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Overview
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Fixed n-th order Markov model

Infinitely Variable-order
Markov model

• Fixed-order Markov dependency
⇓

Infinitely variable Markov orders

• Simple prior for stochastic trees
(other than Coalescents)
◦ How to draw an inference based on only the output

sequences?
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Markov Models

1st order

2nd order

p(”mama I want to sing”)
= p(mama)× p(I|mama)
× p(want|mama I)
× p(to|I want)
× p(sing|want to)

n-gram (3-gram)

• “n-gram” (n-1’th order Markov) model is prevalent in
speech recognition and natural language processing

• Music processing, Bioinformatics, compression, · · ·
• Notice: HMM is a first order Markov model over hidden states
◦ Emission is a unigram on the hidden state
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Estimating a Markov Model
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Predictive
Distributions

• Each Markov state is a node in a Suffix Tree
(Ron+ (1994), Pereira+ (1995), Buhlmann (1999))
◦ Depth = Markov order
◦ Each node has a predictive distribution over the next word

• Problem: # of states will explode as the order n gets larger
◦ Restrict to a small Markov order (n = 3∼5 in speech and NLP)
◦ Distributions get sparser and sparser⇒ using hierarchical

Bayes?
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Hierarchical (Poisson-) Dirichlet Process

• Teh (2006), Goldwater+ (2006) mapped a hierarchical Dirichlet
process to Markov Models
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◦ n’th order predictive distribution is a Dirichlet process draw
from the (n−1)’th distribution

◦ Chinese restaurant process representation:
a customer = a count (in the training data)

◦ Hierarchical Pitman-Yor Language Model (HPYLM)
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Proxy (imaginary) customer
(Not relevant)

◦ n’th order predictive distribution is a Dirichlet process draw
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◦ Chinese restaurant process representation:
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Problem with HPYLM
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• All the real customers reside in depth (n−1) (say, 2)
in the suffix tree
◦ Corresponds to a fixed Markov order
◦ “less than”; “the united states of america”
◦ Character model for “supercalifragilisticexpialidocious”!

• How can we deploy customers at suitably different depths?
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Infinite-depth Hierarchical CRP
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k

i1− qi

1− qj

1− qk

• Add a customer by stochastically decending a suffix tree
from its root

• Each node i has a probability to stop at that node
(1−qi equals the “penetration” probability)

qi ∼ Be(α, β) i.i.d. (1)

• Therefore, a customer will stop at depth n by the probability

p(n|h) = qn

n−1∏
i=0

(1− qi) . (2)
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Variable-order Pitman-Yor language model
(VPYLM)

• For the training data w = w1w2 · · ·wT , latent Markov orders
n = n1n2 · · ·nT exist:

p(w) =
∑
n

∑
s

p(w,n, s) (3)

◦ s = s1s2 · · · sT : seatings of proxy customers in parent nodes

• Gibbs sample n for inference:

p(nt|w,n−t, s−t)
∝ p(wt|nt,w,n−t, s−t)︸ ︷︷ ︸

nt-gram prediction

· p(nt|w−t,n−t, s−t)︸ ︷︷ ︸
prob to reach depth nt

(4)

◦ Trade-off between two terms (penalty for deep nt)
◦ How to compute the second term p(nt|w−t,n−t, s−t)?
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Inference of VPYLM (2)

ε
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(a, b) = (100, 900)

(a, b) = (10, 70)

(a, b) = (30, 20)

(a, b) = (5, 0)

900+β
1000+α+β
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β
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· · ·

w

n ←→

· · ·wt+1wtwt−1wt−2· · ·

· · · · · ·4232

• We can estimate qi of node i
through the depths of the
other customers

• Let ai = # of times the node i was stopped at,
bi = # of times the node i was passed by:

p(nt = n|w−t,n−t, s−t) = qn

n−1∏
i=0

(1− qi) (5)

=
an+α

an+bn+α+β

n−1∏
i=0

bi+β

ai+bi+α+β
. (6)
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Estimated Markov Orders
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• Hinton diagram of p(nt|w) used in Gibbs sampling for the
training data

• Estimated Markov orders from which each word has been
generated.

• NAB Wall Street Journal corpus of 10,007,108 words
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Prediction

• We don’t know the Markov order n beforehand⇒ sum it out

p(w|h) =
∞∑

n=0

p(w,n|h) =
∞∑

n=0

p(w|n, h) p(n|h). (7)

• We can rewrite the above expression recursively:

p(w|h) = p(0|h)·p(w|h, 0) + p(1|h)·p(w|h, 1) + p(2|h)·p(w|h, 2) + · · ·
= q0 ·p(w|h, 0)+(1−q0)q1 ·p(w|h, 1)+(1−q0)(1−q1)q2 ·p(w|h, 2) · · ·
= q0 ·p(w|h, 0)+(1−q0)

[
q1 ·p(w|h, 1)+(1−q1)q2 ·p(w|h, 2)+· · · ]

(8)• Therefore,

p(w|h, n+) ≡ qn · p(w|h, n) + (1− qn) · p(w|h, (n+1)+) , (9)

p(w|h) = p(w|h, 0+) . (10)

The Infinite Markov Model (NIPS 2007) – p.11/20



Prediction (2)

p(w|h, n+) ≡ qn · p(w|h, n)︸ ︷︷ ︸
Prediction at Depth n

+(1−qn) · p(w|h, (n+1)+)︸ ︷︷ ︸
Prediction at Depths >n

p(w|h) = p(w|h, 0+) ,

qn ∼ Be(α, β) .

• Stick-breaking process on an infinite tree, where
breaking proportions will differ from branch to branch.

• Bayesian sophistication of CTW (context tree weighting)
algorithm (Willems+ 1995) in information theory
(⇒ Poster)
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Perplexity and Number of Nodes in the Tree

n HPYLM VPYLM Nodes(H) Nodes(V)

3 113.60 113.74 1,417K 1,344K
5 101.08 101.69 12,699K 7,466K
7 N/A 100.68 27,193K 10,182K
8 N/A 100.58 34,459K 10,434K

∞ — 100.36 — 10,629K

• Perplexity = 1/average predictive probabilities (lower is better)

• VPYLM causes no memory overflow even for large n

◦ Italic : expected number of nodes

• Identical performance as HPYLM, but with much less
number of nodes
◦ ∞-gram performed the best (ε=1e−8)
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“Stochastic phrases” from VPYLM (1/2)

• p(w,n|h) = p(w|h, n)p(n|h)
· · · Probability to generate w using the last n words of h

as the context
◦ For example, generate “Gaussians” after “mixture of”

↓
“mixture of Gaussians”: a phrase

• p(w,n|h) = cohesion strength of the stochastic phrase
◦ Will not necessarily decay with length

(like an empirical probability)
◦ Enumerated by traversing the suffix tree in depth-first order
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“Stochastic phrases” from VPYLM (2/2)

p Stochastic phrase in the suffix tree

0.9784 primary new issues
0.9726 ˆ at the same time
0.9556 american telephone &
0.9512 is a unit of
0.9394 to # % from # %
0.8896 in a number of
0.8831 in new york stock exchange composite trading
0.8696 a merrill lynch & co.
0.7566 mechanism of the european monetary
0.7134 increase as a result of
0.6617 tiffany & co.

: :

• “ˆ” = beginning-of-sentence, “#” = numbers
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Random Walk generation from the language model

it was a singular man , fierce and quick-tempered , very
foul-mouthed when he was angry , and of her muff and
began to sob in a high treble key .
“ it seems to have made you , ” said he . ’what have i to his
invariable success that the very possibility of something
happening on the very morning of the wedding . ”
...

• Random walk generation from the 5-gram VPYLM
trained on “The Adventures of Sherlock Holmes.”

◦ We begin with an infinite number of
“beginning-of-sentence” special symbols as the context.

• If we use vanilla 5-grams, overfitting will lead to
a mere reproduction of the training data.
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Infinite Character Markov Model

‘how queershaped little children drawling-desks, which would
get through that dormouse!’ said alice; ‘let us all for anything
the secondly, but it to have and another question, but i shalled
out, ‘you are old,’ said the you’re trying to far out to sea.

(a) Random walk generation from a character model.

Character sa i d a l i ce ; ‘ l e t us a l l f o r any t h i ng · · ·
Markov order 56547106543714824465544556456777533459 · · ·

(b) Markov orders used to generate each character above.

• Character-based Markov model trained on “Alice in Wonderland”.
◦ Lowercased alphabets + space
◦ OCR, compression, Morphology, . . .
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Final Remarks

• Hyperparameter sensitivity and empirical Bayes optimization
⇒ Paper

• LDA extension⇒ Paper (but partially succeeded)

• Comparison with Entropy Pruning (Stolcke 1998)⇒ Poster

• Poster: W24 (near the escalator).
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Summary
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• We introduced the Infinite Markov model where the orders are
unspecified and unbounded but can be learned from data.

• We defined a simple prior for stochastic infinite trees.

• We expect to use it for latent trees:
◦ Variable resolution hierarchical clustering (cf. hLDA)
◦ Deep semantic categories just when needed.

• Also for variable order HMM (pruning approach: Wang+, ICDM
2006)
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Future Work

• Fast variational inference
◦ Obviates Gibbs for inference and prediction
◦ CVB for HDP: Teh et al. (this NIPS)

• More elaborate tree prior than a single Beta

• Relationship to Tailfree processes (Fabius 1964; Ferguson
1974)
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