
Maximum-expectation matching under recourse

João Pedro Pedroso and Shiro Ikeda

May 24, 2016

Abstract

This paper addresses the problem of maximizing the expected size of a
matching in the case of unreliable vertices and/or edges. The assumption
is that upon failure, remaining vertices that have not been matched may
be subject to a new assignment. This process may be repeated a given
number of times, and the objective is to end with the overall maximum
number of matched vertices.

The origin of this problem is in kidney exchange programs, going on
in several countries, where a vertex is an incompatible patient-donor pair;
the objective is to match these pairs so as to maximize the number of
served patients. A new scheme is proposed for matching rearrangement
in case of failure, along with a prototype algorithm for computing the
optimal expectation for the number of matched vertices.

Computational experiments reveal the relevance and limitations of the
algorithm, in general terms and for the kidney exchange application.

1 Introduction

Algorithms for matching have recently raised interest as a research topic on
a particular application: maximizing the number of transplants in kidney ex-
change programs. These programs have been organized in several countries, in
order to provide patients with kidney failure with an alternative to traditional
treatment, in cases where they have a donor willing to provide a kidney, but the
pair is not physiologically compatible (de Klerk et al., 2005; Biro et al., 2009;
Saidman et al., 2006; Segev et al., 2005). These programmes are based on the
concept of exchange between two patient-donor pairs: donors are allowed to
provide a kidney to the other pair’s patient, if compatibility exists, so that both
patients benefit.

Figure 1 (left) illustrates the simplest case with only two pairs, (P1, D1) and
(P2, D2). Donor D1 of the first pair is allowed to give a kidney to patient P2

of the second pair, and patient P1 may get a kidney from donor D2. These
graphs concern only preliminary compatibilities, which must be reassessed prior
to actual transplant, by confirming the availability of the intervening persons
and through additional medical exams.

The situation depicted in Figure 1 may be extended to cycles with more than
two vertices; typical programs may allow two to five vertices in an exchange,
though smaller cycles are preferable due hospital logistics, and other reasons.
The optimization problem underlying a standard kidney exchange usually con-
siders maximizing the number of transplants (de Klerk et al., 2005; Segev et al.,

1

D1

P1

D2

P2

1 2 1 2

Figure 1: An exchange between two incompatible pairs; arcs represent a pre-
liminary assessment compatibility, and arrows define a possible exchange (left).
Representation of this situation as a directed graph (center), and as a graph
where an edge stands for a pair of opposite arcs between two nodes (right).

2005), though other criteria have been proposed; e.g., the overall weight assigned
to each transplant (Li et al., 2014; Manlove and O’malley, 2015), and the ex-
pected number of transplants for selected cycles (Pedroso, 2014) or subsets of
vertices (Klimentova et al., 2016). The deterministic version of this problem,
where all the elements of the graph are assumed reliable, is naturally modeled
through integer optimization; a summary of models for the kidney exchange
problem has been presented and analyzed by Constantino et al. (2013).

Throughout this paper we will only consider the case of cycles of two vertices;
in such a case, the directed graph representing an instance may be simplified,
by replacing opposite arcs between two nodes by an edge, and ignoring all the
other arcs. The relevant problem is maximum-weighted matching in a graph.

Algorithms for finding a maximum matching in a graph have been proposed
in the 1960’s by Edmonds (1965a), based on some properties of maximal match-
ings by Berge (1957). Maximum-weighted matching in a graph has been studied
in Edmonds (1965b), who proposed an algorithm involving a formulation of the
problem as a linear program, linear programming duality, and the previous algo-
rithm for maximum matching. The complete algorithm is polynomial, solving
the weighted matching problem in O(n4) time. An analysis of efficient algo-
rithms and data structures for this problem is presented in Galil (1986).

Here we study this problem under uncertainty, in a situation where vertices
and/or edges may fail. This problem has been initially raised in Li et al. (2011)
and Chen et al. (2012), which propose a simulation system for maximizing the
expected utility when arcs are subject to failure, in dynamic version of the
problem. Reconfiguration of the solution after a failure is observed has been ad-
dressed in (Manlove and O’malley, 2015), where the number of effective 2-cycles
is taken into account in the weights assigned to 3-cycles. Maximization of the
expectation of the number of transplants, considering internal reconfiguration
within a cycle’s vertices, has been considered in Pedroso (2014). Reconfigura-
tion involving vertices outside a cycle, in what has been called subset recourse,
was considered in Klimentova et al. (2016).

Here, we take a more general view: we consider that after a failure, any
recourse solution may be chosen as long as it does not involve previously matched
vertices. Recourse may be repeated an undetermined number of times, until the
residual graph has no edges available. This is relevant in practice, as there are
no natural obstacles limiting recourse to a single trial.

This problem seems to be inherently intractable; we provide some examples,
discuss how to specify and compute a solution, and analyze the behavior of the

2

proposed algorithm with some instances of a real-world situation where it can
be applied, the kidney exchange problem.

Our contributions are the following. In Section 2 we model and analyze
matching with repeated recourse. An algorithm for tackling this problem is
provided in Section 3, and its behavior is experimentally assessed in Section 4.
We conclude with Section 5, which presents considerations on the applicability
and limitations of the approach proposed.

2 Preliminaries and problem description

The input to our problem is a graph G = (V,E). A matching M in G is a
subset of E such that no two edges in M have a vertex in common. A maximal
matching M has the property that no edge can be added to M (i.e., M is not
a proper subset of any other matching in G).

Vertices i ∈ V may fail with probability pi, and edges {i, j} (also denoted ij)
may fail with probability pij . For the sake of simplicity, except if otherwise
stated we will assume that only edges fail.

In our setting, after a matching is proposed, the matched edges and vertices
are observed ; a matched edge succeeds if neither the edge nor the incident ver-
tices fail. If a matched edge succeeds, the incident vertices are “served” and
the edge will no longer be considered. If a matched edge fails, the incident ver-
tices are not served; the failure is permanent, and hence that edge is no longer
considered either. The search for a posteriori attempts to serve more vertices
is called recourse; it is similar to the original problem, except that is may not
involve vertices that have been served already.

After each observation, the graph is updated into a residual graph. Edges
are eliminated at each observation as follows:

• successful edges, and all edges at their endvertices, are removed;

• edges that failed are removed;

• edges at vertices that failed are removed.

If a proposed matching is maximal and in the observation there are no failures,
the residual graph will contain no edges.

The objective is to find a matching such that the expectation for its car-
dinality (or weight) is maximum. The basis for the efficiency of algorithms
for maximum-weighted matching is that a maximum matching is also maximal.
Unfortunately, this property does not hold in our context.

Proposition 1. Under recourse, a maximum expectation matching may be non-
maximal.

Proof. By counterexample. Consider the graph C4, where the labels on edges
correspond the their probability of failure.

1

2 3

4

p12

p23

p34

p14

3

Assuming unitary weights on each edge, the expression of the expectation
for the weight of the matching {{1, 2}, {3, 4}} is the following:

4(1− p12)(1− p34) + 2(1− p12)p34 + 2(1− p34)p12

+ p12p34(4(1− p23)(1− p14) + 2(1− p14)p23 + 2(1− p23)p14).

The expression of the expectation for the weight of the non-maximal matching
{{1, 2}} is the following:

(1− p12)(2 + 2(1− p34)) + p12(4(1− p23)(1− p14) + 2p23(1− p14)

+ 2p14(1− p23) + p23p14(2(1− p34))).

The difference between the former and the latter expressions is:

−2p12(1− p14)(1− p23)(1− p34),

which is negative or zero.

Actually, if there is no limit on the number of observations allowed, there is
no interest in taking matchings with more than one edge.

Proposition 2. With no limit on the number of observations allowed, there is
a maximum-expectation matching with one edge chosen per each observation.

Proof. Any solution with more than one edge in a given step is still allowed
with one edge per observation.

The previous example puts in evidence that the maximum-expectation match-
ing for that graph is one of {{1, 2}}, {{2, 3}}, {{3, 4}}, or {{1, 4}}. It becomes
also clear that the complete specification of a solution involves the statement of
the choices in the initial decision, followed by the choices at the second level (af-
ter the first observation), and so on, until the set of edges in the residual graph
becomes empty. In this example, it would be (assuming that the optimum is
{{1, 2}}):

At level 1: the matching {{1, 2}};

At level 2:

• If {{1, 2}} succeeds in the observation: the matching {{3, 4}}
• If {{1, 2}} fails in the observation: one must find the maximum-

expectation matching in the residual graph

1

2 3

4

p23

p34

p14

This graph has four possible matchings: {{1, 4}, {2, 3}} (maximal),
or one of the non-maximal matchings {{1, 4}}, {{2, 3}}, or {{3, 4}}.
It turns out that all of them are equivalent, with expectation

p14(2 + 2p34) + (1− p14)(2− 2(1− p23)(1− p34)).

For example, if at level 2 one chooses {{1, 4}, {2, 3}}, then level 3
would be

4

– If both {1, 4} and {2, 3} succeed in the observation, then the
residual graph will have no edges;

– If {1, 4} succeeds and {2, 3} fails in the observation, then the
residual graph will have no edges;

– If {1, 4} fails and {2, 3} succeeds in the observation, then the
residual graph will have no edges;

– If both {1, 4} and {2, 3} fail in the observation, then the residual
graph will be

1

2 3

4

p34

and the obvious choice at level 4 would be the matching {{3, 4}}.

The previous example shows that a complete specification of a solution in-
volves predicting all the possible scenarios, and recursively finding the optimum
for each of them. This problem is not in the nondeterministic polynomial time
(NP) complexity class of the underlying maximum-weighted matching problem.
Its recursive nature also prevents its classification in PSPACE, as for a matching
with n edges one must check the 2n failure combinations; therefore, it is an
intractable problem.

Lemma 1. Max-expectation matching is not in EXPSPACE.

Proof. As there is no advantage in choosing multiple edges simultaneously, we
assume that they are chosen sequentially. The contribution of an edge to the
value of the expectation of a matching is not known a priori, as it will depend
on possible rearrangements with other edges. Consider a graph with m edges;
in the worst case, we will need m steps for selecting a matching. For each
selected edge, we must recursively check what happens if it succeeds and if it
fails. Hence, in the first choice there are 2m cases to analyse; in the second
choice, there are 2(m − 1) cases, and so on. The number of steps in the worst
case is therefore 2mm!, which is not bounded by an exponential in m.

We used the notation of Papadimitriou (1994) for complexity classes. Given
this property, there is little hope of solving large instances. However, an algo-
rithm for tackling this problem may still be useful for small real-world cases.
Besides, limiting the number of observations allowed, as described in the next
section, may allow improvements in the actual computational time required.
The actual CPU time needed for solving a set of benchmark instances will be
analyzed in Section 4.

2.1 Limited recourse

In most situations, there is a limit in the allowed number of observations and
recourse reconfigurations. We call N -recourse to a matching problem where
the solution must be reached within N observations. If the limit N is zero,
the problem falls back to standard matching, maximizing expectation based on
failure probabilities, but without recourse; N =∞ corresponds to the unlimited
case previously described.

5

The difficulty of solving an N -recourse problem increases with N , being
solvable in polynomial time for N = 0. Therefore, in terms of complexity,
0-recourse is in P (using, e.g., the algorithm proposed by Edmonds (1965a)),
with complexity increasing with N , and∞-recourse being intractable, as shown
before.

A practical approach to solving this problem consists of obtaining an initial
solution for N = 0, and then incrementing the number of allowed observations N
until the additional gain is considered acceptably low, or until the computational
time becomes excessive.

3 Algorithm

The basis for the method that we propose is the enumeration of all the match-
ings in a graph. An interesting algorithm for enumerating all the minimum-cost
perfect matchings (where the vertices in the graph are matched) has been pro-
posed in Fukuda and Matsui (1992) for the case of bipartite graphs; to the best
of our knowledge, there is no equivalent algorithm for more general cases. Al-
gorithm 1 proposes a very simple recursive procedure for enumerating all the
matchings in a graph.

Algorithm 1: Algorithm for enumerating all matchings.
Data: graph:
• graph G = (V,E) with edges remaining for enumeration (initially, original graph);
• matching m currently under construction (initially empty);
• current set of matchings M (initially empty);

Result:
• list of all matchings in G = (V,E).

1 procedure Matchings(V,E,m,M)

2 if E = ∅ then
3 return M

4 ij ← arbitrary edge from E
5 m′ ← m ∪ {ij}
6 M ←M ∪ {m′}
7 E′ ← {ab ∈ E : {a, b} ∩ {i, j} = ∅}
8 Matchings(V,E′,m′,M) // case 1: add ij to current matching

9 Matchings(V,E \ {ij},m,M) // case 2: don’t add ij to current matching

10 return M

Determining the maximum-expectation matching involves an indirect recur-
sion between the main function Solve, presented in Algorithm 2, and function
EvaluateMatching, presented in Algorithm 3. The former starts by finding
the connected components present in the graph; as the expectation for each of
them is independent of the others, it may be computed separately. Then, each
matching in a given component is evaluated with EvaluateMatching and the
best of them is chosen.

The evaluation of a matching involves listing all the patterns of success
or failure of its edges. For each pattern, some bookkeeping is necessary for
determining its probability of occurrence; this value is then multiplied by the
number of edges for computing the associated contribution to the expectation.
However, edges which did not fail and which were not involved with success in
the current pattern (stored in variable R′) are free for a rearrangement; this is

6

Algorithm 2: Algorithm for finding the maximum-expectation matching.
Data:
• instance:

– set of vertices V ;
– set of edges E;
– probabilities of failure pi for vertices i ∈ V and pij for edges ij ∈ E;

• limit of observations allowed N .
Result:
• maximum-expectation value.

1 procedure Solve(V,E, p,N)

2 z∗ ← 0
3 foreach C ∈ ConnectedComponents(V,E) do
4 if |C| = 1 then continue
5 (V ′, E′)← subgraph induced on vertex set C
6 z ← 0
7 foreach m ∈ Matchings(V ′, E′) do
8 R← E′

9 z′ ← EvaluateMatching(V ′, E′, p,m,R,N)
10 if z′ ≥ z then
11 z ← z′

12 z∗ ← z∗ + z

13 return z∗

the reason why Solve is called inside EvaluateMatching, for determining their
contribution to the expectation under the current pattern.

4 Results

Let us start by analyzing what differences may be expected between situations
without and with recourse. Figure 2 shows the expectation for the number of
matched vertices for a graph with four edges, for varying probability of failure
p on edges (considered identical for all edges). The graphs considered, with
four vertices, are a cycle (C4), and the complete graph (K4). With no recourse,
the expectation is 4(1 − p)2 for both graphs. With recourse, we can observe
a considerable improvement on graph C4, and further improvements on K4,
especially for moderate probability of failure. This first result motivates for the
use of recourse.

4.1 Results on general graphs

This section reports results for the application of the algorithm in the worst
scenario: unlimited number of observations, on possibly dense graphs. A more
realistic experiment is presented in the next section. As expected, the exponen-
tial growth of the time required for solving in terms of the number of edges is
clearly observed in Figure 3, which plots the CPU time used as a function of the
number of edges in the graph, for all graphs with up to six vertices. The points
almost overlap, showing that there is virtually no influence of the number of
vertices on the CPU time used; this behavior will no longer be observed in the
more realistic cases of next section, where graphs are relatively sparse and have
special structure.

7

Algorithm 3: Algorithm for evaluating a matching under recourse.
Data:
• instance:

– set of vertices V ;
– set of edges E;
– probabilities of failure for vertices pi, i ∈ V, and for egdes pij ,∀ij ∈ E.

• matching m;
• limit of observations allowed N .

Result:

• expectation considering all failure patterns.

1 procedure EvaluateMatching(V,E, p,m,R,N)

2 if m,N was previously memoized then return TmN

3 z ← 0
4 foreach b ∈ binary patterns of size |m| do
5 q ← 1
6 n← 0
7 for k ← 1 to |m| do
8 ij ← kth edge of matching m
9 if bk = 0 then // edge ij fails in this pattern

10 q ← q × pij
11 R′ ← R \ {ij};
12 else // edge ij succeeds in this pattern

13 q ← q × (1− pij)
14 n← n+ 1
15 R′ ← {ab ∈ R : {a, b} ∩ {i, j} = ∅}

16 if R′ 6= ∅ then
17 z′ ← Solve(V,R′, p,N − 1)
18 z ← z + q × (2n+ z′)

19 memoize TmN ← z
20 return z

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.2 0.4 0.6 0.8 1

no recourse
C4
K4

Figure 2: Expectation for varying probability of failure on edges.

8

0 2 4 6 8 10 12 14 16
Number of edges

10-4

10-3

10-2

10-1

100

101

102

103

104

C
P
U

 t
im

e

Figure 3: Average CPU time required for solving instances for all graphs up to
six vertices, as a function of the number of edges in the graph. Circles represent
cases with no solution within 3600s.

4.2 Results on an application: kidney exchange

We now turn to the usage of the algorithm proposed on its main application, i.e.,
in kidney exchange programs, using data provided in Constantino et al. (2013).
These data’s graphs have been randomly generated based on characteristics of
real-world kidney exchange pools; probabilities have been randomly drawn with
uniform distribution (Pedroso, 2014)1. These data are for the more general case
of directed graphs G′ = (V,A), where exchanges may involve more than two
pairs. Undirected graphs G = (V,E) are generated as mentioned above, with
an edge {i, j} ∈ E for each 2-cycle (i, j)− (j, i) in the arc set A. For each edge
{i, j} ∈ E we consider its probability of failure as pij = p′ip

′
jp

′
ijp

′
ji, where p′ are

the original probabilities for the directed graph.
Figure 4 shows the time required for solving each benchmark instance, for a

number of pairs in the pool varying from 10 to 50; the actual number of vertices
in the graph is typically smaller, after removing isolated vertices. Each point
corresponds to a benchmark instance, representing the CPU time required for
solving the it in terms of the number of vertices and edges in the graph, for a
maximum number N of observations ranging from N = 0 (no recourse, top) to
N =∞ (no limit, bottom).

Table 1 reports the number of successes, out of 50, for each instance size.
As expected, increasing the number of allowed observations leads to a sharp
raise on the CPU time required for solving an instance. Notice that when the
number of observations allowed is zero, the problem can be easily solved for
much larger instances with Edmonds algorithm, or even with a general-purpose
mixed-integer optimization solver; as our implementation relies on enumerating
all the matchings, it is inappropriate in this case.

5 Conclusions

Dealing with unreliability is as issue with great importance in many applications
involving optimization in graphs. In this paper we introduced a problem that

1Instances’ data are available at http://www.dcc.fc.up.pt/~jpp/code/KEP.

9

10-5

10-4

10-3

10-2

10-1

100

101

102

103

104

N
 =

 0

CPU used in terms of the number of vertices CPU used in terms of the number of edges

number of vertices
10-5

10-4

10-3

10-2

10-1

100

101

102

103

104

N
 =

 1

number of edges

10-5

10-4

10-3

10-2

10-1

100

101

102

103

104

N
 =

 2

10-5

10-4

10-3

10-2

10-1

100

101

102

103

104

N
 =

 3

0 10 20 30 40 50
10-5

10-4

10-3

10-2

10-1

100

101

102

103

104

N
 =

 i
n
f

0 10 20 30 40 50 60 70 80

Instance sizes
10 pairs

20 pairs

30 pairs

40 pairs

50 pairs

Figure 4: CPU time required for solving realistic KEP instances terms of the
number of vertices (left) and edges (right) in the graph, for a maximum number
of observations ranging from 0 (top) to no limit (bottom). Smaller dots represent
cases with no solution within 3600s.

Instances N=0 N=1 N=2 N=3 N=inf
10 pairs 50 50 50 50 50
20 pairs 50 46 37 32 26
30 pairs 49 30 18 16 14
40 pairs 35 14 11 9 8
50 pairs 13 2 2 1 1

Table 1: Number of instances of each size (out of 50) successfully solved.

10

arises in kidney exchange programs, which are procedures that several coun-
tries have made available in order to provide patients with kidney failure with
an alternative to traditional treatment. In this context, failure is frequent: for
example, data available show a rate of positive crossmatch (i.e., arc failure)
of up to 44% (Glorie, 2012). Modeling failure has been addressed previously,
though reconfiguration involving vertices outside a cycle has been dealt with
only partially in Klimentova et al. (2016). Here, we extend the model to re-
course solutions involving any vertex, as long as it had not been previously
matched with success. Our model is based on successive observations of fail-
ures on proposed matchings, and on recourse solutions being proposed on the
remaining graph.

The problem has been shown to be intractable, but small instance with
practical relevance could be solved with our prototype implementation. Medium
to large instances could not be solved with the current implementation; however,
there is room for improvement, and small enhancements will have direct impact
on the applicability of the method.

As for the practical application of the method, one of the current limitations
concerns the availability of data. Indeed, to our knowledge, currently there are
no available data on probabilities, and their determination is not trivial; it will
likely involve the usage of machine learning tools on related historical data,
collected in running exchange programs. This implies that presently we cannot
assess our model with real instances.

Notice that the memory requirements of the implementation provided would
make the solution process unthinkable only a few years ago. Hopefully, within
some years the evolution in hardware and software will allow tackling larger
instances.

There are several interesting future directions for research in this field: the
development of approximative algorithms for tackling this problem; considering
also vertex failure, in addition to edge failure, which, even though conceptually
simple, by increasing the number of possibilities on components that may fail, is
a real challenge on the practical solution. Besides this extension, there are many
challenges that must be overtaken for being able to solve larger instances, both
on the improvement of the method and on its computational implementation.

References

C. Berge. Two theorems in graph theory. Proceedings of the National Academy
of Sciences of the United States of America, 43(9):842, 1957.

P. Biro, D. Manlove, and R. Rizzi. Maximum weight cycle packing in directed
graphs, wiht application to kidney exchange programs. Discrete Mathematics,
Algorithms and Applications, 1(4):499–517, 2009.

Y. Chen, Y. Li, J. D. Kalbfleisch, Y. Zhou, A. Leichtman, and P. X.-K. Song.
Graph-based optimization algorithm and software on kidney exchanges. IEEE
Trans. Biomed. Engineering, 59(7):1985–1991, 2012.

M. Constantino, X. Klimentova, A. Viana, and A. Rais. New insights on integer-
programming models for the kidney exchange problem. European Journal of
Operational Research, 231(1):57–68, 2013.

11

M. de Klerk, K. Keizer, F. Claas, B. Haase-Kromwijk, and W. Weimar. The
Dutch national living donor kidney exchange program. American Journal of
Transplantation, 5:2302–2305, 2005.

J. Edmonds. Paths, trees, and flowers. Canadian Journal of Mathematics, 17
(3):449–467, 1965a.

J. Edmonds. Maximum matching and a polyhedron with 0, 1-vertices. J. Res.
Nat. Bur. Standards B, 69(1965):125–130, 1965b.

K. Fukuda and T. Matsui. Finding all minimum-cost perfect matchings in
bipartite graphs. Networks, 22(5):461–468, 1992.

Z. Galil. Efficient algorithms for finding maximum matching in graphs. ACM
Comput. Surv., 18(1):23–38, 1986.

K. Glorie. Estimating the probability of positive crossmatch after negative
virtual crossmatch. Econometric Institute report, (2012-25), 2012.

X. Klimentova, J. P. Pedroso, and A. Viana. Maximising expectation of the
number of transplants in kidney exchange programmes. Computers & Oper-
ations Research, 2016. (Submitted to publication).

Y. Li, J. Kalbfleisch, P. Song, Y. Zhou, A. Leichtman, and M. Rees. Optimiza-
tion and simulation of an evolving kidney paired donation (KPD) program.
Working Paper Series 90, Department of Biostatistics, University of Michigan,
May 2011. http://www.bepress.com/umichbiostat/paper90.

Y. Li, P. X.-K. Song, Y. Zhou, A. B. Leichtman, M. A. Rees, and J. D.
Kalbfleisch. Optimal decisions for organ exchanges in a kidney paired do-
nation program. Statistics in biosciences, 6(1):85–104, 2014.

D. F. Manlove and G. O’malley. Paired and altruistic kidney donation in the
uk: Algorithms and experimentation. Journal of Experimental Algorithmics
(JEA), 19:2–6, 2015.

C. Papadimitriou. Computational Complexity. Theoretical computer science.
Addison-Wesley, 1994. ISBN 9780201530827.

J. P. Pedroso. Maximizing expectation on vertex-disjoint cycle packing. In
B. Murgante, S. Misra, A. M. A. Rocha, C. Torre, J. G. Rocha, M. I. Falcão,
D. Taniar, B. O. Apduhan, and O. Gervasi, editors, Computational Science
and Its Applications – ICCSA 2014, volume 8580 of Lecture Notes in Com-
puter Science, pages 32–46. Springer International Publishing, 2014. ISBN
978-3-319-09128-0.

S. Saidman, A. Roth, T. Sönmez, M. Ünver, and F. Delmonico. Increasing
the opportunity of live kidney donation by matching for two- and three-way
exchanges. Transplantation, 81:773–782, 2006.

D. Segev, S. Gentry, D. Warren, B. Reeb, and R. Montgomery. Kidney paired
donation and optimizing the use of live donor organs. The Journal of the
American Medical Association, 293(15):1883–1890, 2005.

12

