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Abstract 

We construct a copula from the multivariate skew t-distribution of Azzalini and Capitanio 

(2003). This copula can capture asymmetric and extreme dependence between variables, and it 

is one of the few that is effective when the number of dimensions is high. However, two 

problems arise when estimating the parameters by maximum likelihood estimation. Here, we 

solve these problems and provide a concrete maximum likelihood estimation algorithm. We 

test our solution by simulating trivariate data with realistic parameters. The parameters are 

estimated from the daily returns of three stock indices: the SP500, DAX, and Nikkei225. 
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1. Introduction 

Correlations among risk factors matter in financial portfolio risk management. When the risk 

factors are specified using asset returns, risk managers need to consider tail dependence. In this 

situation, Student’s t-copula is frequently used in financial portfolio risk management. However, 

Student’s t-copula is restrictive because of its symmetric dependence at both the upper and lower 

tails. Therefore, we apply the skew t-copula to capture the asymmetric dependence of risk factors. 

The skew t-copula is defined by a multivariate skew t-distribution and its marginal distribution. 

As indicated in Kotz and Nadarajah (2004), various types of multivariate skew t-distributions have 

been proposed, implying that there are also various types of skew t-copula. 

To the best of the author’s knowledge, three types of skew t-copula have been proposed. The first 

was described in Demarta and McNeil (2005) and is based on a multivariate version of the 

generalized hyperbolic (GH) skew t-distribution proposed by Barndorff-Nielsen (1977). The second 

type was constructed by Smith et al. (2012) and is implied in the multivariate skew t-distribution 

proposed by Sahu et al. (2003). The multivariate skew t-distribution is formed from hidden 

truncation. Hidden truncation has received considerable attention as a method of constructing a 

skew elliptical distribution (Arnold and Beaver, 2004), as indicated in Smith et al. (2012). Among 
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the multivariate skew t-distributions with hidden truncation, the distribution of Azzalini and 

Capitanio (2003) is more popular than that of Sahu et al. (2003). The third type of skew t-copula 

was proposed by Joe (2006) and is based on the multivariate skew t-distribution of Azzalini and 

Capitanio (2003). Kollo and Pettere (2010) tried to construct the third type, but they were 

unsuccessful. 

In this study, we construct the skew t-copula of Azzalini and Capitanio (2003) and indicate two 

problems that arise when estimating the parameters by maximum likelihood estimation (MLE). The 

first problem is that the log-likelihood function includes univariate skew t-quantile functions, which 

makes calculating a log-likelihood extremely time consuming. The second problem is that the 

extended correlation matrix should be positive semi-definite. We solve the first problem by applying 

a monotone interpolator to the distribution functions. We solve the second problem by 

re-parameterizing the Cholesky decomposed triangular matrix with trigonometric functions. This 

keeps the diagonal elements of the extended correlation matrix to the value one. After estimating the 

benchmark parameters from the daily returns of three stock indices (SP500, DAX, and Nikkei225), 

we test our solution by simulating trivariate data with the realistic parameters. 

The remainder of the paper is organized as follows. Section 2 introduces the three types of skew 

t-copula referred to in previous research. Section 3 derives the log-likelihood function of the skew 

t-copula of Azzalini and Capitanio (2003) and describes the two problems that occur when 

estimating the parameters by MLE. Section 4 shows sophisticated solutions to these two problems. 

Then, Section 5 estimates the parameters using MLE for trivariate simulated data after estimating 

the benchmark parameters. Finally, Section 6 concludes the paper. 

 

 

2. Three types of skew t-copula 

This section summarizes the three types of skew t-copula, focusing on the d-variate random 

vector X representations of the corresponding skew t-distribution. Because we focus on the copulas, 

we set the location vector to )0,,0(),,( 1
T   dξ  and the scale vector to 

)1,,1(),,( 1
T   dσ . 

 

2.1. The GH skew t-copula 

The first skew t-copula is described in the work of Demarta and McNeil (2005). The random 

variable for this copula has the following representation: 

 ZγX 2/1)(  VVh . (1) 

In particular, Demarta and McNeil (2005) focus on the following special case: 
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 ZγX 2/11   VV , (2) 

where )2/,2/(~ GV  and ),0(~ dNZ . Here, γ  is the d-variate skewness parameter 

vector. If 0γ , then the skew t-copula reduces to Student’s t-copula. This copula is based on the 

multivariate version of the generalized hyperbolic (GH) skew t-distribution proposed by 

Barndorff-Nielsen (1977). Therefore, we refer to this type as the GH skew t-copula. For more 

information on this type, see also Aas and Haff (2006). 

Christoffersen et al. (2012) applied this copula to weekly equity returns in both developed 

markets and emerging markets. They constrained the copula to have the same skewness parameter 

(i.e.,  j ) for all j. They found the skewness parameter,  , to be significant in many cases. 

 

2.2. The skew t-copula of Smith et al. (2012) 

The second skew t-copula was constructed by Smith et al. (2012). The random variable for this 

copula has the following representation: 

 )||(2/1 ZWX  V , (3) 

where )2/,2/(~ GV , ),0(~ dNZ , and ),0(~ INdW . Here, ),,diag( 1 d   is a 

dd   diagonal matrix that denotes the skewness parameter. This skew t-copula is implied in the 

skew t-distribution proposed by Sahu et al. (2003). If 0 , then the skew t-copula reduces to 

Student’s t-copula. In equation (3), ZW  ||  is also represented as 0| WY , where 

ZWY  . In this sense, the skew t-distribution is formed from hidden truncation. Arnold and 

Beaver (2004) indicate that this method has received considerable attention in the last 20 years as a 

method of constructing a skew elliptical distribution.  

Smith et al. (2012) applied this type of copula to regional spot prices in the Australian electricity 

market and to ordinal exposure measures for 15 major websites. They showed that the skew 

t-copula substantially outperforms the symmetric Student’s t-copula in both cases. For parameter 

estimation, they proposed a Bayesian Markov chain Monte Carlo approach rather than using 

maximum likelihood estimation. 

 

2.3. The skew t-copula of Azzalini and Capitanio (2003) 

The third type of skew t-copula is implied by the d-variate skew t-distribution of Azzalini and 

Capitanio (2003). The random variable for this distribution has the following representation:  

 YX 2/1V , (4) 

where )2/,2/(~ GV . Here, Y  is the d-variate skew normal distributed random vector and 
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has the following representation with a skewness vector of ),,( 1
T

d ζ :1  

 jjjj ZZY 2
0 1||   , (5) 

where )1,0(~0 NZ  and ),0(~ dNZ . Here,   is a dd   correlation matrix. The 

distribution of Y  is denoted as ),(SN~ ζY d .2 The density of Y  is given as 

 )();(2)( Tyαyy  df  , (6) 

where 
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The random vector X  is denoted as ),,,0(St~ αX d . 

The representation of the d-variate skew normal random vector Y  in equation (5) is called the 

“transformation method.” Applying the “conditioning method” described in Azzalini and Capitanio 

(2003), the Y  is represented as 
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As shown in equation (11), the skew t-distribution is also formed from hidden truncation, as was the 

skew t-distribution of Sahu et al. (2003). In addition, the skew t-distribution of Azzalini and 

Capitanio (2003) is more popular than that of Sahu et al. (2003). 

We define the extended correlation matrix, R, as 

 




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






δ

δT1
R . (12) 

The marginal skewness parameter, ),,( 1
T

d ζ , is given in equation (7). Conversely, the 

skewness parameter, ),,( 1
T

d δ , is given as 

                                                  
1 Y  has a common skewness scalar factor, || 0Z , for its d variates, as shown in equation (5). On the 

other hand, the corresponding random vector in Sahu et al. (2003), shown in equation (3), has a different 
skewness factor, || jW , for each j-th variate. 
2 We adopt the notation of equation (2.7) in Azzalini and Dalla Valle (1996). 
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The scale vector ),,( 1
T

d σ  and the correlation matrix   in equation (12) form a 

variance–covariance matrix, ~ , as follows: 

 ),,diag(),,diag(
~

11 dd    . (14) 

With the location vector ),,( 1
T

d ξ , YξX
~~ 2/1 V  has the distribution ),~,

~
,(St αξ d , 

where the d-variate skew normal random vector, Y
~

, is constructed as 
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and 
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Conversely, 
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3. The construction of the Azzalini and Capitanio (2003) skew t-copula 

Since the multivariate skew t-distribution of Azzalini and Capitanio (2003) is the most popular 

method of constructing skew-symmetric distributions, this section constructs their skew t-copula by 

specifying the marginal distribution from the d-variate skew t-distribution. After deriving 

log-likelihood function, we then indicate the two problems that occur when using MLE to estimate 

the parameters. 

 

3.1. The specification of the skew t-copula 

The skew t-copula of Azzalini and Capitanio (2003) is given as follows. Their d-variate skew 

t-distribution, ),,,0(St αd , has the following density function at x : 
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where );(, xdt  is the density function of the d-variate Student’s t-distribution. This function has 

correlation matrix   and degrees of freedom,  , and is specified as: 
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)(,1 T  is the distribution function of the univariate Student’s t-distribution, with degrees of 

freedom  . As Joe (2006) indicates, the j-th marginal distribution is ),,1,0(St1  j , with density 
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where )(,1 xt   is the density function of the univariate Student’s t-distribution, with degrees of 

freedom  . 

Kollo and Pettere (2010) explain that j-th marginal distribution of the d-variate skew 

t-distribution, ),,,0(St αd , is ),,1,0(St1  j . However, in fact, the j-th marginal distribution 

is ),,1,0(St1  j , as shown in equations (5) and (13). 

The skew t-copula is given by 

 ),,,0);,,1,0;(St,),,,1,0;((StSt),,;,,( 1
111

1
11  αδ  

ddddst uuuuC  , (21) 

where d ,,1   are defined in equation (7) and 
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Henceforth, we refer to the (i, j) element of the correlation matrix   as ij . 

If 0δ , then the lower tail has a higher tail dependence than the upper tail. Fig. 1 confirms this 

by plotting the contours of the joint densities for Student’s t-copula and the skew t-copula, using 

standard normal margins.3 

                                                  
3 The values of both the upper and lower tail dependence can be calculated using the formula given in 
Fung and Seneta (2010). 
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Fig. 1. Contour plot of bivariate distributions using Student’s t-copula (left) and the skew t-copula 

(right) with standard normal margins; the common parameters are  =0.5 and  =3. 

 

3.2. The log-likelihood function 

It is assumed that all marginal distributions have been estimated and that N independent 

observations, ui, uniformly distributed on [0,1]d, for Ni ,,1 , are given by the marginal 

distribution functions. The set of observations, },,{ 1 Nuu  , is called a pseudo sample and can be 

obtained by applying the estimated marginal distribution function to the original sample.  

The log-likelihood function, )(l , for ),,(  δ , is defined by 
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The partial derivative in equation (23) is calculated as 
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using equations (18) and (20), where ),,( 1
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where 

 ),,1,0;(St),,,(),,,( 1
11

T
1

T  jijijidiiidii uxuuxx   ux . (27) 

The functions ),;(  jijj xg  in equation (26) are given by equation (20), and α  is given by 

equation (22). 

 

3.3. Problems when estimating parameters using MLE 

When maximizing the log-likelihood function, )(l , we have two problems. First, the 

log-likelihood function given in equation (25) includes univariate skew t-quantile functions, as 

shown in equation (27). The quantile function should be applied Nd times, which is a 

time-consuming calculation. The second problem is that the extended correlation matrix, R, in 

equation (12) should be positive semi-definite.  

 

4. Solutions to the MLE problems  

This section describes how we solve the two MLE problems discussed in the previous section. 

 

4.1. A fast quantile function for the univariate skew t-distribution 

A quantile function for a univariate skew t-distribution is usually implemented in two steps. First, 

the distribution function is implemented as a numerical integration of the density. Second, the 

quantile is searched using the Newton method to equate the given probability to the distribution 

function. 

If we use the accurate quantile function, the log-likelihood calculation for some fixed parameters 

takes more than fifteen seconds on an Intel Core i-7-3520M processor running Microsoft Windows 

8 for N = 2,500 trivariate data values. This is time consuming.  

One way to reduce the calculation time for quantiles of the univariate skew t-distribution is to use 

empirical quantiles with large random numbers (K). Christoffersen et al. (2012) use empirical 

quantiles with K = 100,000 to specify the GH skew t-copula because there is no closed-form 

quantile function for the univariate skew t-distribution. In financial applications, we usually 

calculate a lower-tail quantile (value at risk) for a portfolio. This quantile function needs to be 

accurate, especially in the tail. There is some debate on whether the empirical quantile with K = 

100,000 random numbers is accurate enough for these applications. 

One sophisticated way to reduce the calculation time, while maintaining a degree of accuracy, is 
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to use a monotone interpolator with m interpolating points.4 Let ),;( F  be the distribution 

function for the univariate skew t-distribution, ),,1,0(St1  j . Note that the j-th variate of the 

pseudo sample is Njj uu ,,1  . Let ijNi up ,,11 min   and ijNim up ,,1max  , and calculate 

),;( 1
1

1  jpFx   and ),;(1  jmm pFx   using an accurate quantile function. Then, choose 

)1/()1)(( 11  mkxxxx mk  and calculate ),;(  jkk xFp  , for 1,,2  mk  . A 

monotone interpolator can be used with the table )),(,),,(( 11 mm pxpx   to obtain ),;( xF  

and ),;(1 pF   for other values in ],[ 1 mxxx  and ],[ 1 mppp , respectively. As a 

monotone interpolator, we use a piecewise cubic Hermite interpolating polynomial. 

Table 1 compares the calculation time and accuracy of empirical quantiles and interpolating 

quantiles to those of accurate quantiles. The software used here was the sn package, version 0.4-18, 

released on May 1, 2013. If we use empirical quantiles with K = 100,000 random numbers, the 

calculation for the log-likelihood is about 60 times faster than the accurate calculation for N = 2,500. 

On the other hand, the empirical quantiles have a mean absolute error (MAE) of 6.0 × 103 from the 

accurate quantiles. If we use empirical quantiles with K = 1,000,000 random numbers, the 

calculation for the log-likelihood is twice as fast as the accurate calculation. In this case, the 

empirical quantiles have an MAE of 1.9 × 103 from the accurate quantiles. If we use interpolating 

quantiles with m = 100, the quantiles have an MAE of 4.3×105 from the accurate quantiles. This 

calculation is about 220 times faster than the accurate calculation. In the case of m = 150, the 

quantiles have an MAE of 1.2×105 from the accurate quantiles. This calculation is about 170 times 

faster than the accurate calculation. Therefore, using a monotone interpolator is more accurate and 

faster than using empirical quantiles with large random numbers. 

Table 1 

Calculation time and accuracy of quantiles for a log-likelihood using sn version 0.4-18 

Method K or m 
N = 2,500 N = 500 

MAE Time
(sec.) Speed MAE Time 

 (sec.) Speed

Accurate – 1.8×1014 16.42 – 3.3×1015 2.79 – 

Empirical 100,000 6.0×103 0.28 59.0 5.9×103 0.26 10.8

Empirical 1,000,000 1.9×103 3.10 5.3 1.9×103 3.00 0.9

Interpolate 100 4.3×105 0.07 220.5 1.4×105 0.07 40.3

Interpolate 150 1.2×105 0.10 169.3 4.2×106 0.09 30.9

Note: “Speed” of “empirical” and “interpolate” denote the ratio of the calculation time using the accurate 

quantiles to that of each method; the “MAE” of “accurate” denotes the mean absolute error 

)},;(,),,;({ 1
111

1  dNduFuF    from },,{ 11 Ndxx  , with d = 3. Parameters 31 ,,    are given 

by equation (7) using “true parameters,” 31 ,,   , from Table 4; 5 . Time and MAE are the 

means of 100 simulated samples. 

                                                  
4 The idea of using a monotone interpolator belongs to Harry Joe. 
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Version 1.0-0 of the sn package was released on January 6, 2014. Using this version of the 

package reduces the calculation time when using the accurate quantile function, qst, although it 

seems to be less accurate than version 0.4-18.5 Table 2 compares the calculation times and accuracy 

of the empirical quantiles and interpolating quantiles to those of the accurate quantiles, using 

version 1.0-0 of the sn package. As shown, calculating the empirical quantiles with K = 100,000 

random numbers is slower than when using the accurate quantiles. However, calculating the 

interpolating quantiles with m = 150 is still faster than when using the accurate quantiles.  

Table 2 

Calculation time and accuracy of quantiles for a log-likelihood using sn version 1.0-0 

Method K or m 
N = 2,500 N = 500 

MAE Time
(sec.) Speed MAE Time 

 (sec.) Speed

Accurate – 3.1×106 0.240 – 6.6×108 0.068 – 

Empirical 100,000 6.0×103 0.253 0.95 5.9×103 0.302 0.23

Empirical 1,000,000 1.9×103 3.038 0.08 1.9×103 3.636 0.02

Interpolate 100 4.6×105 0.0211 11.4 1.4×105 0.0254 2.7

Interpolate 150 1.6×105 0.0215 11.2 4.2×106 0.0274 2.5

Note that the balance between calculation time and accuracy applies to all three types of skew 

t-type copulas. As described earlier, Christoffersen et al. (2012) use empirical quantiles with K = 

100,000 random numbers to specify the GH skew t-copula. On the other hand, Smith et al. (2012) 

accurately calculate the marginal quantile for the multivariate skew t-distribution of Sahu et al. 

(2003) using the Newton method, which applies numerical integration to the distribution function. 

 

4.2. Positive semi-definiteness for the extended correlation matrix 

Since the extended correlation matrix, R, is symmetric and positive semi-definite, the matrix R 

can be decomposed as 

 TLLR  , (28) 

where L is a lower triangular matrix, given as  

 























 1,12,11,1

2221

11

0

00

000

dddd lll

ll

l

L




. (29) 

Furthermore, the diagonal elements are all one and the non-diagonal elements are in (1,1), because 

                                                  
5 The default accuracy of qst is 10 in the probability scale. The quantiles with version 0.4-18 is more 
accurate than required. 
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matrix R is a correlation matrix. Thus the elements of the lower triangular matrix, L, can be 

represented as 

 

,1,,2 and ,for cos)sin(
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 (30) 

where 1)sin(
0

1
 k ik . We can confirm that the diagonal elements of matrix R have the value 

one as follows: 
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 (31) 

It is clear that the absolute values of the non-diagonal elements in matrix R do not exceed 1 because 

of the positive semi-definiteness. 

Now, the extended correlation matrix, R, is re-parameterized as ij  for 1,,1  ij  , and 

1,,2  di   using equation (30). The number of parameters for ij  is 2/)1( dd   for 

2d . 

 

 

5. Implementation 

Based on the solution to the MLE problems described in the previous section, we now test our 

solution after estimating benchmark parameters.  

 

5.1. Benchmark parameters 

Before conducting the simulation, we set realistic parameters. We estimate the trivariate skew 

t-distribution for SP500, DAX, and Nikkei225 daily return data over a period of five years from 

September 2003 to August 2008.6 The estimated parameters are shown in Table 3.7 

                                                  
6 Owing to trading time differences, the correlation between the Nikkei225 and the other two is weak. 
Therefore, we use one-day lagged data for the Nikkei225. 
7 The estimation is performed using the mst.mle function in the sn package version 0.4-18 of R. The 

function estimates the parameters ξ ,  , the skewness vector α , and the covariance matrix ~ . The 

parameters σ , 
ij  in Table 3 are converted from the covariance matrix, ~ . The skewness vectors δ  

are given by the estimated skewness vector α  and the estimated covariance matrix ~  using equation 
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Table 3 

Estimated benchmark parameters of a trivariate skew t-distribution 

1  2  3  1  2  3 

0.004 0.002 0.005 0.011 0.007 0.009 

21  31  32  1  2  3   

0.459 0.392 0.546 0.362 0.334 0.481 4.883 

The location parameters, j , and the scale parameters, j , are determined by the marginal 

distributions. Therefore, we set the correlation parameters, ij , and the skewness parameters, j , 

to the values given in Table 3, rounded off to the second decimal place, as the true parameter values. 

We also set the degrees of freedom parameter,  , to 5 (i.e., rounded off after the decimal point in 

Table 3). 

 

5.2. Confirmation by simulation 

The MLE for the skew t-copula can be obtained by maximizing the log-likelihood function in 

equation (25) using piecewise cubic Hermite interpolating polynomials. The internal parameters are 

re-parameterized as ij  for 1,,1  ij   and 1,,2  di  , as shown in equation (30).8 

We iterate the above estimation with 100 simulated pseudo samples of trivariate data, with N = 

500 and 2,500. One of these samples is a pseudo sample, },,{ 1 Nuu  . The pseudo sample 

},,{ 1 Nuu   is generated from a simulated original sample },,{ 1 Nxx   as shown in equation 

(27). For comparison, we also calculate the MLE of the trivariate skew t-distribution for the 

100simulated samples in a similar way, assuming location parameters 0j  and scale 

parameters 1j , for 3,,1j . Table 4 summarizes the results. These calculations were done 

on an Intel Core i-7-3520M processor running Microsoft Windows 8 and using the sn package 

version 1.0-0. 

                                                                                                                                                        
(17). 
8 See the Appendix for the implementation of MLE using R. 
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Table 4 

Estimated parameters using the proposed method 

 N 21  31  32  1  2  3    Time 
(sec.) 

True parameters 0.46 0.39 0.55 0.36 0.33 0.48 5.00 

Copula 

mean 
500 0.45 0.37 0.54 0.33 0.34 0.45 5.28 43.2 

2,500 0.45 0.38 0.54 0.34 0.31 0.46 5.15 47.8 

standard 
deviation 

500 0.07 0.07 0.06 0.24 0.25 0.26 1.14 18.9 

2,500 0.03 0.04 0.03 0.14 0.13 0.12 0.68 35.9 

Distribution 

mean 
500 0.46 0.39 0.54 0.36 0.32 0.46 5.40 0.18 

2,500 0.45 0.39 0.55 0.36 0.33 0.47 5.22 0.81 

standard 
deviation 

500 0.04 0.05 0.04 0.05 0.06 0.05 1.15 0.06 

2,500 0.03 0.03 0.02 0.03 0.04 0.03 0.98 0.27 

Here, we see that the mean of both the correlation parameters, ij , and the skewness parameters, 

j , are very close to the true parameter values.  

We also see that the standard deviations of the skewness parameters, j , are larger than those of 

the correlation parameters, ij , in the copula parameters estimation, especially for N = 500. The 

skewness parameters have an effect on both the marginal distributions and the copula. The pseudo 

sample does not include information on the effect on the marginal distributions. That is one of the 

reasons that the standard deviations of the skewness parameters are large. The standard deviations 

decrease as the sample size N increases. 

Therefore, it has been confirmed that the proposed method works well both in terms of mean and 

standard deviation. 

 

 

6. Conclusions 

After summarizing the construction of three types of skew t-copula, we derive the skew t-copula 

of Azzalini and Capitanio (2003). 

When using MLE to estimate parameters, we have indicated two problems that arise. First, 

practical MLE requires fast and accurate quantile calculations for a univariate skew t-distribution. 

Second, extended correlation matrix should remain positive semi-definite during the estimation 

process. 

In this study, we provided a solution to both problems. We then confirm that the solutions work 

by simulating a trivariate pseudo sample and estimating the parameter of the skew t-copula. 
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In practical applications of the skew t-copula, estimation comes first. This applies to all three 

types of copula. After establishing the estimations, we compare the different types of skew t-copula 

using various data of interest. 
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Appendix. Sample R codes 

This appendix describes the implementation of the MLE (maximum likelihood estimation) of 

skew t-copula parameters using R. It includes the procedure for the MLE of a multivariate skew-t 

distribution, and miscellaneous functions necessary for the MLE of skew-t copula. 

 

A.1. Implementation of the MLE for skew-t copula 

On January 6, 2014, version 1.0-0 of the sn package for R was released. This package provides 

several functions to analyze skew Normal and skew t-distributions. Multivariate skew t-copula can 

be estimated by the maximum likelihood method by applying the sn library in the following way. 

Internal parameters are parameterized as 1,13121 ,,, d  , 2,232 ,, d  ,…, dd ,1 , )2ln(  . 

# skew-t coplua estimation (MLE) using "sn" ver.1.0-0 
library(sn) 
library(signal) 
 
## redefine qst on "sn" ver.1.0-0 here 
 
## negative log-likelihood for multivariate skew-t copula  
## udat[1:n,1:dim] : pseudo sample (N observations for [0,1]^dim) 
stcopnll <- function(para, udat=NULL){ 
  mpoints <- 150; 
  dp <- stOrgPara(para); 
  delta <- dp$delta; 
  zeta <- delta/sqrt(1-delta*delta); 
  dim <- length(delta); 
  Omega <- diag(dim); 
  Omega[upper.tri(Omega)] <- Omega[lower.tri(Omega)] <- dp$rho; 
  iOmega <- solve(Omega); 
  alpha <- iOmega %*% delta /sqrt(1-(t(delta) %*% iOmega %*% delta)[1,1]);
  nu <- dp$nu; 
  ix <- ipqst(udat,zeta,nu,mpoints,rel.tol=1e-6); 
## Activate the following line instead of monotone interpolating quantile 
## function ipqst() to use accurate quantile function aqst() 
## ix <- aqst(udat,zeta,nu,mpoints); 
  lm <- matrix(0,nrow=nrow(udat),ncol=dim); 
  for(j in 1:dim){ lm[,j] <- dst(ix[,j], alpha=zeta[j], nu=nu, log=TRUE); }
  lc <- dmst(ix,Omega=Omega,alpha=alpha,nu=nu,log=TRUE); 
  -sum(lc)+sum(lm) 
} 
 
 
stcop.mle <- function (udat, start = NULL, gr = NULL, ..., 
      method = c("Nelder-Mead", "BFGS", "CG", "L-BFGS-B", "SANN", "Brent"),
      lower = -Inf, upper = Inf, 
      control = list(), hessian = FALSE) 
{ 
  iniPar <- stIntPara(start$rho,start$delta,start$nu); 
  method <- match.arg(method); 
  fit <- optim(iniPar, stcopnll, method=method, control=control, udat=udat);
  list(call = match.call(), dp = stOrgPara(fit$par), logL = -fit$value, 
details=fit, nobs = nrow(udat), method = method); 
} 
 
 
## show estimated parameters and the log-likelihood ## 
showResult <- function(fit){ 
  dp <- fit$dp; 
  list(rho=dp$rho,delta=dp$delta,nu=dp$nu,logL=fit$logL); 
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} 
 
## setting ## 
smN <- 2500; 
smrho <- c(0.46,0.39,0.55); 
smdelta <- c(-0.36,-0.33,-0.48); 
smdf <- 5; 
 
## simulation ## 
set.seed(1); 
dat <- rstcop(smN,smrho,smdelta,smdf); 
dim <- ncol(dat$u); 
start <- list(rho=numeric(dim*(dim-1)/2),delta=numeric(dim),nu=6); 
## It would be better to add "trace=TRUE" option in control list 
system.time(stcopmle<-stcop.mle(dat$u, start=start, 
control=list(reltol=1e-4,trace=TRUE))) 
showResult(stcopmle); 
 

 

A.2. Implementation of the MLE for a multivariate skew-t distribution 

Similar to skew-t copula, the multivariate standard skew-t distribution with an assumed location 

vector )0,,0(),,( 1
T   dξ  and scale vector )1,,1(),,( 1

T   dσ  can be 

estimated by the maximum likelihood method as below.  

## negative log-likelihood for multivariate skew-t distribution (xi=0, 
omega=1) 
## xdat[1:n,1:dim] : sample (N observations for [0,1]^dim) 
stdistnll <- function(para, xdat=NULL){ 
  dp <- stOrgPara(para); 
  delta <- dp$delta; 
  dim <- length(delta); 
  Omega <- diag(dim); 
  Omega[upper.tri(Omega)] <- Omega[lower.tri(Omega)] <- dp$rho; 
  iOmega <- solve(Omega); 
  alpha <- iOmega %*% delta /sqrt(1-(t(delta) %*% iOmega %*% delta)[1,1]);
  -sum(dmst(xdat,Omega=Omega,alpha=alpha,nu=dp$nu,log=TRUE)); 
} 
 
 
stdist.mle <- function (xdat, start = NULL, gr = NULL, ..., 
      method = c("Nelder-Mead", "BFGS", "CG", "L-BFGS-B", "SANN", "Brent"),
      lower = -Inf, upper = Inf, 
      control = list(), hessian = FALSE) 
{ 
  iniPar <- stIntPara(start$rho,start$delta,start$nu); 
  method <- match.arg(method); 
  fit <- optim(iniPar, stdistnll, method=method, control=control, xdat=xdat);
  list(call = match.call(), dp = stOrgPara(fit$par), logL = -fit$value, 
details=fit, nobs = nrow(xdat), method = method); 
} 
 
system.time(stdistmle<-stdist.mle(dat$x, start=start, 
control=list(reltol=1e-4))); 
showResult(stdistmle); 
 

 

A.3. Random number generator of skew t-copula 

Random number generator of skew t-copula is implemented as the following function. The 

function returns a list of an original sample },,{ 1 Nxx   and the pseudo sample },,{ 1 Nuu  . 
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## random number generator of skew t-copula 
rstcop <- function(n,rho,delta,nu,...){ 
  dim <- length(delta); 
  zeta <- delta/sqrt(1-delta*delta); 
  Omega <- diag(dim); 
  Omega[upper.tri(Omega)] <- Omega[lower.tri(Omega)] <- rho; 
  iOmega <- solve(Omega); 
  alpha <- iOmega %*% delta /sqrt(1-(t(delta) %*% iOmega %*% delta)[1,1]);
  x <- rmst(n=n,Omega=Omega,alpha=alpha,nu=nu); 
  u <- matrix(0,nrow=n,ncol=dim); 
  for(j in 1:dim){ u[,j] <- pst(x[,j], alpha=zeta[j], nu=nu,...); } 
  list(x=x,u=u); 
} 

 

A.4. Functions for transforming parameters 

Functions for transforming the original parameters, ij , δ  and   to internal parameters 

))2ln(,( θ , and vice versa, are implemented in the following way. 

## transforming original parameters to internal parameters ## 
stIntPara <- function(rho,delta,nu){ 
  ndim <- length(delta)+1; 
  R <- diag(ndim); 
  for(i in 2:ndim){ 
    R[i,1] <- R[1,i] <- delta[i-1]; 
    if(i>=3){ for(j in 2:(i-1)){ R[i,j] <- R[j,i] <- 
rho[i-ndim+(j-1)*(ndim-2-(j-2)/2)]; } } 
  } 
  LTR <- t(chol(R)); 
  Mtheta <- matrix(0,nrow=ndim,ncol=ndim); 
  for(i in 2:ndim){ 
    Mtheta[i,1] <- acos(LTR[i,1]); 
    cumsin <- sin(Mtheta[i,1]); 
    if(i>=3){ for(j in 2:(i-1)){ 
        Mtheta[i,j] <- acos(LTR[i,j]/cumsin); 
        cumsin <- cumsin*sin(Mtheta[i,j]); } 
    } 
  } 
  c(Mtheta[lower.tri(Mtheta)],log(nu-2.0)); 
} 
 
 
## transforming internal parameters to original parameters ## 
stOrgPara <- function(para){ 
  ntheta <- length(para)-1; 
  theta <- para[1:ntheta]; 
  ndim <- (1+sqrt(1+8*ntheta))/2; 
  LTR <- diag(ndim); 
  for(i in 2:ndim){ 
    LTR[i,1] <- cos(theta[i-1]); 
    cumsin <- sin(theta[i-1]); 
    if(i>=3){ for(j in 2:(i-1)){ 
        k <- i+ndim*(j-1)-j*(j+1)/2; 
        LTR[i,j] <- cumsin*cos(theta[k]); 
        cumsin <- cumsin*sin(theta[k]); } 
    } 
    LTR[i,i] <- cumsin; 
  } 
  R <- LTR %*% t(LTR); 
  Omega <- R[-1,-1]; 
  delta <- R[1,-1]; 
  nu <- exp(para[ntheta+1])+2.0; 
  list(rho = Omega[lower.tri(Omega)], delta = delta, nu = nu); 
} 
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A.5. Overwrite qst function on sn ver.1.0-0 

In version 1.0-0 of the sn package, the qst function should be overwritten as follows to avoid an 

infinite loop and to obtain the qt value at zero skewness   (alpha = 0). 

The default relative tolerance of the numerical integrate function used in the internal pst 

function has lower accuracy than the default tolerance of the qst function. Therefore, the qst 

function cannot exit the while loop with the default parameters in some cases. 

To avoid the infinite loop, we modifies the internal pst functions to accept the optional 

parameters '...'. By setting the optional parameter rel.tol = 1e-6, for example, we can avoid the 

infinite loop. We also add maxit parameter to exit the loop when the number of iteration reaches 

the maxit. 

To obtain the qt value at zero skewness   (alpha = 0), we define Sign function instead of 

internal sign function. 

## redefine qst on "sn" ver.1.0-0 
qst <- function (p, xi = 0, omega = 1, alpha = 0, nu = Inf, tol = 1e-08, maxit 
= 30, ...)  
{ 
    if (length(alpha) > 1)  
        stop("'alpha' must be a single value") 
    if (length(nu) > 1)  
        stop("'nu' must be a single value") 
    if (nu <= 0)  
        stop("nu must be non-negative") 
    if (nu == Inf)  
        return(qsn(p, xi, omega, alpha)) 
    if (nu == 1)  
        return(qsc(p, xi, omega, alpha)) 
    if (alpha == Inf)  
        return(xi + omega * sqrt(qf(p, 1, nu))) 
    if (alpha == -Inf)  
        return(xi - omega * sqrt(qf(1 - p, 1, nu))) 
    na <- is.na(p) | (p < 0) | (p > 1) 
    abs.alpha <- abs(alpha) 
    if (alpha < 0)  
        p <- (1 - p) 
    zero <- (p == 0) 
    one <- (p == 1) 
    x <- xa <- xb <- xc <- fa <- fb <- fc <- rep(NA, length(p)) 
    nc <- rep(TRUE, length(p)) 
    nc[(na | zero | one)] <- FALSE 
    fc[!nc] <- 0 
    xa[nc] <- qt(p[nc], nu) 
    xb[nc] <- sqrt(qf(p[nc], 1, nu)) 
    fa[nc] <- pst(xa[nc], 0, 1, abs.alpha, nu, ...) - p[nc] 
    fb[nc] <- pst(xb[nc], 0, 1, abs.alpha, nu, ...) - p[nc] 
    regula.falsi <- FALSE 
    it <- 0 
    while (sum(nc) > 0 & it < maxit) { 
        xc[nc] <- if (regula.falsi)  
            xb[nc] - fb[nc] * (xb[nc] - xa[nc])/(fb[nc] - fa[nc]) 
        else (xb[nc] + xa[nc])/2 
        fc[nc] <- pst(xc[nc], 0, 1, abs.alpha, nu, ...) - p[nc] 
        pos <- (fc[nc] > 0) 
        xa[nc][!pos] <- xc[nc][!pos] 
        fa[nc][!pos] <- fc[nc][!pos] 
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        xb[nc][pos] <- xc[nc][pos] 
        fb[nc][pos] <- fc[nc][pos] 
        x[nc] <- xc[nc] 
        nc[(abs(fc) < tol)] <- FALSE 
        regula.falsi <- !regula.falsi 
        it <- it + 1 
    } 
    x <- replace(x, zero, -Inf) 
    x <- replace(x, one, Inf) 
    Sign <- function(x) sign(x)+ as.numeric(x==0) 
    q <- as.numeric(xi + omega * Sign(alpha)* x) 
    names(q) <- names(p) 
    return(q) 
} 

 

A.6. Three methods to calculate quantiles 

Three methods to calculate quantiles for a given pseudo sample },,{ 1 Nuu   are implemented 

as follows. The first one is an accurate method using modified qst function given in A.5. The 

second one is empirical quantiles with random sampling. The third one uses monotone interpolator.  

For a monotone interpolator to calculate quantiles of a univariate skew t-distribution at high 

speed, the signal library for R provides a set of generally Matlab/Octave-compatible signal 

processing functions. We use the pchip function from this library for the piecewise cubic Hermite 

interpolating polynomial.9 

## accurate quantiles ## 
aqst <- function(udat,zeta,nu, ...){ 
  dim <- ncol(udat); 
  ax <- matrix(0,nrow=nrow(udat),ncol=dim); 
  for(j in 1:dim){ 
    ax[,j] <- qst(udat[,j], alpha=zeta[j], nu=nu, ...); 
  } 
  ax 
} 
 
 
## empirical quantiles with random sampling ## 
rsqst <- function(udat,zeta,nu,simNum){ 
  dim <- ncol(udat); 
  sx <- matrix(0,nrow= nrow(udat),ncol=dim); 
  sy <- matrix(0,nrow=simNum,ncol=dim); 
  for(j in 1:dim){ 
     sy[,j] <- sort(rst(simNum, alpha=zeta[j], nu=nu)); 
     sx[,j] <- sy[udat[,j]*(simNum-1)+1,j]; 
  } 
  sx 
} 
 
 
## interpolating quantiles ## 
ipqst <- function(udat,zeta,nu,mpoints, ...){ 
  dim <- ncol(udat); 
  ix <- matrix(0,nrow=nrow(udat),ncol=dim); 
  for(j in 1:dim){ 
    minx <- qst(min(udat[,j]), alpha=zeta[j], nu=nu, ...); 
    maxx <- qst(max(udat[,j]), alpha=zeta[j], nu=nu, ...); 

                                                  
9 In some cases, the pst function of the sn package is not monotonically increasing because of the 

relative tolerance. We therefore sort the cumulative probabilities mpp ,,1   for mxx 1 . 
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    xx <- seq(minx,maxx,length.out=mpoints); 
    px <- sort(pst(xx, alpha=zeta[j], nu=nu, ...)); 
    ix[,j] <- pchip(px, xx, udat[,j]); 
  } 
  ix 
} 

 

 

A.7. Example of execution 

With the previous functions in a file, "stcopula.R", an example of executing the previous codes 

and the correspondence from R is given as follows. 

> ## Please specify the directory where "stcopula.R" is located by setwd()
> ## read R codes from a file ## 
> source("stcopula.R"); 
> ## setting ## 
> smN <- 2500; 
> smrho <- c(0.46,0.39,0.55); 
> smdelta <- c(-0.36,-0.33,-0.48); 
> smdf <- 5; 
> ## simulation ## 
> set.seed(1); 
> dat <- rstcop(smN,smrho,smdelta,smdf); 
> dim <- ncol(dat$u); 
> start <- list(rho=numeric(dim*(dim-1)/2),delta=numeric(dim),nu=6); 
> ## It would be better to add "trace=TRUE" option in control list 
> system.time(stcopmle<-stcop.mle(dat$u, start=start, 
control=list(reltol=1e-4))); 
   user  system elapsed  
  46.42    0.00   46.42  
 
> showResult(stcopmle); 
$rho 
[1] 0.4331891 0.3846318 0.4862471 
 
$delta 
[1] -0.3292710 -0.2045169 -0.4915625 
 
$nu 
[1] 4.741675 
 
$logL 
[1] 686.4662 
 
> 

 


