
sab7012

1216

(Brody, 2010)

IBMモデルを用いた教師なし解析

Corpus M 1 M2 M3 R-br
WSJ10 25.42 35.73 39.32 32.85
Dutch10 25.17 32.46 35.28 28.42
Danish10 23.12 25.96 41.94 16.05 *

Table 1: Percent accuracy of IBM Models 1-3 (M1-3) and
the right-branching baseline (R-br) on several corpora.

PoS attachment
NN DET
IN NN

NNP NNP
DET NN

JJ NN

PoS attachment
NNS JJ
RB VBZ

VBD NN
VB TO
CC NNS

Table 2: Most likely dependency attachment for the top
ten most common parts-of-speech, according to Model 1.

differences in evaluation, as evidenced by the dif-
ference between our baseline scores, IBM Models
2 and 3 outperform the baseline by a large margin
and Model 3 approaches the performance of DMV.
On the Dutch and Danish datasets, the trends are
similar. On the latter dataset, even Model 1 out-
performs the right-branching baseline. However, the
Danish dataset is unusual (see Buchholz and Marsi
2006) in that the alternate adjacency baseline of left-
branching (also mentioned by Klein and Manning
2004) is extremely strong and achieves 48.8% di-
rected accuracy.

4.3 Analysis
In order to better understand what our alignment
model was learning, we looked at each component
element individually.

Lexical Association To explore what Model 1 was
learning, we analyzed the resulting probability ta-
bles for association between tokens. Table 2 shows
the most likely dependency attachment for the top
ten most common parts-of-speech. The model is
clearly learning meaningful connections between
parts of speech (determiners and adjectives to nouns,
adverbs to verbs, etc.), but there is little notion of
directionality, and cycles can exist. For instance,
the model learns the connection between determiner
and noun, but is unsure which is the head and which
the dependent. A similar connection is learned be-
tween to and verbs in the base form (VB). This in-

consistency is, to a large extent, the result of the
deficiencies of the model, stemming from the fact
that the IBM models were designed for a different
task and are not trying to learn a well-formed tree.
However, there is a strong linguistic basis to con-
sider the directionality of these relations difficult.
There is some debate among linguists as to whether
the head of a noun phrase is the noun or the deter-
miner9 (see Abney 1987). Each can be seen as a dif-
ferent kind of head element, performing a different
function, similarly to the multiple types of depen-
dency relations identified in Hudson’s (1990) Word
Grammar. A similar case can be made regarding the
head of an infinitive phrase. The infinitive form of
the verb may be considered the lexical head, deter-
mining the predicate, while to can be seen as the
functional head, encoding inflectional features, as in
Chomsky’s (1981) Government & Binding model10.

Distance Models The original IBM distortion
model (Model 2), which does not differentiate be-
tween words types and looks only at positions, has
an accuracy of 33.43% on the WSJ10 corpus. In
addition, it tends to strongly favor left-branching at-
tachment (57.2% of target words were attached to
the word immediately to their right, 22.6% to their
left, as opposed to 31% and 25.8% in the gold stan-
dard). The alternative distance model we proposed,
which takes into account the identity of the head
word, achieves better accuracy and is closer to the
gold standard balance (43.5% right and 35.3% left).

Figure 3 shows the distribution of the location of
the dependent relative to the head word (at position
0) for several common parts-of-speech. It is inter-
esting to see that singular and plural nouns (NN,
NNS) behave similarly. They both have a strong
preference for local attachment and a tendency to-
wards a left-dependent (presumably the determiner,
see above Table 2). Pronouns (NNP), on the other
hand, are more likely to attach to the right since
they are not modified by determiners. Verbs in past
(VBZ) and present (VBD, VBP) forms have simi-
lar behavior, with a flatter distribution of dependent
locations, whereas the base form (VB) attaches al-
most exclusively to the preceding token, presumably

9In fact, the original DMV chose the determiner as the head
(see discussion in Klein and Manning 2004, Section 3).

10We thank an anonymous reviewer for elucidating this point.

1219

‣ DMVよりは低いが，Right-branchを上回る
‣ このモデルは，Projectiveな木を作らないことに注意
‣ そのような制約をうまく入れれば，更に性能が上がる可能性？

(Brody, 2010)

Projectiveな木を作るGibbs sampling

‣ Inside-Outside を用いずに，Projectiveな木を直接推定する

‣ Gibbs Samplingで，局所的な係り関係を書き換える

‣ 生成モデルとしてはNon Projectiveな木も作るが，推定の範囲を
Projectiveなモデルに限定している
- deficientなモデルを定義していることと同等？

基本となるモデル

‣ edge model
‣ 各品詞が取りうるargumentの分布が，Dirichlet分布から生成される
‣ よく起こりやすい head /dependent を捉える

‣ 必ずしもProjectiveな木を作らない

Chapter 6

Inference of Dependency Trees

In this chapter, the algorithm for dependency trees inference is described in detail.
We employ the Gibbs sampling algorithm Gilks et al. (1996), a Monte Carlo method
which allows us to solve the integral from Equation 3.14. In Section 6.1, we show the
basic algorithm for dependency edge sampling without the “treeness” constraint,
using only the simple edge model. The algorithm for projective dependency tree
sampling is derived in Section 6.2. The decoding step (Section 6.3) is necessary to
obtain the final dependency trees.

6.1 Basic Algorithm

We provide the basic algorithm first since we want to describe properly the sam-
pling technique in a simple setting. For simplicity, we use just the edge model
(Equation 5.9) and the task here is not to create a dependency tree but only to
find a parent for each word. This means that the structures we are sampling may
contain cycles and can be discontinuous.

The treebank probability, which we want to maximize, is then:

Ptreebank =
nY

i=1

Pedge(ti|t⇡(i)) =
nY

i=1

c�i(“ti, t⇡(i)”) + ↵

c�i(“t⇡(i)”) + ↵|T | (6.1)

We follow the generic algorithm from Section 3.4:

1. The dependency edges are initialized randomly. Since our task is not con-
strained by the condition of “treeness”, we simply assign a random parent
word to each word in each sentence.

2. We keep going through all the words in the corpus in a random order in many
iterations and changing their attachments using the small change operator.

In our case, the small change operator is a re-attachment of a chosen node. An
example of such a small change is depicted in Figure 6.1. Assume that we have
selected the word “lunch” in the dependency tree and want to make a small change

51

DT VBZ RB DT NN DT VBZ RB DT NN

DMVでは確率を割り当てない
(Marecek, 2012)

ナイーブなGibbs sampling

‣ 木からlunchを削除する
‣ 親を再推定
‣ We, sandwiches を選択した場合，projective でなくなる

52 CHAPTER 6. INFERENCE OF DEPENDENCY TREES

Figure 6.1: Performing a small change operator in basing sampling algorithm.

Figure 6.2: Exchangeability feature showed on a very small treebank containing only
three sentences. Letters “N”, “V”, and “A” stand for nouns, verbs and adjectives
respectively; “root” symbols represent the technical roots.

on it, in our case to change its parent. Since the sentence has six words, we have
six possibilities of attaching it; the five other words and the technical root. Note
that there is always the possibility of not changing anything, i.e. to choose the
current parent “for” as the new parent. We compute the new overall probability
of the treebank after each small change. These probabilities are then normalized
(see the example numbers in Figure 6.1) and according to the obtained distribution,
we randomly choose one candidate. We keep doing such small changes through the
whole treebank. We go through all the sentences and make a small change on every
word in a random order. One iteration is one pass through the whole corpus. A
pseudo-code of this simple sampling is in Figure 6.3.

In a sense, we are sampling random treebanks one after another. Since the small
changes are not uniformly random, the samples are slowly pushed towards the area
with more probable treebanks. However, there is always a chance of moving to
another area with di↵erent kinds of trees. This algorithm never converges by its
definition, but if we sample long enough, we are most likely to get better and better
samples, however, it is not guaranteed.

The overall treebank probability computation (on Line 8 in Figure 6.3), needed
to compute the sampling distributions before each small change, poses a time com-
plexity problem. Computing it according to the Equation 6.1 would be absolutely

(Marecek, 2012)

Projectivityを保つための準備

‣ 係り関係をbracketで表現する
‣ n個の単語に対して，n個のbracket
‣ 各bracketは，その深さの単語を，1語のみ持つ

6.2. SAMPLING PROJECTIVE TREES 57

Figure 6.5: Edge and bracketing notation of a projective dependency tree.

Figure 6.6: An example of a small change in a projective tree. The bracket (sand-
wiches) is removed and there are five possibilities for replacing it.

the sampler converges to similar results for both the initializations. Therefore, we
conclude that the choice of the initialization mechanism is not so important and
choose the FlatInit initializer because of its simplicity.

6.2.2 Small Change Operator

We use a bracketing notation to illustrate the small change operator. Each projective
dependency tree consisting of n words can be expressed by n pairs of brackets. Each
bracket pair belongs to one node and delimits its descendants from the rest of the
sentence. Furthermore, each bracketed segment contains just one word that is not
embedded deeper; this node is the head of this segment head. An example of this
notation is shown in Figure 6.5.

A small change that abides the projective tree constraint is very simple to ac-
complish in this notation. We remove one pair of brackets and add another so that

(Marecek, 2012)

Gibbs sampling

‣ bracketを1つ削除する
‣ 新しいbracketを，分布に応じて選択する
‣ 1回の変化で，木を大きく書き換えることが出来る

6.2. SAMPLING PROJECTIVE TREES 57

Figure 6.5: Edge and bracketing notation of a projective dependency tree.

Figure 6.6: An example of a small change in a projective tree. The bracket (sand-
wiches) is removed and there are five possibilities for replacing it.

the sampler converges to similar results for both the initializations. Therefore, we
conclude that the choice of the initialization mechanism is not so important and
choose the FlatInit initializer because of its simplicity.

6.2.2 Small Change Operator

We use a bracketing notation to illustrate the small change operator. Each projective
dependency tree consisting of n words can be expressed by n pairs of brackets. Each
bracket pair belongs to one node and delimits its descendants from the rest of the
sentence. Furthermore, each bracketed segment contains just one word that is not
embedded deeper; this node is the head of this segment head. An example of this
notation is shown in Figure 6.5.

A small change that abides the projective tree constraint is very simple to ac-
complish in this notation. We remove one pair of brackets and add another so that

6.2. SAMPLING PROJECTIVE TREES 57

Figure 6.5: Edge and bracketing notation of a projective dependency tree.

Figure 6.6: An example of a small change in a projective tree. The bracket (sand-
wiches) is removed and there are five possibilities for replacing it.

the sampler converges to similar results for both the initializations. Therefore, we
conclude that the choice of the initialization mechanism is not so important and
choose the FlatInit initializer because of its simplicity.

6.2.2 Small Change Operator

We use a bracketing notation to illustrate the small change operator. Each projective
dependency tree consisting of n words can be expressed by n pairs of brackets. Each
bracket pair belongs to one node and delimits its descendants from the rest of the
sentence. Furthermore, each bracketed segment contains just one word that is not
embedded deeper; this node is the head of this segment head. An example of this
notation is shown in Figure 6.5.

A small change that abides the projective tree constraint is very simple to ac-
complish in this notation. We remove one pair of brackets and add another so that

(Marecek, 2012)

例えば

‣ EMのlocal moveより効率が良さそう？ ⇒ 初期化の影響はないらしい (！)
‣ DMVでも似たような局所的なGibbsは適応できる？

6.3. DECODING 59

Figure 6.7: Small change example from Figure 6.6 in the perspective of dependencies.
The two nodes had and sandwiches are the two candidates for the new head. Each
of the three dependent subtrees is then attached to one of these candidates. All the
possible trees that do not violate the projectivity constraint are depicted in a) to f).

6.2. SAMPLING PROJECTIVE TREES 57

Figure 6.5: Edge and bracketing notation of a projective dependency tree.

Figure 6.6: An example of a small change in a projective tree. The bracket (sand-
wiches) is removed and there are five possibilities for replacing it.

the sampler converges to similar results for both the initializations. Therefore, we
conclude that the choice of the initialization mechanism is not so important and
choose the FlatInit initializer because of its simplicity.

6.2.2 Small Change Operator

We use a bracketing notation to illustrate the small change operator. Each projective
dependency tree consisting of n words can be expressed by n pairs of brackets. Each
bracket pair belongs to one node and delimits its descendants from the rest of the
sentence. Furthermore, each bracketed segment contains just one word that is not
embedded deeper; this node is the head of this segment head. An example of this
notation is shown in Figure 6.5.

A small change that abides the projective tree constraint is very simple to ac-
complish in this notation. We remove one pair of brackets and add another so that

6.2. SAMPLING PROJECTIVE TREES 57

Figure 6.5: Edge and bracketing notation of a projective dependency tree.

Figure 6.6: An example of a small change in a projective tree. The bracket (sand-
wiches) is removed and there are five possibilities for replacing it.

the sampler converges to similar results for both the initializations. Therefore, we
conclude that the choice of the initialization mechanism is not so important and
choose the FlatInit initializer because of its simplicity.

6.2.2 Small Change Operator

We use a bracketing notation to illustrate the small change operator. Each projective
dependency tree consisting of n words can be expressed by n pairs of brackets. Each
bracket pair belongs to one node and delimits its descendants from the rest of the
sentence. Furthermore, each bracketed segment contains just one word that is not
embedded deeper; this node is the head of this segment head. An example of this
notation is shown in Figure 6.5.

A small change that abides the projective tree constraint is very simple to ac-
complish in this notation. We remove one pair of brackets and add another so that

6.2. SAMPLING PROJECTIVE TREES 57

Figure 6.5: Edge and bracketing notation of a projective dependency tree.

Figure 6.6: An example of a small change in a projective tree. The bracket (sand-
wiches) is removed and there are five possibilities for replacing it.

the sampler converges to similar results for both the initializations. Therefore, we
conclude that the choice of the initialization mechanism is not so important and
choose the FlatInit initializer because of its simplicity.

6.2.2 Small Change Operator

We use a bracketing notation to illustrate the small change operator. Each projective
dependency tree consisting of n words can be expressed by n pairs of brackets. Each
bracket pair belongs to one node and delimits its descendants from the rest of the
sentence. Furthermore, each bracketed segment contains just one word that is not
embedded deeper; this node is the head of this segment head. An example of this
notation is shown in Figure 6.5.

A small change that abides the projective tree constraint is very simple to ac-
complish in this notation. We remove one pair of brackets and add another so that

(Marecek, 2012)

実際のモデル

‣ 様々なコンポーネントのProduct of Experts
‣ Projectivityを仮定しない代わりに，豊富な情報を組み込むことが可能に

5.6. PROJECTIVITY 49

Ptreebank =
nY

i=1

Petd(i, ⇡(i))Pfdx(fi, ⇡(i))Pd(i, ⇡(i))Pr(i) =

=
nY

i=1

c�i(“ti, t⇡(i), dir(i, ⇡(i))”) + ↵etd

c�i(“t⇡(i), dir(i, ⇡(i))”) + ↵etd · |T |

c�i(“ti, fL
i , f

R
i ”) +

�0

F (wi)
P
0

(fL
i + fR

i)

c�i(“ti”) +
�0

F (wi)

(5.24)

1

✏d

1

|i� ⇡(i)|�
1

✏r
R(desc(i))�.

The dependency function ⇡(i) returns the position of the parent of the word at the
position i. In our experiments (Section 7.3), we will add, remove or substitute the
individual submodels to inspect their positive and negative impacts for di↵erent
configurations.

5.6 Projectivity

Projectivity is an important property of natural languages, even though there are
many exceptions which violate this constraint. The notion of projectivity was estab-
lished by Harper and Hays (1959), who mentioned that projections of dependency
trees into sentences have a tendency to fill continuous intervals.

Generally, there are not many non-projective edges in manually annotated tree-
banks. Havelka (2007) studied non-projective constructions in treebanks included in
CoNLL 2006 shared task and reported about 2.1% of non-projective edges for Czech,
2.4% for German and similar or lower percentages of non-projective edges for other
languages. It is important to note that the number of non-projective edges depends
not only on the chosen language but also on the selected annotation guidelines.

Edge projectivity can be also modeled, for example similarly to the distance
between the governing and the dependent word by introducing a penalty for non-
projective edges. However, such a feature is not convenient for our inference algo-
rithm (see Section 6.2).

distance model

reducibility model

(Marecek, 2012)

distance model

‣ 言語に（恐らく普遍な）性質
‣ 一番近い単語に係りやすい

‣ DMVでは，この制約を陽に入れることが難しい
‣ valence では，head / dependent の距離そのものは，パラメタ化されて
いない

5.4. REDUCIBILITY MODEL 43

In the distance model, we approximate the probability of the edge as the inverse
value of the distance between the dependent word and its parent:2

Pd(d, g) =
1

✏d

✓
1

|d� g|

◆�

, (5.19)

where ✏d is the normalization constant and the hyperparameter � determines the
impact of this model.

5.4 Reducibility Model

The notion of reducibility, i.e. the possibility of deleting a word from a sentence
without violating its syntactic correctness, belongs to traditionally known manifes-
tations of syntactic dependency. As mentioned e.g. by Kübler et al. (2009), one
of the traditional linguistic criteria for recognizing dependency relations (including
their head-dependent orientation) is that a head H of a construction C determines
the syntactic category of C and can often replace C. Or, in words of “Dependency
Analysis by Reduction” of Lopatková et al. (2005), stepwise deletion of dependent el-
ements within a sentence should preserve its syntactic correctness. A similar idea of
dependency analysis by splitting the sentence into all possible acceptable fragments
is used by Gerdes and Kahane (2011).

All the above works had obviously to respond to the notorious fact that there are
many language phenomena precluding the ideal word-by-word) sentence reducibility
(e.g. the case of prepositional groups, or English finite clause subjects). However, we
disregard their solutions tentatively and borrow only the very core of the reducibility
idea: if a word can be removed from a sentence without damaging it, then it is likely
to depend on another word which is still present.

As is usual with dichotomies in natural languages, it seems more adequate to
use a continuous scale instead of a reducible-irreducible opposition. That is why we
introduce a simple reducibility measure based on n-gram corpus statistics.

5.4.1 Obtaining Reducible Words

We call a word (or a sequence of words) in a sentence reducible if the sentence
remains grammatically correct after the removal of this word (or sequence). But
here we face the problem that we cannot simply recognize whether a given sentence
is grammatical or not. This might be possible in case we have a grammar; however,
the grammar is the thing what we are trying to infer. We would need some negative
feedback, similar to what children have when they learn their mother tongue (see
Section 1.1). However, the only thing we have available are collections of many
positive examples – the large monolingual corpora described in Section 4.1.

2We decided to use a reciprocal function here. The use of an exponential function would be
also possible. However, we did not observe much di↵erences on our experiments.

(Marecek, 2012)

言語毎の距離の統計

42 CHAPTER 5. DEPENDENCY TREE MODELS

concentrated on one specific number of children and the lower the Dirichlet hyper-
parameter �

0

in Equation 5.17 needed. The extended fertility is described by the
following equation:

Pfdx(f
L
i , f

R
i |ti) =

c�i(“ti, fL
i , f

R
i ”) +

�0

F (wi)
P
0

(fL
i + fR

i)

c�i(“ti”) +
�0

F (wi)

. (5.18)

The relative word frequency F (wi) is computed by dividing the number of oc-
currences of the word form wi in the corpus by the corpus size.

5.3 Distance Model

We define the distance between two words in a sentence as the di↵erence between
their word-order positions. Distances between two dependent words (edge lengths)
are rather short in a typical case. Figure 5.4 shows the distributions of edge lengths
in four di↵erent treebanks. We can see that the probability of a dependency edge
between two words decreases rapidly with its length.

 0

 5

 10

 15

 20

 25

 30

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

%
 o

cc
ur

en
ce

s

Edge length

Czech
English

German
Catalan

Figure 5.4: Distribution of edge lengths for various languages, as measured on Czech,
English, German and Catalan treebanks included in the CoNLL 2006 and 2007
shared tasks.

(Marecek, 2012)

reducibility model

‣ 文の中で，dependentになりやすい部分（例えば前置詞句）は，
削除しても意味が通る

‣ 品詞nグラムに対するreducibility = 削除しやすさ，を計算する
‣ 　　　　 = 単語　 をルートとする部分木のnグラムのreducibility

48 CHAPTER 5. DEPENDENCY TREE MODELS

We assume that the probability of such a subtree is proportional to the reducibility
R(desc(i)).

Pr(i) =
1

✏r
R(desc(i))�, (5.23)

where ✏d is the normalization constant and the hyperparameter � determines the
impact of this model.

Note that the reducibility model is di↵erent from the previous three models,
since it utilizes external large monolingual corpus to obtain the reducibility scores.
The inference itself is done on a much smaller corpus.

5.5 Combining the Models

The previously described models are combined into a single one by multiplying them
over all nodes in the treebank. The main configuration used in our experiments is a
combination of models defined in Equations 5.10, 5.18, 5.19, and 5.23. The formula
for computing probability of the whole treebank looks as follows:

 0.5

 1

 1.5

 2

 2.5

 0 0.2 0.4 0.6 0.8 1

R
ed

uc
ib

ilit
y

Leaf/non-leaf ratio

PS

TT

C=

NN

P7

J,

Dg

Vs
VB

PH

J^

Db

PD

AU
Cr

Z:

RV
Vf

PL

AA

P8

Cl

Vp
RR

Figure 5.5: Correlation between unigram reducibility of individual Czech PoS tags
and frequency of them being leaves in gold-standard dependency trees. The size of
the squares corresponds to the frequencies of the individual PoS tags.

R(desc(i)) wi

6.2. SAMPLING PROJECTIVE TREES 57

Figure 6.5: Edge and bracketing notation of a projective dependency tree.

Figure 6.6: An example of a small change in a projective tree. The bracket (sand-
wiches) is removed and there are five possibilities for replacing it.

the sampler converges to similar results for both the initializations. Therefore, we
conclude that the choice of the initialization mechanism is not so important and
choose the FlatInit initializer because of its simplicity.

6.2.2 Small Change Operator

We use a bracketing notation to illustrate the small change operator. Each projective
dependency tree consisting of n words can be expressed by n pairs of brackets. Each
bracket pair belongs to one node and delimits its descendants from the rest of the
sentence. Furthermore, each bracketed segment contains just one word that is not
embedded deeper; this node is the head of this segment head. An example of this
notation is shown in Figure 6.5.

A small change that abides the projective tree constraint is very simple to ac-
complish in this notation. We remove one pair of brackets and add another so that

IN NN というバイグラムは，
reducibilityが高い
⇒ そのような部分木を作る係　　
り関係にバイアスがかかる

(Marecek, 2012)

reducibilityの学習

‣ 大規模コーパスから学習する

‣ ある品詞nグラム = g が削除可能である（reducibilityが高い）とき，
- コーパス中の g の品詞の列を探す
- その部分を削除した単語列が，コーパス中に出現するかどうか，を調べる

g = IN NN NN

Motorola is fighting back against junk mail

NNP VBZ VBG RB IN NN NN

reducibilityの学習

‣ 大規模コーパスから学習する

‣ ある品詞nグラム = g が削除可能である（reducibilityが高い）とき，
- コーパス中の g の品詞の列を探す
- その部分を削除した単語列が，コーパス中に出現するかどうか，を調べる

g = IN NN NN

Motorola is fighting back

この文が他の箇所で出現していれば，高いスコアがつく

reducibility score
46 CHAPTER 5. DEPENDENCY TREE MODELS

unigrams reduc. bigrams reduc. trigrams reduc.
VB 0.04 VBN IN 0.00 IN DT JJ 0.00
TO 0.07 IN DT 0.02 JJ NN IN 0.00
IN 0.11 NN IN 0.04 NN IN NNP 0.00
VBD 0.12 NNS IN 0.05 VBN IN DT 0.00
CC 0.13 JJ NNS 0.07 JJ NN . 0.00
VBZ 0.16 NN . 0.08 DT JJ NN 0.04
NN 0.22 DT NNP 0.09 DT NNP NNP 0.05
VBN 0.24 DT NN 0.09 NNS IN DT 0.14
. 0.32 NN , 0.11 NNP NNP . 0.15
NNS 0.38 DT JJ 0.13 NN IN DT 0.23
DT 0.43 JJ NN 0.14 NNP NNP , 0.46
NNP 0.78 NNP . 0.15 IN DT NNP 0.55
JJ 0.84 NN NN 0.22 DT NN IN 0.59
RB 2.07 IN NN 0.67 NNP NNP NNP 0.64
, 3.77 NNP NNP 0.76 IN DT NN 0.80
CD 55.6 IN NNP 1.81 IN NNP NNP 4.27

Table 5.1: Reducibility scores of the most frequent English PoS n-grams. (V* are
verbs, N* are nouns, DET are determiners, IN are prepositions, JJ are adjectives,
RB are adverbs, CD are numerals, and CC are coordinating conjunctions.)

unigrams reduc. bigrams reduc. trigrams reduc.
VVPP 0.00 NN APPR 0.00 NN APPR NN 0.01
APPR 0.27 APPR ART 0.00 ADJA NN APPR 0.01
VFIN 0.28 ART ADJA 0.00 APPR ART ADJA 0.01
APPRART 0.32 NN VVPP 0.00 NN KON NN 0.01
VAFIN 0.37 NN $(0.01 ADJA NN $. 0.01
KON 0.37 NN NN 0.01 NN ART NN 0.32
NN 0.43 NN ART 0.21 ART NN ART 0.49
ART 0.49 ADJA NN 0.28 NN ART ADJA 0.90
$(0.57 NN $, 0.67 ADJA NN ART 0.95
$. 1.01 NN VAFIN 0.85 NN APPR ART 0.95
NE 1.14 NN VVFIN 0.89 NN VVPP $. 1.01
CARD 1.38 NN $. 0.95 ART NN APPR 1.35
ADJA 2.38 ART NN 1.07 ART ADJA NN 1.58
$, 2.94 NN KON 2.41 APPR ART NN 2.60
ADJD 3.54 APPR NN 2.65 APPR ADJA NN 2.65
ADV 7.69 APPRART NN 3.06 ART NN VVFIN 9.51

Table 5.2: Reducibility scores of the most frequent German PoS n-grams. (V*
are verbs, N* are nouns, ART are articles, APPR* are prepositions, ADJ* are
adjectives, ADV are adverbs, CARD are numerals, and KON are conjunctions.)

(Marecek, 2012)

実験結果
‣ 多くの言語において，既存のモデルを上回る
‣ 英語では unambiguity regularization のほうが性能が上7.5. COMPARISON WITH OTHER SYSTEMS 79

CoNLL 10 tokens all sentences
language code year Gillen.2011 our parser Spitkov.2011 our parser
Arabic ar 06 – 40.5 16.6 26.5
Arabic ar 07 – 42.4 49.5 27.7
Basque eu 07 – 32.8 24.0 27.2
Bulgarian bg 06 58.3 59.0 43.9 49.0
Catalan ca 07 – 63.5 59.8 47.0
Czech cs 06 53.2 58.9 27.7 49.5
Czech cs 07 – 67.6 28.4 50.7
Danish da 06 45.9 52.8 38.3 40.4
Dutch nl 06 33.5 42.4 27.8 41.7
English en 07 – 64.1 45.2 49.2
German de 06 46.7 60.8 30.4 44.8
Greek el 07 – 35.8 13.2 25.4
Hungarian hu 07 – 63.2 34.7 51.1
Italian it 07 – 50.5 52.3 43.3
Japanese ja 06 57.7 68.6 50.2 52.5
Portuguese pt 06 54.0 66.0 36.7 54.9
Slovenian sl 06 50.9 51.0 32.2 37.8
Spanish es 06 57.9 67.3 50.6 51.9
Swedish sv 06 45.0 62.9 50.0 49.9
Turkish tr 07 – 18.6 35.9 20.9

Average: 50.3⇤ 59.0⇤ 37.4 42.1

Table 7.8: Comparison of our parser with two other parsers “Gillen.2011” and
“Spitkov.2011”. The evaluation here is done on CoNLL data using directed at-
tachment score (DAS) and excluding punctuation. The average score in the last line
is computed across all comparable results, i.e. for comparison with “Gillen.2011”
only the CoNLL’06 results are averaged (⇤).

7.5.2 Shared Task on Induction of Linguistic Structure

We have participated in the “PASCAL Challenge on Grammar Induction” shared
tasks (Gelling et al., 2012). One of the tasks was unsupervised induction of de-
pendency structures. Participants were given data sets extracted from ten di↵erent
treebanks. Each data set consisted of three parts:

• unlabeled training data – These data are not provided with dependency struc-
tures and are intended for training the parsers.

• labeled development data – Data provided with dependency structures. Their
purpose was parser quality checking.

(Marecek, 2012)

教師なし係り受け解析まとめ

‣ 2つの方向性
- PCFGに変換した上で，様々な情報を加えていく
- Extended Model，TSG + DMV など
- （Projectiveな）木を生成する，新しい生成モデルを定義する
- Head automatonにとらわれずに柔軟な分布を設定できる
- 今後はこちらが流行るかも？

‣ 2012年の状況
- 生のコーパスのみからの推定は，2009年以降あまり進歩していない
- DMVからモデルを変えずに7割程度の精度を達成（今年）したことを考えると，
2004年からもあまり進歩していないような気も…
- 最近は他の方向性（多言語のデータを同時に学習，英語でのパラメタを他の言語
に投射する）が流行っている (Naseeem, et al., 2012; McDonald, et al., 2011)
- しかし言語の本質を考えるという点では，問題から逃げている？
- 工学的にはこちらも重要

参考文献

‣ Abney, S. P. 1987. The English Noun Phrase in its Sentential Aspect. PhD thesis, MIT.
‣ Alshawi, H. 1996 Head automata and bilingual tiling: Translation with minimal representations. In ACL
‣ Blunsom, P., and Cohn, T. 2010. Unsupervised induction of tree substitution grammars for dependency parsing. In EMNLP
‣ Brody, S. 2010. It depends on the translation: Unsupervised dependency parsing via word alignment. In EMNLP
‣ Carroll, G. and Charniak, E. 1992. Two experiments on learning probabilistic dependency grammars from corpora. In Working Notes of the

Workshop Statistically-Based NLP Techniques
‣ Cohen, S.B., Gimpel, K., and Smith, N.A. 2008. Logistic normal priors for unsupervised probabilistic grammar induction. In NIPS
‣ Cohen, S.B., and Smith, N.A. 2009. Shared logistic normal distributions for soft parameter tying in unsupervised grammar induction. In

NAACL-HLT
‣ Collins, M. 1999. Head-driven Statistical Models for Natural Language Parsing. Ph.D. thesis, The University of Pennsylvania.
‣ Gillenwater, J., Ganchev, K., Graca, J., Pereira, F., and Taskar, B. 2011. Posterior sparsity in unsupervised dependency parsing. In JMLR
‣ Klein, D. and Manning, C.D. 2002. A generative constituent-context model for improved grammar induction. In ACL
‣ Klein, D. and Manning, C.D. 2004. Corpus-based induction of syntactic structure: Models of dependency and constituency. In ACL
‣ Klein, D. 2005. The Unsupervised Learning of Natural Language Structure. PhD thesis, Stanford University
‣ Marecek, D. 2012. Unsupervised Dependency Parsing. Ph.D. thesis, Unsupervised Dependency Parsing
‣ McDonald, R.T., Petrov, S., and Hall, K., Multi-source transfer of delexicalized dependency parsers, In EMNLP
‣ Naseem, T., Barzilay, R., and Globerson, A., Selective Sharing for Multilingual Dependency Parsing, In ACL
‣ Paskin, M.A. 2001. Grammatical bigrams. In NIPS
‣ Seginer, Y. 2007. Learning syntactic structure. Ph.D. thesis, Universiteit van Amsterdam
‣ Smith, N.A. 2006. Novel Estimation Methods for Unsupervised Discovery of Latent Structure in Natural Language Text. Ph.D. thesis,

Department of Computer Science, Johns Hopkins University
‣ Spitkovsky, V.I., Alshawi, H., Jurafsky, D., and Manning, C.D. 2010. Viterbi training improves unsupervised dependency parsing. In CoNLL
‣ Tu, K and Honavar, V. 2012. Unambiguity regularization for unsupervised learning of probabilistic grammars. In EMNLP
‣ William P. Headden III, W.P., Johnson,M. and McClosky, D. 2009. Improving unsuper- vised dependency parsing with richer contexts and

smoothing. In NAACL-HLT

