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Abstract We give a survey on fold-up derivatives, a notion which was introduced by
Khmaladze (J Math Anal Appl 334:1055–1072, 2007) and extended by Khmaladze
and Weil (J Math Anal Appl 413:291–310, 2014) to describe infinitesimal changes in
a set-valued function. We summarize the geometric background and discuss in detail
applications in statistics, in particular to the change-set problem of spatial statistics,
and show how the notion of fold-up derivatives leads to the theory of testing statistical
hypotheses about the change-set. We formulate Poisson limit theorems for the log-
likelihood ratio in two versions of this problem and present also the route to a central
limit theorem.

Keywords Infinitesimal image analysis ·Generalized functions ·Fold-up derivatives ·
Local Steiner formula · Local point process · Set-valued mapping · Derivative set ·
Normal cylinder · Change-set problem

1 Introduction

The differentiation of set-valued functions encompasses a topic,which has seen several
approaches by Artstein (1995, 2000), Aubin (1981), Aubin and Frankowska (1990),
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2 E. Khmaladze, W. Weil

Bernardin (2003) and Borwein and Zhu (1999) and which has diverse and important
applications, for example in the theory of optimal control and convex analysis, to
name only two. As an illustration of probabilistic research connected with set-valued
analysis, we refer to Kim and Kim (1999). Derivatives of set-valued functions also
arise in statistics, in particular in connection with the change-set problem. For such
applications, it turned out that a new approach was necessary, the fold-up derivatives,
by which the infinitesimal changes in a set-valued function are described by a set in the
normal cylinder of the limit set. This concept was introduced in Khmaladze (2007) for
convex sets and extended to rather general closed sets in Khmaladze and Weil (2014).
In the following, we give a survey on fold-up derivatives, describe the geometrical
background and discuss its applications in statistics.

The text is organized as follows: In the remaining part of this Introduction, we
discuss the nature of fold-up derivatives (Sects. 1.1 and 1.5) and describe the problem
of spatial statistics, which stimulated the development of this notion. In Sect. 2, we
present the local Steiner formula and its consequences, first for convex bodies and
then for general solid sets (sets equal to the closure of their interior). In Sect. 3, we
outline the theory of fold-up derivatives alongwith some examples. Then, applications
to the change-set problem are collected in Sect. 4. Most of results in this section,
although based on approaches developed earlier, are formulated here for the first time,
unless it is explicitly stated otherwise. The final Sect. 5 compares the notion of fold-
up derivatives with the notion of generalized functions and the so-called chimeric
alternatives (Sects. 5.1 and 5.2), along with two further subsections on extensions of
interest for future research.

1.1 Infinitesimal changes of sets and images

To motivate the notion of fold-up derivatives, we start with a possible application in
the analysis of infinitesimal changes in images.

In image analysis, an image is often represented by a vector-valued function
{ f (x), x ∈ D} on a rectangular array D—for example pixels x on a computer screen.
The vector f (x) describes certain properties of the image like the color and the inten-
sity of this color in the pixel x . For simplicity, let us assume that f is one dimensional,
given by the intensity of only one color, say the color “black.” In order to apply ana-
lytic methods, it is advantageous to neglect the discrete structure of D and also the
restriction to the two-dimensional setting and consider D as a subset of Rd and call a
(real-valued) function f = { f (x), x ∈ D} an image on D.

Consider now images ft which change in time t in a continuousway. At themoment
t0, we have an image ft0 and at time t = t0 + ε we have a small perturbation of ft0 ,
if ε is small. To analyze this small change, as ε → 0, we may end up with derivatives
{d ft (x)/dt, x ∈ D} at t = t0, as a function of x . This may be a natural approach
to study continuous changes in images. As a vector field of velocities, this family of
derivatives plays the key role, for example, in fluid mechanics, see, e.g., Landau and
Lifshitz (1987). In the statistical “change-set problem,” we are dealing with a different
sort of changes. Namely, consider a set F(t0) ⊂ D and another set F(t) ⊂ D, which
is a small deformation of F(t0), if t − t0 is small. We will later assume that the sets
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F(t), F(t0) are compact and that F(t) → F(t0) in the Hausdorff metric. Then let
ft0(x) = 1(x ∈ F(t0)) be the indicator function of F(t0) and let ft (x) = 1(x ∈ F(t))
be the indicator function of F(t). In this situation, there will be either no derivative
d ft (x)/dt at x or the derivative will be trivial and equal to 0. How can one still consider
the transition from F(t) to F(t0) as smooth and differentiable? We will explain this
in more detail in Sect. 1.4 below.

Let us slightly shift our attention. Instead of the indicator function 1(x ∈ F), we
now consider the set F itself as the object of interest; we could call it an image, but
in the context of the statistical change-set problem we shall discuss, it is called a
change-set (Khmaladze et al. 2006b).

In the change-set problem, we do not assume that we observe or know our change-
set. All we have are random observations, the distribution of which depends in some
particular way on the underlying set F . Then we would want to formulate hypothe-
ses about the unknown F and try to test these hypotheses based on the observations
we have. Moreover, we want to obtain statistical tests to discriminate between the
null hypothetical set F = F(t0) and its small perturbation F(t); the more observa-
tions we have, the smaller deviations we might be able to detect. Thus, the variable
t in F(t) is now a way to describe a family of possible alternative change-sets,
which are approaching the set F , chosen as the primary candidate as a true change-
set.

There is a vast literature on estimation of the change-set F based on random obser-
vations, to some of which we refer here: Carlstein and Krishnamoorthy (1992), Ripley
and Rasson (1977), Khmaladze et al. (2006b), Müller and Song (1996), Ivanoff and
Merzbach (2010) and Korostelev and Tsybakov (1993), which have more references.
Amongmore recent ones, which study estimation of sets within nonparametric classes
or functionals of sets, we refer to Baíllo and Cuevas (2001) and Cuevas et al. (2007).

However, results about the testing problems concerning change-sets are rather
scarce. This unbalance can be explained by difficulties in the analysis of a neigh-
borhood of a set and, in particular, by the lack of an appropriate notion of derivative
of a set-valued function.

1.2 Testing statistical hypotheses: local tests, parametric families of
distributions

Let us briefly recall how do we test a hypothesis within a parametric family of distri-
butions, depending on some k-dimensional parameter θ . Suppose {Pθ , θ ∈ Θ} is such
a family, where Θ ⊂ R

k and each Pθ is a distribution in R
d . Assume that θ0 is an

interior point of Θ and, given an i.i.d. sequence of d-dimensional random variables
{Xi }ni=1, we take Pθ0 as a null hypothesis about the distribution of each Xi . As the
alternative hypothesis to Pθ0 , we consider Pθε and assume that θε → θ0, as ε → 0.

The log-likelihood ratio in this situation has the form

Ln(θ0, θε) =
n∑

i=1

ln
dPθε

dPθ0

(Xi ).
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Assume that the parametric family is regular at θ0, in the sense that theTaylor expansion
is valid up to the second term,

Ln(θ0, θε) = (θε − θ0)
�

n∑

i=1

lθ0,θε (Xi ) − 1

2

n∑

i=1

[(θε − θ0)
�lθ0,θε (Xi )]2

+ oP (‖θε − θ0‖2), (1)

where the k-dimensional vector l, the score function, is defined as

lθ0,θε (Xi ) = d

dθε

ln
dPθε

dPθ0

(Xi )

∣∣∣∣
θε=θ0

,

and is, we assume, square integrable with respect to Pθ0 . Expansions of this form
(or of a more sophisticated form) can be found in the statistical literature through
decades, say, from the textbook of Cramér (1999), first published in 1946, to the
modern textbooks, such as van der Vaart (1998). Let us add to this setting another
assumption, that θε is differentiable in ε at θ0,

θε − θ0 = εγ + o(ε), ε → 0,

where the derivative γ is a fixed vector inRk . Then, the choice of ε = 1/
√
n becomes

clear and Ln(θ0, θε) will attain a form convenient for asymptotic analysis,

Ln(θ0, θε) = 1√
n

n∑

i=1

γ �lθ0,θε (Xi ) − 1

2n

n∑

i=1

[
γ �lθ0,θε (Xi )

]2 + oP (1),

so that Ln(θ0, θε) converges in distribution to a well-defined and “visible” limiting
object.

A full analysis of situations like this, when the sample size increases, but alternative
and hypothetical distributions approach each other at the same time, is the subject of
contiguity theory (see, e.g., Le Cam 1986, Le Cam and Lo Yang 2000, Chapter 3,
Hajek and Shidak 1967, Chapter 7.1, and Oosterhoff and van Zwet 2012).

1.3 Local tests for the change-set problem (first version)

In the cases when θ is a functional parameter, as in the semi-parametric situation,
expansions like (1) are still useful and differentiability of θε in ε is well understood
(see, e.g., Kosorok 2008). However, consider the class of statistical problems, where
θ is another infinite dimensional parameter—a set. This is the case in the change-set
problem below. In this problem, we have a family of distributions PF , indexed by sets
F , andwe consider PF(0) as a null distribution and PF(ε) as the alternative distribution.
So, to obtain the form of the local test statistics we will need to differentiate PF(ε)

with respect to F(ε) and F(ε) with respect to ε, and the question is, how to do this?

123



Fold-up derivatives of set-valued functions 5

Let us consider a first version of the change-set problem. For a measurable set
D ⊂ R

d , denote again F(0) = F and let Nn be a counting Poisson measure (or
Poisson process) on D with intensity measure nΛF , where

ΛF (A) = Λ̃(A ∩ F) + Λ(A ∩ Fc), A ⊂ D.

Here, Λ and Λ̃ are two intensity measures on D with densities (intensities) λ(x) and
λ̃(x), x ∈ D,with respect to theLebesguemeasureμd inRd , and Fc is the complement
of F (see Fig. 1). Then it is not difficult to deduce (see Daley and Vere-Jones 2005
and Karr 1991), that the log-likelihood ratio of the distribution of Nn , under F(ε) and
under F(0), respectively, has the form

Ln(F, F(ε)) =
∫

[1{z ∈ F(ε)} − 1{z ∈ F}] ln λ̃

λ
(z)Nn(dz)

− n
∫

[1{z ∈ F(ε)} − 1{z ∈ F}](λ̃ − λ)(z)μd(dz)

=
∫

[1{z ∈ F(ε)\F} − 1{z ∈ F\F(ε)}] ln λ̃

λ
(z)Nn(dz)

− n
∫

[1{z ∈ F(ε)\F} − 1{z ∈ F\F(ε)}](λ̃ − λ)(z)μd(dz). (2)

Suppose now that F, F(ε) are compact and F(ε) → F in the Hausdorff metric.
Then, as ε → 0, both sets F(ε)\F and F\F(ε) shrink toward the boundary ∂F of F .
What can we say about the possible limit of the integral expressions on the right side
of (2), when n → ∞ and ε → 0 with an appropriate rate?

An immediate attempt for the second integral in (2), which is to multiply and divide
by ε, leads to

nε

∫
1{z ∈ F(ε)} − 1{z ∈ F}

ε
(λ̃ − λ)(z)μd(dz),

which, for nε → const and one further condition (see Sect. 5.1), converges to a
generalized function concentrated on the boundary ∂F of F . This is a very natural
object in itself and will not require, as it may seem, a differentiation of F(ε) in ε per
se (in this connection see Weisshaupt (2001)). However, we will show in Sect. 5 that
such a generalized function is unsuitable to describe the limiting object. This fact will
be better visible when one divides the first integral in (2), taken with respect to Nn , by
ε.

1.4 The change-set problem (second version)

Let us consider another formulation of the change-set problem. It is graphically illus-
trated in Fig. 2. Suppose we have an i.i.d sequence of pairs (Xi ,Yi )ni=1, where Xi ∈ D
is a random location and Yi is a corresponding mark (see Mammen and Tsybakov
1995 and Khmaladze et al. 2006a). This mark can be one dimensional or it can be
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Fig. 1 The points shown here form a realization of a Poisson process with constant intensity inside F and
three times higher than outside, where it is also constant. The set F is a faintly shown triangle, and the total
number of points is 300. Without looking on F , an eye may have difficulties identifying this triangle as a
change-set. The problem is to test whether the change-set is this triangle or another nearby shape

very high dimensional, listing, for example, the concentration of several minerals at
different depths in a well at location Xi . It is enough for us to assume, however, that
Yi is a one-dimensional random variable. The defining property of the change-set F is
that, for locations Xi in this set, the distribution of Yi is some probability measure P̃ ,
while for locations Xi outside F the mark Yi has a different “gray-level” distribution
P . The (marginal) distribution of Xi on D is some absolutely continuous Q, unrelated
to the possible change-set F . As before, F is the parameter of interest in the problem.
Then, the differential of the joint distribution of the pair (Xi ,Yi ) is

P̃(dy)1{x∈F}P(dy)1−1{x∈F}Q(dx),

and if we take a particular set F = F(0) as a hypothetical change-set and another
set F(ε) as its alternative, then the log-likelihood ratio of the two corresponding
distributions becomes

Ln(F, F(ε)) =
n∑

i=1

[1{Xi ∈ F(ε)} − 1{Xi ∈ F}] ln d P̃

dP
(Yi ). (3)

Here, we implicitly assumed that P̃ is absolutely continuous with respect to P , which
looks like an additional regularity assumption but is of only little consequence for
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Fig. 2 About 300 points are scattered now uniformly, and points in the same triangle F as in Fig. 1, are
shown as “stars” with probability 0.8; points outside the triangle are shown as “stars” with probability 0.3

us. Note that, if P̃ and P have mutually singular parts, the statistical problem of
discrimination between F(0) and F(ε) will become only easier.

Let now Nn denote the binomial process generated by the pairs (Xi ,Yi )ni=1,

Nn(y,C) =
n∑

i=1

1{Yi ≤ y}1{Xi ∈ C}, y ∈ R,C ⊂ D. (4)

Then,

Ln(F, F(ε)) =
∫

R×(F(ε)\F)

ln
d P̃

dP
(y)Nn(dy, dx)

−
∫

R×(F\F(ε))

ln
d P̃

dP
(y)Nn(dy, dx). (5)

There is a clear similarity between the form of the log-likelihood ratios in (2) and
(5), and in both of them, in order to establish the limiting object for Ln(F, F(ε)), we
need to define such a limiting object for the process Nn on shrinking sets F(ε)\F and
F\F(ε). Again, as in (2), in (5) it will not be true that the limiting process should live
on the boundary of F .

The set F(ε), given for all small ε ≥ 0, is a set-valued function. Looking on the
change-set problem in the breadth it requires, we should speak not about one set-
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Fig. 3 In comparison, a “nonparametric estimation” of F is illustrated here: for the same points as in Fig. 2,
the Voronoi tessellation is constructed and the union of the tiles with “stars” as nuclei is shaded. On the
left, the marking of points as “stars” or “circles” is the same as in Fig. 2, while on the right the marking is
changed—all points in F , and none outside F , are marked as stars

valued function passing through F(0) at ε = 0, but about a class of such set-valued
functions, giving rise to many likelihoods, asymptotically connected with the class of
derivatives of F(ε). We can anticipate that the limiting process will live on the class
of these properly defined derivatives.

Before we move on to set-valued derivatives and compare the testing problem with
the problem of estimation of sets, we show in Fig. 3 two nonparametric estimations
of the set F . Both of them are the maximum likelihood estimators within their corre-
sponding models. The one on the left is, we believe, not consistent. The one on the
right is certainly consistent. This fact and the rate of its convergence were the matter
of investigation in Khmaladze and Toronjadze (2001), Penrose (2007), Reitzner et al.
(2012) and Thäle and Yukich (2016), see also Schneider and Weil (2008), p. 482.

1.5 Set-valued derivatives

Suppose that for each ε ∈ R we are given a Borel set F(ε) ∈ R
d . Thus, we have a

set-valued function. To consider a relatively general set-up, assume that each F(ε)

is a solid set, a compact set which is the closure of its interior points and such that
μd(∂F(ε)) = 0. We also assume that F(ε) is continuous in ε in the Hausdorff metric,
although more general forms of continuity were considered in Khmaladze (2007) and
Khmaladze andWeil (2014). Since we are interested in differentiability of F(ε) in ε at
some particular value ε0, we may choose ε0 = 0 and consider our set-valued function
in some small interval [0, εT ] with constant T .

Differentiation of set-valued functions is not a new topic and does not start with
our attempt to introduce a new type of derivative. The topic has a long history and
several approaches to the problem of differentiation form now an important and
well-developed mathematical theory. In Khmaladze (2007) and Khmaladze and Weil
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Fold-up derivatives of set-valued functions 9

(2014), we referred to literature sources in differential inclusions, such as Aubin and
Cellina (1984), in differentials of F(ε) understood as different forms of affine map-
pings, such as Artstein (1995), Artstein (2000) and Lemaréchal and Zowe (1991),
and in derivatives considered as tangential cones, an approach which is particularly
interesting for problems in convex analysis, see Aubin (1981), Aubin and Frankowska
(1990), Borwein and Zhu (1999) and Pflug (1996). We will not compare our method
with the various existing notions (see (Khmaladze 2007, Section 4) for some results in
this direction), but merely say that it was surprising to see that the change-set problem
of statistics required still another approach.

The derivative of F(ε) at ε = 0 which we introduce may be called a fold-up
derivative, since it lifts points in Rd to a cylinder. It uses the natural decomposition of
a point z /∈ F = F(0) in the form

z = x + tu, (6)

where x is the point in the boundary ∂F nearest to z, t is the distance of z from ∂F
and u the direction from x to z. Since we want to allow deviations F(ε) from F not
only to the outside but also to the inside of F , a corresponding decomposition (6) has
to be performed on F as well. The existence and uniqueness of the decomposition
(6), and the decomposition of the Lebesgue measure it induces, lead to interesting and
deep questions in geometric measure theory. We will discuss these geometric aspects
in Sect. 2, but mention here that at the basis there is the Steiner formula from convex
geometry and its generalization to closed sets provided in Hug et al. (2004).

For the asymptotic analysis of F(ε), as ε → 0, we need the local magnification
map, introduced in Khmaladze (2007) as

τε : z �→ (t/ε, x, u),

by which the outside of F is mapped, or folded up, to a part of what we call the normal
cylinder Σ = R × Nor(F), where the normal bundle Nor(F) of F consists of the
pairs (x, u) arising from (6). The derivative of F(ε) at ε = 0 will then be a subset B
in Σ .

A strong support for the use of the normal cylinder comes from the description
of the change-set problem above. Namely, let F be a solid set of reach ε > 0. This
means that for all points z /∈ F which have distance smaller than ε from F , the nearest
point in F is unique, whereas for δ > ε there are points z with distance δ to F which
have at least two nearest points in F . Let A1(ε) = A1, A2(ε) = A2 be two sets in the
ε-neighborhood of F and let B1 = τε(A1) and B2 = τε(A2) be the corresponding sets
of magnified points as above. Then, if A1 and A2 are disjoint, the magnified sets B1
and B2 will also be disjoint. If Nn is, for each n, a Poisson process on Rd , the number
of its jumps in A1 and in A2 are two independent Poisson random variables. If we use
τε to map these jump points Z onto random points (ζ, X,U ) in the cylinder Σ , there
will be no apparent controversy and the image process τε(Nn) on Σ is still a Poisson
process. However, if we map Z onto Z = X + ζU , the point Z stretched in R

d , the
image points from Nn on A1 and on A2 may lie in overlapping sets, see Fig. 4 , which
would be incompatible with the independence properties of spatial Poisson processes.
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10 E. Khmaladze, W. Weil

A1 A2

Fig. 4 The circle with the part in “horseshoe” shape cut out is F . The union of F and the narrow strips
protruding in this cutoff region is F(ε). The symmetric difference F(ε)ΔF cannot be magnified inside the
plane without causing the images of the disjoint strips to overlap. This would be in conflict with the theory
in many respects. Another dimension is necessary to describe the derivative, as shown in the figure: the
strips A1 and A2 are folded up and magnified

Laterwewill see thatwe can consider the cylinderΓ = R×∂F , which is convenient
for visualization, and project derivative sets fromΣ toΓ (this is already used in Fig. 4).

2 Geometric background

For a set-valued derivative of a family F(ε) at a set F ⊂ R
d , as we have it in mind,

the points in the neighborhood of F have to be inspected. A quantitative description
of the neighborhood of a set, in case the set is compact and convex (a convex body
K ), has been obtained as early as 1840 by Jacob Steiner, with his now famous Steiner
formula, see Gruber (1993) and Schneider (2013), p. 223. We describe this first and
then turn to local versions and generalizations, for convex bodies K and after that for
quite general closed sets F .

2.1 The classical Steiner formula

For a convex body K ⊂ R
d , we consider the outer parallel body

Kt = {x ∈ R
d : dK (x) ≤ t}, t > 0,

which is built by all points x which have Euclidean distance dK (x) to K less or equal
t . The Steiner formula expresses the volume Vd(Kt ) of Kt as a polynomial in t ,

Vd(Kt ) =
d∑

j=0

td− jκd− j V j (K ). (7)
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Fold-up derivatives of set-valued functions 11

Here, κd− j is the (d − j)-dimensional volume of the unit ball Bd− j in R
d− j . The

most interesting aspect of this formula is the coefficients Vj (K ) which describe the
geometric structure of K and its boundary ∂K .

In the formulation of (7), we usedmodern terminology. Steiner proved the result for
polytopes and smooth bodies K in dimensions d = 2 and d = 3, where the coefficients
had a simple geometric interpretation. For d = 3, the volume, the surface area, the
integral mean curvature and the Euler characteristic arise. The general situation was
prepared by Minkowski, who used a similar expansion of the volume of a sum set

Vd(t1K1 + t2K2 + · · · + tk Kk) =
k∑

i1=1

· · ·
k∑

id=1

ti1 · · · tid V (Ki1, . . . , Kid )

for ti > 0 and convex bodies Ki , to introducemixed volumes V (K1, . . . , Kd), a notion
which is at the heart of the Brunn–Minkowski theory in convex geometry. Notice that
the Steiner formula is a special case, since Kt = K + t Bd , where Bd ⊂ R

d is the unit
ball. We refer to the book of Schneider (2013), for an up-to-date survey on the Brunn–
Minkowski theory, including variants of the Steiner formula and historical remarks
on the development of the theory, and for further details of most notions and results
which we present in this section.

From Minkowski’s approach, it turns out that the coefficients in the polynomial
expansion (7) are special mixed volumes of K and Bd . Such quantities also showed
up later in integral geometric formulas, a fact which motivated to call them quermass-
integrals. Nowadays it is more popular to use a rescaled version of these functionals,
the intrinsic volumes Vj (K ), since they are independent of the dimension of the ambi-
ent space. Hence, for a j-dimensional body K in R

d , 0 ≤ j ≤ d, the value Vj (K )

is just the j-dimensional volume of K . Moreover, the subscript j corresponds to
the degree of homogeneity of Vj , Vj (αK ) = α j V j (K ) for α ≥ 0. We emphasize
that Vd(K ) is the (d-dimensional) volume of K , Vd−1(K ) is half the surface area,
V1(K ) is proportional to the mean width and V0(K ) is the Euler characteristic, thus
V0(K ) = 0, if K = ∅, and V0(K ) = 1, if K �= ∅. The remaining functionals Vj (K )

can be expressed as certain curvature integrals over ∂K , if K has a smooth boundary.
For example, Vd−2(K ) is then up to a constant the integral mean curvature of K .

Polynomial expansions of volumes of parallel sets have been later studied for other
set classes as well, an example is Weyl’s tube formula for smooth manifolds (Weyl
(1939)) or Federer’s formula for sets of positive reach (Federer (1959)). We will come
to such a general result in a moment, but describe the convex situation a bit further.

Convex bodies have nice geometric properties, and their boundary structure is well
understood. They include sets with a rather discrete boundary structure like convex
polytopes, which are convex hulls of finitely many points, but also convex sets which
are bounded by a smooth manifold. The boundary ∂K of a convex body K has finite
(d−1)-dimensional Hausdorff measureHd−1 and ∂K determines K uniquely. In each
boundary point x there is at least one supporting hyperplane which leads to an outer
normal u(x), but a point x ∈ ∂K can have more than one, and thus infinitely many,
normals. This behavior makes convex bodies especially useful for a local description
of their neighborhood. In particular, we get a local version of (7) in a very natural
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12 E. Khmaladze, W. Weil

way. Such local Steiner formulas have been proved in 1938 by Fenchel and Jessen,
introducing the areameasures of K , and in 1959 by Federer, establishing the curvature
measures, actually for a larger class of sets K , the sets of positive reach.

2.2 The local Steiner formula in the convex case

We describe the local result using a common generalization of area and curvature
measures, the support measures due to Schneider (1979). For a convex body K ⊂ R

d ,
we choose a Borel set A ⊂ R

d × Sd−1, where Sd−1 denotes the unit sphere in Rd . As
we have already indicated above, each point z ∈ R

d\K has a (unique) decomposition

z = x + tu, (8)

with x = pK (z) ∈ ∂K , u = uK (z) = z−x
‖z−x‖ ∈ Sd−1 and t = dK (z) > 0. Here,

pK (z) is the point in K nearest to z (the metric projection of z onto K ) and uK (z) is
an outer normal of K in the point pK (z). The property that each z outside K has a
unique nearest point in K is of course due to the convexity of K , in fact it characterizes
convex sets by Motzkin’s theorem (Motzkin (1935)). We now define the local outer
parallel set of A,

At = {z ∈ Kt\K : (pK (z), uK (z)) ∈ A}, t > 0.

Then, At is a Borel set in R
d and the following local Steiner formula holds for the

Lebesgue measure of At ,

μd(At ) = 1

d

d∑

j=1

(
d

j

)
t jΘd− j (K , A) (9)

with finite (nonnegative) measures Θ0(K , ·), . . . , Θd−1(K , ·) on Rd × Sd−1, the sup-
port measures of K . Actually, the measures Θi (K , ·) are concentrated on the normal
bundle

Nor(K ) = {(x, u) : x ∈ ∂K , u is an outer normal of K at x}.

The image measure of Θi (K , ·) under the projection (x, u) �→ x yields the curvature
measure Ci (K , ·) and the image under (x, u) �→ u is the area measure Si (K , ·) of K .
A comparison of (9) and (7) shows that

Θi (K ,Nor(K )) = Ci (K ,Rd) = Si (K , Sd−1) = dκd−i(d
i

) Vi (K ),

for i = 0, . . . , d − 1.
Ifwe consider a deviation K (ε) as a (not necessarily convex) set in the neighborhood

of a convex body K , it would be a too narrow model to allow local changes of K only
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Fold-up derivatives of set-valued functions 13

to the outside. Hence, we should also consider a Steiner-type decomposition of K
itself. Here, we can make use of the fact that, for μd -almost all z ∈ K , the metric
projection p∂K (z) onto the boundary ∂K is unique. The set SK of points z ∈ K which
have more than one nearest point in ∂K is called the (inner) skeleton of K . The inner
parallel body K−t of K , t ≥ 0, is defined as

K−t = {z ∈ K : z + t Bd ⊂ K }.

Notice that K−t + t Bd ⊂ K , but in general we do not have equality here. The largest
value r = r(K ) ≥ 0 such that (K−r )r = K is called the interior reach of K . As a local
counterpart, we define the local (interior) reach r(x) of a boundary point x ∈ ∂K as
the largest r ≥ 0 such that x is in the boundary of a ball B(y, r) with center y and
radius r and with B(y, r) ⊂ K (here r(x) = 0 means that there is no such ball).
Then r(K ) = minx∈∂K r(x). If K has no interior points, we have r(x) = 0 for all
x ∈ ∂K = K , hence r(K ) = 0, but we can have r(K ) = 0 in many other cases, for
example if K is a convex polytope. Then r(x) = 0 for all x ∈ ∂K , which are not in
the relative interior of a facet of K . The following result is the most general version
of a (local) Steiner formula for convex bodies. For any μd -integrable real function f
on Rd , we have

∫

Rd
f (z)μd(dz) =

d∑

j=1

(
d − 1

j − 1

)∫

Nor(K )

∫ ∞

−r(x)
f (x + tu)t j−1dtΘd− j (K , d(x, u))

(10)
(see, e.g., Theorem 1 in Khmaladze and Weil (2008)).

2.3 Extension to solid sets

Although the assumption of a convex body underlying the statistical situation is very
convenient from a geometrical point of view, for applications it will be useful to
consider more general set classes. For polyconvex sets (finite unions of convex bodies)
or sets of positive reach, extensions of the concepts and results described above in the
convex case are possible with appropriate modifications. We now consider a rather
general framework allowing closed sets F ⊂ R

d with only a few regularity properties.
The approach uses a general Steiner formula for closed sets (Theorem 2.1 in Hug et al.
(2004)).

In general, closed sets F can have quite a complicated structure. They need not
have a defined inner and outer part. Even for compact F , the boundary ∂F can have
infinite (d−1)-dimensional Hausdorff measureHd−1(∂F) = ∞ or positive Lebesgue
measureμd(∂F) > 0. Boundary points x ∈ ∂F need not have any normal, but also can
have one, two or infinitely many normals. Consequently, the normal bundle Nor(F)

of F (or Nor(∂F) of ∂F), as it was defined in Hug et al. (2004) as an extension of the
same notion for convex bodies, can also have a rather complicated structure.Moreover,
the support measures of F , which were introduced in Hug et al. (2004) as ingredients
of the general Steiner formula, are no longer finite nonnegative measures but signed
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14 E. Khmaladze, W. Weil

Radon-type measures. They are finite only on sets in the normal bundle with local
reach bounded from below.

In the following, we concentrate on solid sets, that is, compact sets F which are the
closure of their interior and satisfy μd(∂F) = 0. The assumption of compactness is
convenient but not essential here. Since we only work with concepts which are locally
defined, an extension to unbounded closed sets (satisfying the appropriate conditions)
is easily possible.

For a solid set F , in contrast to the convex case, the nearest point map z �→ pF (z) ∈
∂F need not be defined for all z ∈ R

d\F anymore, since the smallest distance dF (z)
can be attained in several points of F . Fortunately, the (outer) skeleton of F ,

SF = {z ∈ R
d\F : a point in F nearest to z is not unique},

is a set of Lebesgue measure 0 (see Hug et al. 2004). For z /∈ F ∪ SF , the metric
projection pF (z) exists uniquely and we can define the corresponding outer normal

uF (z) = z − pF (z)

‖z − pF (z)‖ .

As in the convex case, we get
z = x + tu (11)

with x = pF (z), u = uF (z) and t = dF (z). We define the (outer) normal bundle
Nor+(F) by

Nor+(F) = {(x, u) : x ∈ ∂F, u is an outer normal of F at x}

and remark that a point x ∈ ∂F can have more than one outer normal (for example,
it can have two opposite outer normals). In contrast to the convex case, there can be
also boundary points x ∈ ∂F without an outer normal. Those boundary points then do
not contribute to the outer normal bundle. Another important difference to the convex
situation is that we need not have pF (x+ tu) = x for (x, u) ∈ Nor+(F) and all t > 0.
This fact gives rise to the outer reach function r+ = r+,F of F , which is defined on
Nor+(F),

r+(x, u) = sup{s > 0 : pF (x + su) = x}.

Of course, convex bodies K have reach function r+,K = ∞.
Since F is the closure of its interior, we can extend the decomposition (11) to the

interior of F , as we did in the full-dimensional convex case. This then involves an
inner reach function r− of F . The situation is most easily solved if we define the inner
reach function r− of F as the outer reach function of F∗, the closed complement of
F , and obey the reflection R : (x, u) �→ (x,−u). The fact that, for compact F , the set
F∗ is not compact, is not a problem here, since we work with locally defined notions.
A problem which does occur comes from the fact that the outer normal bundles of F
and F∗ need not fit together. Namely, a boundary point x of F which has an outer
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Fold-up derivatives of set-valued functions 15

normal u with respect to F appears in a pair (x, u) ∈ Nor+(F). Of course, x is also
a boundary point of F∗, but it need not have an outer normal with respect to F∗, and
hence (x,−u) might not be a point in Nor+(F∗). Therefore, we define the (extended)
normal bundle Nor(F) of F as

Nor(F) = Nor+(F) ∪ R(Nor+(F∗))

and extend the outer and inner reach functions appropriately (by 0). Notice that in
Hug et al. (2004) and Khmaladze and Weil (2008) a slightly different notation was
used. The following local Steiner formula for solid sets F is then a consequence of
Theorem 5.2 in Hug et al. (2004). It reads

∫

Rd
f (z)μd(dz) (12)

=
d∑

j=1

(
d − 1

j − 1

) ∫

Nor(F)

∫ r+(x,u)

−r−(x,u)

f (x + tu)t j−1dtΘd− j (F, d(x, u))

and holds for any measurable bounded function f with bounded support on R
d and

for certain set functions Θi (F, ·), i = 0, . . . , d − 1, on the right side which we call
the support measures of F .

Full-dimensional convex bodies K are solid and for them (12) just reduces to (10).
Moreover, we then have Nor(K ) = Nor+(K ), r+(x, u) = ∞ for all (x, u) ∈ Nor(K ),
and r−(x, u) = r(x). Moreover, the support measures in (10) are those defined by (9).

For non-convex sets F , the situation is more complicated since the set functions
Θi (F, ·) need not be finite Borel measures anymore. First, they may have positive
and negative values; hence, they are signed functions, for example, if F has convex
and concave pieces in the boundary. Moreover, Θi (F, A) is not defined for all Borel
sets A ⊂ Nor(F), but only for those for which the (outer and inner) reach functions
are bounded from below by a positive constant (r-bounded sets). Such set functions
Θi (F, ·) are called r-measures. The situation can be compared to (signed) Radon
measures in functional analysis which are also not defined on all Borel sets of a space,
but only on bounded sets. For the details on r -bounded sets and r -measures, which
we leave out here, we refer to Hug et al. (2004).

2.4 First-order terms, regular points and the normal cylinder

Because of the polynomial-like nature of (12), the set-valued derivatives which we
describe in the next section will be driven by the support measureΘd−1(F, ·) and they
will live on the normal cylinder of F . Therefore, we will have a closer look at the
structure of this (d − 1)st support measure and we also introduce the normal cylinder
Σ of F .

If K is a convex body, the (d −1)st curvature measure Cd−1(K , ·) is the Hausdorff
measure Hd−1 on the boundary and the area measure Sd−1(K , ·) is the image of this
Hausdorff measure under the Gauss map γ : ∂K → Sd−1, x �→ u(x). Remember
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16 E. Khmaladze, W. Weil

here that both of these measures are the image measures of Θd−1(K , ·) under the
projections (x, u) �→ x , resp. (x, u) �→ u. Now, it is an important fact, that Hd−1-
almost all boundary points x of a convex body K are regular points, that is, they
have one and only one outer normal u(x) and so the Gauss map is defined almost
everywhere (see, e.g., p. 92 in Schneider (2013)).

With some adjustments, similar results hold also for closed sets F . Here, we call
a point x ∈ ∂F regular, if F has one outer normal u or two opposite (outer) normals
u,−u in x (the latter usually occurs in flat parts of F). For a solid set F , the set ∂2F of
regular points x ∈ ∂F with two opposite outer normals seems to be negligible, since
there should be no flat parts. However Example 1 in Ambrosio et al. (2008) shows
that Hd−1(∂2(F)) > 0 can occur. For an integral representation of Θd−1(F, ·) over
the boundary ∂F (see (14)), we consider reg(F), the union of all regular points of F
and of F∗. We also need a further restriction on solid sets, namely that “flat points”
of F or F∗ are negligible. Thus, we add

Hd−1(∂2(F) ∪ ∂2(F∗)) = 0 (13)

to our conditions on F . Then we have

Θd−1(F, ·) =
∫

reg(F)

1{(x, u(x)) ∈ ·}Hd−1(dx). (14)

Note that, due to condition (13), the normal vector u(x) is uniquely determined for
Hd−1-almost all x ∈ reg(F) (u(x) is either the outer normal of F in x or−u(X) is the
inner normal or both properties hold). Notice however that, in contrast to the convex
case, we may still have Hd−1(∂F\ reg(F)) > 0 (see Hug et al. 2004).

Given a solid set F ⊂ R
d , we can use the decomposition (11) and the local magni-

fication map (see Sect. 1.5) and the next section, to map a point z to the triple (t, x, u)

representing it. This works for z /∈ S∂F ∪ ∂F , and the corresponding triple lies in the
normal cylinder

Σ = Σ(F) = R × Nor(F).

Here t = dF (z)/ε > 0, if z /∈ F , and t = −d∂F (z)/ε < 0, if z ∈ F . In the convex
case, the whole upper part Σ+ = {(t, x, u) ∈ Σ : t > 0} of Σ appears as the image,
whereas in the lower part Σ− = {(t, x, u) ∈ Σ : t < 0} the images build a bounded
subset. For general solid F , the image set in the upper half cylinder Σ+ can have
bounded and unbounded parts, whereas the images in Σ− are again bounded.

The normal cylinder Σ may be difficult to visualize. Namely, since F may have
more than one normal in x ∈ ∂F , it is in general not enough to think of Σ as the
cylinder over the base ∂F . However, (14) allows us to simplify the situation. Indeed,
consider the measure

M = μ1 ⊗ Θd−1(F, ·) (15)

(whereμ1 is Lebesguemeasure inR), whichwill play a prominent role in the definition
of derivatives below. If F is a solid set (and (13) is satisfied), (14) shows that for M-
almost all points (t, x, u) ∈ Σ , the mapping (t, x, u) �→ (t, x) is injective and the
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Fold-up derivatives of set-valued functions 17

image measure of M under this mapping is the measure

m = μ1 ⊗ Cd−1(F, ·)
on the cylinder Γ = R × ∂F . Here, Cd−1(F, ·) is the image of Θd−1(F, ·), the
(d − 1)st curvature measure of F . Hence, with respect to M , the cylinders Σ and Γ

can be identified and M can be replaced by m. For a further simplification, we notice
that the curvature measureCd−1(F, ·) is the Hausdorff measureHd−1 restricted to the
set reg(F). Thus, if we add

Hd−1(∂F\ reg(F)) = 0 (16)

as a final condition for our solid sets F , we get

m = μ1 ⊗ Hd−1,

as in the convex case.
To summarize, the step from convex bodies to general solid sets faces some difficul-

ties due to the more complicated structure of the boundary, which led to the additional
assumptions (13) and (16).

3 Fold-up derivatives

We return to the situation which we described in Introduction. Namely, we consider
a set-valued function (F(ε), 0 ≤ ε ≤ 1), with F(ε) in R

d and want to define the
derivative at F = F(0). The approach to define a set-valued derivative was developed
in Khmaladze (2007) for convex bodies and sets of positive reach as F , and later was
extended in Khmaladze and Weil (2014) to a class of general closed sets—to the solid
sets of the previous section. To explain the essential ideas, we may concentrate on
solid sets F(ε) which satisfy (13) and (16) and which converge to F in the Hausdorff
metric, as ε → 0. Moreover, we require that the symmetric difference F(ε)ΔF lies in
the neighborhood (∂F)εT of the boundary ∂F , with some constant T > 0, for small
enough ε. For simplicity, we assume F(ε)ΔF ⊂ (∂F)εT for 0 ≤ ε ≤ 1.

3.1 The definition

In order to define the derivative of F(ε) at F , we use the representation (11) and define
the local magnification map τε,

τε(z) =
(
dF (z)

ε
, pF (z), uF (z)

)
,

for z /∈ F ∪ SF , and

τε(z) =
(

−dF∗(z)

ε
, pF∗(z),−uF∗(z)

)
,
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18 E. Khmaladze, W. Weil

for z ∈ F\(∂F ∪ SF ). Remark that τε(z) lies in the normal cylinder Σ of F . In fact,
τε is bicontinuous and one-to-one as a mapping from R

d\(S∂F ∪ ∂F) onto the set
τε(R

d\(S∂F ∪ ∂F)) ⊂ Σ . Consider the image

B(ε) = τε(A(ε))

of A(ε) = F(ε)ΔF under the local magnification map. If the sets B(ε) converge, as
ε → 0, in a reasonable way to a set B ⊂ Σ , then B will be our derivative set.

In order to motivate the appropriate notion of convergence on Σ , consider the
image τε ◦ μd of the Lebesgue measure μd on (∂F)εT under τε. Suppose that the
reach functions of F satisfy r+, r− ≥ ε. Then, for a Borel set A ⊂ (∂F)εT , such that
C = τε(A) = [−T, T ] × Ã, Ã ⊂ Nor(F), the local Steiner formula (12) yields

(τε ◦ μd)(C) =
d∑

j=1

(
d − 1

j − 1

)∫

Nor(F)

∫ εT

−εT
1{(t, x, u) ∈ C}t j−1dtΘd− j (F, d(x, u))

=
d∑

j=1

2

j

(
d − 1

j − 1

)
(εT ) jΘd− j (F, Ã).

Here, the leading term in ε is 2TΘd−1(F, Ã). Therefore, it seems natural to use the
measure M from (15) on Σ and define B(ε) → B by M(B(ε)ΔB) → 0.

Definition (Khmaladze 2007, see also Khmaladze andWeil 2014). For 0 ≤ ε ≤ 1, let
A(ε)be aBorel setwith A(ε) ⊂ (∂F)εT . The set-valuedmapping A(ε) isdifferentiable
at ∂F , for ε = 0, if there exists a Borel set B ⊂ Σ such that

M(τε(A(ε))ΔB) → 0, as ε → 0.

The set-valued function F(ε) is differentiable at F , for ε = 0, if A(ε) = F(ε)ΔF
is differentiable at ∂F . The set B is then called the fold-up derivative of A(ε) at ∂F
(respectively of F(ε) at F) and we write

d

dε
F(ε)|ε=0 = d

dε
A(ε)|ε=0 = B.

Note that in Khmaladze (2007) and Khmaladze and Weil (2014) a condition of
essential boundedness of the sets A(ε) was used which is automatically fulfilled here,
since we assumed A(ε) ⊂ (∂F)εT .

If we consider the image B̃ of the derivative set B under the M-almost everywhere
defined map (t, x, u) �→ (t, x), then B̃ sits in the cylinder Γ = R × ∂F and is
in fact in one-to-one correspondence with B. Let us map now the set B̃ onto R

d , by
(t, x) �→ x+tu(x).Here,u(x) is the uniquenormal in x , if x ∈ reg(F) and−u(x) is the
normal (with respect to F∗), if x ∈ reg(F∗)\ reg(F). The corresponding image B̂ will
only represent B, if we can distinguish overlapping points x1+ t1u(x1) = x2+ t2u(x2)
coming from different boundary parts x1 �= x2 of F . Figure 4 illustrates this situation.
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Fold-up derivatives of set-valued functions 19

Fig. 5 Shifted circles converge to the initial one. The first shifted circle is quite far, the next is nearer,
but the last is almost indistinguishable from the initial one. However, the fold-up sets change little and the
convergence to the derivative is visible

Fig. 6 Ellipses approaching a circle. The first ellipse is quite far, the next is nearer, but the last ellipse is
almost indistinguishable from the original circle. However, again, the fold-up sets change little, visualizing
the convergence to the derivative

Figures 5 and 6 show the fold-up derivative in two simple situations, shifted circles
converging to the original circle and ellipses converging to a circle.

3.2 Derivative in measure

The fold-up derivative (d/dε)F(ε) at ε = 0 can also be called the derivative in
measure, not only since the symmetric difference metric with respect to M is used in
the definition, but also for a reason which we explain now.

Let P be an absolutely continuous measure on R
d with density f ≥ 0 and let

F ⊂ R
d be a solid set. We assume that f (z), z ∈ R

d , can be approximated in the
neighborhood of ∂F by functions f + ≥ 0 from outside and f − ≥ 0 from inside,
defined on ∂F and depending only on p∂F (z). More precisely, we assume that

1

ε

∫

Rd
1{0 < d(F, z) ≤ ε}| f (z) − f̄+(pF (z))|μd(dz) → 0,

1

ε

∫

Rd
1{0 < d(F∗, z) ≤ ε}| f (z) − f̄−(pF∗(z))|μd(dz) → 0, (17)
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20 E. Khmaladze, W. Weil

as ε → 0. Now define a measure Q on Σ by

Q(d(s, x, u)) = ds × f̄+(x)Θd−1(F, d(x, u)) on Σ+,

and

Q(d(s, x, u)) = ds × f̄−(x)Θd−1(F, d(x, u)) on Σ−.

Theorem 1 (Khmaladze 2007, see also Khmaladze and Weil 2014) Suppose that the
measureP satisfies condition (17) and suppose that the functions f̄−, f̄+ are integrable
with respect to |Θi |(F, ·), for i = 0, . . . , d − 1. Let A(ε) ⊂ (∂F)εT be differentiable
at ∂F (with derivative B ⊂ Σ). Then

d

dε
P(A(ε))|ε=0 = Q

(
d

dε
A(ε)|ε=0

)
= Q(B). (18)

Equation (18) highlights the fact that the fold-up derivative of a set-valued function
is a set-valued function and shows how to interchange the differentiation in ε with
taking measure. For the d-dimensional volume Vd , Equation (18) brings us back to
the statement

d

dε
V (A(ε))|ε=0 = M

(
d

dε
A(ε)|ε=0

)
= M(B),

which underlies our definition of differentiability.
For the proof of Theorem 18, the asymptotic behavior of ε−1

P(A(ε)) has to be
established, since P(A(0)) = 0 due to our assumption μd(∂F) = 0. Condition (17)
allows to replace here P by the absolutely continuous measure P on (∂F)εT with
density f + outside F and density f − in F . Now the outside and inside parts A+(ε) =
A(ε)\F and A−(ε) = A(ε) ∩ F can be treated separately, in a totally analogous way.

The Steiner formula (12) shows that

P̄(A+(ε)) =
∫

Nor(F)

∫ r+(x,u)∧ε

0
f̄+(x)1A+(ε)(x + tu)dt Θd−1(F, d(x, u))

+
d∑

j=2

(
d − 1

j − 1

) ∫

Nor(F)

∫ r+(x,u)∧ε

0
f̄+(x)1A+(ε)(x + tu)

× t j−1dt Θd− j (F, d(x, u)). (19)

The sum of the higher-order terms is o(ε). For the first summand in (19), we have

1

ε

∫

Nor(F)

∫ r+(x,u)∧ε

0
f̄+(x)1A+(ε)(x + tu)dt Θd−1(F, d(x, u))

=
∫

Σ

1
{
0 ≤ t ≤ r+(x, u)

ε
∧ 1

}
f̄+(x)1B+(ε)(t, x, u)M(d(t, x, u))
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Fold-up derivatives of set-valued functions 21

with B+(ε) = τε(A+(ε)). The differentiability of A(ε) implies that of A+(ε) (with
limit B+). Therefore, the function |1B+(ε)(t, x, u) − 1B+(t, x, u)| tends to 0 M−a.e.
on Σ . The dominated convergence theorem then implies that

1

ε
P̄(A+(ε)) →

∫

Σ

1{0 ≤ t ≤ 1} f̄+(x)1B+(t, x, u)M(d(t, x, u)) = Q(B+).

We used in this proof the fact that the differentiability of A(ε) implies the differen-
tiability of A+(ε) and A−(ε) and vice versa. For this and further algebraic properties
of fold-up derivatives, we refer to (Khmaladze 2007, Lemma 2) and (Khmaladze and
Weil 2014, Lemma 3).

3.3 Subgraphs and other examples

What are natural examples of fold-up derivatives? We describe one class here, the
subgraphs, and then use this to give further examples, the outer parallel sets.

We start with a solid set F = F(0) and consider a family (hε, 0 ≤ ε ≤ 1) of
nonnegative measurable functions on Nor(F) (with h0 = 0). As A(ε) we take the
subgraph

(hε)sub = {z = x + tu : (x, u) ∈ Nor(F), 0 ≤ t ≤ hε(x, u) ∧ r+(x, u)} ,

and assume the following two conditions.

(a) For each (x, u) ∈ Nor(F), hε(x, u) is differentiable at ε = 0 with derivative
g(x, u). Thus

hε(x, u)

ε
→ g(x, u), ε → 0.

(b) There is a δ > 0, such that the functionmax0<ε≤δ(hε/ε) is bounded and integrable
with respect to Θd−1(F, ·). Hence,

max
0<ε≤δ

hε(x, u)

ε
≤ T, (20)

for some T > 0 and
∫

Nor(F)

max
0<ε≤δ

hε(x, u)

ε
Θd−1(F, d(x, u)) < ∞.

Proposition 2 (Khmaladze 2007, see also Khmaladze and Weil 2014) Let F be solid
and let hε, 0 ≤ ε ≤ 1, be a family of nonnegative measurable functions on Nor(F)

satisfying conditions (a) and (b). Then, A(ε) = (hε)sub is differentiable at ∂F and

d

dε
(hε)sub|ε=0 =

(
d

dε
hε|ε=0

)

sub
= (g)sub.
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22 E. Khmaladze, W. Weil

Here

(g)sub = {(t, x, u) : 0 < t ≤ g(x, u), (x, u) ∈ Nor(F)}.

A particular simple case is given by hε = εg,

g(x, u) = hK (u), (x, u) ∈ Nor(F),

where hK is the support function of a convex body K ⊂ R
d with 0 ∈ K . Condition (a)

is here obvious and (b) reduces to the integrability of hK with respect to Θd−1(F, ·).
The derivative set B is then

B = {(t, x, u) : 0 < t ≤ hK (u), (x, u) ∈ Nor(F)} = gsub. (21)

Notice that the subgraph (hε)sub, obtained in this case, is different in general from
the outer parallel strip F + εK\F . However, the latter family has the same derivative
B given by (21). This follows from (Khmaladze and Weil 2008, Theorem 12), which
needed in addition that Θd−1(F,Nor(F)) < ∞ and that Hd−1-almost all points
x ∈ ∂F are normal (which means that there is some ball C ⊂ F with x ∈ C).

There is also a local parallel set arising from the local reach function,

Fε,loc = F ∪ {z = x + tu : (x, u) ∈ Nor(F), 0 < t ≤ εr(x, u) ∧ ε}.

This set is the subgraph of εh, h(x, u) = r(x, u) ∧ 1, (x, u) ∈ Nor(F). Here, Fε,loc
is differentiable with derivative

B = {(t, x, u) : (x, u) ∈ Nor(F), 0 ≤ t ≤ r(x, u) ∧ 1},

see (Khmaladze and Weil 2014, Corollary 11).
A further natural situationwould be to consider the sublevel set F(c) = {x : g(x) ≤

c} of a function g on R
d . We believe that the fold-up derivative of F(c + ε) at ε = 0

is the subgraph of the gradient of g at the level c. However, this still has to be proved.

4 Convergence of likelihood ratios

Coming back to the change-set problem, as it was described in Introduction,we explain
now the role of the fold-up derivatives in this setting. Recall that we consider a family
(F(ε), 0 ≤ ε ≤ 1) of solid sets with F = F(0) and A(ε) = F(ε)ΔF ⊂ (∂F)εT .

It may seem that as soon as the functional convergence in distribution of the local
processes Nn(A(ε)) is established, it will not be difficult to state the convergence in
distribution results for the local likelihood ratio processes in the change-set problems—
at least, as theywere formulated in Introduction.However, this requires amore detailed
argument and we will clarify this point below.

As we have seen in the previous section, in construction of fold-up derivatives we
can restrict the local magnification map to the points z ∈ R

d , which project to regular
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points of the boundary, i.e., to the points with unique outer normal u and with −u
being the inner normal. This, in its turn, allows to map such z directly onto cylinder
Γ , which is much easier to visualize:

if z = x ± tu(x), then τε(z) =
(

± t

ε
, x

)
.

We use this adjustment throughout this section.
To avoid possible ambiguity, let us agree that, although wewill speak about random

points, or random jumps, in (∂F)εT and Γ , the term point process and the notation
N with various indices will be used for random counting measures which, for a given
set, count the jump points in it.

4.1 Local processes in the Poissonian case

For the first formulation of the change-set problem and for the Poissonian case, when
n → ∞, ε → 0 and nε → S > 0, it may seem that the limit theorem was basically
established in (Khmaladze and Weil 2008, Theorem 2). However, let us consider the
situation more closely.

Wemay assume that the intensity λ̃ on the change-set F and the gray-level intensity
λ on the closed complement F∗ are continuous functions in the neighborhood (∂F)εT
of the boundary ∂F . That is, we assume that there are limits from inside and outside
of F ,

1

ε

∫

F(ε)\F
|λ(z) − λ(pF (z))|μd(dz) → 0,

1

ε

∫

F\F(ε)

|λ̃(z) − λ̃(pF (z))|μd(dz) → 0, (22)

as ε → 0, and λ and λ̃ are different functions on ∂F .
Now let Nn(A), A ⊂ (∂F)εT , be the Poisson process in the narrow strip (∂F)εT

with intensity measure

Λn(A) = n
∫

A∩F
λ̃(z)μd(dz) + n

∫

A∩F∗
λ(z)μd(dz).

Let us split the jump points Z ∈ (∂F)εT of Nn into those which project onto
regular points on the boundary ∂F , pF (Z) ∈ reg(F), and those which have non-
regular projections. Let Nn,s denote the part of the process Nn with jump points such
that their projections are not regular. Map the jump points with regular projections
onto the cylinder Γ = R × ∂F , τε(Z) = (ζ,Ξ), where Ξ = pF (Z) ∈ ∂F , and let
Nn,ε be the process defined by these images. This process is the image of Nn − Nn,s

under the local magnification map. Then the following result holds true.

Theorem 3 If n → ∞, ε → 0, so that nε → S > 0, and if (22) is satisfied, then
the point process Nns converges to the zero measure in probability, while the point
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process Nn,ε converges in the total variation norm to the Poisson point process N∞
on Γ with intensity measure

ΛF (B) = S

[∫

B+
λ(x)dtHd−1(dx) +

∫

B−
λ̃(x)dtHd−1(dx)

]
.

This result is, basically, equivalent to Theorem 2 in Khmaladze and Weil (2008).
The proof of it uses the following arguments. The local magnification map τε maps
(∂F)εT into ΓT = [−T, T ] × ∂F so that the Borel σ -algebra in (∂F)εT is mapped
into the Borel σ -algebra in ΓT . The thinned Poisson process Nn − Nn,s is mapped
to the Poisson process Nn,ε on ΓT , with intensity measure, which is the image of the
intensity measureΛn . Omitting the higher-order terms, cf. (12), this measure becomes

ΛF,n,ε(B)

= S

[∫

B+
λ(x + tεu(x))dtHd−1(dx) +

∫

B−
λ̃(x − tεu(x))dtHd−1(dx)

]
.

Then it follows that ΛF,n,ε converges in total variation to ΛF . This implies the con-
vergence of the Poisson distribution of Nn,ε to a Poisson distribution with intensity
measureΛF (see, e.g., Daley andVere-Jones 2005, Chapter 11 in vol. 2, or Karr 1991).

Note now that in Theorem 3 there is no mention of differentiation and the sets B
there are just Borel sets in ΓT . Thus the statement seems general and sufficient for
all purposes. However, given a particular set-valued function F(ε), or a finite number
of such functions, and sets A(ε) = F(ε)ΔF , this theorem does not tell us what will
be the limit distribution of random variables Nn(A(ε)). In the time when Khmaladze
and Weil (2008) was submitted the notion of fold-up derivative of Khmaladze (2007)
did not exist yet and thus an unusual situation occurred: there was a functional limit
theorem, but no corresponding finite-dimensional limit result. Using the notion of
differentiability, the one-dimensional limit theorem below has a very simple proof.
Simple as it is, it requires fold-up derivatives.

Theorem 4 (Khmaladze (2007), Theorem 11) Suppose the conditions of Theorem 3
are satisfied. Suppose also that F(ε) is differentiable at F and B is its fold-up deriva-
tive. Then, the random variables Nn(A(ε)) converge in distribution to a Poisson
random variable N∞(B), where

EN∞(B) = ΛF (B).

The proof proceeds as follows. The image of the thinned random variable
Nn(A(ε)) − Nns(A(ε)) under the local magnification map is the random variable
Nnε(B(ε)) where B(ε) = τε(A(ε)), just as in Theorem 3. The expected value of
Nn,ε(B(ε)) is ΛF,n,ε(B(ε)) and the measure ΛF,n,ε converges in total variation to
ΛF . However, our differentiability assumption guarantees that B(ε) has a limit in
measure M . The intensity measure ΛF is absolutely continuous with respect to M ,
and therefore ΛF (B(ε)) → ΛF (B), which completes the proof.
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The reader will notice that the argument used here is very close to the one which is
behind (18).

As to how local empirical processes have been constructed and studied without the
notion of differentiability we refer to Deheuvels and Mason (1995),Einmahl (1997)
and Einmahl and Mason (1997) as, perhaps, the closest to the present paper.

4.2 Convergence of the log-likelihood ratio (first version)

Wenote that the random part of the likelihood function in (2) is an integral with respect
to the point process Nn . We use now Theorem 3 and a differentiability assumption for
F(ε) and deduce the following statement on the limit distribution of the likelihood in
(2).

Corollary 5 Suppose n → ∞, ε → 0 so that nε → S > 0, and suppose (22)
is satisfied. Then if F(ε) is differentiable and B is its fold-up derivative, the log-
likelihood statistic Ln(F, F(ε)) converges in distribution to the random variable

∫

B+
ln

λ̃

λ
(x)N∞(dt, dx) − S

∫

B+
(λ̃ − λ)(x)dtHd−1(dx)

−
∫

B−
ln

λ̃

λ
(x)N∞(dt, dx) + S

∫

B−
(λ̃ − λ)(x)dtHd−1(dx), (23)

and the Poisson process N∞ has intensity measure ΛF .

In the simple but practically interesting situation, when λ̃(x) = cλ(x) on the bound-
ary ∂F , we obtain

ln(c) N∞(B+) − (c − 1)S
∫

B+
λ(x)dtHd−1(dx)

− ln(c)N∞(B−) + (c − 1)S
∫

B−
λ(x)dtHd−1(dx).

Suppose we want to obtain the limit of Ln(F, F(ε)) under the sequence of alter-
natives, when the true change-sets are now F(ε) and we still have n → ∞, ε →
0, nε → S. Such a limit theorem is necessary, if we want to speak about the power
of the statistical test based on the likelihood ratio. Then we notice that nothing will
change in the geometric structure of the problem; F(ε) still remains differentiable at
F with the same derivative. What will change is the intensity measure which drives
the Poisson process Nn on the strip (∂F)εT . Then, we obtain the following statement.

Corollary 6 Under the conditions of the previous corollary, but with (22) replaced
by

1

ε

∫

F(ε)\F
|λ̃(z) − λ̃(pF (z))|μd(dz) → 0,
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1

ε

∫

F\F(ε)

|λ(z) − λ(pF (z))|μd(dz) → 0,

the statistic Ln(F, F(ε)) converges in distribution, under alternatives F(ε), to the
random variable (23), while the Poisson process N∞ has intensity measure

ΛF,alt(B) = S

[∫

B+
λ̃(x)dtHd−1(dx) +

∫

B−
λ(x)dtHd−1(dx)

]
.

For the proof, note that if the true change-set is F(ε), then the measure Λn will
change to

Λn,alt(A) = n
∫

A∩F(ε)

λ̃(z)μd(dz) + n
∫

A∩F(ε)∗
λ(z)μd(dz).

Mapped by the local magnificationmap onto the normal cylinderΣ and then projected
onto Γ , it will converge to ΛF,alt, which, therefore, is the intensity measure of N∞
under the alternatives.

The corollary implies, by the way, that the expected value of (23) will change by
the quantity

S
∫

B
ln

λ̃

λ
(x)[λ̃(x) − λ(x)]dtHd−1(dx).

Therefore, the local likelihood ratio test will have some power for alternatives, con-
verging to the null hypothesis with the rate ε = 1/n, a property it shares with the
change-point problems on the line (see , e.g., Brodsky and Darkhovsky 1993).

4.3 Convergence of the log-likelihood ratio (second version)

The situation with the asymptotic behavior of the likelihood (5) is, in many respects,
similar. First, let us replace the assumption that the number n of observations
(Xi ,Yi )ni=1 is fixed and assume that it is a Poisson random variable ν with expected
value n. This is not an important change in the present context, but it makes the process
in (4), with n replaced by ν, again a Poisson process Nν . Its intensity measure under
the null hypothesis is

ENν(y, A) = n P̃(y)Q(A ∩ F) + nP(y)Q(A ∩ F∗). (24)

If we consider only the part Nν(∞, A) of Nν(y, A), which leaves the marks Yi out,
then all what was said about local processes in Theorems 3 and 4 will still be valid.
Restricted to the strip (∂F)εT , the process Nν(∞, ·) will be Poisson process with
intensitymeasure nowequal tomeasure nQ on (∂F)εT ; splitting this process again into
asymptotically negligible part Nν,s(∞, ·) and the leading part Nν(∞, ·)−Nν,s(∞, ·),
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we again can map this part to Poisson process on ΓT . Denote it by Nν,ε. The intensity
measure of this Poisson process will, certainly, be the image on nQ, so that

Λn,ε(B(ε)) = nQ(A(ε)),

and, as in Theorems 3 and 4, we conclude that the limit of Λn,ε is the measure

Λ(B) = S
∫

B
q(x)dtHd−1(dx),

where q(x) is the density of Q at x ∈ ∂F . Hence Nν,ε converges in distribution to the
Poisson process on Γ , with the intensity measure Λ.

The dependence of Λ on F is now “weak”—there is no need to split B into B+
and B−.

Going back to Nν(y, A), note that each location Xi , which projects to a regular
point on ∂F , will be mapped to the pair (ζi , Ξi ) in Γ , with pF (Xi ) = Ξi , but the
mark Yi will not be altered. The conditional distribution of the marks, given ζi , is

P̃(dy)1{ζi≥0}P(dy)1{ζi<0}.

Therefore, as soon as the process Nν,ε on Γ , based on the pairs (ζi , Ξi ), converges to
a Poisson process, the point process based on triples (Yi , ζi , Ξi ),

Nν,ε(y, B) =
ν(Γ )∑

i=1

1{Yi ≤ y}1{(ζi , Ξi ) ∈ B}, with ν(Γ ) = Nν,ε(∞, Γ ),

will converge to a Poisson process N∞ on R × Γ , and its intensity measure will be

Π((−∞, y] × B) = S
∫

Γ

1{(t, x) ∈ B}P(y)1{t≥0} P̃(y)1{t≤0}q(x)dtHd−1(dx).

The statement on the convergence in distribution of the log-likelihood statistics
follows, here we abbreviate (t, x) by z.

Corollary 7 (Asymptotic null distribution of statistics (5)) Under the conditions of
Theorem 4, the log-likelihood statistic Ln(F, F(ε)) of (5) converges in distribution
to the random variable

∫

R×B
ln

d P̃

dP
(y)N∞(dy, dz), (25)

where the intensity measure of N∞ is Π .

The case when both P̃ and P are Bernoulli distributions is illustrated in Fig. 2. The
data points on the right-hand side of Fig. 3 illustrate the extreme case of degenerate
Bernoulli distributions, with p̃(1) = 1 and p(1) = 0.

123



28 E. Khmaladze, W. Weil

4.4 Central limit theorems

In the situation, where ε is asymptotically not as small as 1/n, but larger, so that
nε → ∞, if the intensities λ̃ and λ in the first formulation of the change-set problem,
and the distributions P̃ and P in the second formulation, remain fixed, the power of
the test based on the statistic Ln(F, F(ε)) will converge to 1, making discrimination
between F and F(ε) asymptotically obvious. In order to stay within the more difficult
situation when some power, although not power 1, can be retained, the intensities λ̃

and λ or the distributions P̃ and P should be allowed to change with n and approach
each other. If this mutual convergence is not too quick, the tests based on (2) and (5)
will have some power against such alternatives.

If nε → ∞, the number of jump points of Nn will increase unboundedly and the
limit theorems for this process should beGaussian andnot Poisson. For thefirst change-
set problem, theGaussian limit theorems for Nn have been studied in the neighborhood
of convex bodies in Einmahl and Khmaladze (2011). Here, let us consider the second
change-set problem.

Suppose that the distribution P̃ depends on some one-dimensional parameter δ in
a smooth way, such that the expansion analogous to (1) is true,

ln
d P̃δ

dP
(y) = δl(y) − δ2

2
l2(y) + oP (δ2), (26)

and the function l is such that that

∫
l(y)P(dy) = 0,

∫
l2(y)P(dy) < ∞.

Thus, as δ = δn → 0, the distribution P̃δ approaches the distribution P from the
“direction” l. We want now to find the rates of δ = δn and ε = εn such that the statistic
(5) converges to a proper random variable.

Let us subtract from Nν in the right-hand side of (5) its expected value (24) and
add it, so that the non-central term of our statistic Lν(F, F(ε)) will be

n
∫

R

ln
d P̃δ

dP
(y)P(dy) Q(F(ε)\F) − n

∫

R

ln
d P̃δ

dP
(y)P̃(dy) Q(F\F(ε)). (27)

Using expansion (26), we can evaluate the expected values of ln(d P̃δ/dP)(Y ),

∫
ln

d P̃δ

dP
(y)P(dy) = −δ2

2

∫
l2(y)P(dy) + o(δ2),

∫
ln

d P̃δ

dP
(y)P̃(dy) =

∫
ln

d P̃δ

dP
(y)

d P̃δ

dP
(y)P(dy)

= δ2

2

∫
l2(y)P(dy) + o(δ2).
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These relationships are easy to establish heuristically, while their formal justification
in broader context can be found, for example, in Janssen (1995), Janssen (2000) and
van der Vaart (1998).

Thus, the shift part (27) is of order nδ2ε, and it is necessary that this quantity stays
bounded. Hence, we assume that

n → ∞, ε → 0, δ → 0, such that nδ2ε = S < ∞.

Now consider the central part. If we put

zν(y, A) = 1√
nε

(
Nν(y, A) − n

[
P̃(y)Q(A ∩ F) + P(y)Q(A ∩ Fc

])
,

where A ⊂ (∂F)εT , then this centered part can be re-written as

√
nε

(∫

R×(F(ε)\F)

ln
d P̃δ

dP
(y)zν(dy, dx) −

∫

R×(F\F(ε))

ln
d P̃δ

dP
(y)zν(dy, dx)

)
.

An asymptotically equivalent form of this expression is

√
nεδ

(∫

R×(F(ε)\F)

l(y)zν(dy, dx) −
∫

R×(F\F(ε))

l(y)zν(dy, dx)

)
.

Since zν is the centered and normalized form of the Poisson process Nν inR×(∂F)εT ,
it retains the property of having independent increments on disjoint sets. This implies
that the two integrals above are independent random variables. The variance of the
first integral (including the factor

√
nεδ) is

S
∫

l2(y)P(dy)
Q(F(ε)\F)

ε
,

while for the variance of the second integral we obtain

S
∫

l2(y)P̃(dy)
Q(F\F(ε))

ε

= S
∫

l2(y)P(dy)
Q(F\F(ε))

ε
+ oP (1), n → ∞.

We see that both variances are finite as soon as S is fixed.
To come now to the object which will be asymptotically Gaussian, recall that the

mapping of Nν onto R × Γ produces the Poisson process Nν,ε introduced in the
previous subsection, and its intensity measure is

Πnε,δ(y, B) = nε

∫

B
P̃δ(y)

1{t≥0}P(y)1{t<0} dt Hd−1(dx), (28)
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but now nε → ∞. The image of the normalized process zν , which we denote by zν,ε,
is the process Nν,ε centered by the measure Πnε,δ and normalized by

√
nε,

zν,ε(y, B) = 1√
nε

[
Nν,ε(y, B) − Πnε,δ(y, B)

]
,

where B is a Borel set in Γ . As in the similar case treated in Einmahl and Khmaladze
(2011), it is natural to expect now that this normalized Poisson process zν,ε converges
in distribution to a Brownian motion, as the intensity increases. However, we need to
take one delicate point into account.

Consider the class A of set-valued functions

{A(ε) : A(ε) ⊂ (∂F)εT , 0 ≤ ε ≤ 1},

which are differentiable at ∂F , for ε = 0.This, or the corresponding class of {F(ε), 0 ≤
ε ≤ 1}, is the class of alternatives to be chosen for the statistical analysis. For each
ε > 0, let Aε be the class of values of our set-valued functions Aε = {A(ε) : A(ε) ⊂
(∂F)εT } at a given ε and let Bε be the class of images of the sets A(ε) under the local
magnification map τε onto Γ ,

Bε = {B(ε) = τε(A(ε)), A(ε) ∈ Aε}.

Then, a functional limit theorem for zν on the class of shrinking setsAε is not directly
possible. Instead, we may consider a functional limit theorem for zν,ε on the class Bε.
However, this class changes with ε.

In this situation, the following approach was suggested in Einmahl and Khmaladze
(2011). Between the sets C and C ′ in R × Γ , introduce a distance as d(C,C ′) =
(μ1 ⊗ μ1 ⊗ Hd−1)(CΔC ′). Using this distance one can introduce the Hausdorff
distance between classes of such sets. Now assume that

a) there is a fixed class B, such that the Hausdorff distance between Bε and B tends
to zero as ε → 0, and

b) the class B is a Donsker class (see, e.g., van der Vaart and Wellner 1996, Sec.
2.11.3).

Then it can be proved that for ηn > 0

sup
B(ε)∈Bε,B∈B,d(B(ε),B)≤ηn

|zν,ε(B(ε)) − zν,ε(B)| P−→ 0, as ηn → 0,

see Einmahl and Khmaladze (2011), for details. The class of functionals of zν , or
rather functionals of zν,ε, which can then be used as various test statistics, also needed
some discussion in Einmahl and Khmaladze (2011), because these functionals can
change with n as well. The final step, the convergence

zν,ε
d−→ z∞ on B,

where z∞ is a set-parametric Brownian motion on B, is then relatively well under-
stood. Since the conditions needed here, like metric entropy condition, exponential
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inequalities, and others, are not specific for the subject of this review, but will require
some space, we abstain from a formal statement of the general central limit theorem
here, but state one special case in the proposition below. We only mention that the
variance measure of z∞ is given by Π ,

Ez2∞(y, B) = Π(y, B).

Let us come back to the situation we are mainly interested in this section, with one
given F(ε), i.e., one alternative, and one test statistic Lν(F, F(ε)). For this statistic
we can formulate the following result.

Proposition 8 If F(ε) is differentiable at F and expansion (26) is satisfied, then for
nεδ2 = S,

Lν(F, F(ε))
d→ S

[∫

R×B+
l(y)z∞(dy, dx) −

∫

R×B−
l(y)z∞(dy, dx)

]

− S

[∫

R

l2(y)P(dy)
∫

B+
q(x)Hd−1(dx) +

∫

R

l2(y)P(dy)
∫

B−
q(x)Hd−1(dx)

]
.

We remark that, for the asymptotic normality of the statistic Lν(F, F(ε)), we do not
need the functional convergence. The one-dimensional convergence for one set-valued
function A(ε) = F(ε)ΔF is sufficient. Moreover, one could prove this asymptotic
normality of Lν(F, F(ε)), evenwithout the notion of derivative of F(ε)ΔF . However,
if we want to understand properly why the distribution of Lν(F, F(ε)) is asymptot-
ically Gaussian, and more importantly, what would be the asymptotic “structure” of
many statistics Lν(F, F(ε)) for many deviations F(ε) from F , the notion of fold-up
derivatives of these sets and the notion of Brownian motion on these derivatives is
indeed necessary.

5 Further remarks and outlook

In this final section, we collect some remarks on possible extensions and variants of
the differentiability approach which we have presented.

5.1 Fold-up derivatives versus generalized functions

In Introduction, we already considered the tempting possibility to use the difference

1 {z ∈ F(ε)} − 1{z ∈ F(0)} = 1{z ∈ F(ε)\F(0)} − 1{z ∈ F(0)\F(ε)},

divide it by ε and consider the limit to describe the shrinkage of F(ε)ΔF(0) as ε → 0.
Indeed, if F(ε) is differentiable at F(0) = F with the fold-up derivative B, and if
ϕ is from the class C∞

c (Rd) of smooth functions with compact support on R
d (test
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functions), then both integrals in

1

ε

∫

Rd
ϕ(z)1{z ∈ F(ε)\F}μd(dz) − 1

ε

∫

Rd
ϕ(z)1{z ∈ F\F(ε)}μd(dz)

will converge to limits gB+(ϕ), gB−(ϕ), which yields generalized functions gB+, gB−
on R

d , concentrated on ∂F . The proof of this convergence uses the Steiner formula
and the assumption that F(ε) is differentiable. In fact an asymptotic analysis, similar
to the arguments which led to Theorem 1, shows that gB+ and gB− , which are formally
linear functionals on C∞

c (Rd), can actually be realized as measurable, nonnegative
functions on ∂F , such that

gB+(ϕ) =
∫

∂F
ϕ(x)γB+(x)Hd−1(dx), gB−(ϕ) =

∫

∂F
ϕ(x)γB−(x)Hd−1(dx).

Moreover, the functions γB+ and γB− are related to the positive and negative parts
B+ ⊂ Γ + and B− ⊂ Γ − of the derivative B and, for Hd−1-almost all x ∈ ∂F , the
values γB+(x), γB−(x) are given by the lengths of the intersections B ∩ (R+ × {x})
and B ∩ (R− × {x}).

It may look very natural to use the pair gB+ , gB− or even their difference gB =
gB+ − gB− to describe the limiting processes, whether in Poisson or Gaussian asymp-
totics. However, this is not appropriate. As the arguments below show, there are
infinitely many fold-up derivatives B, rather distinct from the point of view of the
local processes, but which correspond to the same pair gB+, gB− . In other words,
the language of generalized functions is too coarse for our needs in the change-set
problem.

This is already visible in a one-dimensional situation. Indeed, let F = [−a, 0]
and F(ε) = F1(ε) = [−a, ε], for some a > 0. Thus, F1(ε)\F = (0, ε], while
F\F1(ε) = ∅. The local magnification map will produce the set (0, 1]× {0} ⊂ Γ , see
Fig. 7, which does not depend on ε and is the fold-up derivative of F1. If we now take
F2(ε) = [−a, 0] ∪ (ε, 2ε], then the fold-up derivative will be the set (1, 2] × {0}.

If now X1, . . . , Xn are independent uniform random variables on, say, [0, 1], then
the classical local binomial process

Nn([0, tε]) =
∑

1{Xi ≤ tε}

is mapped into Nn,ε([0, t]), which for nε → 1 converges to a Poisson process with
intensity 1, or expected value t , and the number of points in F1(ε)\F and F2(ε)\F ,
which are Nn((0, ε]) and Nn((ε, 2ε]), will be mapped to Nn,ε((0, 1]) and Nn,ε((1, 2])
and both converge to Poisson random variables with the same parameter 1. The differ-
ences F1(ε)\F and F2(ε)\F are disjoint and so are their fold-up derivatives. Hence
the two limiting Poisson random variables are independent. This aspect is, however,
lost as soon as we turn to generalized functions. Both integrals

1

ε

∫ tε

0
ϕ(z)1{z ∈ (0, tε]}dz and

1

ε

∫ 2tε

tε
ϕ(z)1{z ∈ [tε, 2tε]}dz
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1

2

−a 0 ε 2ε

Fig. 7 The random points in (0, ε] and (ε, 2ε] on the X -axis are mapped by the local magnification map
into random points in (0, 1] and (1, 2] on the Y -axis

converge to tϕ(0), and thus define the same generalized function at the boundary point
z = 0. This example can be easily extended to the d-dimensional situation.

5.2 The change-set problem and chimeric alternatives

The concept of chimeric alternatives was introduced in Khmaladze (1998). These are
the alternatives, which remain on a certain non-diminishing Hellinger distance from
the hypothetical distribution, but which, as far as the empirical process is concerned,
are asymptotically undetectable.

More exactly, consider a sequence of distributions Pn , alternatives to the distribution
P , with density with respect to the distribution P of the form

√
dPn
dP

(z) = 1 + 1

2
√
n
hn(z), (29)

where

lim
n→∞

∫
h2n(z)P(dz) = const > 0,

while
∫

hn(z)φ(z)P(dz) → 0 for any fixed φ ∈ L2(P).

The last property of hn says that this sequence runs away from the space, it does not
have a limiting point in L2(P). There are many ways of visualizing such sequences.
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One is when functions hn oscillate more and more with increasing n. One other, the
spike alternatives in Khmaladze (1998), is when the functions hn are concentrated on
subsets of P-probabilities which converge to zero as n → ∞.

Given a sequence of i.i.d. randomvariables {Zi }ni=1, a function-parametric empirical
process to test whether P is indeed the distribution of each Zi is defined as

vn(φ) = √
n

[
1

n

n∑

i=1

φ(Zi ) −
∫

φ(z)P(dz)

]
, φ ∈ Φ ⊂ L2(P).

The class Φ of square integrable functions, on which vn(φ) is considered, is a part of
the setting and depends on the user. Functionals from this process, like, for example,
supφ∈Φ |vn(φ)| are used as test statistics. In order that vn converge in distribution to
a Brownian bridge, the class Φ has to satisfy certain metric entropy conditions, but
we simply assume that these conditions are satisfied. Moreover, we are willing to
assume that all φ are bounded functions. What we want to clarify here is what will be
the distribution of our empirical process under a chimeric alternative. Under the null
hypothesis, Evn(φ) = 0 and Ev2n(φ) = ‖φ‖2P and vn(φ) is asymptotically normal
with these parameters. Under a chimeric alternative

Evn(φ) =
∫

φ(z) (Pn(dz) − P(dz))

=
∫

φ(z)

(
hn(z) + 1

4
√
n
h2n(z)

)
P(dz) → 0,

as it follows from the definition of chimeric alternatives and boundedness of φ; as a
consequence

Ev2n(φ) =
∫

φ2(z)P(dz) +
∫

φ2(z)

(
hn(z) + 1

4
√
n
h2n(z)

)
P(dz)

=
∫

φ2(z)P(dz) + o(1), (30)

and therefore under chimeric alternatives the random variable vn(φ), for any φ, has
asymptotically the same Gaussian distribution as under the hypothesis. So, tests based
on vn will asymptotically have no power.

Now let us see what is the corresponding situation in the change-set problem.
Consider, for example, its second formulation. As it can be seen from Sect. 1.4, the
square root of the likelihood ratio of distributions of each pair (Xi ,Yi ) under F(ε)

and under F is

(
d P̃

dP
(y)

)(1(x∈F(ε))−1(x∈F))/2

= 1 + 1(x ∈ A(ε))

⎛

⎝
(
d P̃

dP
(y)

)(1(x∈A+(ε))−1(x∈A−(ε)))/2

− 1

⎞

⎠ (31)
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and comparison with (29) shows that here

hn(x, y) = √
n1(x ∈ A(ε))

⎛

⎝
(
d P̃

dP
(y)

)(1(x∈A+(ε))−1(x∈A−(ε)))/2

− 1

⎞

⎠ .

This function is nonzero only on the shrinking set A(ε) and its L2-norm under the null
distribution is

nQ(A+(ε))

∫

R

⎛

⎝
(
d P̃

dP
(y)

)1/2

− 1

⎞

⎠
2

dP(y)

+ nQ(A−(ε))

∫

R

⎛

⎝
(
d P̃

dP
(y)

)−1/2

− 1

⎞

⎠
2

d P̃(y).

We already know that if F(ε) is differentiable at F and its fold-up derivative is B, and
if nε → S, then

nQ(A+(ε)) → S
∫

B+
dtHd−1(dx) and nQ(A−(ε)) → S

∫

B−
dtHd−1(dx),

and therefore the L2-norm of hn has a positive limit. This implies that the set F(ε)

indeed creates a chimeric alternative to F , and that the conventional approach based
on empirical processes would not be useful.

5.3 Boundary sets

As a second class of sets, the boundary sets F are considered in Khmaladze and Weil
(2014). These are non-empty compact sets F ⊂ R

d with F = ∂F andμd(F) = 0.We
may also assume μd−1(F) > 0. Hence F∗ = R

d and r− = 0. For a boundary set F ,
the Steiner formula (12) holds, but consists only of the outside part. Consequently, we
only need the upper part Σ+ of the normal cylinder Σ . The definition of the fold-up
derivative follows the same lines as in the solid case, the distinction between F and
∂F is not necessary here. The support measure Θd−1(F, ·) satisfies

Θd−1(F, ·)=
∫

reg(F)

[1{(x, ν(F, x)) ∈ ·}+1{(x,−ν(F, x)) ∈ ·}]Hd−1(dx), (32)

see (Hug et al. 2004, Prop. 4.1). Notice that there are still topological phenomena, also
for boundary sets, which are counter-intuitive. One expects that in most points x of a
boundary set F there are two normals νF (x),−νF (x), but there are examples where
Hd−1(∂1F) > 0 and Hd−1(∂2F) = 0. Here, ∂ i F is the set of boundary points with
precisely i normals, i = 1, 2.
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Since the values r+(x, u), r+(x,−u) are different, in general, the normal cylinder
Σ cannot be identified with the cylinder Γ = R× ∂F in a natural way, but we would
need two copies Γ +

1 , Γ +
2 of the upper part of Γ .

Otherwise, the properties of the derivative, Theorem 1 and most of the considera-
tions made above for solid sets carry over to boundary sets with obvious modifications
(see Khmaladze and Weil 2014, for details).

5.4 Variations of solid sets

With respect to the local Steiner formula, various set classes have been considered
in the literature, which generalize convex sets one one hand and are not as general
as solid sets on the other hand. The purpose is to see which additional structure of
the support measures Θi (F, ·), i = 0, . . . , d − 1, (often called curvature measures
or Lipschitz–Killing curvatures) can be obtained if the sets F have further regularity
properties. One example is the question, for which sets F the support measures satisfy
(locally or globally) a kinematic formula like the classical principal kinematic formula
in integral geometry or the Crofton formula, see Schneider and Weil (2008), Chapter
5. In this direction, the most general set class at the moment are the DC-sets of Fu et al.
(2017). Another question is, whether or under which additional conditions on F the
support measures are connected to further local and global quantities in geometry, like
the lower-order Hausdorff measures, the Minkowski content, or the perimeter. Here,
the paper Ambrosio et al. (2008) gives a good account of the various relations.

From the probabilistic point of view, it is a natural question, which of the geometric
results, relevant to set-differentiation, hold for graphs or subgraphs of trajectories of
stochastic processes, like the Wiener process. However, we are not aware of investi-
gations in this direction.

Acknowledgements The authors thank two anonymous referees for their useful remarks on a previous
version of this work.
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