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Abstract This paper is devoted to test the parametric single-index structure of the
underlying model when there are outliers in observations. First, a test that is robust
against outliers is suggested. The Hampel’s second-order influence function of the test
statistic is proved to be bounded. Second, the test fully uses the dimension reduction
structure of the hypothetical model and automatically adapts to alternative models
when the null hypothesis is false. Thus, the test can greatly overcome the dimension-
ality problem and is still omnibus against general alternative models. The performance
of the test is demonstrated by both Monte Carlo simulation studies and an application
to a real dataset.

Keywords Bounded influence function · Dimension reduction · Model checking ·
Omnibus property · Robust adaptive-to-model test

1 Introduction

Testing the validity of a specified model up to some unknown parameters is an impor-
tant issue in statistical inference. A long-standing focus for this model checking
problem is their sensitivity to outlying observations or heavy-tailed distributions. This
is because these observations may have destructive effects even though with small
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violation in usual observations. However, in the past decades, researchers have made
more efforts on robust estimation, but paid less attention to robust hypothesis testing.
Therefore, it is critical to develop a robust test that can be against outlier contamination.

Sample containingoutliers or contaminateddata is not uncommonandanubiquitous
problem inmany disciplines, for example clinical trials, medical research, longitudinal
studies, and so forth. When there exist outliers in the data, robust statistical inference
procedures can improve the accuracy and reliability of statistical analyses. The purpose
of robust hypothesis testing is twofold, just as stated in Heritier and Ronchetti (1994):
One is that under small and arbitrary departures from the null hypothesis, the level
of a test should be stable, which is called the robustness of validity; the other is that
the test can still make a good power performance under small and arbitrary departures
from specified alternatives, that is called the robustness of efficiency. Wang and Qu
(2007) suggested a robust version of Zheng’s (1996) test. Their numerical studies
also showed the necessity of using a robust testing procedure: the effect of outliers
on Zheng’s original test is dramatic and destructive so that it cannot maintain the
significance level.

Many efforts have been devoted to the development of robust testing procedures.
For linear regression models, Schrader and Hettmansperger (1980) proposed the ρc

test based on Huber’s M estimators; Markatou and Hettmansperger (1990) introduced
an aligned generalized M test for testing subhypotheses in general linear models,
which is a robustification of the well-known F test and can be viewed as a general-
ization of Sen’s (1982) M test for linear models. Afterward, Heritier and Ronchetti
(1994) and Markatou and Manos (1996) presented robust versions of the Wald, score
and drop-in-dispersion tests for general parametric models and nonlinear regression
models, respectively. Wang and Qu (2007) developed a robust approach for testing
the parametric form of a regression function versus an omnibus alternative, which can
be viewed as a robustification of a smoothing-based conditional moment test. Feng
et al. (2015) recommended a robust testing procedure to make comparison of two
regression curves through combining a Wilcoxon-type artificial likelihood function
with generalized likelihood ratio test.

There are a number of proposals available in the literature on testing consistently the
correct specification of a parametric regressionmodel.Most of existing test procedures
can be classified into two categories: global smoothing tests and local smoothing tests.
As mentioned in a comprehensive review paper of González-Manteiga and Crujeiras
(2013), the global smoothing tests mainly involve empirical process, which can avoid
subjective selection of the smoothing parameter, such as bandwidth; the local smooth-
ing tests are based on nonparametric smoothing techniques such as Nadaraya–Watson
kernel estimation (Nadaraya 1964; Watson 1964), smoothing spline estimation or
other local smoothing techniques. Examples of global smoothing tests include Bierens
(1990),Bierens andPloberger (1997), Stute (1997), Stute et al. (1998b),Whang (2000),
Escanciano (2006a), among many others. This class of methods enjoys fast conver-
gence rate of order O(n−1/2) (see Stute et al. (1998a)). However, this type of tests
is often less sensitive to high-frequency models. To certain extent, this shortcom-
ing makes their practical limitation since it is not uncommon to have high-order or
high-frequency models. Also, in higher than 2-dimensional scenarios, the limiting
null distribution is usually intractable which requires the assistance from resampling
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approximation to determine critical values. Further, the power performance in high-
dimensional cases is not very encouraging.

As for local smoothing tests, examples include the tests suggested by Härdle and
Mammen (1993), Zheng (1996), Fan et al. (2001), Horowitz and Spokoiny (2001),
Koul and Ni (2004), and Van Keilegom et al. (2008). Since they must involve multi-
variate nonparametric function estimation procedures and thus inevitably and severely
suffer from the curse of dimensionality when the number of covariates is large, even
moderate. This typical problem is a big obstacle for local smoothing tests to well
maintain the significance level and to sense the alternative models. Because of the
data sparseness in multi-dimensional space, the behavior of nonparametric smooth
estimators very quickly deteriorates as the dimension increases, see Stone (1980).
Further, even when there are no outliers, local smoothing tests have the typical slow
convergence rate of order O(n−1/2h−p/4) to their limits when p is large where p is
the number of covariates. Besides, a suitable choice of smooth parameter is difficult
but necessary for these tests. Although existing empirical studies show that the effect
of bandwidth selection is not too profound in small p situations, how to make a prac-
tically suitable bandwidth choice is still a long-standing problem when the dimension
p is relatively large.

The above observations suggest that a common difficulty both global and local
smoothing test procedures suffer from is the data sparseness in high-dimensional
space even for large sample sizes (see Escanciano (2007)). To attack this challenge,
a representative method documented as projection-pursuit technique was proposed
and experimented. The significant feature of this method is to employ the projections
of original data onto one-dimensional subspaces: first projecting the original high-
dimensional covariates to one-dimensional space to form a linear combination and
a test can be obtained as an average of tests based on these selected combinations,
see Huber (1985) for detail. Escanciano (2006b) proposed a consistent test for the
goodness of fit of parametric regression models, which applied a residual marked
empirical process. Some earlier references include Zhu and Li (1998) who suggested
a test that is based on an unweighted integral of expectations with respect to all one-
dimensional directions. Zhu and An (1992) could be an earlier reference that had
already used this idea to deal with a relevant testing problem. Zhu (2003) constructed
a lack-of-fit test via seeking for a good projection direction for plotting to achieve
the dimension reduction aim. Lavergne and Patilea (2008) introduced the projection-
pursuit technique to local smoothing-based tests to avoid the effect of dimension.
Afterward, Lavergne and Patilea (2012) suggested a smooth integrated conditional
moment (ICM) test. This test is an omnibus test based on the kernel estimation that
performs against a sequence of directional nonparametric alternatives as if there were
only one covariate whatever the number of covariates is. All of these tests either have
no tractable sampling and limiting null distributions or have tractable limiting null
distributions that are not useful for the significance level maintenance if critical values
are determined by them. Thus, resampling/bootstrap approximations are commonly
resorted to determine critical values. However, the algorithm of approximation is very
computationally intensive when all projections are involved. Stute and Zhu (2002)
simply used a one-dimensional projected covariate that is a linear combination of all
covariates to alleviate this typical dimensionality problem. But the disadvantage is also
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obvious: it is a directional rather than an omnibus test which cannot detect general
alternatives. Another relevant reference is Stute et al. (2008) who also suggested a
dimension reduction test that is based on the residual empirical process marked by a
set of functions of covariates. This test relies solely on selecting proper functions for
the significance level maintenance and power enhancement. A data-driven selection
procedure would be in demand.

Recently, a dimension reduction model–adaptive test is proposed by Guo et al.
(2016), which is an omnibus test against global alternative models. This local smooth-
ing test procedure introduces a novel model–adaptation concept in model checking
for parametric regression models. The test statistic under the hypothetical model can
converge to its limit at the rate of order O(n−1/2h−1/4) and detect local alternatives
distinct from the null model at this rate, which is not affected by the number of covari-
ates. Their test behaves like a local smoothing test as if the number of covariates were
one. Another superiority is that it owns tractable limiting null distribution and can
work very well even with moderate sample sizes without the assistance of resampling
approximation to determine critical values.

All of the above tests can avoid the curse of dimensionality to some extent; they
are, however, not robust against outliers, and their efficiency is adversely affected
by outlying observations. Our subsequent numerical analysis suggests that the test
proposed by Guo et al. (2016) fails to work when there exist outliers because a linear
local average of the responses is not robust, as elaborated in Härdle (1992). To tickle
this problem, we incorporate the idea in Guo et al. (2016) into a robust model–adaptive
smoothing-based conditional moment test. It can possess the robustness property and
simultaneously solve the dimensionality problem.

The hypothetical model is the following with a dimension reduction structure:

Y = g(β� X, θ) + ε, (1)

where Y is the response with the covariate vector X ∈ Rp. The random error term ε

and X are independent. β and θ are unknown parameter vectors of dimensions p and
d, respectively. In addition, g(·) is a known function and the superscript � denotes
transposition. As we often have no much information in advance on model structure
when this parametric structure assumption is false, a general alternative model is
considered as follows:

Y = m(B� X) + ε, (2)

where m(·) is an unknown smooth function and ε denotes the error. Here, ε is inde-
pendent of X . B is an unknown p × q orthonormal matrix for an unknown integer q
with 1 ≤ q ≤ p. This model treats the nonparametric regression Y = m(X) + ε as a
special case in which the matrix B = Ip with q = p.

In this paper, we construct a robust dimension reduction adaptive-to-model test
(R-DREAM). It sufficiently invokes the information in both the null and alternative
models to get rid of curse of dimensionality and employs centered asymptotic rank
transformation technique to achieve the goal of robustness. We further study the local
robustness via influence function analysis, which indicates that our R-DREAM has
first-order influence function of zero and second-order influence function bounded in
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the response direction. Therefore, it is argued that our test can have more stable and
robust performance when there are outliers in responses than existing local smoothing
tests. It is worthwhile to point out that our test is mainly robust against the error’s
distribution and does not need to impose strong conditions on it. However, as the test
is for the regression mean function, the second moments of X is required to derive the
asymptotic properties. Thus, likeWang and Qu (2007) and Feng et al. (2015), it cannot
handle models without moments of covariates. This deserves a further investigation.

The rest of this article is organized as follows. In Sect. 2, the test is constructed.
The approaches to estimate the matrix B and to identify its structure dimension q are
also stated in this section. Section 3 presents the large sample properties under the
null, global and local alternative hypothesis. The local robustness properties through
the Hampel influence function analysis are also discussed in this section. Numerical
studies including simulation studies and a real data analysis are, respectively, reported
in Sects. 4 and 5. All of the proofs are relegated to “Appendix”.

2 A robust dimension reduction adaptive-to-model test

As discussed before, the hypotheses of interest are:

H0 : Y = g(β� X, θ) + ε for some β ∈ R p, θ ∈ Rd;
H1 : Y = m(B� X) + ε and m(B� X) �= g(β� X, θ) for any β ∈ R p, θ ∈ Rd , (3)

where g(·) is a known link function and m(·) is an unknown link function. β and θ

are, respectively, the parameter vectors of p and d dimensions. ε denotes the error,
which is independent of X . B is a p × q orthonormal matrix where B� B = Iq and
1 ≤ q ≤ p.

2.1 Test statistic construction

Denote e = Y − g(β� X, θ) and let e� = H(e) − 1/2, where H(·) is the cumulative
distribution function of e and H(e) follows uniformly distributed on (0, 1). Under the
null hypothesis H0,

E(e�|X) = E

{
H(e) − 1

2
|X
}

= 0. (4)

In this case, the model (1) is with q = 1, and

E(e�|X) = 0 ⇒ E(e�|β� X) = E(e�|B� X) = 0.

Further, the following formula

E{e�E(e�|B� X) f (B� X)} = E

{(
E(e�|B� X)

)2
f (B� X)

}
= 0 (5)

holds under H0, where f (·) is the probability density function of B� X .
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Under H1, we have e = Y − g(β� X, θ) = m(B� X) − g(β� X, θ) + ε. The
conditional expectation E(e�|X) is

E(e�|X) = E

{
H
(

m(B� X) − g(β� X, θ) + ε
)

− 1

2

∣∣∣X
}

. (6)

When P(m(B� X) − g(β� X, θ) = C) = 1, the conditional expectation E(e�|X)

reduces to the unconditional expectation E(e�) = E(H(e)−1/2) = 0. Here, the event
that E(e�|X) equals to zero occurs only when P(m(B� X)−g(β� X, θ) = C) = 1 for
some constantC , which only holds under the null hypothesis H0. Since we can enlarge
the null class of models by including some location shifts, if g(β� X, θ) belongs to
the null class of models, then so does g(β� X, θ) + C . In other words, it is reasonable
to assume that the null class of models is sufficiently general to contain all location
shifts in the Y direction. However, under H1, P(m(B� X) − g(β� X, θ) = C) �= 1
holds. Hence, the conditional expectation E(e�|X) is not equal to zero but relates to
X . Different values of X would make different values of the conditional expectation
E(e�|X). Therefore, when H1 holds, E(e�|X) is not equal to zero; further,

E(e�|X) �= 0 ⇒ E(e�|B� X) �= 0.

Thus, we have

E{e�E(e�|B� X) f (B� X)} = E

{(
E(e�|B� X)

)2
f (B� X)

}
> 0. (7)

Based on the different performances of E{e�E(e�|B� X) f (B� X)} under H0 and
H1 in (5) and (7), respectively, its empirical version can be used as a test statistic. The
null hypothesis H0 is rejected for large values of the test statistic.

Given a random sample {(y1, x1), (y2, x2), . . . , (yn, xn)}, define the asymptotic
rank transform of êi = yi − g(β̂�xi , θ̂ ) as n−1∑n

l=1 I (êl ≤ êi ) where
∑n

l=1 I (êl ≤
êi ) is the rank of êi among all of the n residuals. Here, β̂ and θ̂ come from robust
estimates of β and θ . Further, the corresponding centered asymptotic rank transform
of residuals is as follows

ê�
i = 1

n

n∑
l=1

I (êl ≤ êi ) − n + 1

2n
, l = 1, . . . , n, (8)

where I (·) is the indicator function.
Once an estimator of B̂(q̂) is available, a kernel estimator of the regression function

E(e�
i |B� Xi ) can be estimated as follows:

Ê(e�
i |B̂(q̂)�xi ) =

1
n−1

∑n
j �=i ê�

jKh{B̂(q̂)�(xi − x j )}
f̂ (B̂(q̂)�xi )

,
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where ê�
j has been defined in (8). B̂(q̂) is an sufficient dimension reduction (SDR)

estimate of thematrix B with an estimated structural dimension q̂ ofq and the estimates
will be specified later. Besides, Kh(·) = K(·/h)/hq̂ , where K(·) is a q̂-dimensional
kernel function and h is the bandwidth, and f̂ (B̂(q̂)�xi ) is a kernel estimator of the
density function of f (B�xi ),

f̂ (B̂(q̂)�xi ) = 1

n − 1

n∑
j �=i

Kh{B̂(q̂)�(xi − x j )}.

Further, a robust dimension reduction adaptive-to-model test (R-DREAM) can be
constructed as follows:

Vn = 1

n(n − 1)

n∑
i=1

n∑
j �=i

Kh{B̂(q̂)�(xi − x j )}ê�
i ê�

j . (9)

Remark 1 From the above construction of Vn in (9), it seems that except for the
estimates of the matrix B and structural dimension q, the test statistic makes no
difference with the test proposed by Wang and Qu (2007) as follows:

Ṽn = 1

n(n − 1)

n∑
i=1

n∑
j �=i

K̃h(xi − x j )ê
�
i ê�

j , (10)

where K̃h(·) = K̃(·/h)/h p with K̃(·) being a p-dimensional kernel function. Com-
paring the test statistic in (9) with that in (10), we note that q̂-dimensional kernel
function (q̂ ≤ p) is required in Vn . The result in Sect. 3 shows that under the null
hypothesis H0, q̂ = 1 with a probability going to one, which can avoid the curse
of dimensionality greatly. Another superiority of the new test is the model–adaptive
property, that is, through estimating the matrix B, the test can automatically adapt
the hypothetical and alternative model such that it can have better performance in
the significance level maintenance and power enhancement. To be specific, under H0,
B̂(q̂) → cβ for a constant c, and under H1 q̂ = q ≥ 1 with a probability going
to one, B̂(q̂) → BC for a q × q orthogonal matrix C , adaptive to the alternative
model (2).

Remark 2 Another related test is the dimension reduction model–adaptive test TGWZ
n

proposed by Guo et al. (2016):

TGWZ
n = 1

n(n − 1)

n∑
i=1

n∑
j �=i

Kh{B̂(q̂)�(xi − x j )}êi ê j . (11)

In Sect. 3.3, wewill show throughHampel influence function analysis that R-DREAM
has more stable and robust behavior than TGWZ

n when the response is contaminated.
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2.2 Identification and estimation of B

As the estimates of the matrix B and structural dimension q are crucial for our R-
DREAM, we first specify the estimate for the matrix B under given q and then study
how to select q consistently. The method to estimate B is inspired by sufficient dimen-
sion reduction technique. In fact, B is not identifiable since for any q × q orthogonal
matrix C , m(B� X) can always be rewritten as m̃(C� B� X). Therefore, what we can
identify is the space spanned by B via sufficient dimension reduction technique, or
in other words, we can identify q base vectors of the space spanned by B. In view of
easy operation, good performance and robustness of DEE, we consider to employ it
to estimate B. One can read Zhu et al. (2010) to get the details on SIR-based DEE
method and Guo et al. (2016) also gives a simple review of it.

Compared with SIR, DEE can avoid selecting the number of slices as there is no
optimal solution. Define the new response variable U(t) = I (Y ≤ t) for any t , where
the indicator function I (Y ≤ t) takes the value 1 if Y ≤ t and 0, otherwise. When
SIR is applied, the original related matrix M(t) based on SIR is a p × p positive
semi-definite matrix such that span{M(t)} = SU(t)|X . Here, SU(t)|X is the central
subspace of U(t)|X . Given M = E{M(T )}, according to Theorem 1 in Zhu et al.
(2010), span{M} = SY |X . In our paper, since ε⊥⊥X is assumed and thus we get
SY |X = SE(Y |X), where the later is the central mean subspace of Y given X .

Based on the above description, estimating SE(Y |X) amounts to estimating M.
Given the sample {(y1, x1), (y2, x2), . . . , (yn, xn)}, we define the dichotomized
responses as ui (y j ) = I (yi ≤ y j ), i, j = 1, . . . , n. Thus, for each fixed y j , we
can obtain a new sample {(u1(y j ), x1), (u2(y j ), x2), . . . , (un(y j ), xn)} and the esti-
mateMn(y j ) of M(y j ) can be gained with SIR. Thus, M can be estimated as

Mn,n = n−1
n∑

j=1

Mn(y j ), (12)

which has been proved to be root-n consistent to M by Zhu et al. (2010). The q
eigenvectors ofMn,n corresponding to its q largest eigenvalues are applied to estimate
B. For this method, a mild linearity condition is assumed: E(X |B� X = z) is linear
in z (Li 1991).

2.3 Identification of B and Estimation of the structural dimension q

In order to get R-DREAM in (9), the estimate of structural dimension q is necessary for
the above method of identifying B. Here, a ridge-type ratio estimate (RRE) method,
which is inspired by Xia et al. (2015), is suggested to determine q for DEE. It is
based on the ratios of the eigenvalues with an artificially added ridge value c. Denote
λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂p to be the eigenvalues of Mn,n in (12). q̂ can be obtained as

q̂ = arg min
k=1,...,p−1

λk+1 + c

λk + c
,
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where the constant c = 1/
√

nh is recommended. The consistencies of q̂ under the
null hypothesis (1) and global alternative hypothesis (2) are shown in the following
lemma.

Lemma 1 Assume that the DEE-based matrix Mn,n is root-n consistent to M. Then,
the corresponding estimate q̂ = q (under H0, q = 1) with a probability going to one
as n → ∞. Therefore, for a q × q orthogonal matrix C, B̂(q̂) is a root-n consistent
estimate of BC�.

3 Asymptotic properties

In this section, the large sample properties of the R-DREAM test statistic Vn in (9)
are investigated via its asymptotic distributions under the null hypothesis, global alter-
native hypothesis and local alternative hypothesis. The robustness properties of our
proposed test are also studied through Hampel influence function analysis.

3.1 Limiting null distribution

The asymptotic normality discussed in the following requires that the regression
parameter is root-n consistently estimated under H0 and the residuals must come
from a robust fit. Let Z = B� X and

V ar = 1

72

∫
K2(u)du

∫
p2(z)dz,

where p(z) is the probability density function of Z . Moreover, V ar can be consistently
estimated by:

̂V ar = 1

72n(n − 1)

n∑
i=1

n∑
j �=i

1

hq̂
K2

{
B̂(q̂)�(xi − x j )

h

}
.

We first state the asymptotic property of the R-DREAM test statistic in (9) under
the null hypothesis H0 as follows:

Theorem 1 Suppose that conditions (C1)–(C8) in Appendix hold. Under H0, we have

nh1/2Vn ⇒ N (0, V ar).

Plugging in a consistent estimator of V ar , a standardized version of Vn can be
defined as

Sn = n − 1

n

nh1/2Vn√
̂V ar

. (13)

The following corollary can be easily obtained.
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Corollary 1 Under H0 and Conditions (C1)–(C8) in Appendix, we have

S2
n ⇒ χ2

1 ,

where χ2
1 is the Chi-square distribution with one degree of freedom.

Theorem 1 and Corollary 1 characterize the asymptotic properties of the test statis-
tic Vn . Based on Corollary 1, p-values of R-DREAM can be easily determined by the
quantiles of the Chi-square distribution with one degree of freedom. The null hypoth-
esis H0 is rejected when Sn ≥ χ2

1−α(1) where χ2
1−α(1) is the 1 − α upper quantile of

the Chi-square distribution.

3.2 Power study

We are now in the position to examine the power performance of our R-DREAM
under alternative hypothesis. More specifically, the following sequence of alternative
models is under consideration:

H1n : Y = g(β̃� X, θ̃ ) + Cnm(B� X) + ε, (14)

where E[m2(B� X)] < ∞ and {Cn} is a constant sequence. When Cn = C for a
nonzero constant C , the model is a global alternative model, while when Cn goes to
zero, it is a sequence of local alternative models. In this sequence of models, β is
one of the columns in B. Denote α̃ = (β̃�, θ̃�)�. For a robust estimate α̂, we have
α̂ − α̃ = Op(1/

√
n). We first discuss the consistency of q̂ under the local alternative

hypothesis (14). When n → ∞, the local alternative models converge to the null
model, q̂s under the local alternative models are expected to converge to q̂ under the
null model, which finally converge to the structural dimension q = 1 under the null
model.

Lemma 2 Assume conditions (C1)–(C8) in Appendix hold, and under the local alter-
native hypothesis (14) with Cn = n−1/2h−1/4, we have q̂ = 1 as n → ∞ with a
probability going to one, where q̂ is the DEE-based estimate.

The asymptotic properties under global and local alternative hypotheses are con-
cluded in the following theorem.

Theorem 2 Under Conditions (C1)–(C8) in Appendix, we have:
(i) Under the global alternative of (2) or equivalently the above model with Cn =

C > 0,
Sn/(nh1/2) ⇒ Constant > 0;

(ii) Under the local alternative hypothesis (14) with Cn = n−1/2h−1/4, we have

nh1/2Vn ⇒ N (μ, V ar) and S2
n ⇒ χ2

1 (μ2/V ar),

where
μ = E[h2(ε)m2(B� X)p(X)],
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h(·) denotes the probability density function of ε and χ2
1 (μ2/V ar) is a non-central

Chi-squared random variable with one degree of freedom and the non-centrality
parameter μ2/V ar.

The above theorem indicates that under the global alternative hypothesis,
the R-DREAM test is consistent with the asymptotic power 1, and it can also detect
the local alternatives distinct from the null hypothesis at a nonparametric rate of order
n−1/2h−1/4, which is the optimal rate with one-dimensional predictor for the test Ṽn

in (10).

Remark 3 From the above theorem, we can observe that under the null hypothesis, the
use (automatically) of lower-order kernel function in Vn in (9) makes a very significant
improvement than Ṽn in (10). Based onTheorem1, Vn owns amuch faster convergence
rate of order nh1/2 and nh1/2Vn is asymptotically normal under the null, whereas the
rate of order nh p/2 is for Ṽn . Further, according to Theorem 2, the conclusion can be
made that Vn is much more sensitive than Wang and Qu’s test Ṽn in the sense that
Vn can detect the local alternatives distinct from the null at the rate of n−1/2h−1/4,
whereas Ṽn is only workable at the rate of order n−1/2h−p/4. Therefore, the power
performance of the proposed test can be much enhanced.

Remark 4 Our original simulation results based on Sn in (13)withDEE-based estimate
suggest the conservative sizes of tests. Thus, the following size adjustment is needed
for the test statistics with the DEE-based estimate:

S̃n = (1 + 4n−4/5)Sn, (15)

The size adjustment constant is chosen through intensive simulation with various
different values, and this one is recommended. With such a size adjustment, our new
test S̃n can better control type I errors. It is worth noting that the size adjustment is
asymptotically negligible when n → ∞ since S̃n − Sn tends to zero at the rate of order
n−4/5 as n → ∞.

3.3 Robustness property

In this section, we investigate the local stability of R-DREAMunder infinitesimal local
contamination through Hampel influence function, which was introduced by Hampel
(1974). The Hampel influence analysis reveals that R-DREAM has the desired local
robustness property. In the following, we first give von Mises functional expansion of
R-DREAM and further derive the Hampel influence function. Compared with Wang
and Qu (2007), the key difference is between the used covariate X and B̂(q̂)� X in the
respective test statistics, and B̂(q̂)T X is automatically 1- and q-dimensional under the
null and alternative hypothesis. Thus, we only give some brief descriptions about the
results.

The von Mises analysis (see Fernholz (1983)) can provide the basis of the Hampel
influence function calculation. We first discuss the von Mises functional expansion.
Let Z = B� X , Ẑ = B̂(q̂)� X and denote Ĥn as the empirical distribution function
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1024 C. Niu, L. Zhu

of Y1 − g(β̂� X1, θ̂ ), . . . , Yn − g(β̂� Xn, θ̂ ). When H0 holds, B = cβ, and B̂(q̂) is
an estimator of β up to a scalar constant c. The R-DREAM statistic Vn in (9) can be
asymptotically expressed as

T (F̂h, Fn) =:
∫ ∫ [

Ĥn(y − g((β�x)(Fn), θ(Fn))) − 1

2

]
×

(∫ [
Ĥn(y1 − g((β�x)(Fn), θ(Fn))) − 1

2

]
× f̂h(ẑ, y1)dy1

)
d Fn(ẑ, y),

where Fn(·) is the empirical distribution function of (Ẑi , Yi )’s, ((β�x)(Fn), θ(Fn))�
is an estimator of (β�x, θ)�, which can be rewritten as a functional of the empirical
distribution Fn , and f̂h(zi , yi ) is a smoothing kernel estimation of the joint density
function of (Ẑ , Y ), which has the following form:

f̂h(ẑi , yi ) = 1

n − 1

n∑
i �= j

K1,h(yi − y j )K2,h(ẑi − ẑ j ),

where K1(·),K2(·) are two kernel functions and satisfy K1,h(·) = K1(·/h)/h and
K2,h(·) = K2(·/h)/hq̂ , respectively. An appropriate functional for R-DREAM is
bivariate with the form

T (F, F) =:
∫ ∫ [

H(y − g((β�x)(F), θ(F))) − 1

2

]
×

(∫ [
H(y1 − g((β�x)(F), θ(F))) − 1

2

]
× f (z, y1)dy1

)
d F(z, y),

(16)

here, F(·) is the distribution function of (Z , Y ) and H(·) is the distribution function
of Y − g(β� X, θ): H(v) = ∫ ∫y≤g((β�x)(F),θ(F))+v

dF(z, y).
Now we are in the position to analyze Hampel influence function (Hampel 1974).

When the second-order influence function in the response direction is bounded, the
regression functions is robustly estimated. The detailed derivations for the first-order
and the second-order influence function of Ṽn in (10) are given inWang andQu (2007).
Here, we only report the properties for influence functions of T (F, F) in (16) at the
point (z0, y0), and the detailed proofs are left into Appendix.

Theorem 3 Suppose the conditions (C1)–(C8) in Appendix hold, we have
(i) R-DREAM has a degenerate first-order influence function.
(ii) The second-order influence function of R-DREAM is bounded in the response

direction.

For the purpose of comparison, the first-order and second-order influence functions
for the test TGWZ

n in (11) are derived. The first-order influence function is also zero
and the second-order influence function are given by (26) in Appendix. Based on this
formulation, we can see that the second-order influence function in the y-direction is
not bounded. The above influence function analysis indicates R-DREAM possesses
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more stable and robust performance than the test TGWZ
n when the response is under

contamination.

Remark 5 In order to have the above desired robustness property, a robust method
must be used to implement the parameter estimation. In our paper, the popular Tukey
bisquareM-estimatemethod (P.29,Maronna et al. 2006) is used to estimate the parame-
ters. The robust estimate (β̂�, θ̂�)� is obtained by solving the followingminimization
problem:

(β̂�, θ̂�) = argmin
β,θ

n∑
i=1

ρ(yi − g(β�xi , θ)),

where

ρ(u) =
{
1 − [1 − (u/k)2]3 if |u| ≤ k,

1 if |u| > k.

Here, k = 4.685σε is the tuning constant and σε is the standard deviation of the error
ε. In this way, the

√
n consistent estimates of the parameters can be derived. Note

that using k = 4.685σε can achieve the good estimation efficiency. However, the
√

n
consistency holds for any fixed value in the place of σε if we do not consider the
estimation efficiency. In our case, we can simply use k = 4.685 to avoid estimating
the unknown σε. It is worth mentioning that the other robust estimation methods can
also be applicable for estimating the parameters as long as the

√
n consistent estimates

of the parameters can be obtained.

4 Simulation studies

In this section, two simulation studies are conducted to examine the theory and the
finite-sample performance of the proposed R-DREAM. The purpose of the simulation
studies is twofold: to check the usefulness of dimension reduction strategy to overcome
the curse of dimensionality and to check how much it would lose in the cases without
outliers when compared to existing non-robust tests.

Study 1: Consider the following models

H11 : Y = β�
1 X + 0.75a(β�

2 X + 1.2)3 + ε,

H12 : Y = β�
1 X + a ×

{
3.8 exp(1.2β�

2 X) − 10
}

+ ε,

H13 : Y = β�
1 X + 1.2a × exp(−1.3β�

1 X) + ε,

where β1 = (1, . . . , 1)�/
√

p, β2 = (1, . . . , 1︸ ︷︷ ︸
p/2

, 0, . . . , 0)�/
√

p/2, p = 4, 2 and

n = 100. The covariates X = (X1, . . . , X p)
� are generated from multivariate normal

distributions N (0, �k), k = 1, 2 with �1 = Ip and �2 = {0.2|i− j |}p×p. Two kinds
of errors are considered: ε ∼ N (0, 1) and ε ∼ t (1). For H11 and H12, when a �= 0,
we have q = 2 and B = (β1, β2). However, for H13, q = 1 and B = β1. For the
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first two alternative models H11 and H12, 10% of the responses are randomly added
by observations from the two following nonlinear models, respectively:

Case 1: Y = 8 exp{−|β�
1 X |} + 10 + ε,

Case 2: Y = 8 exp{−|β�
1 X |} + 48 + ε.

As to the last alternative model H13, two outlier situations are considered: Case 3: 10%
of the responses are randomly added by an outlying value of 5; Case 4: 10% of the
responses are randomly added by an outlying value of 15. We set a = 0, 0.2, . . . , 1.0
wherea = 0 corresponds to the null hypothesis anda �= 0 to the alternative hypothesis.
We intend to apply these alternative models to examine the effect of dimensionality
on the proposed test S̃n and T W Q

n of Wang and Qu (2007).
Throughout these simulations, unless otherwise specified, the kernel function is

taken to be K(u) = 15/16(1 − u2)2 if |u| ≤ 1 and 0, otherwise. Our experience in
the simulations suggests that S̃n is not very sensitive to the choice of kernel function.
The bandwidth is recommended as h = 0.5n−1/(q̂+4) through intensive numerical
computation. The significance level is set to be α = 0.05 and the sample size n = 100
is considered. Every simulation result is the average of 4000 replications.

The simulation results under models H11 and H12 are reported in Table 1 for a =
0, 0.2, . . . , 1 at the significance level α = 0.05. From this table, we can observe that
in all the cases we conduct, the two tests have empirical sizes close to the significance
level. Also, the simulated powers of the tests become higher with increase in the
parametera. It canbe seen clearly that the test S̃n works verywell in power performance
and is not significantly affected by the dimension of X . However, T W Q

n severely
suffers from the curse of dimensionality. When the dimension of X gets larger, T W Q

n
completely fails to detect the alternatives. In addition, our proposed test S̃n shows
robust performance to the correlated covariates and the heavy tail error distribution
t (1). Figure 1 reports the simulated power curves under H13 for different values of a
and sample sizes n = 100. The similar conclusion can be arrived.

Study 2: We generate the data from the following model:

H21 : Y = β� X + 0.5a(β� X + 1)3 + ε,

where β = (1, . . . , 1)�/
√

p and p = 8, 12. Here, X ∼ N (0, Ip) and ε ∼ N (0, 1).
In this study, we investigate two issues: One is whether the test TGWZ

n can maintain
the significance level when there exist some outlier values in the responses and the
other is how much S̃n loses in power when there are not outliers. � is the percentage
of which the responses are randomly replaced by the observations from a nonlinear
model Y = (3β� X + 5)2 + ε. Here, we only consider TGWZ

n with SIR-based DEE
estimate.

Figure 2 presents the empirical size curves or “significance trace” of the three tests
for different values of the ratio � and sample sizes n = 100. In this case, the ratio
� = 0, 0.02, . . . , 0.1. From this figure, we can see that when � = 0, all of the three
tests can control empirical sizes very well which are all close to the pre-specified
significance level 0.05. However, with the increase in the percentage �, our robust test
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Robust adaptive-to-model enhancement test 1027

Table 1 Empirical sizes and powers of S̃n and T W Q
n for H10 versus H11 and H12 at the significance level

α = 0.05 with n = 100

X, ε a p = 4 p = 2

Case 1 Case 2 Case 1 Case 2

S̃n T W Q
n S̃n T W Q

n S̃n T W Q
n S̃n T W Q

n

H11 X ∼ MV N (0, �1) 0 0.048 0.055 0.051 0.053 0.048 0.046 0.050 0.048

ε ∼ N (0, 1) 0.2 0.202 0.074 0.194 0.063 0.216 0.142 0.221 0.145

0.4 0.581 0.080 0.575 0.078 0.645 0.346 0.654 0.323

0.6 0.842 0.093 0.813 0.088 0.889 0.495 0.867 0.503

0.8 0.935 0.113 0.908 0.101 0.954 0.641 0.941 0.659

1.0 0.962 0.115 0.947 0.106 0.989 0.748 0.976 0.717

X ∼ MV N (0, �2) 0 0.053 0.055 0.055 0.051 0.055 0.044 0.056 0.045

ε ∼ t (1) 0.2 0.110 0.057 0.096 0.053 0.116 0.076 0.104 0.065

0.4 0.255 0.059 0.252 0.055 0.256 0.118 0.252 0.109

0.6 0.483 0.078 0.442 0.067 0.489 0.194 0.457 0.187

0.8 0.656 0.079 0.574 0.074 0.614 0.276 0.594 0.261

1.0 0.757 0.078 0.684 0.079 0.761 0.342 0.707 0.335

H12 X ∼ MV N (0, �1) 0 0.049 0.055 0.045 0.055 0.047 0.054 0.045 0.046

ε ∼ N (0, 1) 0.2 0.365 0.072 0.347 0.068 0.415 0.204 0.402 0.193

0.4 0.817 0.099 0.785 0.090 0.878 0.466 0.849 0.485

0.6 0.941 0.113 0.917 0.094 0.971 0.648 0.966 0.650

0.8 0.975 0.110 0.970 0.106 0.994 0.757 0.985 0.742

1.0 0.994 0.120 0.983 0.120 0.999 0.813 1.000 0.821

X ∼ MV N (0, �2) 0 0.054 0.055 0.053 0.049 0.047 0.046 0.052 0.046

ε ∼ t (1) 0.2 0.154 0.057 0.151 0.055 0.178 0.094 0.177 0.078

0.4 0.430 0.069 0.396 0.061 0.455 0.177 0.408 0.163

0.6 0.648 0.073 0.609 0.070 0.678 0.270 0.609 0.265

0.8 0.795 0.075 0.762 0.073 0.828 0.363 0.774 0.349

1.0 0.889 0.081 0.854 0.077 0.915 0.442 0.855 0.415

S̃n outperforms the test TGWZ
n . The simulation results indicate that S̃n is not affected

by the outlier values and it is more robust, whereas TGWZ
n fails to work when outliers

exist.
We display the simulated power curves for different values of a in Fig. 3. Here, we

consider � = 0 and n = 100. In other words, there are no outliers in the data. The
parameter a is set to be 0, 0.2, . . . , 1. From the figure, we can see that compared with
TGWZ

n , it is anticipated that TGWZ
n has higher powers since their test employs more

value information, whereas the robust tests only utilize the rank information of the
responses. However, the powers of S̃n are still acceptable.

The sensitivity analysis in this study is also considered under the same settings of
Study 1 without outliers. Here, p = 8, X ∼ N (0, �2) with �2 = {0.2|i− j |}p×p and
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Fig. 1 Empirical sizes and powers of S̃n and T W Q
n for H10 versus H13 at the significance level α = 0.05

with n = 100, p = 4 and ε ∼ N (0, 1). In four plots, the solid line and the dashed line are for S̃n and T W Q
n ,

respectively. a Powers for Case 3 under H13 with X ∼ N (0, �1), b powers for Case 4 under H13 with
X ∼ N (0, �2), c powers for Case 4 under H13 with X ∼ N (0, �1), d powers for Case 4 under H13 with
X ∼ N (0, �2)
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Fig. 2 Empirical sizes of S̃n and TGWZ
n for H20 versus H21 at the significance level α = 0.05 with

X ∼ N (0, Ip), ε ∼ N (0, 1) and different values of �. In two plots, the solid line and the dash-dotted line
are for S̃n and TGWZ

n , respectively. a Empirical sizes for H21 with p = 8, b empirical sizes for H21 with
p = 12
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Fig. 3 Simulated powers of S̃n and TGWZ
n for H20 versus H21 at the significance level α = 0.05 with

X ∼ N (0, Ip) and ε ∼ N (0, 1). In two plots, the solid line and the dash-dotted line are for S̃n and TGWZ
n ,

respectively. a Simulated powers for H21 with p = 8, b simulated powers for H21 with p = 12
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Fig. 4 Simulated powers of S̃n and TGWZ
n for H10 versus H11, H12, H13 at the significance level α = 0.05

with X ∼ N (0, �2) and ε ∼ N (0, 1). In three plots, the solid line and the dash-dotted line are for S̃n and
TGWZ

n , respectively. a Simulated powers for H11, b simulated powers for H12, c simulated powers for H13

ε ∼ N (0, 1) are considered. Figure 4 reports the simulated results of S̃n and TGWZ
n .

From this figure, we can see that for the three alternatives H11, H12 and H13 without
outliers, the simulated power curves for S̃n and TGWZ

n have the common sigmoidal
shape. Although the powers for TGWZ

n are slightly higher, the performance of our
proposed test S̃n remains accredited.

5 Real data analysis

In this section, we consider the CARS data to illustrate our test which was collected
by Ernesto and David in the year of 1982. After that, this dataset was adopted by the
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Table 2 The values of test
statistics and the corresponding
p-values for the real data
analysis

Case 5 Case 6

Statistics p-values Statistics p-values

S̃n 4.627 0 5.599 0

TGWZ
n −0.711 0.762 −0.318 0.625

committee on Statistical Graphics of the American Statistical Association (ASA) in
its Second Exposition of Statistical Graphics Technology in 1983 and can be found
in http://lib.stat.cmu.edu/datasets/cars.data. Recently, Guo et al. (2016) analyzed this
datasetwith their proposed test and drew the conclusion that it is appropriate to describe
this dataset by single-index model rather than simple linear regression model. This
dataset includes 406 observations on the following 8 variables: miles per gallon (Y ),
number of cylinders (X1), engine displacement (cu. inches, X2), horsepower (X3),
vehicle weight (lbs. X4), time to accelerate from 0 to 60 mph (sec. X5), model year
(modulo 100, X6) and origin of car (1. American, 2. European, 3. Japanese). Since
the origin of car is classified into three categories, we refer to Xia (2007) to define
two new indicator variables, that is, denote X7 = 1 if a car is from America and 0
otherwise and X8 = 1 if one is from Europe and 0 otherwise. Here, 392 complete
observations are applied to implement our real data analysis. Before analysis, all the
covariates are standardized separately and the responses are centered.

It is our interest to test whether the data (Y, X) can be fitted with linear regression
models where X = (X1, . . . , X8)

�, that is,

H0 : Y = β�
0 X + ε for some β0 ∈ R8,

H1 : Y = m(B�
1 X) + ε and m(B�

1 X) �= β� X for any β ∈ R8 (17)

The same kernel function and bandwidth are adopted as simulation section. For the
original data, the value of the test statistic TGWZ

n with SIR-based DEE estimate pro-
posed by Guo et al. (2016) is 9.704 and the corresponding p-value is 0. With our
proposed R-DREAM, we can obtain that our test statistic S̃n is 8.2744 and the cor-
responding p-value is 0. Both of results indicate that the original real data cannot be
fitted by linear regression models.

To investigate the influence of outlier values in the response space, the two following
situations are considered: a). Case 5: we artificially add the first 5% and the last 5%
responses of this dataset by an outlying value 50; b). Case 6: we artificially add
the first 3% responses by the observations from the model: Y = β̃� X + η, where
p = 8, β̃ = (1, 1, . . . 1)�/

√
p and η ∼ N (0, 1). The values of test statistics and the

corresponding p-values for TGWZ
n and S̃n are reported in Table 2. From this table, we

can see that for both cases, our robust test S̃n still suggests to reject the null hypothesis
H0, whereas TGWZ

n cannot reject H0. The similar conclusion with original data can be
made with our test, on the contrary, TGWZ

n tends to make a wrong conclusion, which
indicates that our test method is more robust.
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Appendix: Proofs of the theorems

The following conditions are required for proving the theorems in Sect. 3.

(C1) The joint probability density function f (z, y) of (Z , Y ) is bounded away
from 0.

(C2) The density function f (B� X) of B� X on supportZ exists and has two bounded
derivatives and satisfies

0 < inf f (z) < sup f (z) < 1.

(C3) The kernel function K(·) is a bounded and symmetric density function with
compact support and a continuous derivative and all the moments ofK(·) exist.

(C4) The bandwidth satisfies nh2 → ∞ under the null (1) and local alternative
hypothesis (14); nhq → ∞ under the global alternative hypothesis (2).

(C5) There exists an estimator α̂ such that under the null hypothesis,
√

n(α̂ − α) =
Op(1), where α = (β, θ) and under the local alternative sequences,

√
n(α̂ −

α̃) = Op(1), where α and α̃ are both interior points of�, a compact and convex
set.

(C6) Denote α = (β, θ)� and there exists a positive continuous function G(x) such
that ∀α1, α2, |g(x, α1) − g(x, α2)| ≤ G(x)|α1 − α2|.

(C7) Mn(s) has the following expansion:

Mn(s) = M(s) + En{ψ(X, Y, s)} + Rn(s),

where En(·) denotes the average over all sample points, E{ψ(X, Y, s)} = 0 and
E{ψ2(X, Y, s)} < ∞.

(C8) sups ‖ Rn(s) ‖F= op(n−1/2), where ‖ · ‖F denotes the Frobenius norm of a
matrix.

Remark 6 Conditions (C1),(C2),(C5) and (C6) are essentially the same as those in
Wang and Qu (2007). These conditions are regular for ensuring the consistency and
normality of the parameter estimator. Condition (C3) is standard for nonparametric
regression estimation. Condition (C4) is the same as that in Guo et al. (2016). This
condition on bandwidth is required to ensure the asymptotic normality of our test
statistic. Conditions (C7) and (C8) are for the DEE estimation. Under the linearity
condition, SIR-based DEE satisfies conditions (C7) and (C8). These conditions are
quite mild and can be satisfied in many practical situations. It is worth mentioning that
the second moment condition is not strong here because in DEE, we use the indicator
function of Y , rather than the original Y and the target matrix only involves the square
of the expectation of the product of X and the indicator of Y . Thus, these conditions
only involve the second moment of X .
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The following lemmas are used to prove the theorems in Sect. 3. We first give the
proof of Lemma 1 in Sect. 2.

Proof of Lemma 1 In the following, we give the proof of the DEE-based estimate and
the same conditions in Theorem 4 of Zhu et al. (2010) are adopted.

Under the conditions designed by in Zhu et al. (2010), their Theorem 2 ensures that
Mn,n −M = Op(n−1/2). Further, the root-n consistency of the eigenvalues ofMn,n

is retained, that is, λ̂i −λi = Op(n−1/2). Note that when l ≤ q, λl > 0 and for l > q,
we have λl = 0. As recommended, c = 1/

√
nh is used. when nh → ∞, h → 0, we

have 1/
√

n = o(c) and c = o(1). For 1 ≤ l < q,

λ̂q+1 + c

λ̂q + c
− λ̂l+1 + c

λ̂l + c
=

λq+1 + c + Op

(
1√
n

)

λq + c + Op

(
1√
n

) −
λl+1 + c + Op

(
1√
n

)

λl + c + Op

(
1√
n

)

=
c + Op

(
1√
n

)

λq + c + Op

(
1√
n

) −
λl+1 + c + Op

(
1√
n

)

λl + c + Op

(
1√
n

) ⇒ −λl+1

λl
< 0.

When l > q,

λ̂q+1 + c

λ̂q + c
− λ̂l+1 + c

λ̂l + c
=

λq+1 + c + Op

(
1√
n

)

λq + c + Op

(
1√
n

) −
λl+1 + c + Op

(
1√
n

)

λl + c + Op

(
1√
n

)

=
c + Op

(
1√
n

)

λq + c + Op

(
1√
n

) −
c + Op

(
1√
n

)

c + Op

(
1√
n

) ⇒ −1 < 0.

Therefore, we can conclude that under the null hypothesis H0 and under the fixed
alternative hypothesis (2), q̂ = q with a probability going to one as n → ∞. The
proof is concluded. ��

The proof of Lemma 2 in Sect. 3 is given as follows.

Proof of Lemma 2 From the proof of Theorem 2 in Guo et al. (2016), it is shown that
under the local alternative hypothesis, Mn,n − M = Op(Cn). Further, we can get
λ̂i − λi = Op(Cn).

Thus, note that λ1 > 0 and for any l > 1, we have λl = 0. Consequently, under the
condition that Cn = o(c) and c = o(1),

λ̂2 + c

λ̂1 + c
− λ̂l+1 + c

λ̂l + c
= λ2 + c + Op(Cn)

λ1 + c + Op(Cn)
− λl+1 + c + Op(Cn)

λl + c + Op(Cn)

= c + Op(Cn)

λ1 + c + Op(Cn)
− c + Op(Cn)

c + Op(Cn)
⇒ −1 < 0.

Thus, under the local alternative (14), Lemma 1 holds. The proof of Lemma 2 is
finished. ��
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Robust adaptive-to-model enhancement test 1033

Lemma 3 Given Conditions (C1)–(C8) in Appendix, we have

nh1/2 (Vn − V �
n

) p→ 0,

where
p→ represents convergence in probability and

V �
n = 1

n(n − 1)

n∑
i=1

n∑
j �=i

Kh

{
B̂(q̂)�(xi − x j )

} [
H(ei ) − 1

2

] [
H(e j ) − 1

2

]
, (18)

here, Kh(·) = K(·/h)/hq̂ .

Proof of Lemma 3 We first decompose Vn − V �
n as

Vn − V �
n = 1

n3(n − 1)

n∑
i=1

n∑
j �=i

n∑
l=1

n∑
k=1

Kh

{
B̂(q̂)�(xi − x j )

}

× [I (êl ≤ êi ) − I (el ≤ ei )
] [

I (êk ≤ ê j ) − I (ek ≤ e j )
]

+ 2

n3(n − 1)

n∑
i=1

n∑
j �=i

n∑
l=1

n∑
k=1

Kh

{
B̂(q̂)�(xi − x j )

}

× [I (êl ≤ êi ) − I (el ≤ ei )
] [

I (ek ≤ e j ) − n + 1

2n

]

+ 1

n3(n − 1)

n∑
i=1

n∑
j �=i

n∑
l=1

n∑
k=1

Kh{B̂(q̂)�(xi − x j )}

×
{[

I (el ≤ ei ) − n + 1

2n

] [
I (ek ≤ e j ) − n + 1

2n

]

−
[

H(ei ) − 1

2

] [
H(e j ) − 1

2

]}

=: A1 + A2 + A3. (19)

Since ei = yi − g(β�xi , θ), we further have êi − ei = g(β�xi , θ) − g(β̂�xi , θ̂ ).
Let α = (β, θ)� and L(α̂) as

L(α̂) = max
1≤i≤n

n∑
l=1,l �=i

|I (êl ≤ êi ) − I (el ≤ ei )|.

Denote � = {α� : √
n|α� − α0| ≤ δ} for δ = O(1) and t (xi , xl , α, α�) =

[g(β�xi , θ) − g(β��xi , θ
�)] − [g(β�xl , θ) − g(β��xl , θ

�)], then
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1034 C. Niu, L. Zhu

sup
α�∈�

|L(α�)| = sup
α�∈�

n∑
l=1,l �=i

|I (el − ei ≤ t (xi , xl , α, α�)) − I (el ≤ ei )|

≤ sup
α�∈�

n∑
l=1,l �=i

I (|el − ei | ≤ |t (xi , xl , α, α�)|)

≤
n∑

l=1,l �=i

I
(
|el − ei | ≤ Cn−1/2

)
, (20)

where C is a generic positive constant. From the above derivation, we can obtain
that, conditional on ei , I (|el − ei | ≤ Cn−1/2), l �= i are iid Bernoulli random vari-
ables with O(n−1/2)-order success probability. Using Bernstein’s inequality leads to
P{∑n

l=1,l �=i I (|el − ei | ≤ Cn−1/2) ≥ Cn1/2|ei } ≤ exp(−Cn1/2). Unconditionally,
we still have that

P

⎧⎨
⎩

n∑
l=1,l �=i

I (|el − ei | ≤ Cn−1/2) ≥ Cn1/2

⎫⎬
⎭ ≤ exp(−Cn1/2).

Further,

P

⎧⎨
⎩ max

1≤i≤n

n∑
l=1,l �=i

I
(
|el − ei | ≤ Cn−1/2

)
≥ Cn1/2

⎫⎬
⎭ ≤ n exp(−Cn1/2).

When n → ∞, for a positive constant C , n exp(−Cn1/2) → 0. Therefore,
P{max1≤i≤n

∑n
l=1,l �=i I (|el − ei | ≤ Cn−1/2) < Cn1/2} = 1. Then,

max
1≤i≤n

n∑
l=1,l �=i

I
(
|el − ei | ≤ Cn−1/2

)
< Cn1/2 = Op

(
n1/2

)
. (21)

Combining (20) and (21), we can gain the following useful probability bound

L(α̂) = max
1≤i≤n

n∑
l=1,l �=i

|I (êl ≤ êi
)− I (el ≤ ei ) | = Op

(
n1/2

)
.

An application of the formula (21) and for the term A1 in (19), we have

nh1/2|A1| ≤ h1/2

n2(n − 1)hq̂
max
1≤i≤n

n∑
l=1,l �=i

|I (êl ≤ êi
)− I (el ≤ ei ) |

× max
1≤ j≤n

n∑
k=1,k �= j

|I (êk ≤ ê j
)− I

(
ek ≤ e j

) |
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Robust adaptive-to-model enhancement test 1035

×
n∑

i=1

n∑
j �=i

K
{

B̂(q̂)�(xi − x j )/h
}

= Ch1/2

n(n − 1)hq̂

n∑
i=1

n∑
j �=i

K
{

B̂(q̂)�(xi − x j )/h
}

= Ch1/2

n(n − 1)hq̂

n∑
i=1

n∑
j �=i

K
{

B�(xi − x j )/h
}

+ Ch1/2

n(n − 1)hq̂

n∑
i=1

n∑
j �=i

[
K
{

B̂(q̂)�(xi − x j )/h
}

− K
{

B�(xi − x j )/h
}]

=: C1(A11 + A12), (22)

where C1 is a positive constant. Let Z = B� X . As to the term A11, the term

1

n(n − 1)hq̂

n∑
i=1

n∑
j �=i

K
{

B�(xi − x j )/h
}

is an U-statistic with the kernel as Hn(z1, z2) = h−q̂K{(z1− z2)/h}. In order to apply
the theory for non-degenerate U-statistic (Serfling 1980), E[Hn(z1, z2)2] = o(n) is
needed. It can be verified that

E[Hn(z1, z2)
2] = E

{
E
[

Hn(z1, z2)
2|z1, z2

]}

=
∫

1

h2q̂
K2
(

z1 − z2
h

)
p(z1)p(z2)dz1dz2

=
∫

1

h2q̂
K2(u)p(z1)p(z1 − hu)

(
−hq̂

)
dz1du

= − 1

hq̂

∫
K2(u)p2(z1)dz1du + o(1)

= O

(
1

hq̂

)
, (23)

where p(·) is denoted as the probability density function. With the condition nhq̂ →
∞, we have E[Hn(z1, z2)2] = O(1/hq̂) = o(n). The condition of Lemma 3.1 of
Zheng (1996) is satisfied, and we have A11 = h1/2E[Hn(z1, z2)] + op(1), where
E[Hn(z1, z2)] = O(1). Therefore, we can obtain that A11 = Op(h1/2) = op(1).
Denote

A�
12 = 1

n(n − 1)

n∑
i=1

n∑
j �=i

h1/2−q̂K′ {B̃�(xi − x j )/h
}

(xi − x j )
� × B̂(q̂) − B

h
,
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1036 C. Niu, L. Zhu

where B̃ lies between B and B̂. Then, for the term A12 in (22), we have

A12 = A�
12 + op

(
A�
12

)
.

Similar to A11, the following term

1

n(n − 1)

n∑
i=1

n∑
j �=i

h−q̂K′ {B̃�(xi − x j )/h
}

(xi − x j )
�

can be regarded as an U-statistic. It can be similarly shown that the term is the order
of Op(h). As ‖B̂(q̂) − B‖2 = Op(1/

√
n) and under the condition n → ∞, h → 0,

we can obtain that A12 = op(1). Toward (22), we have

nh1/2|A1| ≤ op(1).

Similarly, we can derive that nh1/2|Ai | = op(1) for i = 2, 3. Combining with the
formula (19), it can be concluded that

nh1/2 (Vn − V �
n

) p→ 0,

which completes the proof of Lemma 3. ��
In the following, we give the proof of Theorem 1.

Proof of Theorem 1 From Lemma 3, we know that the limiting distributions for
nh1/2Vn and nh1/2V �

n are the same. Thus, we just need to derive the asymptotic
property of nh1/2V �

n . The term V �
n in (18) can be decomposed as

V �
n = 1

n(n − 1)

n∑
i=1

n∑
j �=i

Kh

{
B�(xi − x j )

} [
H(ei ) − 1

2

] [
H(e j ) − 1

2

]

+ 1

n(n − 1)

n∑
i=1

n∑
j �=i

[
H(ei ) − 1

2

] [
H(e j ) − 1

2

]

[
Kh{B̂(q̂)�(xi − x j )} − Kh{B�(xi − x j )}

]
=: V �

n1 + V �
n2,

where Kh(·) = K(·/h)/hq̂ .
For the term V �

n1, it is an U-statistic, since we always assume that the dimension of
B� X is fixed in our paper. Under the null hypothesis, H(ei ), i = 1, . . . , n follows
a uniform distribution on (0, 1), q = 1 and q̂ → 1. An application of Theorem 1
in Zheng (1996), it is not difficult to derive the asymptotic normality: nh1/2V �

n1 ⇒
N (0, V ar), where

V ar = 1

72

∫
K2(u)du

∫
p2(z)dz
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Robust adaptive-to-model enhancement test 1037

with Z = B� X .
Denote

Ṽ �
n2 = 1

n(n − 1)

n∑
i=1

n∑
j �=i

1

hq̂
K′
{

B̃�(xi − x j )

h

}
(xi − x j )

�

[
H(ei ) − 1

2

] [
H(e j ) − 1

2

]
· B̂(q̂) − B

h
,

where B̃ lies between B̂ and B. By an application of Taylor expansion yields

V �
n2 = Ṽ �

n2 + op

(
Ṽ �

n2

)
.

Because the kernelK(·) is spherical symmetric, the following term can be considered
as an U-statistic:

1

n(n − 1)

n∑
i=1

n∑
j �=i

1

hq̂
K′ {B̃�(xi − x j )/h

}
(xi − x j )

�
[

H(ei ) − 1

2

] [
H(e j ) − 1

2

]
.

Further note that

E

{
1

hq̂
K′{B̃�(xi − x j )/h}(xi − x j )

�
[

H(ei ) − 1

2

] [
H(e j ) − 1

2

]
|xi , yi

}

= E

[
E

{
1

hq̂
K′{B̃�(xi −x j )/h}(xi − x j )

�
[

H(ei ) − 1

2

] [
H(e j ) − 1

2

]
|xi , yi , x j

}
|xi , yi

]

= E

{
1

hq̂
K′{B̃�(xi − x j )/h}(xi − x j )

�
[

H(ei ) − 1

2

]
· E

[
H(e j ) − 1

2
|x j

]
|xi , yi

}
= 0.

Thus, the aboveU-statistic is degenerate. Similar as the derivation of V �
n1, togetherwith

‖B̂(q̂) − B‖2 = Op(1/
√

n) and 1/nh2 → 0, we have nh1/2V �
n2 = op(1). Therefore,

under the null hypothesis H0, we can conclude that nh1/2V �
n ⇒ N (0, V ar). Based

on Lemma 3, we have nh1/2Vn ⇒ N (0, V ar).
An estimate of V ar can be defined as

̂V ar = 1

72n(n − 1)

n∑
i=1

n∑
j �=i

1

hq̂
K2

{
B̂(q̂)�(xi − x j )

h

}
.

Since the proof is rather straightforward, we then only give a brief description. Using
a similar argument as that for Lemma 3, we can get

̂V ar = 1

72n(n − 1)

n∑
i=1

n∑
j �=i

1

hq̂
K2

{
B�(xi − x j )

h

}
+ op(1).
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1038 C. Niu, L. Zhu

The consistency can be derived through U-statistic theory. The proof for Theorem 1
is finished. ��

The proof for Theorem 2 is given as follows.

Proof of Theorem 2 Under the global alternative Hn in (2), we have ei = m(B�xi )+
εi − g(β̃�xi , θ̃ ). Together with Lemma 3, it can be obtained that Vn = V �

n + op(1),
where V �

n can be rewritten as

V �
n = 1

n(n − 1)

n∑
i=1

n∑
j �=i

1

hq̂
K
{

B̂(q̂)�(xi − x j )

h

}[
H(m(B�xi ) + εi − g(β̃�xi , θ̃ )) − 1

2

]

[
H(m(B�x j ) + ε j − g(β̃�x j , θ̃ )) − 1

2

]

= 1

n(n − 1)

n∑
i=1

n∑
j �=i

1

hq̂
K
{

B�(xi − x j )

h

}[
H(m(B�xi ) + εi − g(β̃�xi , θ̃ )) − 1

2

]

[
H(m(B�x j ) + ε j − g(β̃�x j , θ̃ )) − 1

2

]
+ 1

n(n − 1)

n∑
i=1

n∑
j �=i

[
H(m(B�xi ) + εi

−g(β̃�xi , θ̃ )) − 1

2

] [
H(m(B�x j ) + ε j − g(β̃�x j , θ̃ )) − 1

2

] [
Kh{B̂(q̂)�(xi − x j )}

−Kh{B�(xi − x j )}
]

= V �
n3 + V �

n4,

For the term V �
n3, it is a standard U-statistic with

Hn(xi , x j ) = 1

hq̂
K
{

B�(xi − x j )

h

}
l(xi )l(x j ),

where l(x·) = [H{m(B�x·) + ε· − g(β̃�x·, θ̃ )} − 1/2]. Similar to the proof of (23),
when nhq̂ → ∞, we can derive that E[H2(xi , x j )] = o(n) and the condition of
Lemma 3.1 in Zheng (1996) can be shown to be satisfied. We further calculate

E[Hn(xi , x j )] = E{E[Hn(xi , x j )|xi , x j ]}
= 1

hq̂

∫
K
{

zi − z j

h

}
l̃(zi )l̃(z j )p(zi )p(z j )dzidz j

= 1

hq̂

∫
K(u)l̃(z j + hu)l̃(z j )p(z j + hu)p(z j ) × hq̂dudz j

=
∫

l̃2(z j )p2(z j )dz j + o(1)

= E[l2(X)2 p(X)] + o(1).

where Z = B� X . Therefore, V �
n3 = E[l2(X)2 p(X)] + op(1) =: C2, here, C2 is a

positive constant.
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As to the term V �
n4, similarly as the term V �

n2, we have

V �
n4 = Ṽ �

n4 + op(Ṽ �
n4),

where,

Ṽ �
n4 = 1

n(n − 1)

n∑
i=1

n∑
j �=i

1

hq̂
K′
{

B̃�(xi − x j )

h

}
(xi − x j )

�l(xi )l(x j ) · B̂(q̂) − B

h
,

here, B̃ lies between B and B̂. Similarly as the derivation of V �
n3, togetherwith ‖B̂(q̂)−

B‖2 = Op(1/
√

n), when nhq̂ → ∞, we have V �
n4 = Op(h) · Op(1/

√
n) · (1/h) =

op(1).
Based on the above analysis,we can derive thatVn = C2+op(1) and nh1/2Vn ⇒ ∞

in probability, which completes the proof of the global alternative situation.
We now consider the situation of local alternative H1n in (14). Based on Lemma 3,

we have Vn = V �
n + op(1). In this situation, ei = Cnm(B�xi ) + εi . Therefore, V �

n
can be decomposed as

V �
n = 1

n(n − 1)

n∑
i=1

n∑
j �=i

1

hq̂
K
{

B̂(q̂)�(xi − x j )

h

}[
H(Cnm(B�xi ) + εi ) − 1

2

]

[
H(Cnm(B�x j ) + ε j ) − 1

2

]

= 1

n(n − 1)

n∑
i=1

n∑
j �=i

1

hq̂
K
{

B�(xi − x j )

h

}[
H(Cnm(B�xi ) + εi ) − 1

2

]

[
H(Cnm(B�x j ) + ε j ) − 1

2

]
+ 1

n(n − 1)

n∑
i=1

n∑
j �=i

[
H(Cnm(B�xi ) + εi )

−1

2

] [
H(Cnm(B�x j ) + ε j ) − 1

2

] [
Kh{B̂(q̂)�(xi − x j )} − Kh{B�(xi − x j )}

]

= V �
n5 + V �

n6. (24)

For the term V �
n5, taking a Taylor expansion of H(Cnm(B�xi )+εi ) aroundCn = 0,

we have

H
(

Cnm(B�xi ) + εi

)
= H(εi ) + Cnh(εi )m

(
B�xi

)
+ op

(
C2

n

)
.
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1040 C. Niu, L. Zhu

Then, the term V �
n5 can be decomposed as

V �
n5 = 1

n(n − 1)

n∑
i=1

n∑
j �=i

1

hq̂
K
{

B�(xi − x j )

h

}[
H(εi ) − 1

2

] [
H(ε j ) − 1

2

]

+2Cn

⎧⎨
⎩

1

n(n − 1)

n∑
i=1

n∑
j �=i

1

hq̂
K
{

B�(xi − x j )

h

}[
H(εi ) − 1

2

]
h(ε j )m(B�x j )

⎫⎬
⎭

+C2
n

⎧⎨
⎩

1

n(n − 1)

n∑
i=1

n∑
j �=i

1

hq̂
K
{

B�(xi − x j )

h

}
h(εi )m(B�xi )h(ε j )m(B�x j )

⎫⎬
⎭

+ op(C
2
n )

= D1 + 2Cn D2 + C2
n D3 + op(C

2
n ).

Under the local alternative hypothesis, q̂ → 1 can be obtained. For the term D1,
similarly to the proof of the term V �

n1 in Theorem 1, we can show that nh1/2D1 ⇒
N (0, V ar), where

V ar = 1

72

∫
K2(u)du

∫
p2(z)dz

with Z = B� X . As to the term D2, similarly as the proof of Lemma 3.3b in Zheng
(1996), it can be obtained that D2 = Op(1/

√
n). When Cn = n−1/2h−1/4, we have

nh1/2Cn D2 = Op(h1/2). Turn to the term D3, similarly to the proof of V �
n3 in our

Theorem 2, we have D3 = E[h2(ε)m2(B� X)p(X)] + op(1). Further, nh1/2C2
n D3 =

E[h2(ε)m2(B� X)p(X)] + op(1). Therefore,

nh1/2V �
n5 ⇒ N (μ, V ar),

where μ = E[h2(ε)m2(B� X)p(X)].
As to the term V �

n6, just similarly as the proof of the term V �
n2 in our Theorem 1, it

can be gotten that nh1/2V �
n6 = op(1).

Combining Lemma 3 and the formula (24), under the local alternative, we have
nh1/2Vn ⇒ N (μ, V ar).

The proof of Theorem 2 is finished. ��
The proof of Theorem 3 is as follows.

Proof of Theorem 3 We first calculate the first-order and second-order influence func-
tion of T (F, F) in (16) at the point (z0, y0). When H0 holds, the Hampel’s first-order
influence function of T (F, F) in (16) at the point (z0, y0) is defined as

IF(1)(z0, y0; T ) = lim
t→0

T (Ft , Ft ) − T (F, F)

t
,

where T (F, F) = 0 and Ft = (1 − t)F + t�z0,y0 , here, �z0,y0 is the point mass
function at the point (z0, y0). Denote L(t) = T (Ft , Ft ) = T (F + tU, F + tU ),
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Robust adaptive-to-model enhancement test 1041

where U = �z0,y0 − F . Thus, we have L(0) = 0. From the proof in Appendix, it
is not difficult to obtain that dL(t)

dt |t=0 = 0. Therefore, R-DREAM has a degenerate
first-order influence function.

To obtain the second-order influence function of R-DREAM, we first compute

1

2

d2

dt2
L(t)|t=0

=
∫ (∫

Ḣ(y − g((β�x)(F), θ(F))) f (z, y)dy

)2

dz

+
∫ ∫

Ḣ(y − g((β�x)(F), θ(F))) ×
∫ [

H(y1 − g((β�x)(F), θ(F))) − 1

2

]

×u(z, y1)dy1dF(z, y) +
∫ ∫ [

H(y − g(β�x(F), θ(F))) − 1

2

]

×
∫

Ḣ(y1 − g((β�x)(F), θ(F))) × f (z, y1)dy1dU (z, y)

+
∫ ∫ [

H(y − g((β�x)(F), θ(F))) − 1

2

]
×
(∫ [

H(y1 − g((β�x)(F), θ(F)))

−1

2

]
u(z, y1)dy1

)
dU (z, y), (25)

where Ḣ(·) =: dHt (·)
dt |t=0 and Ht (·) represents H(·) under contamination, that is,

Ht (v) = ∫ ∫
y≤g(β�x(Ft ),θ(Ft ))+v

dFt (z, y). Besides, u(z, y) is the probability density
function of U (z, y). Taking U = �z0,y0 − F into the formula (25), it is shown that the
four terms in (25) converge at the same rate. Further, based on Hampel’s definition,
we can obtain the second-order influence function of R-DREAM at the point (z0, y0)
as follows:

IF(2)(z0, y0) =
∫ (∫

Ḣ�(z0,y0)
(y − g((β�x)(F), θ(F))) f (z, y)dy

)2

dz

+
[

H(y0 − g((β�x0)(F), θ(F))) − 1

2

]
×

∫ ∫
Ḣ�(z0,y0)

(y − g((β�x)(F), θ(F)))d F(z, y)

+
[

H(y0 − g((β�x)0(F), θ(F))) − 1

2

]

×
∫

Ḣ�(z0,y0)
(y − g(β�x0(F), θ(F)))

× f (z0, y)dy +
[

H(y0 − g((β�x)0(F), θ(F))) − 1

2

]2
,

where z0 = β�x0 and Ḣ�(z0,y0)
(y − g((β�x)(F), θ(F))) denotes d

dt H(y −
g((β�x)(Ft ), θ(Ft )))|t=0,U=�(z0,y0)−F . The detailed expression of Ḣ�(z0,y0)

(y −
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1042 C. Niu, L. Zhu

g((β�x)(F), θ(F))) can be written as

Ḣ�(x0,y0)
(y − g((β�x)(F), θ(F)))

=
∫

h(y − g((β�x)(F), θ(F))) × gradα{g((β�x)(F), θ(F))}� × dα

dt
d FX (x)

+ I
(

y0 ≤ y + g((β�x)0(F), θ(F)) − g((β�x)(F), θ(F))
)

− H(y − g((β�x)(F), θ(F))),

where α = (β, θ)� and gradα{g((β�x)x(F), θ(F))}� represents the gradient of
g((β�x)(F), θ(F)) with respect to α. Since the parameter α comes from a robust
fit, we have that dα/dt is bounded. Together with the conditions (C1) and (C5) in
Appendix, it can be shown that Ḣ�(z0,y0)

(y − g((β�x)(F), θ(F))) is also bounded.

Further, the second-order influence function IF(2)(z0, y0) of R-DREAM is bounded
in the response direction.

For the purpose of comparison, the first-order and second-order influence functions
for the test TGWZ

n in (11) are derived. The first-order influence function is also zero,
and the second-order influence function can be derived as

IF(2)
GWZ(z0, y0) =

∫ (
d

dt
g((β�x)(F), θ(F)) f (x)

)2

dz +
[

y0 − g((β�x)0(F), θ(F))
]2

−
[

y0 − g((β�x)0(F), θ(F))
] ∫ d

dt
g((β�x)(F), θ(F))dz

−
[

y0 − g((β�x)0(F), θ(F))
] d

dt
g((β�x)0(F), θ(F)) f (z0), (26)

where d
dt g((β�x)(F), θ(F)) = d

dt g((β�x)(Ft ), θ(Ft ))|t=0,U=�(z0,y0)−F . The

second-order influence function IF(2)
GWZ(z0, y0) in the y-direction is not bounded. ��

The verification for the formula (25) is as follows.
Verification of (25). Let ft and u be the probability density functions of Ft and U .
Recall Ft = F + tU , then dFt = dF + tdU and ft = f + tu, we further have

L(t) =
∫ ∫ [

H(y − g(β�x(Ft ), θ(Ft ))) − 1

2

]

×
(∫ [

H(y1 − g(β�x(Ft ), θ(Ft ))) − 1

2

]
ft (z, y1)dy1

)
d Ft (z, y),

=
∫ ∫ [

H(y − g(β�x(Ft ), θ(Ft ))) − 1

2

]

×
(∫ [

H(y1 − g(β�x(Ft ), θ(Ft ))) − 1

2

]

× f (z, y1)dy1

)
d F(z, y) + t

∫ ∫ [
H(y − g(β� X (Ft ), θ(Ft ))) − 1

2

]
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×
(∫ [

H(y1 − g(β�x(Ft ), θ(Ft ))) − 1

2

]
u(z, y1)dy1

)
d F(z, y)

+t
∫ ∫ [

H(y − g(β�x(Ft ), θ(Ft ))) − 1

2

]

×
(∫ [

H(y1 − g(β�x(Ft ), θ(Ft ))) − 1

2

]

× f (z, y1)dy1

)
dU (z, y) + t2

∫ ∫ [
H(y − g(β�x(Ft ), θ(Ft ))) − 1

2

]

×
(∫ [

H(y1 − g(β�x(Ft ), θ(Ft ))) − 1

2

]
× u(z, y1)dy1

)
dU (z, y)

=: L1(t) + L2(t) + L3(t) + L4(t).

For the first term L1(t), we have

dL1(t)

dt
=
∫ ∫

d

dt
H(y − g(β�x(Ft ), θ(Ft )))

×
(∫ [

H(y1 − g(β�x(Ft ), θ(Ft ))) − 1

2

]

× f (z, y1)dy1

)
d F(z, y) +

∫ ∫ [
H(y − g(β�x(Ft ), θ(Ft ))) − 1

2

]

×
( ∫ d

dt
H(y1 − g(β�x(Ft ), θ(Ft ))) × f (z, y1)dy1

)
d F(z, y).

Since
∫ [H(y − g(β�x(Ft ), θ(Ft ))) − 1/2]d F(y|z) = 0, we have that

dL1(t)

dt
|t=0 = 0.

Further,

d2L1(t)

dt2
|t=0 = 2

∫ ∫
Ḣ(y − g(β�x(F), θ(F))) ×

( ∫
Ḣ(y1 − g(β�x(F), θ(F)))

× f (z, y1)dy1
)

d F(z, y).

Similarly, it is not difficult to obtain that dLi (t)
dt |t=0 = 0, i = 2, 3, 4 and

1
2
d2L2(t)
dt2

|t=0 , i = 2, 3, 4 are equal to other three terms in the formula (25), which
completes the proof. ��
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