教師なし構文解析の進展

最先端構文解析とその周辺

統計数理研究所 2012.12.19

能地宏

東京大学大学院 情報理工学系研究科 修士2年

- ▶ 教師なし構文解析とは何か
 - 問題の意義
 - 何故教師なしで考えるのか?
- ▶ 教師なし係り受け解析における代表的なモデルの紹介(次ページ)
 - モデルの考え方
 - 現状, どれぐらいうまくいくのか
 - 今後の展望

モデル化の方針

- > PCFGに変換した上で、手を加えていく
 - Klein & Manning (2002)
 - Dependency Model with Valence (Klein & Manning, 2004)
 - 拡張がたくさん
 - Extended Model
 - Lexicalized Model
 - Parameter Tying ⇒ Shared Logistic, Phylogenetic Model, Multilingual Setting, etc
- ▶ その他のモデル
 - Projective Tree を生成する別の生成モデル
 - Common Cover Link (Seginer 2007)

教師なし解析の目的

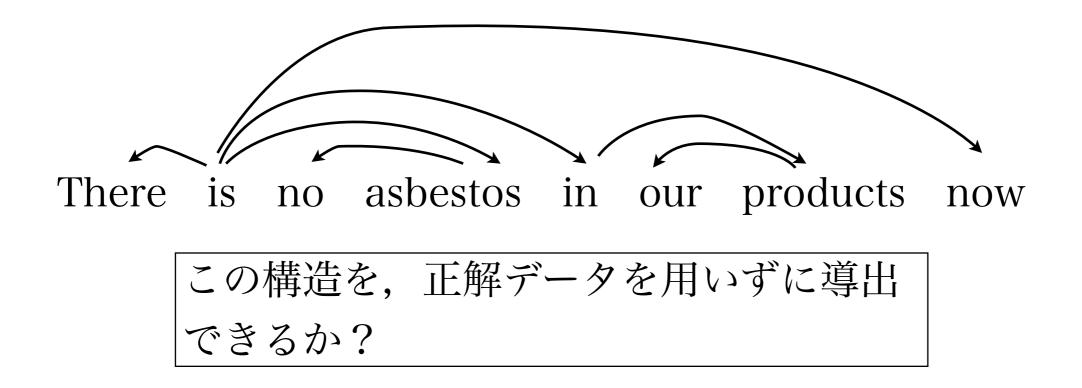
工学的目的

- 現在,構文解析を行うためには、ツリーバンクなどの、教師データが必要
- しかし、ツリーバンクの存在する、言語/ドメインは限られる
 - ツリーバンクの存在しない言語の解析
 - ツイッターなどの新しいドメインの解析をどうするか?
- 半教師あり学習をするにしても,教師なしの性能の良い生成モデルを定義しておく ことは意味がある

- 科学的目的
 - 人間が言語を獲得する仕組みは何も明らかにされていない
 - 教師なし解析がうまくいけば、そこで用いたような情報を、赤ちゃんが使っているかもしれない、という手掛かりになる
 - 言語をよく説明出来るモデル ⇒ 言語のある側面の本質を備えている

係り受け解析

- ・単語同士の係り関係を導出する
- ▶ Treebankなどの人手で作った正解データと比較する
- ▶ head ≿ argument
 - head:部分木の中で、最も重要な意味を表す単語
 - argument : headに付属する単語



Projectivity

- ▶ 係り受け解析でよく用いられる仮定
- ▶ 文のなかで、係り関係が交差しない
- ▶ 多くの言語,多くの文で成り立つ性質
- ・考える解空間の大きさを大きく狭めることが出来る

- 今日紹介する多くのモデルで仮定されている

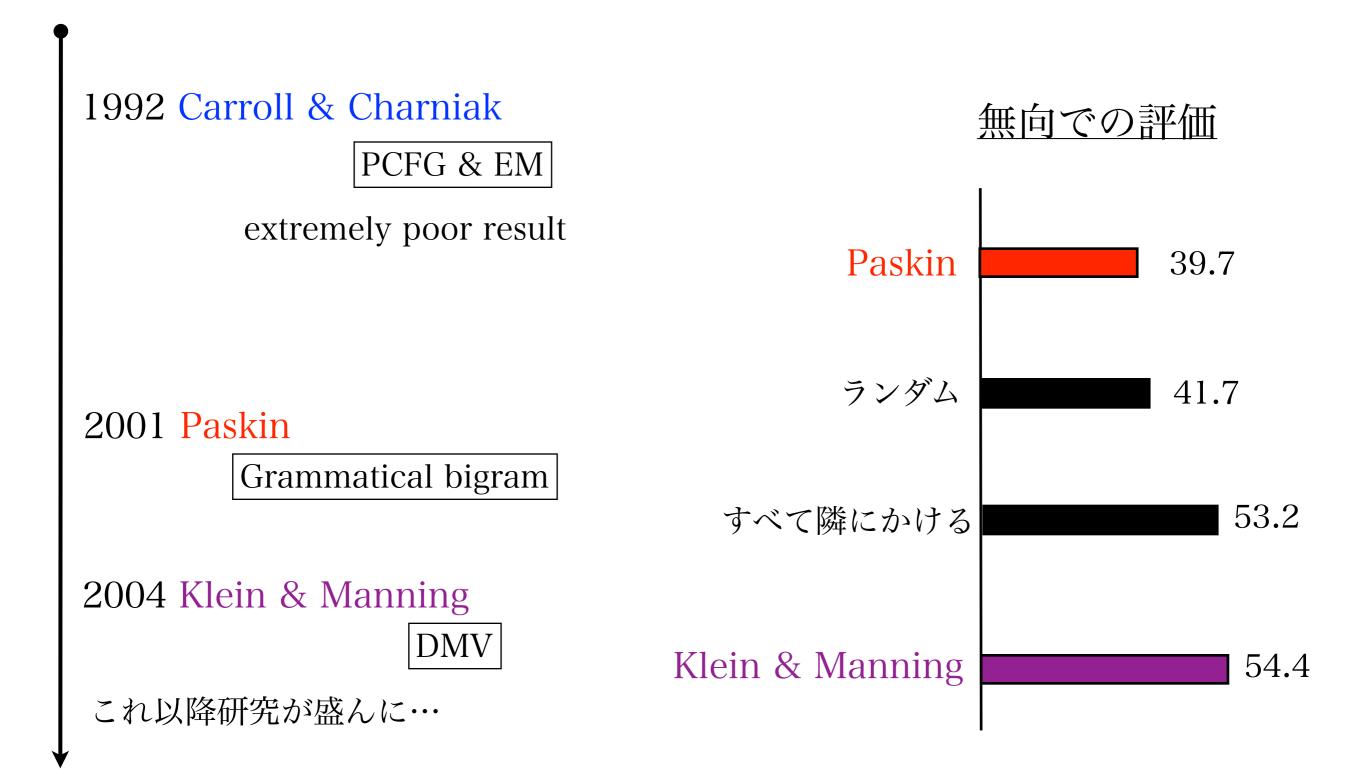
問題設定自体がはらんでいる問題

- ▶ 係り関係は人間が定めたもの
- ▶ headとは何か、というのは言語学的に非常に難しい問題
- ▶ Treebank でも、言語によって正解の方針が異なる
 - 例: 限定詞と名詞
 - The country での head は (通常) country
 - デンマーク語でのアノテーションは逆向き
 - 英語でも, The が head であるという主張もある (Abney, 1987)

とりあえずの策と,最終的な目標

- ・色々問題は含んでいるが、言語学者のアノテーションは、ある種の本質を 捉えている
- ・それを再現出来るようになることは、言語理解にとって重要といえる
- アプリケーションによる評価
 - 既存の教師ありによる解析よりも,ある種のアプリケーションでは,良い性能を 示せるかもしれない(機械翻訳など)
 - ほとんど見ない ⇒ 精度が出ないから?
- ト言語が統計的に処理出来るのであれば、それに従ってheadとは何かを 人間の主観なしに定義することが出来るはず
- ▶教師なし学習の究極的な目標?

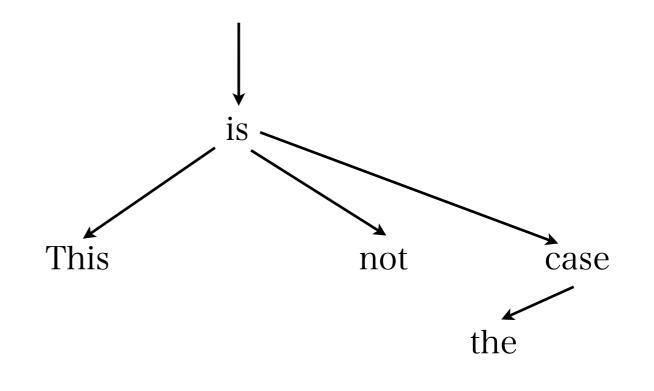
DMVまでの歴史



Grammatical bigram (Paskin, 2002)

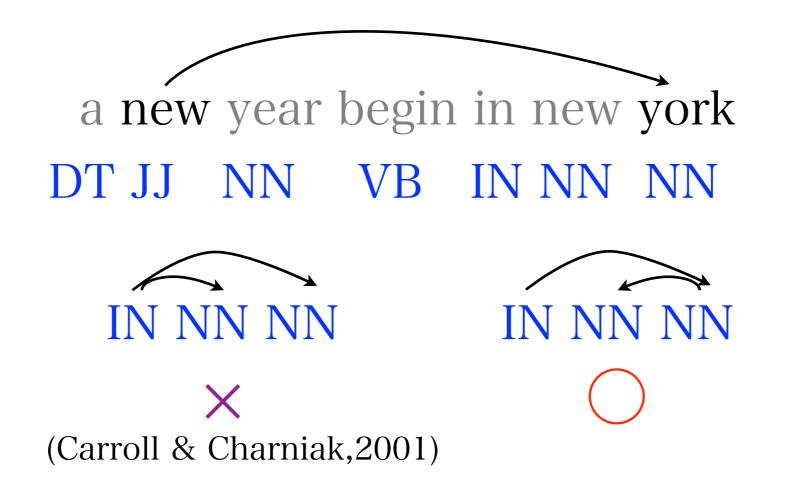
- Projective Tree に対する生成モデル
 - 木をランダムに生成(一様分布)
 - 親ノードの単語から、子ノードの単語が生成される
- 大量の生の文書(300万文)から
 EMでパラメタを学習

 $p(G)p(\boldsymbol{w}|G) \propto p(\boldsymbol{w}|G)$ $= p(\text{is}|\text{root}) \times$ $p(\text{This}|\text{is}, \text{L}) \times$ $p(\text{not}|\text{is}, \text{R}) \times$ p(not|case, L)



DMVはなぜうまくいったか

- ▶ (Paskin, 2001)の問題点
 - 木はランダムに生成されるため、共起しやすい単語同士が結びつく
- ・単語同士の関係ではなく、品詞同士の関係をモデル化する
- > valence = 各単語(品詞)の取りうるargumentの数をモデル化する
- ▶ Smart Initialization (これが結構重要)

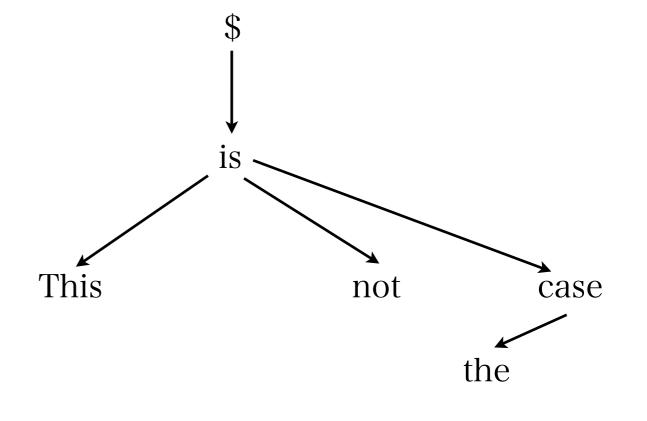


Dependency Model with Valence

- ト品詞の上で、Projectiveな係り受け関係を導出する生成モデル
 - 見やすくするため、単語で説明
- Valence情報を組み込んでいる
 - 各品詞がargumentをいくつ取るか?

単語wの下の部分木の確率 $p(\boldsymbol{y}_w|w)$

$$p(T) = p(\boldsymbol{y}_{\$}|\$)$$
$$= p(is|\$)p(\boldsymbol{y}_{is}|is)$$



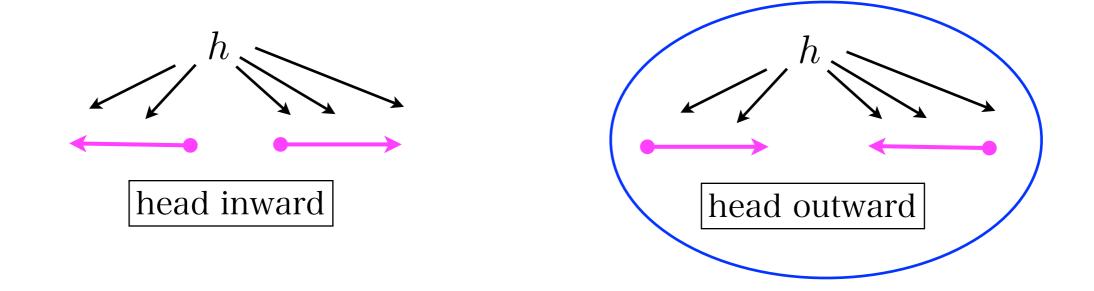
$$\begin{aligned} p(\boldsymbol{y}_{is}|is) &= p(\text{CONT}|\mathbf{R}, is, v = 0) \times \\ p(\text{case}|\mathbf{R}, is) p(\boldsymbol{y}_{case}|\text{case}) \times \\ p(\text{CONT}|\mathbf{R}, is, v = 1) \times \\ p(\text{not}|\mathbf{R}, is) p(\boldsymbol{y}_{not}|\text{not}) \times \\ p(\text{STOP}|\mathbf{R}, is, v = 1) \\ p(\text{CONT}|\mathbf{L}, is, v = 0) \times \\ p(\text{This}|\mathbf{L}, is) p(\boldsymbol{y}_{\text{This}}|\text{This}) \times \\ p(\text{STOP}|\mathbf{L}, is, v = 1) \times \end{aligned}$$

- Valence
 - STOP or CONTINUE を決める際, 各方向の最初の子供かどうかで 異なる分布を用いる(外側から決まることに注意)
- ▶ Head automaton の一種 (Alshawi, 1996)

DMVのパラメタ

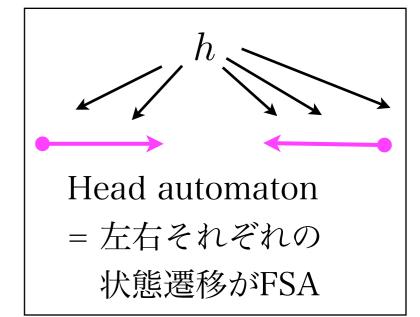
p(w \$)	文のheadとしてwを生成
$p(\text{STOP} \mathbf{R}, w, v = 0)$	右に子がいない状態でSTOP
$p(\text{CONT} \mathbf{R}, w, v = 0)$	右に子がいない状態でCONTINUE
$p(\text{STOP} \mathbf{R}, w, v = 1)$	右に子がいる状態でSTOP
$p(\text{CONT} \mathbf{R}, w, v = 1)$	右に子がいる状態でCONTINUE
$p(w' \mathbf{R},w)$	右に単語w'を生成
$p(\text{STOP} \mathcal{L}, w, v = 0)$	左に子がいない状態でSTOP
$p(\text{CONT} \mathcal{L}, w, v = 0)$	左に子がいない状態でCONTINUE
$p(\text{STOP} \mathcal{L}, w, v = 1)$	左に子がいる状態でSTOP
$p(\text{CONT} \mathcal{L}, w, v = 1)$	左に子がいる状態でCONTINUE
$p(w' \mathrm{L},w)$	左に単語w'を生成

- (Klein&Manning, 2004), (Klein, 2005), (Spitkovsky, 2010 etc)
 などは、各 head に一番近い argument から、順番に決めていく
- (Smith, 2006), (Cohen, 2008, 2009), (Headden III, 2009) などは, 各 head に最も遠いargumentから順番に決めていく
- ・両者に違いはないが, Extended Model(後述)では結果が異なる
- ▶最近の論文は後者で実装しているものが多いので、以降後者で説明

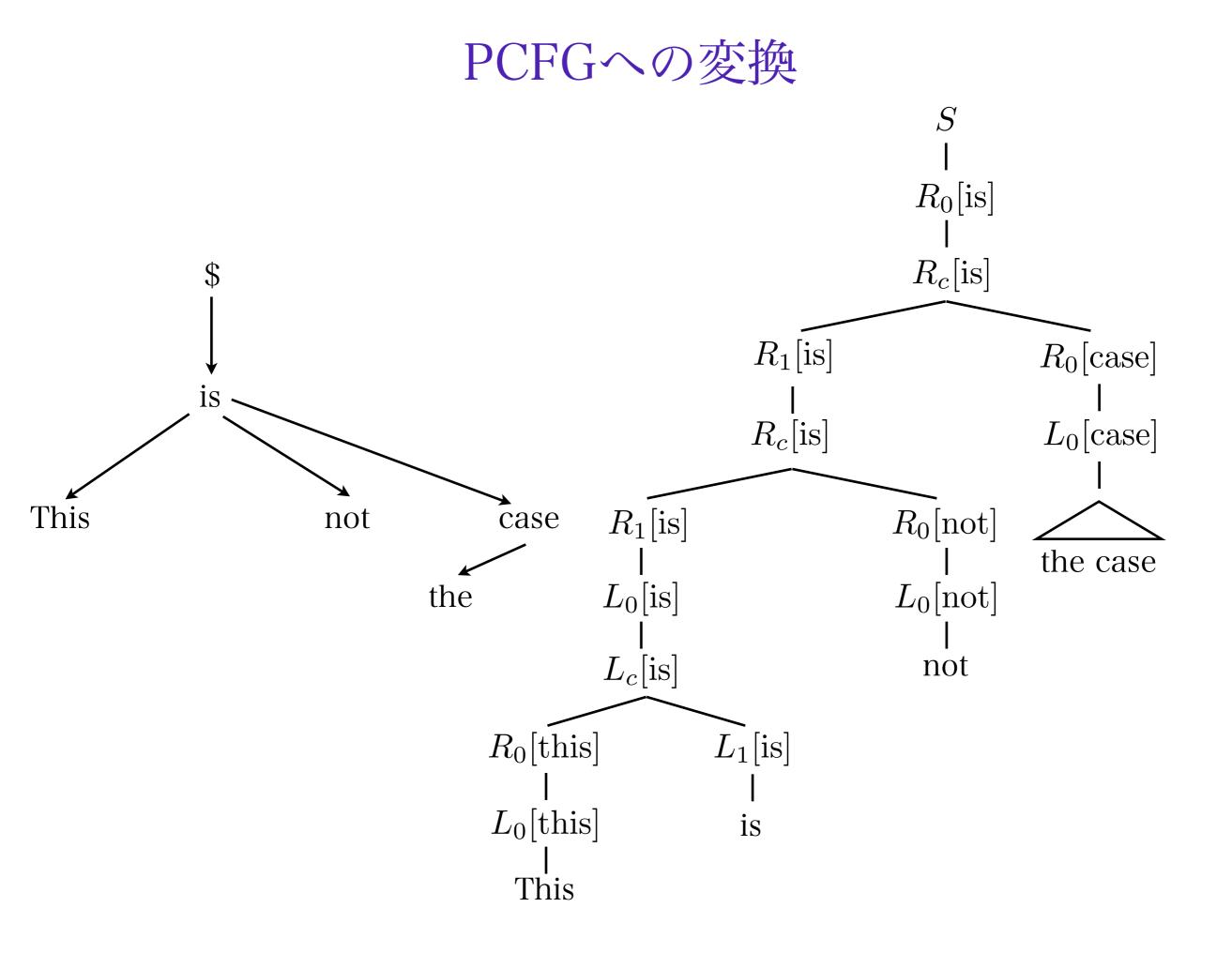


DMVにおけるValence

- ・子を生成するときに、止まる、止まらないの選択を行う
 - (Collins, 1999) をシンプルしたもの
 - 子の数は、二項分布に従う
 - 少ない子の数が好まれる。その違いを、方向と、親の品詞に応じてモデル化



- ▶他のモデル化の方針は?
 - 例えば、子の数が多項分布に従う、としてはダメなのか
 - 生成モデルとしては考えられるが, Head automaton でなくなる
 - Head automatonをPCFGに変換することで, CYK / Inside Outside が使える

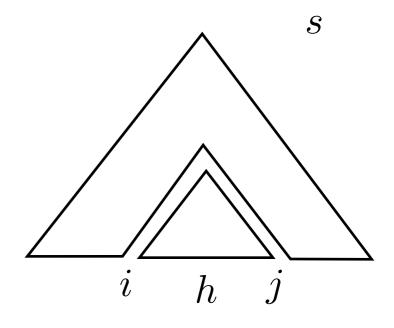


ルールとパラメタの対応

p(w \$)	$S \to R_0[w]$
$p(\text{STOP} \mathbf{R}, w, v = 0)$	$R_0[w] \to L_0[w]$
$p(\text{CONT} \mathbf{R}, w, v = 0)$	$R_0[w] \to R_c[w]$
$p(\text{STOP} \mathbf{R}, w, v = 1)$	$R_1[w] \to L_0[w]$
$p(\text{CONT} \mathbf{R}, w, v = 1)$	$R_1[w] \to R_c[w]$
$p(w' \mathbf{R},w)$	$R_c[w] \to R_1[w]R_0[w]$
$p(\text{STOP} \mathcal{L}, w, v = 0)$	$L_0[w] \to w$
$p(\text{CONT} \mathcal{L}, w, v = 0)$	$L_0[w] \to L_c[w]$
$p(\text{STOP} \mathcal{L}, w, v = 1)$	$L_1[w] \to w$
$p(\text{CONT} \mathcal{L}, w, v = 1)$	$L_0[w] \to L_c[w]$
p(w' L,w)	$L_c[w] \to R_0[w]L_1[w]$

パラメタの推定

- ▶ PCFGへ変換したので、一般的な推定法(EM)で機械的にパラメタの推定 が可能
- ▶各ルールとパラメタは、一対一に対応している
 - E-step: 各ルールの期待値を計算
 - M-step:正規化して、新しいパラメタとする



 $p(\text{STOP}|\mathbf{R}, \mathbf{DT}, v = 0)$ の更新

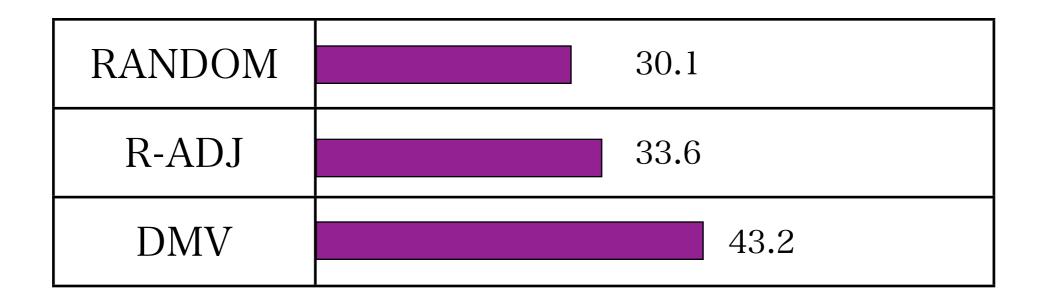
 $p'(\text{STOP}|\mathbf{R}, \mathrm{DT}, v = 0) \propto \sum_{s} c(\text{STOP}|\mathbf{R}, \mathrm{DT}, v = 0, s)$

 $c(\text{STOP}|\mathbf{R}, \mathbf{DT}, v = 0, s)$

 $=\frac{\sum_{i=1}^{n_s}\sum_{j=1}^{n_s}\sum_{h=i:w_h=\text{DT}}^{j}inside(i,j,\text{L}_0,h)outside(i,j,\text{R}_0,h)p(\text{STOP}|\text{R},\text{DT},v=0)}{p(s)}$

DMVの結果

- Penn Treebank WSJ から、10単語以下の文章を全て抜き出す
 - 推定されたパラメタを用いて、訓練データ自体を Viterbi パース
 - 精度 = (headを正しく判定出来た単語の数) / (全単語数)
- ▶ 短い文章のほうが解析が簡単なので、まずはこれを解析出来るモデルを 目指す、という方針



エラーの傾向

English using DMV				
Overproposals		Underproposals		
$DT \leftarrow NN$	3083	$DT \rightarrow NN$	3079	
$NNP \leftarrow NNP$	2108	$NNP \rightarrow NNP$	1899	
$CC \rightarrow ROOT$	1003	$\text{IN} \leftarrow \text{NN}$	779	
$IN \leftarrow DT$	858	$DT \rightarrow NNS$	703	
$DT \gets NNS$	707	$NN \rightarrow VBZ$	688	
$MD \rightarrow VB$	654	$\text{NN} \leftarrow \text{IN}$	669	
$DT \rightarrow IN$	567	$MD \gets VB$	657	
$DT \rightarrow VBD$	553	$NN \rightarrow VBD$	582	
$TO \rightarrow VB$	537	$VBD \leftarrow NN$	550	
$DT \rightarrow VBZ$	497	$VBZ \leftarrow NN$	543	

- 矢印の向きを間違えることが多い
- ▶ しかし DT NN の head の位置については議論がある
- ▶ NNP NNP ⇒ 人名のhead は first / last name のどちら?

DMVの拡張

- ▶ DMVはとてもシンプルなモデル
 - 最低限の valence 情報を組み込んだモデル
- ▶ 08,09 年ぐらいから、様々な拡張が盛んに
 - (Cohen & Smith, 2008): ベイズモデル, VBで推定
 - (Cohen & Smith, 2009) : Shared Logistic Normal
 - <u>(Headden et al., 2009)</u> : Extended Valence Grammar (EVG), Lexicalized EVG
 - (Blunsom & Cohn, 2010) : TSG + DMV
 - (Gillenwater et al., 2010) : Sparsity constrained Model
 - <u>(Tu & Honavar, 2012) : Unambiguilty resolution</u>

Extended Valence Grammar

- ▶ PCFGを拡張することで、より豊富な情報を捉えよう、という方針
- > DMVではargumentの生成に関して、順番を考慮しない

the big hungry dog

hungryとdogに依存関係があるとき, hungryはdogの隣に出現しやすいだろう.

* hungry the dog

品詞でも同じことが言える?

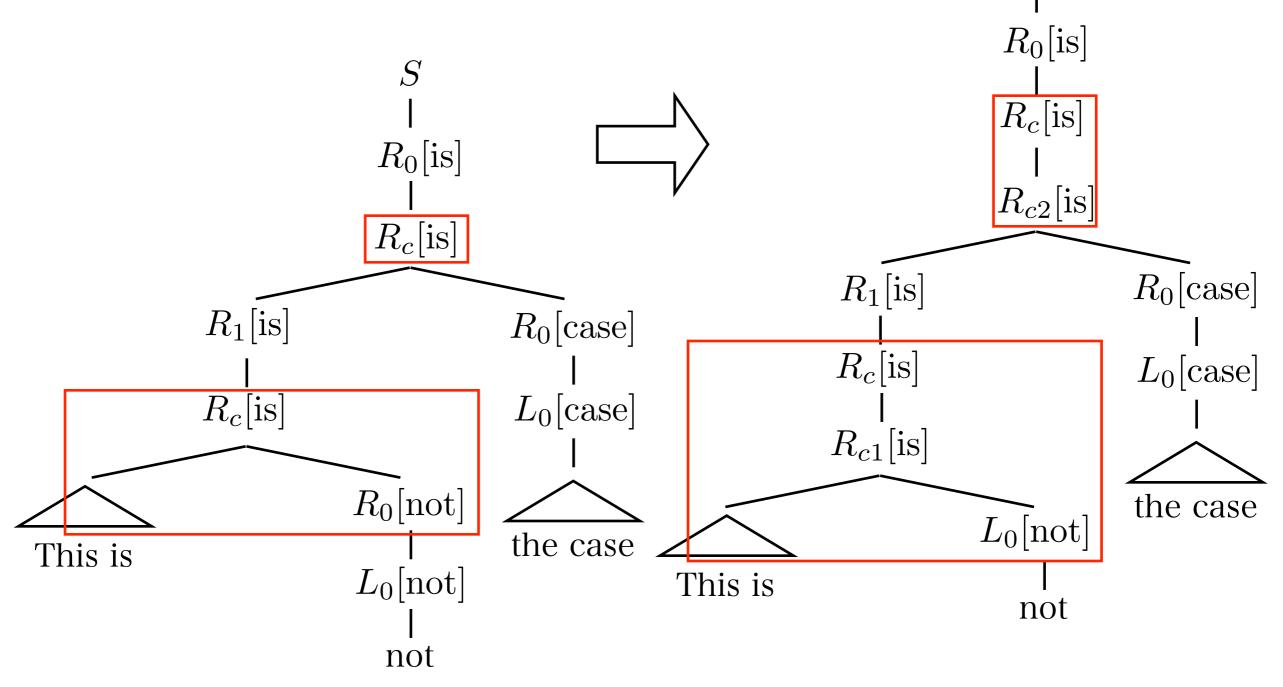
(Headden, et al., 2009)

Extended Valence Grammar

 各headに最も近いargumentと、そうでないargumentに関する分布を 変化させる

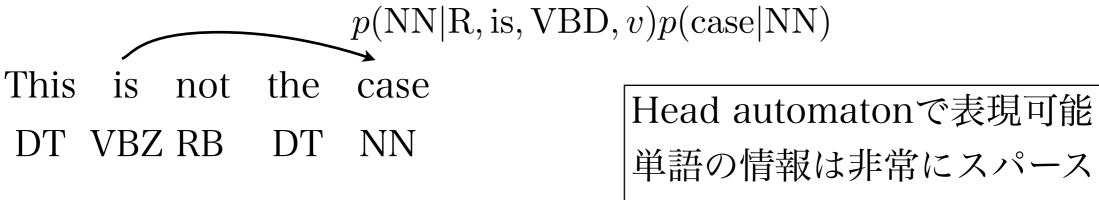
S

▶ PCFGの一部を書き換えることで、対応可能



Lexicalized EVG

- これまでのモデルは、全て品詞同士の関係しか見ない
- 品詞同士でよく表れる関係を捉える
- ト Penn Treebankの場合, 品詞数は45
- ▶ 自動詞/他動詞の違いもきちんと捉えられない
- headの単語を用いて、argumentの品詞を推定



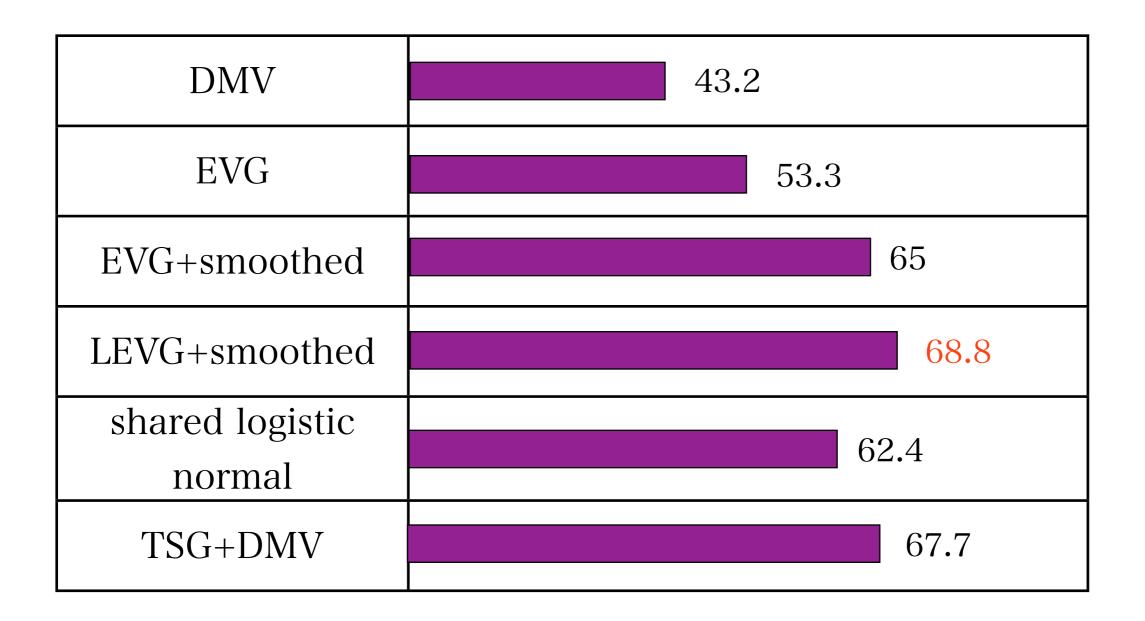
⇒スムージングを行う

(Headden, et al., 2009)

LEVGまでの結果

Penn Treebank

- Section 2-21を訓練データ(長さ10以下)
- Section 23 をテストデータ(長さ10以下)
- Kleinの論文では0-24の全てを使うが、最近は訓練とテストに分ける方が多い



Unambiguity Regularization

$$\begin{split} \log p(X|\theta) &\geq F(q,\theta) = \sum_{Y} q(Y) \log \frac{p(X,Y)}{q(Y)} \\ F(q,\theta) &= \sum_{Y} q(Y) \log(p(X)p(Y|X)) - \sum_{Y} q(Y) \log q(Y) \\ &= \log p(X|\theta) - \sum_{Y} q(Y) \log \frac{q(Y)}{p(Y|X)} \\ &= \log p(X|\theta) - \operatorname{KL}(q(Y)||p(Y|X)) \end{split}$$

 $F(q, \theta)$ を、 q と θ に関して交互に最適化

E-step: $q^{t+1} = \arg \max_{q} F(q, \theta) = \arg \min_{q} \operatorname{KL}(q(Y)||p(Y|X))$ M-step: $\theta^{t+1} = \arg \max_{\theta} F(q^{t+1}, \theta) = \arg \max_{\theta} \log \langle p(X, Y) \rangle_{q^{t+1}}$ (Tu and Honaver, 2012)

Unambiguity Regularization

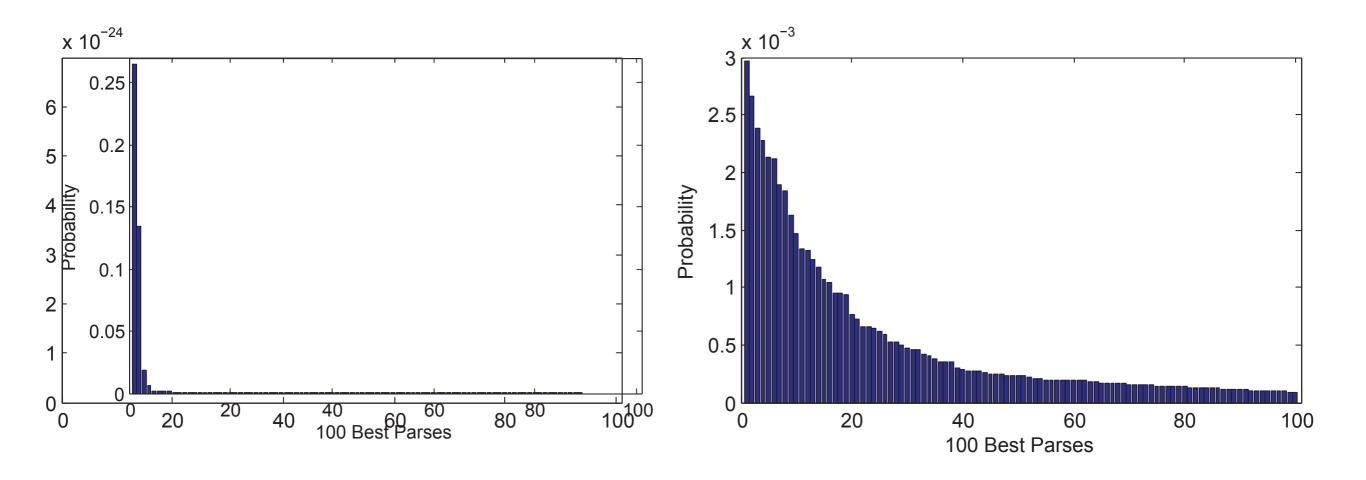
・代わりに次の量を最大化する

$$F(q, \theta) = \log(X|\theta) - \left(\mathrm{KL}(q(Y)||p(Y|X)) + \sigma \sum_{i} H(y_i) \right)$$
$$H(y_i) = -\sum_{i} q(y_i) \log q(y_i)$$

$$y_i$$

- Posterior regularization と呼ばれる (Gillenwater, et al., 2010)
- ▶ q を求める際, そのエントロピーが小さくなるような制約を入れている

自然言語のUnambiguity



- ▶ 自然言語の文章は曖昧か? ⇒ 多くの文章は、1つの解釈しか持たない
- ・ある文に対して,
 - (左) Berkeley Parser, (右) PCFGのEMによる推定
 - で、100 Best parses にそれぞれ、どれだけの確率を割り当てたか

(Tu and Honaver, 2012)

Unambiguity Regularization

- 通常Posterior regularizationは勾配法などで近似する
- ▶ 事後分布のエントロピーを小さくするような仮定を置くと、解析的に 解ける
- ▶ 結果
 - 従来のEMアルゴリズムで, Eステップの前にパラメタを <u>1</u> 乗すれば良いだけ!
 - 従来研究で、Hard-EMの性能が良いことが示されていた
 - Hard-EMは、このモデルで $\sigma = 1$ と置いた場合に相当する
 - 制約の強さを最大にした場合(最も曖昧でないような学習を行う)

	Testing Accuracy		
Value of σ	≤ 10	≤ 20	All
0 (standard EM)	46.2	39.7	34.9
0.25	53.7	44.7	40.3
0.5	51.9	42.9	38.8
0.75	51.6	43.1	38.8
1 (Viterbi EM)	58.3	45.2	39.4

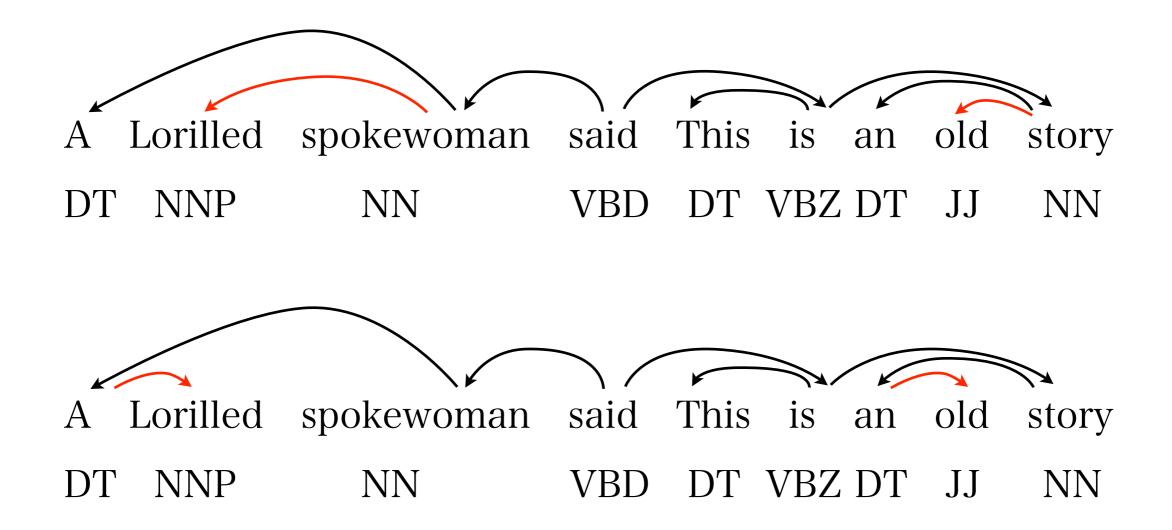
Extended Models			
UR-Annealing on E-DMV(2,2) 71.4 62.4			
UR-Annealing on E-DMV(3,3)	71.2	61.5	56.0
L-EVG (Headden et al., 2009)	68.8	_	-
LexTSG-DMV (Blunsom and Cohn, 2010)	67.7	-	55.7

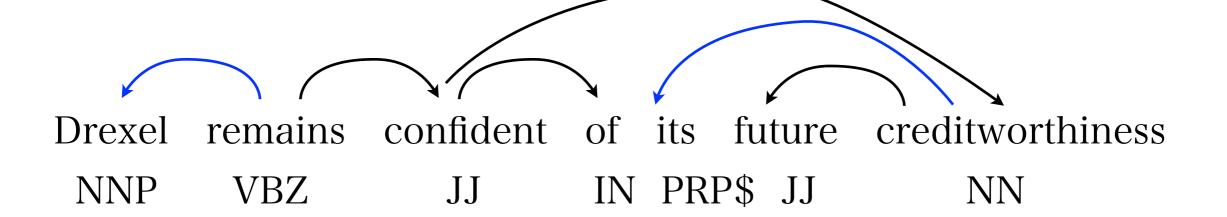
- VR-Annealing : σの値を1から0へ徐々に下げていく
- ▶ 英語で現在の state-of-the-art を達成

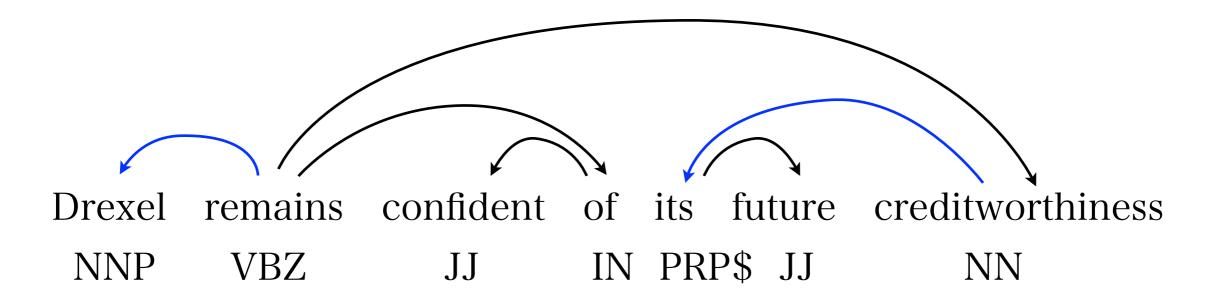
(Tu and Honaver, 2012)

DMV + unambiguity での解析結果

- ▶ 簡単なDMV + *σ* =0.25 での結果を示す(精度:57.8)
- ▶ Annealing したところ,良い結果が得られなかった (バグ?)







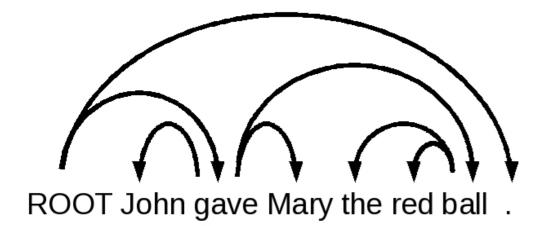
DMVとは異なる方針

- これまでのDMVの拡張は、全てInside Outsideを用いることの出来る
 Head automatonモデル
- ・最近、いくつかこれ以外の方針が提案されている
 - (Brody, 2010): アラインメントのIBMモデルを用いる
 - (Marecek, 2012): reducibility + Projectiveな木を作るGibbsサンプリング
- Head automatonにとらわれないモデル化が可能
- ▶ 問題点
 - 推論をどうするか?
 - Projectivityを満たす木を作れるか

IBMモデルを用いた教師なし解析

▶ IBMモデルとDMVとの類似点

- IBMモデル1:よく出現する単語の組を対応付ける
- IBMモデル2:単語の出現場所に応じて対応付ける (valence?)
- IBMモデル3:各単語が結びつく, target側の単語数をモデル化 (valence)



ROOT John gave Mary the red ball .

John gave Mary the red ball .

(Brody, 2010)

IBMモデルを用いた教師なし解析

Corpus	M 1	M2	M3	R-br
WSJ10	25.42	35.73	39.32	32.85
Dutch10	25.17	32.46	35.28	28.42
Danish10	23.12	25.96	41.94	16.05 *

- ・DMVよりは低いが、Right-branchを上回る
- ▶ このモデルは、Projectiveな木を作らないことに注意
- トそのような制約をうまく入れれば、更に性能が上がる可能性?

Projectiveな木を作るGibbs sampling

- ▶ Inside-Outside を用いずに, Projectiveな木を直接推定する
- ▶ Gibbs Samplingで、局所的な係り関係を書き換える
- ・生成モデルとしてはNon Projectiveな木も作るが、推定の範囲を Projectiveなモデルに限定している
 - deficientなモデルを定義していることと同等?

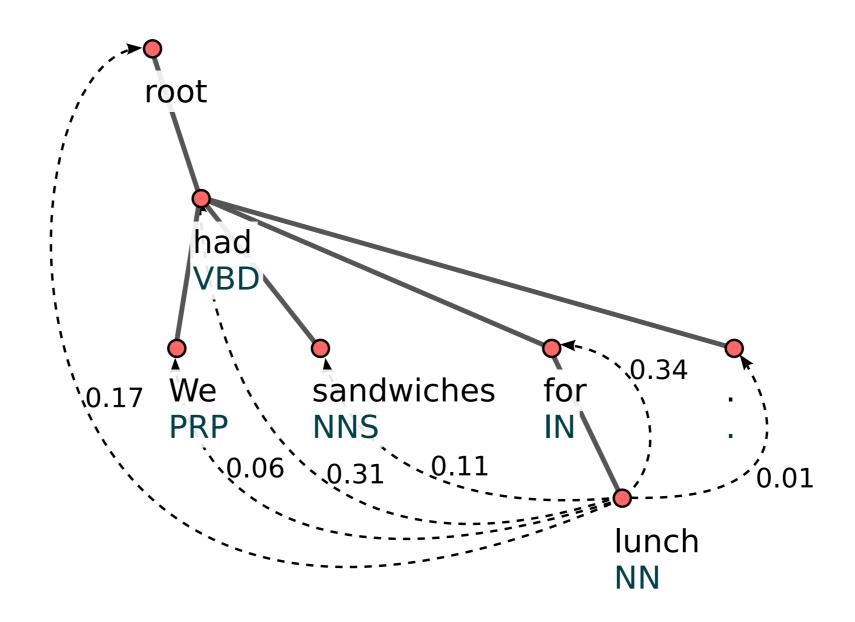
基本となるモデル

- edge model
- ・各品詞が取りうるargumentの分布が、Dirichlet分布から生成される
- よく起こりやすい head /dependent を捉える
- ▶ 必ずしもProjectiveな木を作らない

$$P_{treebank} = \prod_{i=1}^{n} P_{edge}(t_i | t_{\pi(i)}) = \prod_{i=1}^{n} \frac{c^{-i}("t_i, t_{\pi(i)}") + \alpha}{c^{-i}("t_{\pi(i)}") + \alpha |T|}$$

$$\bigcup_{DT \ VBZ \ RB} \quad DT \ NN$$
DT \VBZ \RB \DT \NN

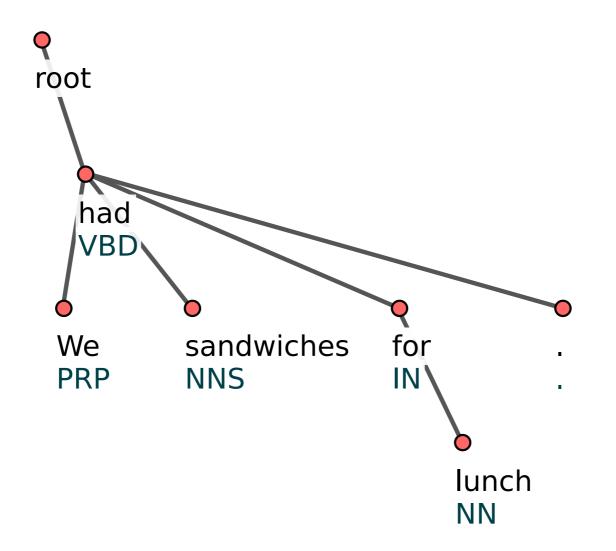
ナイーブなGibbs sampling



- ・木からlunchを削除する
- ▶ 親を再推定
- > We, sandwiches を選択した場合, projective でなくなる

Projectivityを保つための準備

- 係り関係をbracketで表現する
- n個の単語に対して、n個のbracket
- ▶ 各bracketは、その深さの単語を、1語のみ持つ



((We)had(sandwiches)(for(lunch))(.))

Gibbs sampling

- ・bracketを1つ削除する
- ▶新しいbracketを、分布に応じて選択する
- ・1回の変化で、木を大きく書き換えることが出来る

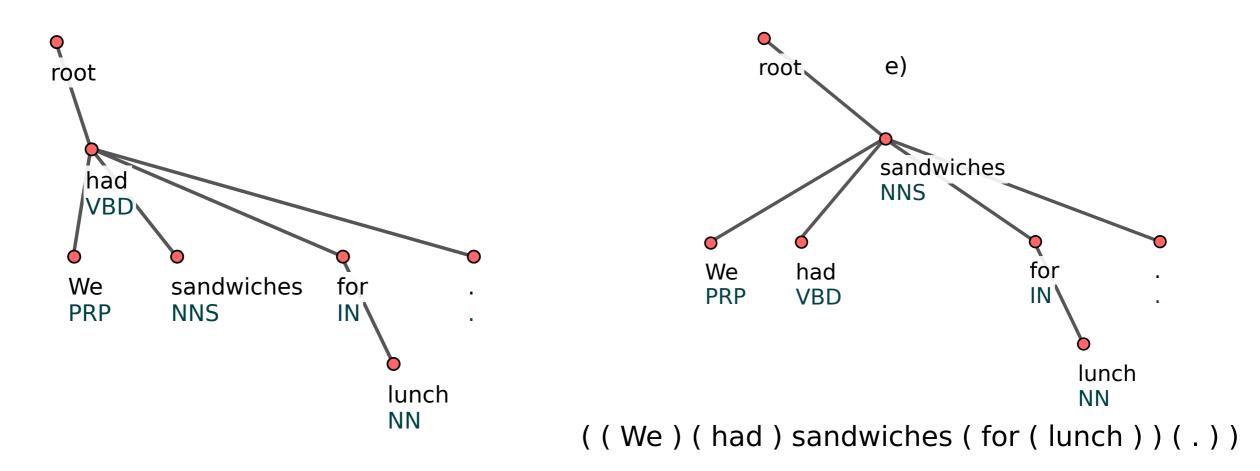
((We)had(sandwiches)(for(lunch))(.))

((We) had sandwiches (for (lunch))(.))

(((We)had)sandwiches(for(lunch))(.))

- ((We)(had)sandwiches(for(lunch))(.))
- ((We)had(sandwiches)(for(lunch))(.))
- ((We)had(sandwiches(for(lunch)))(.))
- ((We)had(sandwiches(for(lunch))(.))

例えば



((We)had(sandwiches)(for(lunch))(.))

- ▶ EMのlocal moveより効率が良さそう? ⇒ 初期化の影響はないらしい (!)
- ▶ DMVでも似たような局所的なGibbsは適応できる?

実際のモデル

- ・様々なコンポーネントのProduct of Experts
- > Projectivityを仮定しない代わりに、豊富な情報を組み込むことが可能に

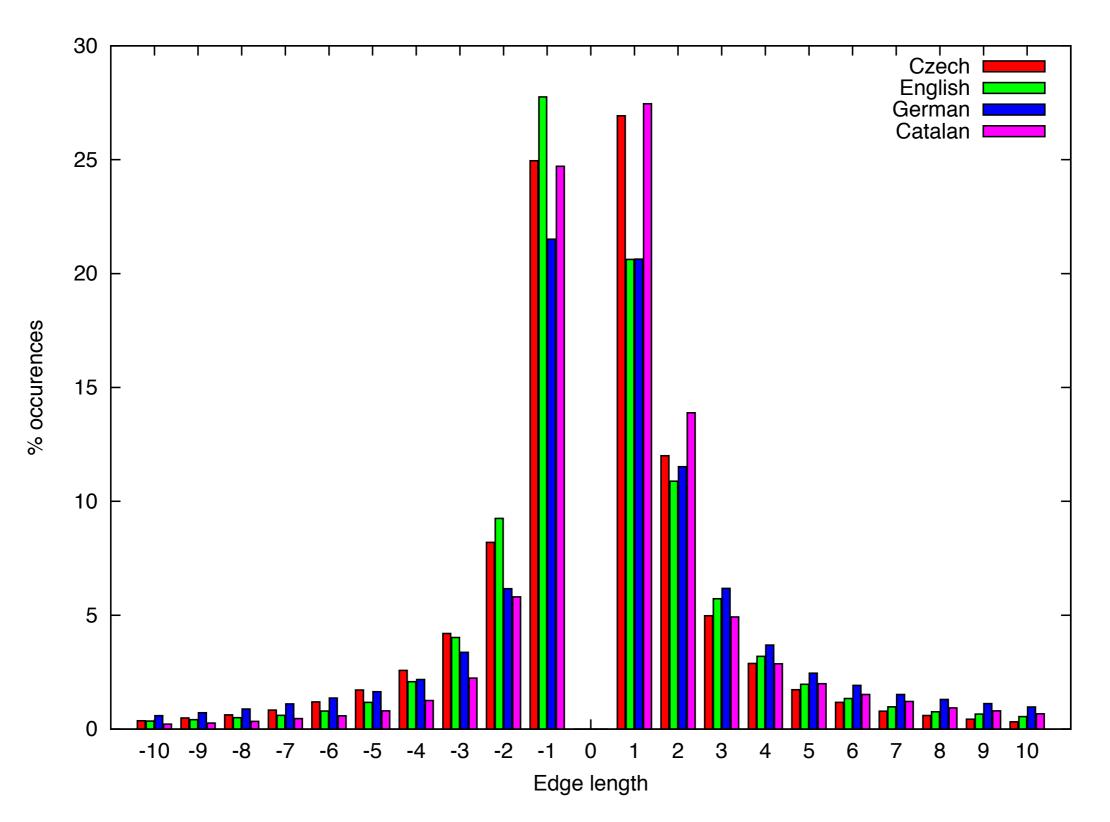
$$\begin{split} P_{treebank} &= \prod_{i=1}^{n} \ P_{etd}(i, \pi(i)) \ P_{fdx}(f_i, \pi(i)) \ P_d(i, \pi(i)) \ P_r(i) = \\ &= \prod_{i=1}^{n} \ \frac{c^{-i}(``t_i, t_{\pi(i)}, dir(i, \pi(i))") + \alpha_{etd}}{c^{-i}(``t_{\pi(i)}, dir(i, \pi(i))") + \alpha_{etd} \cdot |T|} \\ &= \frac{c^{-i}(``t_i, f_i^L, f_i^{R"}) + \frac{\beta_0}{F(w_i)} P_0(f_i^L + f_i^R)}{c^{-i}(``t_i") + \frac{\beta_0}{F(w_i)}} \\ &= \frac{1}{\epsilon_d} \frac{1}{|i - \pi(i)|^{\gamma}} \quad \underbrace{\text{distance model}}_{\substack{i \in T} R(desc(i))^{\delta}}. \end{aligned}$$

distance model

$$P_d(d,g) = \frac{1}{\epsilon_d} \left(\frac{1}{|d-g|}\right)^{\gamma}$$

- ▶ 言語に(恐らく普遍な)性質
- ・一番近い単語に係りやすい
- ▶ DMVでは、この制約を陽に入れることが難しい
- valence では、head / dependent の距離そのものは、パラメタ化されて いない

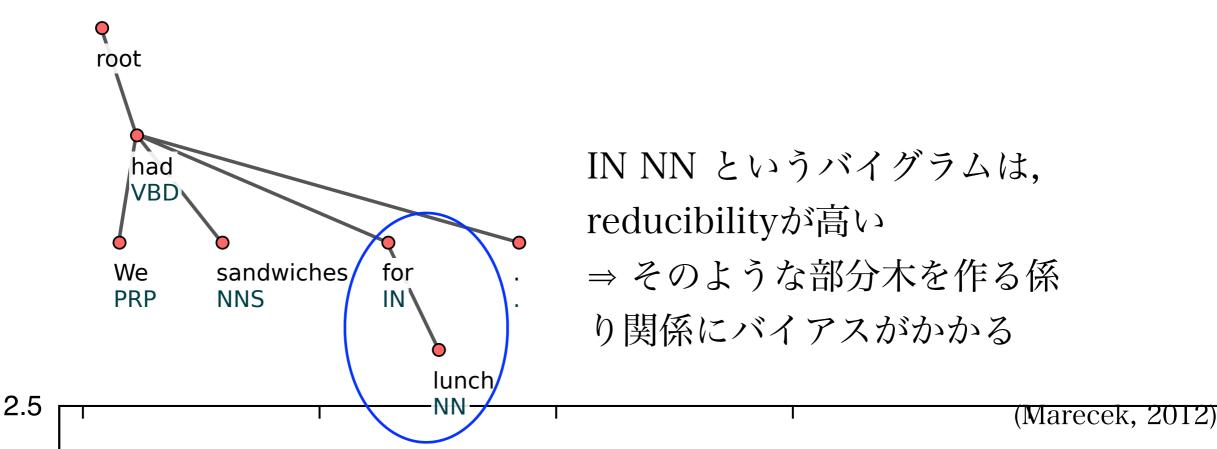
言語毎の距離の統計



reducibility model

$$P_r(i) = \frac{1}{\epsilon_r} R(desc(i))^{\delta_1}$$

- ▶ 文の中で、dependentになりやすい部分(例えば前置詞句)は、 削除しても意味が通る
- ・品詞nグラムに対するreducibility = 削除しやすさ、を計算する
- $R(desc(i)) = 単語 w_i をルートとする部分木のnグラムのreducibility$



reducibilityの学習

大規模コーパスから学習する

- ▶ ある品詞nグラム = g が削除可能である(reducibilityが高い)とき,
 - コーパス中の g の品詞の列を探す
 - その部分を削除した単語列が、コーパス中に出現するかどうか、を調べる

g = IN NN NN

Motorola is fighting back against junk mail NNP VBZ VBG RB IN NN NN

reducibilityの学習

大規模コーパスから学習する

- ▶ ある品詞nグラム = g が削除可能である(reducibilityが高い)とき,
 - コーパス中の g の品詞の列を探す
 - その部分を削除した単語列が、コーパス中に出現するかどうか、を調べる

g = IN NN NN

Motorola is fighting back

この文が他の箇所で出現していれば、高いスコアがつく

reducibility score

unigrams	reduc.	bigrams	reduc.	trigrams	reduc.
VB	0.04	VBN IN	0.00	IN DT JJ	0.00
TO	0.07	IN DT	0.02	JJ NN IN	0.00
IN	0.11	NN IN	0.04	NN IN NNP	0.00
VBD	0.12	NNS IN	0.05	VBN IN DT	0.00
	0.13	JJ NNS	0.07	JJ NN .	0.00
VBZ	0.16	NN .	0.08	DT JJ NN	0.04
NN	0.22	DT NNP	0.09	DT NNP NNP	0.05
VBN	0.24	DT NN	0.09	NNS IN DT	0.14
	0.32	NN,	0.11	NNP NNP .	0.15
NNS	0.38	DT JJ	0.13	NN IN DT	0.23
DT	0.43	JJ NN	0.14	NNP NNP ,	0.46
NNP	0.78	NNP .	0.15	IN DT NNP	0.55
JJ	0.84	NN NN	0.22	DT NN IN	0.59
RB	2.07	IN NN	0.67	NNP NNP NNP	0.64
,	3.77	NNP NNP	0.76	IN DT NN	0.80
CD	55.6	IN NNP	1.81	IN NNP NNP	4.27

実験結果

- ▶ 多くの言語において、既存のモデルを上回る
- ・英語では unambiguity regularization のほうが性能が上

CoNLL		≤ 10 tokens		all sentences		
language	code	year	Gillen.2011	our parser	Spitkov.2011	our parser
Arabic	ar	06	_	40.5	16.6	26.5
Arabic	ar	07	_	42.4	49.5	27.7
Basque	eu	07		32.8	24.0	27.2
Bulgarian	bg	06	58.3	59.0	43.9	49.0
Catalan	ca	07	_	63.5	59.8	47.0
Czech	cs	06	53.2	58.9	27.7	49.5
Czech	cs	07	_	67.6	28.4	50.7
Danish	da	06	45.9	52.8	38.3	40.4
Dutch	nl	06	33.5	42.4	27.8	41.7
English	en	07	_	64.1	45.2	49.2
German	de	06	46.7	60.8	30.4	44.8
Greek	el	07	_	35.8	13.2	25.4
Hungarian	hu	07	_	63.2	34.7	51.1
Italian	it	07	_	50.5	52.3	43.3
Japanese	ja	06	57.7	68.6	50.2	52.5
Portuguese	pt	06	54.0	66.0	36.7	54.9
Slovenian	sl	06	50.9	51.0	32.2	37.8
Spanish	es	06	57.9	67.3	50.6	51.9
Swedish	SV	06	45.0	62.9	50.0	49.9
Turkish	tr	07	_	18.6	35.9	20.9
	Ave	erage:	50.3*	59.0*	37.4	42.1

教師なし係り受け解析まとめ

- ▶ 2つの方向性
 - PCFGに変換した上で、様々な情報を加えていく
 - Extended Model, TSG + DMV など
 - (Projectiveな) 木を生成する,新しい生成モデルを定義する
 - Head automatonにとらわれずに柔軟な分布を設定できる
 - 今後はこちらが流行るかも?
- > 2012年の状況
 - 生のコーパスのみからの推定は、2009年以降あまり進歩していない
 - DMVからモデルを変えずに7割程度の精度を達成(今年)したことを考えると, 2004年からもあまり進歩していないような気も…
 - 最近は他の方向性(多言語のデータを同時に学習,英語でのパラメタを他の言語 に投射する)が流行っている (Naseeem, et al., 2012; McDonald, et al., 2011)
 - しかし言語の本質を考えるという点では、問題から逃げている?
 - 工学的にはこちらも重要

- Abney, S. P. 1987. The English Noun Phrase in its Sentential Aspect. PhD thesis, MIT.
- Alshawi, H. 1996 Head automata and bilingual tiling: Translation with minimal representations. In ACL
- Blunsom, P., and Cohn, T. 2010. Unsupervised induction of tree substitution grammars for dependency parsing. *In EMNLP*
- Brody, S. 2010. It depends on the translation: Unsupervised dependency parsing via word alignment. In EMNLP
- Carroll, G. and Charniak, E. 1992. Two experiments on learning probabilistic dependency grammars from corpora. In Working Notes of the Workshop Statistically-Based NLP Techniques
- Cohen, S.B., Gimpel, K., and Smith, N.A. 2008. Logistic normal priors for unsupervised probabilistic grammar induction. In NIPS
- Cohen, S.B., and Smith, N.A. 2009. Shared logistic normal distributions for soft parameter tying in unsupervised grammar induction. *In NAACL-HLT*
- Collins, M. 1999. Head-driven Statistical Models for Natural Language Parsing. Ph.D. thesis, The University of Pennsylvania.
- Gillenwater, J., Ganchev, K., Graca, J., Pereira, F., and Taskar, B. 2011. Posterior sparsity in unsupervised dependency parsing. In JMLR
- Klein, D. and Manning, C.D. 2002. A generative constituent-context model for improved grammar induction. In ACL
- Klein, D. and Manning, C.D. 2004. Corpus-based induction of syntactic structure: Models of dependency and constituency. In ACL
- Klein, D. 2005. The Unsupervised Learning of Natural Language Structure. PhD thesis, Stanford University
- Marecek, D. 2012. Unsupervised Dependency Parsing. Ph.D. thesis, Unsupervised Dependency Parsing
- McDonald, R.T., Petrov, S., and Hall, K., Multi-source transfer of delexicalized dependency parsers, In EMNLP
- Naseem, T., Barzilay, R., and Globerson, A., Selective Sharing for Multilingual Dependency Parsing, In ACL
- Paskin, M.A. 2001. Grammatical bigrams. In NIPS
- Seginer, Y. 2007. Learning syntactic structure. Ph.D. thesis, Universiteit van Amsterdam
- Smith, N.A. 2006. Novel Estimation Methods for Unsupervised Discovery of Latent Structure in Natural Language Text. Ph.D. thesis, Department of Computer Science, Johns Hopkins University
- Spitkovsky, V.I., Alshawi, H., Jurafsky, D., and Manning, C.D. 2010. Viterbi training improves unsupervised dependency parsing. In CoNLL
- Tu, K and Honavar, V. 2012. Unambiguity regularization for unsupervised learning of probabilistic grammars. In EMNLP
- William P. Headden III, W.P., Johnson, M. and McClosky, D. 2009. Improving unsuper-vised dependency parsing with richer contexts and smoothing. In NAACL-HLT