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ADAPTIVE CONFIDENCE INTERVALS FOR
A LOCATION PARAMETER

Ryozo Miura

1. Introduction.

The nonparametric confidence interval for a location parameter which is
derived from a rank test was introduced by Lehmann (1963). He derived it
from the Wilcoxon’s signed rank test and proved that the length of the de-
rived confidence interval, multiplied by the square root of the sample size, is
consistent with the product of two constants; One is the upper percentile
point of the standard normal distribution and the other is the square root of
the asymptotic variance of the point estimator derived from the Wilcoxon’s
signed rank test. Shorack (1970) extended the consistency result to the case
where the confidence intervals are derived from -general signed rank statis-
tics.

In this paper we are concerned with the constructions of confidence inter-
vals which work flexibly when the underlying distribution is vaguely known.
We consider the situation which the gross error model in Huber (1964) de-
scribes with the arbitrarily fixed central distribution and the unknown
amount of contamination, and construct the adaptive confidence interval
which has a certain asymptotic optimality when the efficiency is measured
in terms of the Iength of intervals.
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2. Signed Rank Statistics and Confidence Intervals.

Let X;, X, ..., X, be independent and identically distributed random
variables with the distribution function Fo( « —6,), where 4, is the un-
known location parameter to be estimated. Assume that F, is continuous
and strictly increasing, and also that F, is symmetric about Zero, 1.e., Fo(x)
+Fo(—x)=1 for —oo<{x<co. Fy is otherwise unknown, For —co <4< co
let R,(f) denote the rank of | X;—¢ |among {| X;—6|,j = 1,2,..., n}, and sgn
( « ) denote the sign of the variable, i.e. sgn (x) = 1 or —1 according to x>
Oor x<0. Let af » ) be a score function, that is, a nondecreasing function
defined on the unit interval (0,1) with a(0) = 0. Assume a{ « ) is continuous
and differentiable except at a finite number of points. The signed rank sta-

tistic evaluated at | X;—@|, i = 1,2, ..., #, or simply, evaluated at @ is defined
as

LZQ(

'

R(6)
n+1

) sen (xi—0) (270))



We note that T,(6) is a nonincreasing step function of § since a( « ) is non-~
decreasing. The jumps occur at § = (X @y +X¢5)/2 with the amount of
jumps 2 {a ((—i)/(r+ D) —a((—i-+1)f(n-+-1)} for i < j, i, j=1,2, ...
Here X;,,i = 1, 2, ..., n denote the order statistics of X;,i=1,2,..,n

In Figure 1, a typical graph of 7,,(6) and a distribution of Tr(,) with 8,,,

Figure.1. The graph of Tn(6) as a function of 4.
The distribution of Th(dy).
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Since the distribution of 7,,(4,) is calculated under symmetry of F,, we

define

ta(r)= inf {x: Popy(T(00)>x) = r/2}
for a certain set of numbers y in (0, 1). Noting that the distribution of T,,(6,)
is symmetric about zero, we define

Gn = sup {6: Tp(6) > t,(y) )

Bn = Inf {8: To(0) < —tof) ).
Since Py {0y < 8,} = Py {00 = 8n} = 7/2 from our definition, we have 1 —
7 = Py {0n < 05 < §,}- The absolute continuity of g, (See Hodges & Leh-
mann 1963, Theorem 1) implies | —y = Po{0n < 00 < 6,) so that[6,, g,]
is a (1—y) X 10077 (non adaptive) confidence interval for &,.

— ——
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For the above g and any ¢ such that 0<<e<C1, define g,, the density func-
tion of the Huber’s least favorable distribution, as follows.
(1—¢) g(—x;) e=t=0)  for x=<—x,
g{x) = (1—¢) g(x) for —xy<x=<x,
(1—¢) g(xp) e === for x,<x

where x,>>0 and £ >0. x, and k are determined by the relations
(i) x, and —x, are the endpoints of the interval where &' | <k

(i) S; g(x) dx+ ’8 (x“) !

l1—e -




3.3. An Example.
For the sake of applications of the adaptive procedure, we illustrate the

simplest (trimmed Wilcoxon) case and give some comments.
When G is logistic, i.e. G(x) = (14¢e7%)"1 for —co<x< 00,
J(t) = 2t—1 and a(t) =1t for 0<:=<1.
For 0<e<1, we have by definition,
(2a—1)/(1—e) for 0Zi<a
J (1) =2t—1))(1—¢) for a<ti=]l—a
(1—2a)/(1—¢) for 1—a<<i=<1

and

a(6) ={t/(l—s) for 0<t <12
) (I1—2a)/{(1—-¢) for 1-2a<t<1.

The statistics with these scores are called “trimmed Wilcoxon®’.



The relation of the constants «, ¢, x, and & is given by the equations

e = (1=Rk)/(1+K%), xo = log (1+K)/(1—K))
and k =y (1=2a)/(I+2a) - |

It is easily seen that when any one of the constants is given, it determines
all the others uniquely. The above relation implies 1 —¢ == 4T —4g2 . There-

fore the trimrhed score function for the present case is for 0<a<1/2,

1 —4g? for 05112

aa(t) ={
¥ (1—2a)/(1+22) for 1 2a<t<1.

Figure 2, Graph of a.{1).

« indicates the amount of trimming.
The graph of a,, is given in the Figure 2.




Figure 3 displays the probability distributions of T,,(8,) X # in thé two

cases where the score functions are the above defined ¢, with ¢ =0 and o =

0.15.

+ (M) :number of different values tak isti
> s taken by Statistics

Figure 3. Distribution of Tu(d)x7n n =5 a=0,0.15.
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2 =015 The absolute values which Tn(fo) X n takes when a = 0.15 are
0.21 1.89 2.30 3.98 4.40 6.08 6.50 8.60 10.69 12.80 14.38.
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HEFDKITHR
In the case of the special score function: a(¢) = ¢ for 01, Lehmann
(1963) proved that 47 (§,—0,) converges in probability to #,/4/ 3 r Jo3(x)
dx as n— oo, where f; is the density function of F, and ¢, is the 100 y/;lpper

percentile point of the standard normal distribution. Under the conjecture of
Huber (1970), Antille (1972) proved under some regularity conditions that

the distribution of 4 n {¥ n (G—8,)/2t,—1 /Jﬁj for(x) dx} converges as n

— oo to normal with mean zero and variance (S fo3(x) dx—(j for(x) dx)®)/(3

({7 anyo.



In the case of a general score function, Shorack (1970) proved the consis-
tency result, using the everypath argument of the uniformly convergent
empirical process. The asymptotic normality in this case has not been
proved yet in the literature. In this paper we are concerned with the consist-
~ ency result which is stated in the follou&né theorem. Let Hy(x) = Fo(x)—
Fo(—x) for all x 2= 0. For any real number b, let F(x) = Fy(x+b/y ) for all
x and also let H(x) = F(x)—F(—x) for all x = 0. Then F and H are the
distribution functions of X;—(#,+5/y %) and | X;—(0,1-b/y n )| respective-
ly. Let F,, and H,, be the enpirical distribution functions of X;—(#,+5/y/ 1)

and | X;—(@+-b/W n) |, i =1, 2, ..., n, respectively, i.e.

Fi) = 1fn ;1 (1 Xi— o7 | < ) for all
 and |
H,(x) = 1/n ;21 I{]|X;—otblym)| < x} forallx =0

where 7 { « } is the indicator function.



Theorem 1.
Suppose that for any ¢>0, a( » ) is of bounded variation on [0, 1—¢)
~and also that a(?) < constant X (1—2)"7and 4'(¢) < constant X (1—¢)~% for

some 0<p<C1/2. Suppose also that for any fixed B>0, we have
™ vVu { ra(H (x)) dF (x)—-ra(Hu(x)) dFﬂ(x)} converges
0 0

as #—o0 to &4 uniformly in |5 | < B for some 4 > 0.
Then 4 1 (6,—8,) converges in probability as #1— oo to rr{glaﬁ(l 1) du}lfz
: 0
/4.

Shorack (1970) also remarked some regularity conditions under which
(*) holds with

4= 25 & RFy(X)—1) fi2(x) dx.

4 = A(a) is called the efficacy of the signed rank statistic with the score
function a, or simply the efficacy of a.



As Lehmann (1963) suggests, this theorem enables us to compare the effi-
ciencies of two different sets of confidence intervals when the efficiency is
measured in terms of the length of intervals. Then the asymptotic relative
efficiency of the two sets of intervals is the ratio of limits of their length, that
is, . | .

1/2

S 0 @ (u) du % A(az)
Sl as*(u) du A(a,)

where ¢; and a, are score functions of statistics from which the confidence
‘intervals and derived. The comparison can also be made for the confidence
interyvals other than those derived from rank statistics. The asymptotic
relative efficiency of the confidence intervals is the same as that of the cor-
responding point estimators of the location of symmetry. The important
fact is that when £; is the density function of the underlying distribution the
signed rank statistic with the score function
a(t) = B E /)
Jo(Fa™((+4-1)/2))
derives the asymptotically efficient confidence interval.
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The next theorem is an extension of Theorem 1 in the direction that the
score funtion be a random element. Let C be the class of score functions
which are continuous on the closed interval [0, 1], and continuously dif-
ferentiable except at a finite number of points. Let the derivative o’ of
a ¢ C be defined such that a'(t) = {a'(t 7)+a'(¢*)} /2 at the point ¢ where a
is not differentiable. We assume that sup sup | a(¢) | and sup sup | a'(t)] are
both bounded. Since a(r) is defined also at £ = 1, we write the score by-
a(R,(9){n) instead of a(R,(8)/(n+ 1)). This causes no change on the results

of Theorem 1.
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Theorem 2.

Let 4 be a function of Xy, ..., Xns and de C. Assume that sup | 4(f)—ao(t) |
_? .0 as n—>oo for some g, ¢ C. Assume also that C'1s uﬁffggmly equicon-
tinuous on [0, 1] and that the class of @', ae C is uniformly equicontinuous
on the differentiable intervals, 1.e. for any ¢ > 0 there exists ¢ > 0, which
is independent of a € C, such that |s—7| <9 implies j a'(t)—a'(s) | < ¢ for
any s, ¢ in any one of the differentiable intervales of a, for all a ¢ C. We

assume that F, has a bounded positive density on its support. Then « 7 (G»
| /
(8)—0,(8)) converges in probability as #— oo to tr{rauﬂ(l-—u) du}l E/J(aﬂ)
) 0

where 4(ag) = 25‘” a0/ (CFx)—1) () dx.



Proof. Let B be ';ny fixed positive number.

70 5 425D sgn (-0)
—Lpo(MO) L 5 a(27)
= 2

e
_ { L A(H (%)) an(x)*—;; :1 “(%)}
=22 L,(0).

First we show that the statistic 7 T(6) as a function of b coverges in

probability to 2 (¥3+-54) as n—co uniformly in | b [ < B where ¥, is the
limit variable of J‘;{L ao(FL,(x)) an(x)—S a(H ) dF(x)}
]

For simnlicifv we accnime in the mennt dhnd oo 1 -

~t 1 .



though we do not mention at each step. The method in the proof is that of
Theorem 1, and the notations U, Uy, p, I',, ——» are taken from Shorack
(1972). The definitions of them are referred to the paper.

Now y7 Ln(6) = I+ I+ 111,41V,
where I, — m{r GCH(x)) an(x)—S: 6(H (x) dF(x)}

[\ aa )| " a(B) aF()]
1, = ] { a(Ho(x)) dF () — j " ) au:(x)}

E =

{S: ag(H(x)) dF(x)—“— g‘; ( n ) }
S Sy

0 {=1

r L A | o - - o



I, is decomposed into five parts, and each of them are examined in (i)
through (v).

I, — ﬁj" G(H(X)) d(Fo(x)— F(x))

V7| EEHE) Ha)— HE) d FGo

+ 77| @A) (Hax)— HE) d(Fa)— Fo)
| AL ) — )~ (B ()~} )

B ﬁ{ S:‘ (oo (%)) an(x)_S: ao(H(x)) dF(x)} .

2 I].’n'Jf‘Iz,n—I_Iﬂ,ﬂ_I_I‘hﬂ_Iﬁ:n *



_— i )

O ha= | GHE) UL
= 41) Un()—4(0) Un(FO)— | UnF(x) da(HG)

~ _r Un(F () &' (H(x)) dH(X) .

Since

S: U(F(x) @'(H(x) dH(x)—-S: U (F(x)) & (H(x)) dH(x)

< WU 6 W) dHE
a
= o (U, U,‘.I)S:lL &(t) dt
0
< o (U, U,) Mg 250 asn—co
where My =sup {a'(t);t¢({0,1, acC}, we have

Ilm—{—ng: UF(x) d’(H(x))-dH(x)} —°,0 asn—>co.
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In the proof of Theorem 2, we can also see the asymptotic normality of
the adaptive point estimator 6,.(4) of 8, which is defined as the minimizer
of | T(6)|, or equivalently of 4 (6.,.(8)—8,) which is defined as the b
which minimizes | La(b) |. We can further see in the proof that 7 (9a(4)

- Bnla)) ——0  asp—=co.



3. Adeptive Confidence Intervals,

An adaptive statistical procedure in general consists of a family € = {s,,
2 € A} of simple (non-adaptive) procedures and a selection rule (or an esti-
mator) } of 2 which is a function of observations. This procedure may well
be applied when it is certain that one of the members in C has an optimal
performance, but not certain of which one.



3.1. Family of trimmed score fanctions.

When £, is only approximately known, a gross error model F, = (1—¢)
G+¢H can be considered, where G is a known distribution, & is an un-
known distribution and ¢ is a number such that 0 < ¢ < 1 and indicates
the amount of contamination by gross errors. The adaptive procedure in
this section is concerned with this . The construction of a family of
trimmed score function is due to Huber (1964) and Jaeckel (1971 a).

Let G be a.symmetric distribution function. Assume that G has a convex
support and a twice continuously differentiable density function g such
that —log g is convex on the support of G.



For the above g and any ¢ such that 0<<e<1, define g,, the density func-
tion of the Huber’s least favorable distribution, as follows.

(1-—~¢) g(—x;) e¥=+=0)  for x=<—x,
gn(x) = 3 (1 _3) g(x) for —Xp<lX gx;;
(1—¢) g(xg) e7¥%=%0) for x,<<x

where x>0 and £ >0. x; and k are determined by the relations
(i) x and —x, are the endpoints of the interval where l&'fg| <k

@ [" s@ a5 = 1

The score function which is best for g, is the trimmed score function.



In correspondence to the above g,, define

ag(t) = Jg,(t—_;L) for 0= <1
where .
g, (G, (1))
Joll) = — (G, 7w)

—k for 0Su<a
§GI0)  tor w
— ¢ <uLl—a
g(G. (W) -
k for l—a<uzl.
and «a = r g.(x) dx.
x0

G, is the distribution function of the density g, and relates to G by

2t—e
-1 I -1 t .
G, =G (—-——2(1 a)) for 0=t <1
1—2a

We note that 2G(—x;) = 1— T

We write @, or a, instead of a,,, and J, or J, instead of J,, for the nota-

tional simplicity.
Let o, az be any numbers such that 0<a;<ap<l 2. Let C= {a,, €

fay, Cfa]} .



Trimmed scoreZ{E>7=-1EEDHTEEDH#
EREDINEDBZHTET 5,

TrimmingDEDEHEZROH T, HEEED
AR T 5, WinT DHEEREDTTHD
HEENR/PDNTHASTrimmingE ¥ i
T HUYEYBHETE LIRS,

(FHEZRDHEEEIZOVLTIE, =Hw(2),3) 25 R)



3.2. Selection rules, '
For all « ¢ [a, as], the ‘asymptotic length of the confidence interval
derived from the signed rank statistic with the score function a,, multiplied

by S n,ist, {S: a,X(u) du}m/ﬁ(aa) by Theorem 1. Our interest is to choose

/ .
a which minimizes ¢(a) = {Sl a,? du}l 2/4(&), where 4(a)= 4(a,) for sim-
1]

plicity. Let a, be such that o(a,) = minimum ¢{a). Note that such ay exists

e [eg, @gl

by the continuity of a(a) on the compact set [e;, ag]. Since the numerator is
known, 4(e) is the quantity to be estimated. The unknown factor in 4() is

Fq. Schweder (1975} proposed the estimator of 4(a)

a0~ B 1)y ()

based on the window method, Another estimator

~ ] n-lnai 0 25/n
(o) =— 2] Iy ( )
42 =~ n) XG40 —X(—a)

based on the spacing method was proposed by Miura (1976, 1980). It was

proved that | Ja(a)— 4(a) | —2 .0 as #-»>c0, uniformly in « € [ar, ;] under
the stronger conditions on g and F,.



2. ASYMPTOTIO DISTRIBUTION FOR A PIXED SCORE FUNCTION

{UE+A)—U(i—
2A[n

Let, ¥Y; = Ak for 2 =K-+1, ..., n—K.

5
Lemma 2 : sup{] ¥i—1| :4 = K+1, ..., n—K} < Op(A—*(Zog %) )

Proof : By an application of Lévy’s model (see, e.g., Ito and Mckean,
1965, page 36) and Theorem 4.5.2. of Cs6rgd and Révész (1981), where the
definition of B,, also appears; we have

71 = 8 a{ a0~} B, (24)]
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.. - ~ 1 /3,
Let @ be such that §(2) = minimum G(a) where (a) &= {{ a? du} /17
oL [El, ﬂg] o 0

(a). Since g(a) is continuous in &, Lemma 3 of Jaeckel (1971 b) implies &

— g as 00, and hence sup | as(t)—a, ()| 50 as #—>oco. There-

44 |
fore, by Theorem. 2, we have the following statement.

‘Theorem 3.
Under the assumptions of Theorem 1 in Miura (1980) and Theorem 2 in

the section 2, we have for any 7, 47 (Gu(as)—6,(az)) LN t, - olag) as n
—o00. In fact 7" (Ga(82)—Gn(2ee))——0 and 47 (Gn(a2)—Bn(@yy)) —2—0

as H1—00.



Theorem 3 means that when the best o is unknown, but is known to lie
between «; and a,, the adaptive procedure. is asymptotically as good as
knowing and using the best «. The adaptive procedure is also an asymptotic
minimax solution to Huber’s problem with the general G, and is asymp-
totically efficient when Fy= G,



We may obtain an adaptive confidence interval in a direct manner. For
each n we have a finite number of a’s which provides different signed rank
statistic and hence different confidence intervals. Then we pick up, as the

adaptive confidence interval, the one which has the minimum length among

the finite number of confidence intervals. This is apparently the best for all
7 and all o ¢ Q. This procedure, however, requires an enornious amount of
computation. Theorem 3 yields also that our adaptive confidence interval
~ based on the estimation of efficacy 4, which requires far less computation, 1s

asymptoticall}" as good as the all-the-time best confidence interval as well.



It was presented in Miura (1979) that

Tala, X+a) = Jolar, X) for all real numbers a
and

Jnlat, X/b) = 5 Qe X) for b0

This means that the change of shift and scale of the observations does not

affect the selection @ of «, 1.€.
A(X-a) = a(X) and @(X/b) = aX).
Therefore, the adaptive confidence interval is shift and scale equivariant,
i.e.
[0,(2, X+0), Fa(@, X+ a)] = [0:(@, XD+, fa(a, X)+a]
for all a
and [8a(@, X[0), Gu(@> XIB)] = [3- 6@ XD = (@ 1)}
for all 5+0.
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Adaptive rank estimators of §. Let J, be the score function corresponding
to the Huber’s least favorable distribution when the central distribution
under contamination is logistie, (see Huber, 1964) ie. for 0 o < §

! (200—1)[4/1—4a?  for 0 & ¢

<
J(t) =< (2=1)[+/1—4aZ fora<it<l—a
<

IL(2oc_:—-1)/\/l—4ac2 for 1—a

The rank estimator of § based on this score function is called a trimmed
Wileoxon estimator. Denote it by W,. The form of its asymptotic variance
is reduced to

2
L)

G2W,) = (1—20)2(1 -+ 4ar) } {12 if'-}(zﬂ-l(t))fzs}



Comparisons with the adaptive trimmed mean. Let X, denote the trimmed
mean and X denote the Jaeckel’s adaptive trimmed mean.

Cl. Define the asymptotic efficiency of W, with respect to X; by the
ratio of their agsymptotic variances.

X 3 _ —&
) = | T oparspmop ) o)

X 12/(1—24)%(1—2a)2(1 +4ar),

!‘.’-F(Wa, f )

It may be worthwhile to state here the following result by Miura (1976) since
1t is not well known. Its proof is in.the spirit of Hodges and Lehmann (1956)
and Bickel (1965), and is omitted here.



Let & be the class of all the symmetric (about zero) distributions satisfying .
the regularity conditions for the asymptotic normality of the estimates of
location. Then,

supfer(W,, Xp) : F e &} = o0
[ 0-864 X B(B)/(1—28)%(1 — 20:)2(1+ 4ct)

- for 0ag<f<?
inflep(W,, Xg) : F ¢ &} =
1 0-864 X B(@)/(1— 2,3)2(1 90t)2(14-4cx)
for 0 fga<}

where

B() = {1—|—4t—|——§- X +/ 3t 1) }{ 8t2+1—~—~§ X (14 48)+/3E+1) }
for 0 <t < %,

By a numerical tabulation of the lower bound, we find that for each given
B the lower bound is maximized at @ = # and this maximum value increases
stmctly to one as @ = f increases to 3. We find the same thing on the other
way around except for small V&IHGS of o (< 0-04) where the maximum is
attained around £ = 0-04.
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