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Abstract The volume under a surface (VUS) is an effectivemeasure for evaluating the
discriminating power of a diagnostic test with three ordinal diagnostic groups. In this
paper,we investigate the difference of two correlatedVUS’s to compare two treatments
for discrimination of three-class classification data. A jackknife empirical likelihood
(JEL) procedure is employed to avoid the variance estimation in the existing methods.
We prove that the limiting distribution of the empirical log-likelihood ratio statistic
follows a χ2 distribution. Extensive numerical studies show that the JEL confidence
intervals outperform those based on the normal approximation method. The proposed
method is also applied to the Alzheimer’s disease data.

Keywords Jackknife empirical likelihood · Receiver operating characteristic (ROC)
curve · Volume under an ROC surface

1 Introduction

The receiver operating characteristic (ROC) curve measures the performance of a
binary classifier system by plotting the false-positive rate against the true-positive
rate for various discrimination thresholds. The area under the ROC curve (AUC)
provides a single value to summarize the performance of a diagnostic treatment. A
multi-class classification procedure is necessary if the subjects are assigned to more
than two groups simultaneously.Mossman (1999) evaluated a three-class classification
treatment using the volume under the ROC surface (VUS). Thus, the VUS is proposed
as an analogous measure to the AUC, which extends an ROC curve to an ROC surface
in the three-class case. Tian et al. (2011) showed that the difference of two correlated
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VUS’s is an efficient summary for the comparison of diagnostic accuracy with three
ordinal diagnostic groups using parametric methods.

Wan (2012) developed an empirical likelihood (Owen 1988) inference proce-
dure for the VUS, where it extended from AUC based on two-class data to VUS
based on three-class data. The estimating equations for the difference of two cor-
related VUS’s are much more complicated than the difference of two ROC curves
or that of two AUC’s. It is very difficult to construct an empirical likelihood (EL)
confidence interval for such a difference as Owen (1988, 1990)’s EL method is
too complicated to use. Since Jing et al. (2009) introduced the jackknife empiri-
cal likelihood (JEL) method, it has become possible and tractable for us to tackle
with this challenging problem (cf. Gong et al. 2010; Yang and Zhao 2013, 2015).
The JEL employs a U -statistic to avoid the nuisance parameters in the estimating
equations. Therefore, it provides a reliable confidence interval by solving a sim-
pler estimating equation of a pseudo-mean, which is based on U -statistic. Pan et al.
(2013) made nonparametric inference for the VUS’s using JEL, which is a univariate
three-sample problem. Inspired by Pan et al. (2013), we extend it to a bivariate three-
sample case and propose JEL methods for the difference of two correlated VUS’s.
Our simulation results demonstrate that proposed JEL confidence intervals outper-
form the normal approximation (NA) method for the difference of two correlated
VUS’s.

The rest of the paper is organized as follows. In Sect. 2, the JELmethod is employed
to construct the confidence intervals for the difference of two VUS’s. Motivated by
Pan et al. (2013), we prove that the limiting distribution of the empirical log-likelihood
ratio statistic follows a χ2 distribution. In Sect. 3, we present the results of intensive
simulation studies on the JEL confidence intervals, which have better performance
than those based on the NA method in terms of coverage probability. In Sect. 4, the
proposed method is illustrated by an Alzheimer’s disease (AD) data set. All the proofs
are provided in Appendix.

2 Inference procedure

Let (X T
1 , X T

2 , . . . , X T
n1), (Y T

1 , Y T
2 , . . . , Y T

n2) and (Z T
1 , Z T

2 , . . . , Z T
n3) represent i.i.d.

samples of three independent populations, where Xi = (X1i , X2i )
T , i = 1, 2, . . . , n1,

Y j = (Y1 j , Y2 j )
T , j = 1, 2, . . . , n2, and Zk = (Z1k, Z2k)

T , k = 1, 2, . . . , n3. We
adopt the same notations as Pan et al. (2013) did. Define the VUS with respect to the
first component as P(X11 < Y11 < Z11) and the VUS with respect to the second
component as P(X21 < Y21 < Z21), respectively. Therefore, the difference of two
VUS’s can be defined as

θ = P(X11 < Y11 < Z11) − P(X21 < Y21 < Z21)

= E(I (X11 < Y11 < Z11)) − E(I (X21 < Y21 < Z21))

= E(I (X11 < Y11 < Z11) − I (X21 < Y21 < Z21)),

which can be estimated by
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JEL for the difference of two VUS’s 791

θ̂ = 1

n1n2n3

∑

i=1,...,n1,
j=1,...,n2,
k=1,...,n3

[I (X1i < Y1 j < Z1k) − I (X2i < Y2 j < Z2k)].

A U -statistic of degree (1, 1, 1) with a kernel h(x; y; z) is defined as

Un = 1

n1n2n3

n1∑

i=1

n2∑

j=1

n3∑

k=1

h(Xi ; Y j ; Zk),

which is an unbiased estimator of θ = Eh(Xi ; Y j ; Zk). In particular, if

h(Xi ; Y j ; Zk) = I (X1i < Y1 j < Z1k) − I (X2i < Y2 j < Z2k),

then θ = P(X11 < Y11 < Z11) − P(X21 < Y21 < Z21). Therefore, we define the
estimate of θ as a U -statistic.

Un = 1

n1n2n3

n1∑

i=1

n2∑

j=1

n3∑

k=1

[I (X1i < Y1 j < Z1k) − I (X2i < Y2 j < Z2k)].

For i = 1, 2, . . . , n1, j = 1, 2, . . . , n2, and k = 1, 2, . . . , n3, we denote

(1) the statistics for all observations as U 0
n1,n2,n3 = Un ;

(2) the statistic after removing Xi ′ as

U−i ′,0,0
n1−1,n2,n3

= ((n1 − 1)n2n3)
−1

n1∑

i=1,
i �=i ′

n2∑

j=1

n3∑

k=1

[I (X1i < Y1 j < Z1k)

−I (X2i < Y2 j < Z2k)];

(3) the statistic after removing Y j ′ as

U 0,− j ′,0
n1,n2−1,n3

= (n1(n2 − 1)n3)
−1

n1∑

i=1

n2∑

j=1,
j �= j ′

n3∑

k=1

[I (X1i < Y1 j < Z1k)

−I (X2i < Y2 j < Z2k)];

(4) the statistic after removing Zk′ as

U 0,0,−k′
n1,n2,n3−1 = (n1n2(n3 − 1))−1

n1∑

i=1

n2∑

j=1

n3∑

k=1,
k �=k′

[I (X1i < Y1 j < Z1k)

−I (X2i < Y2 j < Z2k)].
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Then, define the jackknife pseudo-values by

Vi,0,0 = n1U 0
n1,n2,n3 − (n1 − 1)U−i,0,0

n1−1,n2,n3
;

V0, j,0 = n2U 0
n1,n2,n3 − (n2 − 1)U 0,− j,0

n1,n2−1,n3
;

V0,0,k = n3U 0
n1,n2,n3 − (n3 − 1)U 0,0,−k

n1,n2,n3−1.

We obtain the following forms with some simple algebra,

Vi,0,0 = 1

n2n3

n2∑

j1=1

n3∑

k1=1

[I (X1i < Y1 j < Z1k) − I (X2i < Y2 j < Z2k)];

V0, j,0 = 1

n1n3

n1∑

i1=1

n3∑

k1=1

[I (X1i < Y1 j < Z1k) − I (X2i < Y2 j < Z2k)];

V0,0,k = 1

n1n2

n1∑

i1=1

n2∑

j1=1

[I (X1i < Y1 j < Z1k) − I (X2i < Y2 j < Z2k)];

and

V̄·,0,0 = V̄0,·,0 = V̄0,0,· = Un,

where V̄·,0,0, V̄0,·,0, and V̄0,0,· are the averages of Vi,0,0, V0, j,0, and V0,0,k , respectively.
The following notations are needed throughout the paper (cf. Pan et al. 2013),

g1,0,0(x) = [P(x11 < Y11 < Z11) − P(x21 < Y21 < Z21)] − θ,

σ 2
1,0,0 = V ar(g1,0,0(X1));

g0,1,0(y) = [P(X11 < y11 < Z11) − P(X21 < y21 < Z21)] − θ,

σ 2
0,1,0 = V ar(g0,1,0(Y1));

g0,0,1(z) = [P(X11 < Y11 < z11) − P(X21 < Y21 < z21)] − θ,

σ 2
0,0,1 = V ar(g0,0,1(Z1));

where x = (x1, x2)T , y = (y1, y2)T , and z = (z1, z2)T .
Denote (T1, T2, . . . , Tn) = (T1, T2, . . . , Tn1 , Tn1+1, Tn1+2, . . . , Tn1+n2 , Tn1+n2+1,

. . . , Tn1+n2+n3)

= (X T
1 , X T

2 , . . . , X T
n1 , Y T

1 , Y T
2 , . . . , Y T

n2 , Z T
1 , Z T

2 , . . . , Z T
n3), where n = n1+n2+n3.

A one-sample U -statistic of degree three is defined as follows,

Wn = Un(T1, T2, . . . , Tn) =
(

n

3

)−1 ∑

1≤i< j<k≤n

h(Ti , Tj , Tk),
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JEL for the difference of two VUS’s 793

where the kernel function

h(Ti , Tj , Tk) =
(n
3

)

n1n2n3
[I (X1i < Y1, j−n1 < Z1,k−n1−n2)

−I (X2i < Y2, j−n1 < Z2,k−n1−n2)] (1)

for i = 1, 2, . . . , n1, j = n1 + 1, n1 + 2, . . . , n1 + n2, k = n1 + n2 + 1, n1 + n2 +
2, . . . , n, and 1 ≤ i ≤ n1 < j ≤ n1 + n2 < k ≤ n, and h(Ti , Tj , Tk) = 0 otherwise.
Note that θ = Eh(Ti , Tj , Tk), and Wn = Un . Similar to Pan et al. (2013), we define
the U -statistic with Tl deleted as follows:

W (−l)
n−1 Un−1(T1, T2, . . . , Tl−1, Tl+1, . . . , Tn)

=
(

n − 1

3

)−1 (−l)∑

n−1,3

h(Ti , Tj , Tk)

=
(

n − 1

3

)−1
⎡

⎣
∑

i< j<k

h(Ti , Tj , Tk) −
∑

j<k

h(Tl , Tj , Tk)

−
∑

i<k

h(Ti , Tl , Tk) −
∑

i< j

h(Ti , Tj , Tl )

⎤

⎦

=
(

n − 1

3

)−1
⎡

⎣
(

n

3

)
Wn −

∑

j<k

h(Tl , Tj , Tk) −
∑

i<k

h(Ti , Tl , Tk)

−
∑

i< j

h(Ti , Tj , Tl )

⎤

⎦ ,

where we denote the removal of Tl as (−l), 1 ≤ l ≤ n.
Like Pan et al. (2013), we define the jackknife pseudo-values by

V̂l = nWn − (n − 1)W (−l)
n−1

= nWn − (n − 1)

(
n − 1

3

)−1(n

3

)
Wn

+ (n − 1)

(
n − 1

3

)−1
⎡

⎣
∑

l< j<k

h(Tl , Tj , Tk) +
∑

i<l<k

h(Ti , Tl , Tk)

+
∑

i< j<l

h(Ti , Tj , Tl )

⎤

⎦

= − 2n

n − 3
Un + 6

(n − 2)(n − 3)

⎡

⎣
∑

l< j<k

h(Tl , Tj , Tk) +
∑

i<l<k

h(Ti , Tl , Tk)

+
∑

i< j<l

h(Ti , Tj , Tl )

⎤

⎦ .
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Now plugging in Eq. (1), one has that

V̂l − 2n

n − 3
Un + 6

(n − 2)(n − 3)

n(n − 1)(n − 2)

6n1n2n3⎧
⎨

⎩
∑

j<k

[
I (X1l < Y1, j−n1 < Z1,k−n1−n2) − I (X2l < Y2, j−n1 < Z2,k−n1−n2)

]

I (1 ≤ l ≤ n1 < j ≤ n1 + n2 < k ≤ n)

+
∑

i<k

[
I (X1i < Y1l < Z1,k−n1−n2) − I (X2i < Y2l < Z2,k−n1−n2)

]

I (1 ≤ i ≤ n1 < l ≤ n1 + n2 < k ≤ n)

+
∑

i< j

[I (X1i < Y1, j−n1 < Z1,l) − I (X2i < Y2, j−n1 < Z2l)]

I (1 ≤ i ≤ n1 < j ≤ n1 + n2 < l ≤ n)

⎫
⎬

⎭

= − 2n

n − 3
Un + n(n − 1)

(n − 3)

1

n1n2n3⎧
⎨

⎩

n1+n2∑

j=n1+1

n∑

k=n1+n2+1

[I (X1l < Y1, j−n1 < Z1,k−n1−n2)

− I (X2l < Y2, j−n1 < Z2,k−n1−n2)]I (1 ≤ l ≤ n1)

+
n1∑

i=1

n∑

k=n1+n2+1

[I (X1i < Y1l < Z1,k−n1−n2)

− I (X2i < Y2l < Z2,k−n1−n2)]I (n1 < l ≤ n1 + n2)

+
n1∑

i=1

n1+n2∑

j=n1+1

[I (X1i < Y1, j−n1 < Z1,l)

−I (X2i < Y2, j−n1 < Z2l)]I (n1 + n2 < l ≤ n)

⎫
⎬

⎭ .

Therefore,

E(V̂l) = − 2n

n − 3
θ + n(n − 1)

(n − 3)

[ θ

n1
I (1 ≤ l ≤ n1) + θ

n2
I (n1 < l ≤ n1 + n2)

+ θ

n3
I (n1 + n2 < l ≤ n)

]
.

By adopting the idea of Jing et al. (2009) and Pan et al. (2013), we define the jackknife
empirical likelihood ratio for θ as follows,

R(θ) = sup
p1,...,pn ,

{
n∏

i=1

(npi ) : pi > 0,
n∑

i=1

pi = 1,
n∑

i=1

pi V̂i −
n∑

i=1

pi EV̂i = 0

}
.
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JEL for the difference of two VUS’s 795

Using Lagrange multiplier method, we have log R(θ) = −∑n
l=1 log(1 + γ (V̂l −

EV̂l)), and γ is the solution to the following equation

1

n

n∑

l=1

V̂l − EV̂l

1 + γ (V̂l − EV̂l)
= 0. (2)

We establish the Wilk’s theorem for the JEL at true value θ0.

Theorem 1 We assume the following conditions hold.

(a) σ 2
1,0,0 > 0, σ 2

0,1,0 > 0, σ 2
0,0,1 > 0, and

(b)
n

nt
→ ct < ∞, where t = 1, 2, 3 and ct ’s are finite constants. As

min(n1, n2, n3) → ∞, the empirical log-likelihood ratio statistic at the true
value θ0

l(θ0) = −2 log R(θ0)
d→ χ2

1 ,

where χ2
1 is a standard χ2 distribution with degree of freedom 1.

Thus, the asymptotic 100(1 − α)% JEL confidence interval for θ is given by

{θ : l(θ) ≤ χ2
1 (α)},

where χ2
1 (α) is the upper α-quantile of χ2

1 .

3 Numerical studies

In this section, we carry out extensive simulations to study the finite sample perfor-
mance of the proposed JEL for the difference of two VUS’s. We also construct the
confidence intervals based on the normal approximation (NA) method. The normal
approximation method can be found in Lemma 1 of Appendix. Based on Lemma 1,
the 100(1−α)% confidence intervals based on the normal approximation method can
be constructed as

I = {
θ : |Un − θ | ≤ Zα/2σ̂

}
,

where Zα/2 is the upper α/2 critical value for the standard normal distribution and σ̂

is defined in Appendix. We compare the two methods in terms of average length and
coverage probability of confidence intervals.

For Tables 1 and 2, the data follow the Marshall–Olkin bivariate exponential
distribution (MOBVE), as in Marshall and Olkin (1967) and Balakrishnan (1996).
M O BV E(λ1, λ2, λ3) has a CDF

F(w1, w2) = 1 − exp[−λ1w1 − λ2w2 − λ3max{w1, w2}],
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Table 1 95%Confidence intervals for the difference of twoVUS’s. (X∗
1 , X∗

2) ∼ M O BV E(λx1 , λx2 , λx3 ),
(Y ∗

1 , Y ∗
2 ) ∼ M O BV E(λy1 , λy2 , λy3 ), (Z∗

1 , Z∗
2 ) ∼ M O BV E(λz1 , λz2 , λz3 )

c (λx1 , λx2 , λx3 ; λy1 , λy2 , λy3 ; λz1 , λz2 , λz3 ) (n1, n2, n3) JEL NA

CP (%) AL CP (%) AL

0 (1, 1, 0; 2, 2, 0; 3, 3, 0) (10, 10, 10) 90.8 .203 90.0 .190

(20, 25, 30) 94.1 .126 92.4 .120

(30, 30, 30) 94.8 .108 93.6 .104

(60, 60, 60) 94.6 .074 94.5 .072

(80, 80, 80) 94.5 .064 94.7 .063

(100, 100, 100) 95.5 .057 95.3 .056

0.25 ( 35 , 3
5 , 2

5 ; 6
5 , 6

5 , 4
5 ; 9

5 , 9
5 , 6

5 ) (10, 10, 10) 91.1 .188 89.6 .176

(20, 25, 30) 94.4 .112 93.5 .106

(30, 30, 30) 94.9 .096 93.7 .093

(60, 60, 60) 95.9 .066 95.2 .064

(80, 80, 80) 94.2 .056 93.5 .055

(100, 100, 100) 94.2 .050 93.6 .049

0.5 ( 13 , 1
3 , 2

3 ; 2
3 , 2

3 , 4
3 ; 1, 1, 2) (10, 10, 10) 89.6 .167 86.9 .158

(20, 25, 30) 94.4 .100 93.0 .094

(30, 30, 30) 94.2 .087 93.0 .083

(60, 60, 60) 92.8 .058 90.8 .056

(80, 80, 80) 95.3 .049 94.6 .049

(100, 100, 100) 95.7 .044 95.1 .044

0.75 ( 17 , 1
7 , 6

7 ; 2
7 , 2

7 , 12
7 ; 3

7 , 3
7 , 18

7 ) (10, 10, 10) 90.1 .151 87.1 .144

(20, 25, 30) 95.1 .088 92.4 .084

(30, 30, 30) 95.9 .075 93.1 .073

(60, 60, 60) 94.8 .051 93.6 .050

(80, 80, 80) 95.9 .044 94.7 .043

(100, 100, 100) 93.5 .039 92.2 .038

0.9 ( 1
19 , 1

19 , 18
19 ; 2

19 , 2
19 , 36

19 ; 3
19 , 3

19 , 54
19 ) (10, 10, 10) 93.5 .143 90.1 .136

(20, 25, 30) 94.6 .080 92.3 .078

(30, 30, 30) 94.7 .069 93.7 .067

(60, 60, 60) 95.4 .046 94.9 .046

(80, 80, 80) 94.9 .040 94.6 .039

(100, 100, 100) 95.4 .035 94.6 .035

The correlations c1 = c2 = c3 = c, and sample sizes nx1 = nx2 = n1, ny1 = ny2 = n2, nz1 = nz2 = n3
JEL jackknife empirical likelihood, NA normal approximation, CP (%) coverage probability, AL average
length

where w1, w2 > 0, λt ≥ 0 and at least one λt is positive, t = 1, 2, 3. The
marginal distributions of (W1, W2) are exponential with expectations (λ1 + λ3) and
(λ2 + λ3), respectively. Their correlation c is λ3/(λ1 + λ2 + λ3). In this simula-
tion study, the first population X = (X1, X2) = (ρx X∗

1, X∗
2), where (X∗

1, X∗
2) ∼
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Table 2 90%Confidence intervals for the difference of twoVUS’s. (X∗
1 , X∗

2) ∼ M O BV E(λx1 , λx2 , λx3 ),
(Y ∗

1 , Y ∗
2 ) ∼ M O BV E(λy1 , λy2 , λy3 ), (Z∗

1 , Z∗
2 ) ∼ M O BV E(λz1 , λz2 , λz3 )

c (λx1 , λx2 , λx3 ; λy1 , λy2 , λy3 ; λz1 , λz2 , λz3 ) (n1, n2, n3) JEL NA

CP (%) AL CP (%) AL

0 (1, 1, 0; 2, 2, 0; 3, 3, 0) (10, 10, 10) 87.2 .168 85.0 .190

(20, 25, 30) 88.7 .105 87.8 .101

(30, 30, 30) 89.8 .090 88.3 .087

(60, 60, 60) 89.7 .062 88.9 .061

(80, 80, 80) 90.2 .053 89.4 .053

(100, 100, 100) 88.8 .047 88.6 .047

0.25 ( 35 , 3
5 , 2

5 ; 6
5 , 6

5 , 4
5 ; 9

5 , 9
5 , 6

5 ) (10, 10, 10) 86.9 .156 85.8 .148

(20, 25, 30) 90.6 .093 88.9 .089

(30, 30, 30) 90.4 .080 89.5 .078

(60, 60, 60) 90.5 .055 90.3 .054

(80, 80, 80) 90.0 .047 89.8 .046

(100, 100, 100) 90.3 .042 88.7 .041

0.5 ( 13 , 1
3 , 2

3 ; 2
3 , 2

3 , 4
3 ; 1, 1, 2) (10, 10, 10) 85.7 .139 83.7 .133

(20, 25, 30) 90.0 .083 87.5 .080

(30, 30, 30) 90.5 .072 89.5 .071

(60, 60, 60) 87.3 .048 86.4 .047

(80, 80, 80) 91.2 .041 90.8 .041

(100, 100, 100) 90.0 .037 89.9 .037

0.75 ( 17 , 1
7 , 6

7 ; 2
7 , 2

7 , 12
7 ; 3

7 , 3
7 , 18

7 ) (10, 10, 10) 86.3 .126 83.3 .121

(20, 25, 30) 90.4 .073 89.1 .070

(30, 30, 30) 91.4 .062 89.8 .061

(60, 60, 60) 88.5 .042 87.6 .042

(80, 80, 80) 91.0 .037 89.2 .036

(100, 100, 100) 87.7 .032 87.3 .032

0.9 ( 1
19 , 1

19 , 18
19 ; 2

19 , 2
19 , 36

19 ; 3
19 , 3

19 , 54
19 ) (10, 10, 10) 90.0 .119 87.1 .114

(20, 25, 30) 91.0 .067 88.7 .065

(30, 30, 30) 91.3 .057 89.1 .056

(60, 60, 60) 90.1 .039 89.6 .038

(80, 80, 80) 91.9 .033 91.0 .033

(100, 100, 100) 90.2 .029 90.0 .029

The correlations c1 = c2 = c3 = c, and sample sizes nx1 = nx2 = n1, ny1 = ny2 = n2, nz1 = nz2 = n3
JEL jackknife empirical likelihood, NA normal approximation, CP (%) coverage probability, AL average
length

M O BV E(λx1, λx2 , λx3), and ρx = 3. The second population Y = (Y1, Y2) =
(ρyY ∗

1 , Y ∗
2 ), where (Y ∗

1 , Y ∗
2 ) ∼ M O BV E(λy1, λy2 , λy3), and ρy = 2. The third pop-

ulation Z = (Z1, Z2) = (ρz Z∗
1 , Z∗

2), where (Z∗
1 , Z∗

2) ∼ M O BV E(λz1 , λz2 , λz3),
and ρz = 1. The λxt , λyt , λzt ’s differ for various correlations, where the correlations
c1, c2, and c3 are chosen as 0, 0.25, 0.5, 0.75, and 0.9. We also guarantee the marginal
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Table 3 95% Confidence intervals for the difference of two VUS’s. X1 ∼ N (μx1 , 1), X2 ∼ N (μx2 , 1),
Y1 ∼ N (μy1 , 1), Y2 ∼ N (μy2 , 1), Z1 ∼ N (μz1 , 1), Z2 ∼ N (μz2 , 1)

c (μx1 , μx2 , μy1 , μy2 , μz1 , μz2 ) (n1, n2, n3) JEL NA

CP (%) AL CP (%) AL

0 (5, 3, 4, 2, 4, 1) (10, 10, 10) 90.1 .182 89.2 .171

(20, 25, 30) 93.6 .112 92.7 .106

(30, 30, 30) 94.8 .097 93.3 .093

(60, 60, 60) 95.7 .067 94.0 .065

(80, 80, 80) 95.4 .057 94.8 .056

(100, 100, 100) 94.8 .051 94.5 .050

0.25 (5, 3, 4, 2, 4, 1) (10, 10, 10) 91.3 .176 90.0 .165

(20, 25, 30) 94.1 .107 93.1 .101

(30, 30, 30) 93.9 .092 93.5 .088

(60, 60, 60) 94.6 .063 93.7 .062

(80, 80, 80) 95.1 .054 94.3 .053

(100, 100, 100) 94.6 .048 92.3 .047

0.5 (5, 3, 4, 2, 4, 1) (10, 10, 10) 89.2 .163 88.0 .153

(20, 25, 30) 93.6 .101 92.1 .096

(30, 30, 30) 93.9 .084 91.4 .081

(60, 60, 60) 94.7 .058 93.9 .056

(80, 80, 80) 95.1 .050 94.6 .049

(100, 100, 100) 95.2 .044 93.8 .043

0.75 (5, 3, 4, 2, 4, 1) (10, 10, 10) 89.6 .148 87.6 .140

(20, 25, 30) 93.9 .088 91.4 .084

(30, 30, 30) 94.7 .075 91.5 .072

(60, 60, 60) 94.9 .051 93.3 .050

(80, 80, 80) 95.3 .043 94.0 .042

(100, 100, 100) 95.5 .039 95.0 .038

0.9 (5, 3, 4, 2, 4, 1) (10, 10, 10) 91.3 .134 88.4 .127

(20, 25, 30) 93.8 .079 91.3 .075

(30, 30, 30) 95.6 .067 92.3 .065

(60, 60, 60) 95.6 .046 94.8 .045

(80, 80, 80) 95.6 .039 95.1 .038

(100, 100, 100) 95.1 .035 94.7 .034

The correlations c1 = c2 = c3 = c, and sample sizes nx1 = nx2 = n1, ny1 = ny2 = n2, nz1 = nz2 = n3
JEL jackknife empirical likelihood, NA normal approximation, CP (%) coverage probability, AL average
length

distributions X∗
1 ∼ exp(1), X∗

2 ∼ exp(1), Y ∗
1 ∼ exp(2), Y ∗

2 ∼ exp(2), Z∗
1 ∼ exp(3),

and Z∗
2 ∼ exp(3).

In Tables 3 and 4, the data are generated from the bivariate normal distributions.
The distributions are: (X1, X2) ∼ N (μx , 	x ), (Y1, Y2) ∼ N (μy, 	y), (Z1, Z2) ∼
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Table 4 90% confidence intervals for the difference of two VUS’s. X1 ∼ N (μx1 , 1), X2 ∼ N (μx2 , 1),
Y1 ∼ N (μy1 , 1),Y2 ∼ N (μy2 , 1), Z1 ∼ N (μz1 , 1), Z2 ∼ N (μz2 , 1). The correlations c1 = c2 = c3 = c,
and sample sizes nx1 = nx2 = n1, ny1 = ny2 = n2, nz1 = nz2 = n3

c (λx1 , λx2 , λy1 , λy2 , λz1 , λz2 ) (n1, n2, n3) JEL NA

CP (%) AL CP (%) AL

0 (5, 3, 4, 2, 4, 1) (10, 10, 10) 86.1 .151 85.3 .143

(20, 25, 30) 88.9 .093 88.1 .089

(30, 30, 30) 90.9 .080 89.2 .078

(60, 60, 60) 91.0 .056 90.3 .055

(80, 80, 80) 90.3 .048 89.8 .047

(100, 100, 100) 89.5 .043 89.5 .042

0.25 (5, 3, 4, 2, 4, 1) (10, 10, 10) 86.9 .146 85.0 .138

(20, 25, 30) 90.1 .089 88.7 .085

(30, 30, 30) 90.9 .076 89.5 .074

(60, 60, 60) 89.9 .053 88.5 .052

(80, 80, 80) 90.9 .045 90.0 .045

(100, 100, 100) 88.5 .040 87.4 .039

0.5 (5, 3, 4, 2, 4, 1) (10, 10, 10) 86.5 .135 83.8 .128

(20, 25, 30) 89.7 .084 88.0 .081

(30, 30, 30) 88.5 .070 86.5 .068

(60, 60, 60) 91.4 .048 89.6 .047

(80, 80, 80) 92.3 .041 91.7 .041

(100, 100, 100) 88.2 .037 88.3 .036

0.75 (5, 3, 4, 2, 4, 1) (10, 10, 10) 86.8 .123 85.0 .117

(20, 25, 30) 90.7 .073 87.4 .070

(30, 30, 30) 89.6 .062 87.2 .060

(60, 60, 60) 90.6 .043 89.1 .042

(80, 80, 80) 90.8 .036 90.0 .036

(100, 100, 100) 90.4 .032 89.7 .032

0.9 (5, 3, 4, 2, 4, 1) (10, 10, 10) 87.8 .111 85.0 .107

(20, 25, 30) 90.5 .065 87.3 .063

(30, 30, 30) 90.9 .055 88.1 .054

(60, 60, 60) 92.9 .038 91.2 .038

(80, 80, 80) 91.6 .032 90.8 .032

(100, 100, 100) 90.6 .029 90.0 .029

JEL Jackknife empirical likelihood, NA normal approximation, CP (%) coverage probability, AL average
length

N (μz, 	z), where μx = (5, 3), μy = (4, 2), and μz = (4, 2), and the covariance
matrices are

	x = 	y = 	z =
(
1 c
c 1

)
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as the correlation c varies.
The sample sizes for x , y and z of (nx1 , nx2 , ny1 , ny2 , nz1 , nz2) are (10, 10, 10, 10,

10, 10), (20, 20, 25, 25, 30, 30), (30, 30, 30, 30, 30, 30), (60, 60, 60, 60, 60, 60), (80,
80, 80, 80, 80, 80), and (100, 100, 100, 100, 100, 100). The nominal levels of the con-
fidence intervals are 95 and 90%; 1000 iterations are repeated to generate the data.

From Tables 1, 2, 3 and 4, we make the following conclusions.

1. For different correlations, sample sizes, and parameters of the distributions, the
coverage probabilities of the confidence intervals based on JEL methods and NA
methods are close to nominal levels.

2. In almost all the scenarios, as the sample sizes increase, the coverage probabilities
of the confidence intervals for the two methods get closer to the nominal level,
and the average lengths of the intervals decrease. This is reasonable since larger
sample sizes provide more information of the data.

3. For the same sample sizes, as the correlations increase, the coverage probabilities
of the confidence intervals for the two methods are closer to the nominal level, and
the average lengths of the intervals decrease. JEL interval estimates outperform the
normal approximation interval estimates for various sample sizes and correlation
coefficients.

4 Real data analysis

In this section, the proposed confidence intervals of the difference of two VUS’s are
illustrated using a data set of the diagnosis for early-stage Alzheimer’s disease (AD)
from the Alzheimer’s disease Research Center (ADRC) at Washington University
(see Xiong et al. 2006). The severity of dementia of Alzheimer type can be staged by
the clinical dementia rating (CDR), a score based on several clinical evaluations and
neuropsychometric measurements. We concentrate on the following three diagnostic
groups: non-demented group (CDR 0), very mildly demented group (CDR 0.5), and
mildly demented group (CDR 1). The data set includes 14 neuropsychometric markers
from 118 cases aged 75 falling into the three diagnostic categories mentioned above.
Out of the 14 measures, we compare the diagnostic accuracies between the scores
from two neuropsychometric tests. One of them is a measure of semantic memory,
named as the information subset of theWechsler Adult Intelligence Scale (WAIS), see
Wechsler (1955). The other is an untimed visuospatialmeasure calledVisual Retention
Test (Form D, copy), as in Storandt and Hill (1989).

By deleting the individuals with results of missing values, we have 22 patients from
mildly demented group (CDR 1), 44 patients from very mildly demented group (CDR
0.5), and 45 participants from non-demented group (CDR 0).

For CDR 1 group, the sample mean is (− 2.125,− 1.769), the sample covariance
matrix is

(
1.298 0.786
0.786 5.751

)
,

and the correlation of the two attributes is 0.288.
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For CDR 0.5 group, the sample mean is (− 0.607,− 0.551), the sample covariance
matrix is

(
1.167 1.302
1.302 3.476

)
,

and the correlation of the two attributes is 0.647.
For CDR 0 group, the sample mean is (0.631, 0.202), the sample covariance matrix

is

(
0.712 0.164
0.164 0.445

)
,

and the correlation of the two attributes is 0.292.
The interval estimate of the difference of the two VUS’s based on the JEL method

is (0.350, 0.634) at 90% confidence level and (0.324, 0.662) at 95% confidence
level. The NA confidence interval is (0.375, 0.604) at 90% confidence level and
(0.353, 0.627) at 95% confidence level. Therefore, the information subset of theWAIS
possesses a stronger discrimination power than that of Visual Retention Test (Form
D, copy).

5 Discussion

In this paper, we make elaborate efforts to provide an alternative method in evaluating
diagnostic tests through the jackknife empirical likelihood procedure. A new inference
technique is constructed to compare the diagnostic treatments in discriminating three-
class data. We apply bivariate three-sample U -statistic to obtain interval estimates for
the difference of VUS’s and establish theWilk’s theorem for theU -statistic rigorously.
The corresponding coverage probability and average length of the confidence intervals
are calculated based on the Wilk’s theorem. Our JEL method for the bivariate three-
sample U -statistic is an extension of the existing JEL methods for the univariate
multi-sampleU -statistic (see Jing et al. 2009 andPan et al. 2013).We also presented the
normal approximation method to make inference for the difference of two correlated
VUS’s. The extensive simulation studies show the advantages of the JEL method over
the normal approximation method in terms of coverage probability for the confidence
intervals.

In the future, we will investigate the adjusted JEL confidence intervals for the
difference of two correlated VUS’s to improve the coverage probability. On the other
hand, we will also study the partial volume under surface (PVUS), which is another
important and powerful measure for the evaluation of the diagnostic tests. Finally, we
will explore the JEL confidence intervals for VUS and PVUS with incomplete data.
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Appendix: Proof of Theorem 1

The variance V ar(Un) can be estimated by a consistent estimator σ̂ 2 as in Sen (1960)
and Arvesen (1969),

σ̂ 2 = 1

n1(n1 − 1)

n1∑

i=1

(Vi,0,0 − V̄·,0,0)2 + 1

n2(n2 − 1)

n2∑

j=1

(V0, j,0 − V̄0,·,0)2

+ 1

n3(n3 − 1)

n3∑

k=1

(V0,0,k − V̄0,0,·)2.

Lemma 1 We have the following conclusions.

(a) The U-statistic Un
a.s.→ θ0 as min(n1, n2, n3) → ∞;

(b) Suppose that σ 2
1,0,0 > 0, σ 2

0,1,0 > 0, σ 2
0,0,1 > 0, and denote S2

n1,n2,n3 =
σ 2
1,0,0/n1 + σ 2

0,1,0/n2 + σ 2
0,0,1/n3. As min(n1, n2, n3) → ∞,

Un − θ0

Sn1,n2,n3

d→ N (0, 1), (3)

and

σ̂ 2 − S2
n1,n2,n3 = op((min(n1, n2, n3))

−1). (4)

The proof of part (a) and Eqs. (3) and (4) can be found in Arvesen (1969) and
Kowalski and Tu (2007).

Lemma 2 Let Sn = n−1∑n
l=1(V̂l − EV̂l)

2. We assume the same conditions as (a)
and (b) in Theorem 1. Then as n1 → ∞,

Sn = nS2
n1,n2,n3 + op(1).

Proof of Lemma 2 For 1 ≤ l ≤ n1, it is clear that

V̂l − EV̂l = n(n − 1)

(n − 3)n1
(Vl,0,0 − Un) + n(n − 2n1 − 1)

(n − 3)n1
(Un − θ0),

and

1

n1

n1∑

l=1

(Vl,0,0 − Un)(Un − θ0)

= (Un−θ0)

⎧
⎨

⎩
1

n1n2n3

n1∑

i=1

n2∑

j=1

n3∑

k=1

[I (X1i<Y1 j<Z1k) − I (X2i<Y2 j < Z2k)] − Un

⎫
⎬

⎭

= 0.
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As Pan et al. (2013) and Wang (2010) did, we have that

n1∑

l=1

(V̂l−EV̂l)
2 =

[
n(n−1)

(n−3)n1

]2 n1∑

l=1

(Vl,0,0 − Un)2+
[

n(n−2n1−1)

(n−3)n1

]2
n1(Un − θ0)

2.

For n1 < l ≤ n1 + n2, one has that

n1+n2∑

l=n1+1

(V̂l − EV̂l)
2 =

[
n(n − 1)

(n − 3)n2

]2 n1+n2∑

l=n1

(V0,l,0 − Un)2

+
[

n(n − 2n2 − 1)

(n − 3)n2

]2
n2(Un − θ0)

2.

For n1 + n2 < l ≤ n, we have that (see Pan et al. 2013)

n∑

l=n1+n2+1

(V̂l − EV̂l)
2 =

[
n(n − 1)

(n − 3)n3

]2 n∑

l=n1+n2

(V0,0,l − Un)2

+
[

n(n − 2n3 − 1)

(n − 3)n3

]2
n3(Un − θ0)

2.

Therefore,

Sn = 1

n

[
n(n − 1)

(n − 3)

]2
⎡

⎣ 1

n21

n1∑

l=1

(Vl,0,0 − V̄·,0,0)2 + 1

n22

n1+n2∑

l=n1+1

(V0,l,0 − V̄0,·,0)2

+ 1

n23

n∑

l=n1+n2+1

(V0,0,l − V̄0,0,·)2
⎤

⎦

+ 1

n

[
n

(n − 3)

]2 [ (n − 2n1 − 1)2

n1
+ (n − 2n2 − 1)2

n2
+ (n − 2n3 − 1)2

n3

]
(Un − θ0)

2.

(5)

From the LLN of U -statistic, we have the conclusion Un − θ0 = Op(n
−1/2
1 ). The

second term in Eq. (5) is

n

(n − 3)2

[
(n − 2n1 − 1)2

n1
+ (n − 2n2 − 1)2

n2
+ (n − 2n3 − 1)2

n3

]
(Un − θ0)

2

= Op(n
−1).
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Moreover, the 1st term of Eq. (5) is (cf. Wang 2010)

n

(
n − 1

n − 3

)2
⎡

⎣ 1

n2
1

n1∑

l=1

(
Vl,0,0 − V̄·,0,0

)2 + 1

n2
2

n1+n2∑

l=n1+1

(
V0,l,0 − V̄0,·,0

)2

+ 1

n2
3

n∑

l=n1+n2+1

(V0,0,l − V̄0,0,·)2
⎤

⎦

= nσ̂ 2 + op(1).

Using Eq. (4), we prove Lemma 2. 
�
Lemma 3 Let Qn = max

1≤l≤n
|V̂l − θ0|. Under the same conditions as in Lemma 2, we

have Qn = op(n1/2) and n−1∑n
l=1 |V̂l − θ0|3 = op(n1/2).

Proof of Lemma 3 For 1 ≤ l ≤ n1, we have (see Wang 2010)

|V̂l − EV̂l | ≤
∣∣∣

n

n1

n − 1

n − 3
Vl,0,0

∣∣∣+
∣∣∣

n

n1

n − 1

n − 3
Un

∣∣∣+
∣∣∣
n(n − 2n1 − 1)

(n − 3)n1
(Un − θ0)

∣∣∣.

Note that |Vl,0,0| ≤ H̃n , and |Un| ≤ H̃n , where

H̃n = max
1≤i≤n1<l≤n1+n2<k≤n

|h(Xi , Y j , Zk)|.

Therefore, |V̂l − EV̂l | ≤ c∗ H̃n + c∗ H̃n + c∗|Un − θ |, where c∗ is a constant. Similar
to Pan et al. (2013) and Wang (2010), we have H̃n = op(n1/2) and Un − θ0 =
Op(n−1/2). Therefore, |V̂l − EV̂l | = op(n1/2) for 1 ≤ l ≤ n1. For n1 < l ≤ n1 + n2,
|V̂l −EV̂l | ≤ 2c∗ H̃n +c∗|Un −θ0|.Thus, |V̂l −EV̂l | = op(n1/2) for n1 < l ≤ n1+n2.
For n1 + n2 < l ≤ n, we have |V̂l − EV̂l | = op(n1/2) similarly as before. Thus
Qn = op(n1/2). Hence,

n−1
n∑

l=1

|V̂l − EV̂l |3 = op(n
1/2)(nS2

n1,n2,n3 + op(1)) = op(n
1/2).


�
Proof of Theorem 1 The proof follows the same lines of Pan et al. (2013). Recall

Un = 1/n
n∑

l=1

V̂l and θ0 = 1/n
n∑

l=1

EV̂l . Then

|Un − θ0| ≥ |γ | 1

1 + |γ |max |V̂l − EV̂l |
1

n

n∑

l=1

(V̂l − EV̂l)
2 ≥ |γ | Sn

1 + |γ |Qn
.
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We have that |γ | = Op(n−1/2). Using Taylor’s expansion, one has that

−2 log R(θ0) = 2
n∑

l=1

{
γ (V̂l − EV̂l) − 1

2

[
γ (V̂l − EV̂l)

]2}+ op(1). (6)

Let F0 = 1/n
n∑

l=1

γ 2(V̂l − EV̂l)
3

1 + γ (V̂l − EV̂l)
. By Eq. (2), we have that

2nγ (Un − θ0) − nSnγ 2 = n
(Un − θ0)

2

Sn
− nF2

0

Sn
.

One can obtain F0 = op(n−1/2). Thus Eq. (6) can be re-expressed as follows,

−2 log R(θ0) = n
(Un − θ0)

2

Sn
+ op(1).

Combining Lemmas 1, 2 and 3, we finish the proof. 
�
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