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: 1. Model.
: Generalized Lehmann’s Alternative Model.
: Semi parametric model. G(x)=h(F(x):0) , G(x)=h(F(x-p):0)
and G(x)=h(F(y-a-Bx):0)
: Skew Symmetry . Azzalini (1985). Parametric model. MLE.
:2. Statistics.
: Rank statistics for nonparametric Tests. Lehmann(1953).
: Estimation. Miura (1985,1993)
:3 . Asymptotic Normality.
: Special Construction (Skorokhod’s Theorem, or Skorokhod’s representation).
: Weak convergence of Empirical Distribution Functions.
: iid case and non-iid case( weakly dependent case.
This work is incomplete yet, but
: Make use of the results in Shao&Yu(1996). Louhichi(2000 and her other
papers)).

:4. A direct application to a simple linear regression utilizes an weighted empirical
distribution . Wellner&Shorack (1986). We need these for non-iid case.



1. Models

Generalized Lehmann’s Alternative Model.
Generalize G(x)= F(x) ¢, to G(x)=h(F(x): 6)
Assume F(.) is symmetric about zero.
Assume BEEHZh(=: 0) is known, but F(.) unknown.

Definition. Let ® be an interval in the real line. A function h(t;6) for ¢ € (0,1)
and & € © which satisfies the following (1) and (2} is called the generalized
Lehmann's alternative model;

(1) 2(0;8) = 0 and A{1;8) = 1 for any § € O. h(t;8) is a strictly monotone
function of .

(2) There exists §* € © such that h{t;8%) =t for t € (0,1). And for § > ¢, |
h(2;8) < h(t;8’) for all ¢ (or < may be reversed for all ¢ and & > #').

‘We shall also call h{F(-);8) a generalized Lehmann’s alternative model. In
terms of random variables, the observations following a generalized Lehmann'’s



In the one-sample problem, it is not possible to estimate 8 for generalized
Lehmann’s alternative models k(F;8), when F is unknown and no restrictions

are made on the shape of F. The parameter § is not even identifiable in that
case. Throughout this paper we assume:

£ is continuous and F(z) = 1 — F{-z). (1.1)

Also note that (2) in the definition of the generalized Lehmann’s alternative
model implies

h{t; 0 + h(1 ~¢;8) #1 for t € (0,1) and 6 € © — {#*). (1.2)

Under (1.1) and (1.2), € is identifiable and can be estimated. -



Ezamples. Let F and @ be d.f.’s which are connected throug_h the generalized
Lehmann’s alternative model G = A (¥ 8).
HDEAE)=1-(1—-t)forbe (0,0), then

l{lgﬂg = ﬂlug .t"LF,

where Az and Ag are cumnlative hazard functions corresponding to F and @
respectively. This model is the well-known proportional hazards model proposed
by Cox (1972).
(if) Taking h(t;0) = t[(1 — £)6 + t]~! for ¢ € (0, 00) vields the proportional odds
model: :

G _1 F

A
——— e ——

1-@G 1—-F
This model has been considered by Ferguson (1967) and in more general regression
setting by Pettitt (1984), among others. ‘ |
The above two models have useful and important applications in survival analysis.
Other examples of our model include |



e e sppLUGLIULS LU SUTVIVAL ADALYSIS.
Other examples of our model inchide |
(iii) A(;0) = (1 —0)t + 642 for 6 [0,1) (Contamination),
(iv) 2(t;6) = (% — 1)/(e? — 1) for 8 € (0, 00).
(iil} was considered in Lehmann (1953) and (iv) was found in Ferguson (1967).
Both of these are Lehmann alternatives for which the locally most powerful rank
test 1s Wilcoxon. '
(v) A(¢;6) = ° for § € (0, c0) (Lehmann (1853)),
(v} k(t;8) = 3, ci(0)t with 2ici(f) =land ;(0) >0fr e ® (Mixture of
extremals by a discrete distribution).
(vii) b(t;8) = B(B-1(3) — log §) for 6 € (0,c0) where E is a known distribution
function over the real line. This model can be rewritten as 9(X) = log @ + ¢
where X ~ Gie~ Fand oy = E-1o F, and includes (i) and (ii).
See j)a.bruwska., Doksum and Miura (1989) for other examples and Tsukahara
(1991) for interesting relations among such models,



(1).Transformation parameter O,
and
(2). Simultaneous estimation of
Transformation parameter 0 and location parameter u

(1). X,...,X,, distributed with G(x)=h(F(x): 0).
X.=¢€ ,i=1,2,...,n.

(2). X,,...,X, distributed with G(x)=h(F(x- p): 9).
X.= U +&, ,i=1,2,...,n. g follows G(x)=h(F(x): 0)
.iid case. Tsukahara&Miura(1993).

: weakly dependent case (on going)



Generalized Lehmann’s Alternative model
(GLAM) and skew symmetry:

GLAM

G(x:5,F)=h(F(x): 86). g(x: 6,F)=h’(F(x): 6)f(x)
Skew symmetry (Azzalini)

g(x: 6,F)= f(x)2F(6x), or =f(x)2K(5x)

Thus ,2F(6x) or f(x)2K(6x) in skew symmetry
corresponds to h’(F(x): ) in GLAM.

ht:5,F,K) :_.'SZK(ﬁF‘l(u))du
and

h(F(x):6,F,K) :_[OF(X)ZK(5F‘1(U))du
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2. Statistics and Estimation for pand 0 in
G(x)=h(F(x- u): 0).

*

Statistica Sinica 5{1993), 83-101

ONE-SAMPLE ESTIMATION FOR GENERALIZED
LEEMANN’S ALTERNATIVE MODELS

Ryozo Miura and Hideatsu Tsukahara

Hitotsubashi University and University of Illinois at Urbena-Champaign

Abstract: This paper shows that nonparametric estimation of & for generalized Leh-
mann’s alternative models A{F;8) is possible, even in the one-sample problem, when
symmetry of the basic.distribution function ¥ about zero, F{z) = 1 — F(—=), is
assumed. Simultanecus nonparametric estimators of ; and 8 for the model A(F{- —
£); 8) are also provided under the symmetry of #. The asymptotic normality of these
estimators is proved under certain regularity conditions.



(1) Transformation Parameter O

(1). X;,..., X, distributed with G(x)=h(F(x): 6).
X.=¢g , 1=1,2,...,n.



In this section, X1, Xo,..., X, areii.d. with d.f. G(z) = h(F(z);68p) and 6,
is to be estimated.
Let G,(-) be the empirical distribution function of X;’s, that is,

A _ n
Ga(z) = n™t ZI[XiSz]?

=1

where I4 is an indicator function of a set A and let én(m) be a linearized version
of Gn: let X(1) < X(2) < -+ < X(n) be the order statistics of X;’s and define

Gn(z) by
& () s T+ iX(t'-}-l) — i+ 1)X(i)
" (n+ 1) (Xit1) — X))

, T E [X(,'),X(i+1)],

for i = 0,1,...,n with X(gy = X(1) — 1/n and X(,41) = X(5) +1/n. Fori =

1,2,...,n, let . _
() 2 A1 t.
Zilr) = Ga (h(n+1”'))’

R} (r) = the rank of |Z;(r)| among {|Z;(r)|: 5 = 1,2,...,n}.

?

and define

Note that G;1(h(-;6p)) may be viewed as an estimator of F~! and so Z;(fg)’s
can be regarded as an approximation of the ordered sample from F. Also, by



n . .
A ~ A$+ZX.,'+1—(‘1+1)X£
= = ) 2, @ € X X))

-1
Gn(il?) n ;I[X,-Sz]) Gn(m) = (n+ 1)(-X(i+l) _ X(z))
2:) 267 (h( 7). i J(t)dt = 0.

R (r) = the rank of |Z;(r)| among {|Z;(r)|: 5 =1,2,...,n}.

Sn(r)

li>

+ +
sy ((1+M)/2) S J((l— M)/z) (2.1)
M i:Z:(r)>0 nt+l ™ §:Z,(r)<0 n+l
Note that G(x)=(h(F(X): 8), so that G *(t)=F *(h*(t:9)),

and G (h(t:@)=F *(h(h(t:0):0))=F ' (1).

Thus, Z. () is approximately distributed with F.

We need to examine the probability distribution of Ranks

in weakly dependent cases..

Monotonicity in r.
As r tends larger, Z. (r) are shifted to larger, uniformly in i=1.2,...,n,

and More of Z, (r) will be positive.
This makes a similar shift to ranks of |Z,(r)|.
S,(r) as a function of r. It is larger for a large r.



Then the statistic we shall use for inference concerning 8 is

L (B ) (- H0) ),

4Z;(r)>0 ©:Z;(»)<0

He

Sn(r)

If J is symmetric about 1 in the sense that J (t)=—-J(1—1¢),0<t< 1, then it
is easy to see that

_ 1 & (BN
Sn(r) = ;E J (ﬂ 3 )ﬂgﬂzi(?'),
where J7(t) = J((1+£)/2), 0 < t < 1. So that the statistic Sp(r) may be
regarded as a signed linear rank statistic. The point is that under (1.1) and {1.2)
Z1(r), Z2(r), ..., Z,(r) are thought of as a sample from a symmetric distribution
only when r = 6, and S,{r) gives the strongest support to r = fy when it is
closest to zero. This makes it possible to estimate 8 even in the one-sample
situation. Then our estimator ﬁﬂ of fp is defined as the value of r which makes
|Sn(r)| closest to zero. Such r exists since S, () is nonincreasing in 7.

TYY -y
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We can write

i) = [~ a(2 H“”‘(m))drfn,?(m) +f : = Hn,r(“‘m))dLn,r(m):

2 2
where
U (t) 2 %(the number of {z : n:- ] < t}), t € (0,1),
Lyp(2) = %(the number of {i: Z;(r) < m})
= un (b7 Gula)ir), c€R,
1
Hy () 2 m(the number of {7 : |Z;(r)] < :r:}), z € (0,00).

We set H(z) 2 F(z) — F(—=z) for z € (0, 00).



Next we shall state the assumptions which are necessary to prove the asymp-

tctftic normality of our estimator. Assume that k(t; 0) is continuously differentiable
with respect to £ and ¢ and let

%,

Let u(t) = t(1 — t). Assume, uniformly in 6 in a neighborhood of 6y,

(A1) 7)) < Mluh o)), for 6> 0
1

A2 o) =M<

(A.3) |hatt; 6)] < Mu(h(t;00))] 7 gor d >0

where M is a universal constant. We require p 25—8>0. Further, assume

(A4} ha(t;0) ~ ha(t; 60) uniformly in t € (0,1) as § — 65, (k=1,2).



Assumptions (A.2)-(A.4) hold for Examples (i) and (v) with 8y < 1 and Examples
(ii)-(iv). Note that (A.2) implies

[)1 [h(t;ﬂ)(l — h({t; E))]_det < 0 (2.2)

by an easy change of variables. Also note that (A.1) and (A.2) imply

] —1/2+4

T@)1 < Mlu((t00))] s (2:3)

in fact, letting tg be such that J(fp) = 0 and m 2 h{tg; 6y} > 0, we have

‘ f 7(s)ds

< mo3/2He f (1~ A(s; 60)
_ A

3/+

<M f u(h(s; 6o))|
)—3!' +é

17 ()]

I

hy(s;0q)ds

< Mlua)]

for t > 1y, and it can be proven similarly for ¢ < #;.



For a function g on I (I = [0,1] or R), define ||g|| = supses |9(¢}|. By
Skorohod’s representation theorem, there exists a probability space on which a
sequence of i.i.d. uniform (0,1) random variables Uyi’s and a Brownian bridge U

are defined and satisfy

Un=Ull =20, n-— o0, | (2.4)
where
Ta(f) = nY Iy.<) t€(0,1),
i=1
Ut & VATt —1), te(0,1).

Using these U,;’s, we shall represent the observation as X; = G~ {U,;) for i =
1,2,...,n, which is called the special construction following Shorack and Wellner
(1986). We shall then obtain convergence in probability of the estimator, but on
the original probability space we can claim convergence in distribution only.



Salr) = fu mJ(1+H“’r(m))dLn,?(m)+ f_ LJ(l_Hﬂ,r(*m))dLﬂ,r(m),

2 2
where
unlt) 2 %(the number of{ n+1 <t}), t € (0,1),
Lug(z) 2 %(the mumber of {i : Zi(r) < z})
= wn(h7(Gale)in), sER,
Hop(z) 2 ni 7 (the mumber of {i: |Z:(r)| < 1), < € (0,00).

We set H (a:) F(z) — F(—=z) for z € (0, 00).
The following lemma is needed.

Lemma 2.1. Letr = 8y + b/\/n. Then for the special construction X;
G~Y(Uy;) and any given positive number B, we have, uniformly in & and |b] < B

Vil Ln(2) — F(z)] 2% A(F(z)), n— oo, (2.5)
where
o Uai60)) , haft;60)
Alt) = h1(t; 6o) ’ hi(t; 8) (26)

provided (A.2)-{A.4)} hold.



Proof. Let K, -(z) 2 R o (G(x));r]. We first pmvel that, uniformly in « and
b,

a.5

VAL (2) = Knp(@)] 250 (2.7)

as n — co. This follows from

\/_[Kﬂ a(z) — F(m)]

Va B (Ta(G(2))i ) — B HG(a)i )| + v [A7Y(G(e);r) — B7H(G(z); 60)
_ U (G(=)) . he(ATHG(a)ir)ir)
ri(R7HG*(z);7)ir) ha(R YN G(z)ir*);r)

(2.8)



Theorem 2.1. Assume that h{t;0) s continuously differentiable with respect to
t and 0 and T(fp) > 0. Also let the assumptions (1.1), (A.1)-(A.4) hold. Then,

as n — oo, we have
va(by — o) 5 N({], %)

Proof. Noting that [l J(£)dt = 0, /nSa(r) can be expressed as

/n tfam'f(l ""‘EZ“”’(”J))dL (o /m (1+H(m))dF )]

AN 7(25 H’;”"(_m))dLn,r(m) -/ 7(A=EC m))dF(m)] 2.9)

L —oa — 0

Then the first term in (2.8) is decomposed to T3y Bin -+ Ty Cin where
B & [1(357)e{vatsa, - P},

sz(ﬂ ,,.—H)J’(HH)dF

fJ(1+H ,‘r)d{\/— o — M)}’

> [va(#, - B) (%)d(gn,, - F),

\/_f[ (1+H ,1-) _J(%@',) _%(HR,THH)J'(#)]dKn,T-

Note that (1+H)/2 = F due to the symmetry of I, which we shall use repeatedly
mthout mentmn

ieg

B2'n.

[]>2

Cln |

i~

Gzn

i[>

031'3

FLY



to prove that «/n[K, .(z) — F(z)] converges to the process on the right-hand side
of (2.5). Now we have

V| Kngp(z) — F(z)]
Va B Ta(G@))i) — K HG(e)im)] + va h T (G le)ir) — BH(G (=) 60)]

L UGE) (MG
(NG (@) (NG lay o))

(2.8)

Here G*{z) is a random function taking values between G(z) and I',(G(z)), and
r* lies between #y and ». Then

U.(G(=)  U(G(z)) ”
Ri(A=Y{G*(z);r);r)  hi(F(z);8)
| e = St I AN ER A LA CEO




It follows from Glivenko-Cantelli theorem that ||G*(z) — G(z)|| == 0. Also
r* — By uniformly in & as n — oo. Thus the first term converges almost surely -
to 0 by virtue of (A.4) and ||U,(G(x))|| = O(1), which is an easy consequence
of (2.4). Next by (2.4) and (A.2), we see that the second term converges almost
surely to 0. Furthermore it follows from (A.2)-(A.4) that

ho(h~HG(z);7")ir*)  ha(F(x);60) “
Ri(h~1(G(z);7*);r*)  hi(F(z);60)

Therefore (2.8) converges almost surely to

UG) _, ha(F(z)ifo)
h1(F'(z); bo) ha(F(z); 60)’

uniformly in & and b, which completes the proof of the lemma.




Thus
2 o k1 U TU(R(t60) | U(A(L—t;60))
2B = =3 Tt T (Tt fo) ]‘”‘“

bfl ha(t;60) | ha(l —2;60)
2J1 Lhi(t60) ° ha(l —t560)

B =

i=

]d.}’(t) +A(1/2). (213)

Next we show that E 1C'm %5 0. For Ol,,,._. note that H,, < nf(n+1).
It can be seen in the similar way that the second term in (2.9) converges in
probability to
1 f3TURE60))  U(R(l —1;6p))

2 0o 1 hl(t;jﬂ'g) + h1(1-—t;’91j) ]dj(t)

b 2 [ha(t;60) , ho(l — t;6p)
+ fﬂ AR BU)]dJ(t) ~ M1/2).

we obtain asymptotic linearity: for any B > 0

RS (r) + ~]2—'T - %br(ﬂn)

SUp
jb|<B

Zs0, (2.14)



where

U(htst0) , U(h(L =t )
= f [ T W ) ]dm)'

Now let € > 0 be a given number small enough to satisfy € < 7(6o)/2. Take
B¢ > 1 so large that
8
P{]TI > B‘EZ( n)} < %

By asymptotic linearity (2.14), there exists an N, such that for all n > N,

P{ sup > e} < Z.

tb{ < Be 2

Thus for all n > N,, any value by, of b which minimizes |/n5,(r)] = |VnSx (6o +
b/+/n)| lies in [—Be, Be] and it follows that

[ba — T/7(f0)] < ¢/7(60)

with probability exceeding 1—¢ (note that T/7(8p) minimizes | ~T'/2+-br(80)/2).
Noting that /n (6. — fo) is a value of b which minimizes |/nSy(r)|, we obtain

A p T
‘\/'E('?n - 30) . T(ﬂu) .

VaSa(s) + 5T ~ 27(6o)




iid H'> weakly dependent ~

stationary process : strongly mixing or associated

For a function g on I I = _[El,l]-nr R), define |g|| = supyes |9(2)|. By
Skorohod’s representation theorem, there exists a probability space on which a
sequence of i.i.d. aniform (0,1) random variables Up;’s and a Brownian bridge U/

are defined and satisfy

|Un = Ul =0, n-— oo (2.4)
where
& _ n
rﬂ(t) = " IEI[Un;Et]: i€ (0:1):
1=1

>

\/E(Fn(t) "'t): tE (ﬂ: 1)-
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WEAK CONVERGENCE FOR WEIGHTED EMPIRICAL
PROCESSES OF DEPENDENT SEQUENCES

By QI-MAN SHAO! AND HaO Yu?

National University of Singapore and
University of Western Ontario

While the problem of weak convergence for weighted empirical processes of
independent sequences has been intensively studied in recent years, there are
only a few studies concerned with the counterpart for dependent sequences
[ef. Yu (1993a)]. In the latter case the limit process is changed from being a
Brownian bridge due to the appearance of covariances among observations.
Namely, under certain conditions, we have

(1.7) () =5 B*) in D[0,1],

where B*(-) is a zero-mean Gaussian process specified by B*(0) = B*(1) =1

and
EB*(s)B*(t)=sAt—st

(1.8) - + i{COV(I(Ul <s), (U, 2?))
- £=2
+ Cov(I(U,, < s), I(U; < 1))}



11d case
Also Pyke and Shorack (1968) show that ||(Us(t) — U(t))/q(t)]| == 0 for ¢(t) =
[w(t)]}/2~¢ for some 6§ > 0. Note that this implies

Non-iid case (weakly dependent): a-mixing or associated.

Proposition 2.2 (Shao and Yu) Suppose that (£,)ney is a strictly stationary sequence
of U(0, 1) random variables which is also strongly mixing with the mixing rate

a(n) = 0= for some § > 1 + /2, and 7 > 0.

Then U, /q £ U/q in D[0,1], where q(u) := [u(l — u)]Y/2-1/ ) and U is a Gaussian
process with U(Q) = U(1) = 0 and

E[U(w)] =0, E[U@w)U(w)] = o(u,v).

a(n) = sup a( FF, Foo ) Ty =0(X;,n<i<m)
>1

1443 <0 = - (%, %) = sup |P(AN B) - P(4) P(B)|.
g

Bes
2(1+\E)§2¢9, ==> 0<i£ 1 _ €%
20 2(1++2)
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2. MAIN RESULT AND APPLICATION

THEOREM 1. - Let (X,).ez be a stationary associated sequence with
continuous marginal distribution F. Assume that, forn € N*,

Cov(F(Xy), F(Xn)) =0(n™?), forlb > 4, (10)

Then
G,() > G() inD|—oc,+0c0],



This argument in the weak dependent case goes
very similar (almost the same) as in the case of iid.

The only difference would be
(1) assumptions on the power, and
(2) asymptotic variance.

(3) Need to examine the probability distribution of rank vectors

if it is well asymptotically uniform over (0,1),or distributed to
satisfy that sum of rank score to be zero:

Sn(r)é-”l;.: 3 -’((H%tf—?)/?)% 3 J((l—%%?)/%. (2.1)

1:Z;(r)<0



(2). © and p . Simultaneously.

(2). X,,...,X,, distributed with G(x)=h(F(x- p): 9).
X.= u +& ,i=1,2,...,n. € follows G(x)=h(F(x): 0)

Sl,n (rl q) and S2,n (rl q)



n

nt Z I[XiSZ]’

=1

1>

5 o z+iX) - ((+1)X(
G'n T)= , TE -Xi ’Xi
(@) (n+1)(X(41) — X)) [ ) (+1)]

Zi(r) 2 G’;l (h( :_ 1 ; 'r)) , Z,(r) are aproximately distributed arround £ with F(s -2).

3. Simultaneous Estimation of x and ¢
In this section, let Xy, X2,..., X, beii.d. with d.f. G(z) = R{(F(z— ro); fo).
The parameters o and g are both unknown and are to be estimated simulfane-

ously.
Let Z;(r) be as in Section 2 and define

Rf (r,q) = (the mumber of {j : 1;(r) ~ a] < |Z:(+) - al}):

Note. For a value of r close to the true parameter value,
Z.(r),i=12,...,n are approximately symmetrically distributed
arround zero. Hence this g is a generalization of Hodge Lehmann
estimate of center of symmetry. (H-L from a linear score function.)



In this section assume that F has a bounded continuous density f. Let Ji(-) and
J2(:) be the score function used for estimation of § and respectively. J;(-) and
J2(-) satisfy the conditions for the score functions in Section 2. In addition, J1(+)
and Ja(:) are assumed different enough to satisfy

! [ha(t;80) | ha(l —t;6p)
fo .hl(t;90)+h1(1—-t;90) 4J1(t) ff(F t))djl(t).

1 [ha(t; 6o) ha(l —t;6p)] .
L e * mameay &= ] FE-1(2)dTa(t)

(3.1)

The rank statistics for the simultaneous inference of x and # are defined as follows:

Sin(r,q) 2 1 S ((1 R (r, q))/2)+_ S g ((1_ R (r, q))/g)
n :Z;(r)>q 1:Z;(r)<q
(3.2)
and
1 Rf(r,q) 1 _ Rf(r,q)
Smn 2L ¥ 5 ((“'Tm“)/ 2)*';1,:%;2 ((1 )/ 2)-

(3.3)



Our estimators of u and 6 are derived from the simultaneous equations Sy, (r, q) ~
0 and Sa,(7, q) ~ 0. Define

D, & {(r, q) : 22: |Skn(r,9)| = min}-

k=1

D, C © x R is not empty for all X;,X5,...,X, since Sg,(7,q), as a function of
r and ¢ with fixed X1, Xo,...,X,, takes on a finite number of different values.
Ska(r,q), (k = 1,2) are nonincreasing in each coordinate r and g separately, but
it does not ensure the convexity of D,, which may be used to determine the
estimators uniquely. Our estimator (6, fln) is thus defined to be any point of
D,,. Since (én, fin,) may not be unique, there may be some arbitrariness in this
definition. But, as will turn out in Theorem 3.2 below, all points in D, are

asymptotically equivalent; so, for large n, it will not matter much how (6,, fi,)
chosen.



To investigate the asymptotic behavior of Si,, we assume, in addition to (A.1)
with J replaced by Ji and (A.2)-(A.4),

(A.5) [Tk ()] < Mu(®)] 71", 6> 0.

We also introduce the following notation: let r = 6y + b1//n, ¢ = po + bo/\/n

and
!
3

Sn(r:0) = (S1n(r,9), S2a(r,0)), B2 (ba,b)".

Furthermore, for k£ = 1,2

A LU 6)) , U(h(l—t;6p))
T"’—/o { hi(t:00) | hi(l— 1 00) }’”’c(t)’

and set T 2 (T1,T2). Let D = [di;] denote a 2 x 2 matrix, where

A Y[ ha(t;00)  ho(l —t; 90)}
dy 2 T (b),
k1 fo {hl(t; 6o) + hi(1 — t;80) £(2)

1
-2 [ fFEE)LE) (R =1,2).
0

>

di2

Note that D is nonsingular because of (3.1). Then we have the following asymp-
totic linearity result.



Theorem 3.1. Suppose that F has a bounded continuous density f and that
(A.1) with J replaced by Jy and (A.2)-(A.5) all hold. Then

VnSka(r,q) + "‘Tk — —(dklbl + drobo)

max sup

——>O n— oo, (3.4)
k= 12|bk|<B

for each 0 < B < oo.

Using matrix notation, express the relation (3.4) as

VnS,(r, q)+——T——Db

sup

(3.5)
bxl<B

Theorem 3.2. Suppose that all the conditions of Theorem 3.1 are satisfied. Then
each point of D, is asymptotically normal N(0,D-1Z(D~1Y), that is,

\/ﬁ( ?" — b ) <, N(O,D"lz(p-l)’),

Hn — K0

as n — o0O.



A Simple Linear Regression Model.
(On-going trial)

Y=a+Bx+e. Where = G(.)=h(F(.):0)
F(.) symmetric around zero.

Y=a+Bx.+€ ,i=1,2,...,n
€. ,i=1,2,...,n :weakly dependent(associated),

And distributed with G(.)=h(F(.):0)
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Motivations.
Data in Financial Engineering:
Time series data of Hedge Fund return .

: In a usual regression where returns of portfolios or of stocks are
regressed on indices (stock index, for example), the residuals are
rather implicitly regarded as iid. They may be almost so, but they
may not be so.

In practice, they do not care about estimation error? (In

econometrics, or in academics, they surely care about it.)
o 3K 3k 3K 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 5k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k %k sk %k sk %k k

: When hedge fund returns are regressed on market indices as in
the following, the residuals do not seem iid, but may show some
dependence, such as autoregressive.

: This kind of regression is often done in a search for possibilities
of Hedge fund replication.



Estimate B, 0 and a simultaneously.
Sin(b,r)forB,orS, , (b)

S, (b, r, a)for6, and

S;,(b, r, a) for a.

Mathematics.

(1) use the convergence of weighted empirical distribution
functions, {Y- Bx} empirical distribution function that is
described in Wellner & Shorack(1986) and others.

(2) follow Hajek& Sidak(1967) and Jureckova (1971) with
Jaeckel (1972), Also Sen& Jureckova(199?) and Wellner
&Shorack (1986) with Shao&Yu (1996) and Louhichi(2000), in
order to prove asymptotic normality of linear rank statistics in
our weakly dependent case. We are on the way to prove
fundamental theorems for distributions for rank vectors.



Can we do the same for a regression model as for a location only ?
Can we base everything on symmetry of F with empirical distribution functions ?

Let e (B)=Y.-px ,1=1,2,..,n.
(1).Note that e (£) is distributed with G(x-a)=h(F(x-«):6,).

(2).Note also that E[e, (8)] = + I_Z xdh(F(x):6,)

=a+[ F(t)dn(t:6,)
=a+m(6,)
where the second term m(6,) is non-zero unless 8, = 6"
(3).Note that one can estimate £ based on rank statistics
with ranks of e, (b),i =1,2,...,n without simultaneously estimate
« and g,. This is an important feature of rank statistics in
linear regression models and estimates derived from rank statistics.



Here, we will estimate « and 6,.
1 n
LetE (x:b)=——-) I{e(b) <x}.
(X b) n+12,:1 1&(0) <x}

Let E_(.) be a piecewise linear version of E_(.).
(4).Note that E™*(t)=a+F '(h*(t:0,)) or E*(U) 2« + F*(h™*(U:6,))
and that
E*(h(t:6,))=a+F*(t) and
E~*(h(U:8,)) has a distribution F(x-c),
for E(x)=P{e. (f) < x} and an uniform random variable U on [0,1].

Now, let Z.(b, ) = E. (h(—— : 1)), i=1,2,..., n.
n+1

Then, these are expected to distribute symmetrically arround «;
approximately with F(x-a).

(5).Note that expectation E[U ;) ]=—— and U ;- #converges to zero.
n+1 n+1

(6).Note that m(8) can be estimated by m(é}.\



and let R; (b, r) = rank of Z, (b, r) among {Z, (b, r), ]=1,2,...,n}
= ZLI{Z (b, 1) <Z(b, 1)}
let R, (b, r, a) = rank of |Z, (b, r) —a| among {‘ ;
= Z';:ll{‘zj(b, ) —a|<|z,(b, r)-af}.
($,0,a) < (b,r,a)
B S,.(br) = %Z?_lJl(Ri(b, )X, —X)
(7).Note that this kind of rank statistics was given
in Jureckova(1969,1971 and others) and Jaeckel(1972).
(8).Note also that there is another choice of using this without r.

_ 1 1R(bra) 1R(bra)
0 : Sz,n(b1r’a) - HZ' Zi(b.r)>a 2( 5 ) n ZI Zi(b.r)<a 2( 5 )

_ 1 1R(bra) 1R(bra)
o . Sl,n(b’r’a)_ HZ' zi(b,r)>a 3( 2 ) nz|2|(br)<a 3( 2 )

(9).Note that these two rank statistics are similarly defined to
Tsukahara and Miura(1993); i.e. a version for a simple linear regression model.

=1, ,...,n}




i.i.d. case.

Jureckova (1971,1969) and Jaeckel (1972).
Hajek & Sidak [Theory of Rank Test] 1967.
Estimation of B based on rank statistics, where the
distribution of € can be asymmetric.

Note that B can be estimated separately from p and ©.
We take advantage of this nature .

Plan of a proof.
One can use their result for estimation for .

Then, in order to estimate p and 0, one may use the
estimated B in Y;— Bx;, and work on empirical distribution
function with the above X, replaced by Y,— Bx., where
estimated B converges to a true B.

Note that for iid case this can be done by conbining the
results in the Jureckova(1971) and
Tsukahara&Miura(1993). It will be a new result.



Dispersion measure D(Y-Bx).
Estimator B ; minimizes D.
similar to LSE, but different in replacing (...) with ranks.

D’ is a non-decreasing step function of fB;
Steps at (Y- Y;)/(x;—x;) , 1 si<j<n.

Note that ranks are shift-invariant, so that intercept a or p does not
matter in D’.

D(Y — BC) = X ay(k)(Y;y — Bc*™) ,
dD _

D'(Y — BC) = E = — 2 ay(k)c'® .
For fixed Y}, Y,, -+ -, Y, and for any §, the residuals are
(2.2) z, = Y; — Bct i=1,2,..-,N.
The ordered residuals are -
Zgy = Yigy — Pct® k=12,...,N,

where i(k) is the index of the observation giving rise to the kth ordered residual.
(If two residuals are equal there is an ambiguity in i(k) but not in z,,.) The



Non iid, weakly dependent cases.

Proceed in the same way as in iid case.

Numerical calculations for the estimates of 8 is the same as
in iid case.

But, the probability distribution of the estimator or the
estimation error are different in the two cases.

Approaches for proving asymptotic normality.

: (1). Approach in Jureckova and Jaeckel. This does not look
using a convergence of weighted empirical distribution
function (in iid case).

: (2). Can we use “a convergence of weighted empirical
distribution function “ framework for this problem?

Y-Bx , i=1,2,...,n. Yes, we can. See Wellner & Shorack(1986)
for iid cases.



References.

:Miura.=j#(1985). “Hodges-Lehmann EH#E5E ELehmann 33 iR
Special Lecture. Annual Meeting of Japan Society of Mathematics.

: Tsukahara, H. & Miura, R.(1993).

“One sample estimation for generalized Lehmann’s alternative models.”
Statistica Sinica. Vol.3. 83-101.

: Tsukahara, H. (2011). “ Estimation of Distortion Risk Measure.”

Working Paper. Department of Economics Seijo University.

: Shao,Q.M.&Yu,H. (1996).

Weak convergence for weighted empirical processes of dependent sequences,
Ann. Probab. 24 (4) (1996) 2052-2078.

: Louhichi,S.(2000). Weak convergence for empirical processes of associated
sequences.

Ann. Inst. Henri Poincaré, Probabilités et Statistiques 36, 5 (2000) 547-567

:Azzalini, A.(1985) .
“A Class of Distributions which includes the Normal Ones.”

Scandinavian Journal of Statistics. Vol.12. 171-178.
:Azzalini, A.(2005).

“The skew normal distribution and related multivariate families.”
Scandinavian Journal of Statistics. Vol.32. 159-188.

:Lehmann, E.L.(1953) . “The power of rank tests.” Annals of Mathematical Statistics.
Vol.24. 23-43.

: Hallin,M. Jureckova, J.and their colleagues: “Serial and Nonserial sign-and-rank
statistics: asymptotic representation and asymptotic normality.”(2006) Ann.Statist,
Jaeckel, L.A. (1972). Estimating regression coefficients by minimizing the dispersion of
the residuals.” Annals of Mathematical Statistics. Vol.43. 1449-1458.

Jureckova,J.(1971). “Nonparametric estimate of regression coefficients.” Annals of
Mathematical Statistics. Vol.42. 1328-1338.



Thank you for your attention.



