
Ann Inst Stat Math (2018) 70:951–968
https://doi.org/10.1007/s10463-017-0621-1

Asymptotic results for jump probabilities associated
to the multiple scan statistic

Markos V. Koutras1 · Demetrios P. Lyberopoulos1

Received: 14 October 2015 / Revised: 2 June 2017 / Published online: 16 November 2017
© The Institute of Statistical Mathematics, Tokyo 2017

Abstract The concept of pattern arises in many applications comprising experimental
trials with two or more possible outcomes in each trial. A binary scan of type r/k is
a special pattern referring to success–failure strings of fixed length k that contain
at least r -successes, where r, k are positive integers with r ≤ k. The multiple scan
statistic Wt,k,r is defined as the enumerating random variable for the overlapping
moving windows occurring until trial t which include a scan of type r/k. In the present
work, we consider a sequence of independent binary trials with not necessarily equal
probabilities of success and develop upper bounds for the probability of the event that
the multiple scan statistic will perform a jump from � to �+1 (where � is a nonnegative
integer) in a finite time horizon.

Keywords Multiple scan statistic · Upper bound · Demisubmartingale ·
N -demisupermartingale · Demimartingale

1 Introduction

One of the most popular topics of the theory of patterns has certainly been the study
of scan statistics, that is of random variables enumerating the moving windows in a
sequence of binary outcomes trials which contain a prescribed number of successes,
see, e.g. Balakrishnan and Koutras (2002) or Glaz et al. (2001). Moreover, relative
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waiting times problems have been addressed under several frameworks, referring,
for instance, to the assumptions made for the sequence of binary trials, the scans’
enumerating schemes and patterns more general than scans (cf., e.g. Inoue and Aki
2009, Hsieh and Wu 2013 and Koutras and Alexandrou 1995). Note that a useful tool
for studying “compound patterns” (scans belong to this general family of patterns)
has been the theory of martingales (cf., e.g. Pozdnyakov et al. 2005 and Pozdnyakov
and Steele 2009).

Despite this and the fact that the classes of demi(sub)martingales and N -
demi(super)martingales have really drawn the attention of many researchers during
the last decades [see, e.g. the pioneering papers of Newman and Wright (1982) and
Christofides (2003), respectively, where the latter two concepts were introduced], there
seems to be a gap in taking advantage of the results developed for the aforementioned
generalizations of martingales to arrive at useful outcomes for scan statistics problems.

A first attempt to fill in this gap for the case of the multiple scan statistic is made
here. Our interest focuses on it mainly for two reasons: the first one is that the multiple
scan statistic has been studied in a quite smaller extent than its simple counterparts,
while the second one refers to the fact that it appears in several problems of the
statistical literature, which refer to Scans Theory and can be fruitfully exploited in
a wide range of research areas, such as quality control, actuarial science, reliability
theory and molecular biology (see, e.g. Balakrishnan and Koutras 2002).

The main aim of the present work is to develop some asymptotic results for jump
probabilities associated to a multiple scan statistic. After introducing the necessary
definitions and notations in Sect. 2, an upper bound is developed in Sect. 3 for an
upcrossing probability in a nondecreasing sequence of random variables. In the same
section, we exploit the previous result to establish an asymptotic upper bound for the
probability of the event that the multiple scan statistic will perform a jump from � to
� + 1 until the t-th trial (� is a nonnegative integer). Some further asymptotic results
are also discussed.

In Sect. 4, we extend the aforementioned upcrossing inequality for the case of
sequences belonging to the class of demisubmartingales and prove that the multiple
scan statistic is member of this class. In addition, we investigate some interesting
theoretical results for the multiple scan statistic process concerning its membership
to the classes of demimartingales and N -demisupermartingales. Finally, a numerical
study of the developed bounds and a brief discussion on potential applications are
carried out in Sects. 5 and 6, respectively.

2 Preliminaries

In the sequel, N := {1, 2, . . .} and N0 := N ∪ {0}. The set of all real numbers will be
denoted by R, while if d ∈ N then R

d will stand for the Euclidean space of dimension
d. Moreover, x ∧ y := min{x, y} and x+ := max{x, 0} for x, y ∈ R. For n ∈ N and
i ∈ {1, . . . , n} the i-canonical projection from R

n onto R is denoted by πi .
Throughout this paper, we consider an arbitrary but fixed probability space

(Ω,Σ, P). A set N ∈ Σ with P(N ) = 0 is called a P-null set. A sequence {Z j } j∈N
of Σ-measurable functions satisfies a property P-a.s. if there exists a P-null set, say
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O , such that the property is satisfied by {Z j } j∈N for all ω /∈ O . Furthermore, χE

stands for the indicator (or characteristic) function of the set E ∈ Σ .
On defining TZ := {B ⊆ R

d : Z−1(B) ∈ Σ} for any Σ−Bd -measurable function
Z , it is clear that Bd ⊆ TZ , where Bd := B(Rd) stands for the Borel σ -algebra of
subsets of Rd (d ∈ N). We shall be denoting by PZ : TZ −→ R the image measure
of P under Z . The restriction of PZ to Bd is denoted again by PZ , while RZ stands
for the range of Z . The notation PB(n, p1, . . . , pn), where n ∈ N and p j ∈ (0, 1)

for j ∈ {1, . . . , n}, stands for the law of Poisson’s binomial distribution. Note that
PB(n, p1, . . . , pn) is in fact the distribution of a sum of n-Bernoulli random variables
with probabilities of success p1, . . . , pn (cf., e.g. Wang 1993, Section 3 for more
details).

The family of all real-valued P-integrable functions on Ω will be denoted byL1(P).
Functions that are P-a.s. equal are not identified. The expectation of the random
variable Z is denoted by EP [Z ].

Recall also that any family {Fn}n∈N of σ -subalgebras of Σ , such that Fn ⊆ Fn+1
for each n ∈ N, is called a filtration for the measurable space (Ω,Σ). Moreover,
a sequence {Zn}n∈N of random variables on Ω is said to be adapted to a filtration
{Fn}n∈N if each Zn is Fn-measurable. If Fn is the σ -algebra generated by the random
vector (Z1, . . . , Zn), i.e. Fn = σ(Z1, . . . , Zn) for each n ∈ N, then {Fn}n∈N is said
to be the canonical filtration for {Zn}n∈N, and it will be denoted by {F (Z)

n }n∈N.

Definition 1 Let {Zn}n∈N be a sequence in L1(P). Then {Zn}n∈N is said to be:
(a) a P-martingale (with respect to {F (Z)

n }n∈N), if

EP [(Zn+1 − Zn) f (Z1, . . . , Zn)] = 0 for each n ∈ N (1)

and for every measurable function f on R
n such that the above expectations exist.

If condition (1) but with “≥” in the place of the equality is satisfied for every f as
above but with f ≥ 0, then {Zn}n∈N is said to be a P-submartingale (with respect to
{F (Z)

n }n∈N).
(b) a P-demimartingale, if condition (1) but with “≥” in the place of the equality is
satisfied for every f coordinatewise nondecreasing function on R

n such that the above
expectations exist.
(c) a P-demisubmartingale, if condition (1) but with “≥” in the place of the equality
is satisfied for every f as in (b) but with f ≥ 0.
(d) a N-demimartingale under P , if condition (1) but with “≤” in the place of the
equality is satisfied for every f as in (b). In particular, if f ≥ 0 then {Zn}n∈N is said
to be a N-demisupermartingale under P .

From the definitions given above it is clear that the class of all P-martingales
is a subset of the class of all demimartingales, which in its own turn is a subclass
of the demisubmartingales’ one. Moreover, it is obvious that any P-submartingale
is also a demisubmartingale as well as that any N -demimartingale is also a N -
demisupermartingale. For more on Definition 1 and the way that the notions given
in there are related to each other, the interested reader may refer to the excellent
monograph by Prakasa Rao (2012).
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Next we insert, for completeness sake, a short proof of the equivalence between the
usual definition of a P-submartingale and its alternative one, given in the second part
of Definition 1, (a): Let {Zn}n∈N be a sequence of random variables which satisfies
the usual definition of a P-submartingale. It then follows that {Zn}n∈N is a sequence
in L1(P) such that

EP [χA(Zn+1 − Zn)] ≥ 0 for each n ∈ N and A ∈ F (Z)
n ;

hence EP [(Zn+1 − Zn)χB(Z1, . . . , Zn)] ≥ 0 for each B ∈ Bn , which implies suc-
cessively that condition

EP [(Zn+1 − Zn) f (Z1, . . . , Zn)] ≥ 0 for each n ∈ N

holds true for every f characteristic, f simple and f nonnegative measurable func-
tion. Thus, {Zn}n∈N satisfies the second part of Definition 1, (a). Since the inverse
implication is obvious, the equivalence of the two definitions follows.

3 Some new asymptotic results for the multiple scan statistic

Let {Xn}n∈N be a sequence of binary trials on Ω , each resulting in either a success
(that is {Xn = 1}) or a failure (that is {Xn = 0}) with probabilities of success pn
(0 < pn < 1). Then, for any fixed k ∈ N and for each m ∈ N such that m ≤ k,
the sequence Xn, Xn+1, . . . , Xn+m−1 of random variables on Ω is called a moving
window (for {Xn}n∈N) of length m. In particular, if P(

∑n+m−1
j=n X j ≥ r) > 0 then the

above subsequence of {Xn}n∈N is said to be a (P-)scan or (P-)generalized run of type
r/k, that is, the term “scan of type r/k” refers to subsequences Xn, Xn+1, . . . , Xn+m−1
of length m ≤ k such that the number of successes contained therein is at least r with
positive probability.

For each n ∈ N and k ∈ N consider the random variable Yn,k on Ω defined by

Yn,k :=
n∑

j=max{n−k+1,1}
X j .

In what follows, we set X0 := 0 and consider every sum over an empty index set
conventionally equal to zero.

The multiple scan statistic declares the total number of the overlapping moving
windows including a scan of type r/k until trial t , where r, k ∈ N with r ≤ k and
t ∈ N. To state it more formally, if we let r, k, t be as above, then the random variable
Wt,k,r defined on Ω by means of

Wt,k,r :=
t∑

n=k

χ[r,∞)(Yn,k)

will be called the (t, k, r)-multiple scan statistic associated with the sequence
{Yn,k}n∈N or briefly the multiple scan statistic if no confusion arises. Moreover,

123



Asymptotic results for the multiple scan statistic 955

the sequence {Wt,k,r }t∈N will be called the multiple scan statistic process. Note that
Wt,k,r = 0 for every t < k and that RWt,k,r = {0, . . . , t − k + 1} for every t ≥ k.

The above definition of the multiple scan statistic has been adopted by Boutsikas
et al. (2009) as well as by Chen and Glaz (1996, 2005) for the two-dimensional case.
However, it should be mentioned that the nomenclature “multiple scan statistic” can
also be met in the literature under concepts different than the one defined above, see,
e.g. Cucala (2008) and Naus and Wallenstein (2004).

Some useful notions and facts are also recalled next. Let {Zn}n∈{1,...,m} be a sequence
of random variables on Ω , and recall (see, e.g. Prakasa Rao 2012) that, for any fixed
a, b ∈ R with a < b, by Ua,b is denoted the random variable defined on Ω by means
of

Ua,b := Ua,b(Z1, . . . , Zm) := max{k ∈ N : J2k < m + 1},
where

J2k−1 :=
{
m + 1, if {n ∈ N : J2k−2 < n ≤ m, Zn ≤ a} = ∅
min{n ∈ N : J2k−2 < n ≤ m, Zn ≤ a}, otherwise

and

J2k :=
{
m + 1, if {n ∈ N : J2k−1 < n ≤ m, Zn ≥ b} = ∅
min{n ∈ N : J2k−1 < n ≤ m, Zn ≥ b}, otherwise

for each k ∈ N (convention J0 := 0). The random variable Ua,b counts the number of
(a, b)-upcrossings for {Zn}n∈{1,...,m}. For more, see Prakasa Rao (2012), Sections 2.4
and 3.4.

We shall now prove the next result, which will be exploited in the sequel and is
quite useful in its own as well.

Lemma 1 Let m1,m2 ∈ N with m1 < m2. If {Zn}n∈N is a P-a.s. nondecreasing
sequence of random variables on Ω then the inequality

P(Ua,b(Zm1 , . . . , Zm2) = 1) ≤ 1

b − a
EP [(Zm2 − a)+ − (Zm1 − a)+]

holds true for all a, b ∈ R with a < b.

Proof First fix on arbitrary m1,m2 ∈ N with m1 < m2. Next consider the sequence
{Z (m1,m2)

n }n∈N of random variables on Ω defined as follows

Z (m1,m2)
n :=

⎧
⎨

⎩

Zm1 , if n ∈ {1, . . . ,m1 − 1}
Zn, if n ∈ {m1, . . . ,m2}
Zm2 , if n ∈ {m2 + 1, . . .}.

(2)

Evidently Ua,b(Z
(m1,m2)
1 , . . . , Z (m1,m2)

m ) = Ua,b(Zm1 , . . . , Zm2) for each m ∈ N with
m ≥ m2 and for all a, b ∈ R with a < b.

It follows by the monotonicity of {Zn}n∈N that Ua,b(Zm1 , . . . , Zm2) takes on two
values (i.e. 0, 1) as well as that

(b − a)χ{Zm1≤a,Zm2 ≥b} ≤ Zm2 − Zm1 .
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Therefore, we may state that

P(Zm1 ≤ a, Zm2 ≥ b) ≤ 1

b − a
EP [Zm2 − Zm1 ]

for all a, b ∈ R with a < b.
Applying now the latter inequality for all a, b as above and for the sequence

{Z̃n(a)}n∈N of random variables on Ω defined as Z̃n(a) := (Zn − a)+, we deduce
that

1

b − a
EP [Z̃m2(a) − Z̃m1(a)] ≥ P

(
(Zm1 − a)+ = 0, (Zm2 − a)+ ≥ b − a

)

≥ P
(
Zm1 − a < 0, Zm2 − a > b − a, Zm2 > a

)

= P
(
Zm1 < a, Zm2 > b

)
,

thereof we obtain an equivalent expression for the requested inequality. ��
For the remainder of this section, let {Xn}n∈N be a sequence of independent binary

trials such that pn := P(Xn = 1) ∈ (0, 1) and qn := 1 − pn for each n ∈ N.
Fix now arbitrary r, k ∈ N with r ≤ k and consider arbitrary ε ∈ (0, 1/2) and

� ∈ N0. Also consider the sequence {Ut (�, ε)}t∈N of random variables on Ω defined
by

Ut (�, ε) :=
{
U�+ε,�+1−ε(Wk,k,r , . . . ,Wt,k,r ), if t ∈ {k, k + 1, . . .}
0, otherwise.

Note that the random variable Ut (�, ε) denotes the number of upcrossings of the
multiple scan statistic process from below �+ ε to above �+ 1 − ε, that is the number
of its jumps from � to � + 1, until trial t . Clearly, Ut (�, ε) does not depend on the
specific choice of ε (provided that 0 < ε < 1/2); hence, for each t ∈ N the random
variable

Ut (�) := lim
ε→0+ Ut (�, ε)

declares the number of jumps that the multiple scan statistic process makes from � to
� + 1 until trial t , as well.

The next proposition provides the main asymptotic result of this paper concerning
the multiple scan statistic.

Proposition 1 Let θ ∈ (0,∞) and r, k be arbitrary but fixed positive integers such
that r ≤ k.

If pt → 0+ as t → ∞, so that the asymptotic condition

lim
t→∞(t − k + 1)

(
k − 1

r − 1

)

prt q
k−r+1
t = θ (3)

is satisfied, then for each � ∈ N0 the following holds true:

P

( ∞⋃

s=k

{Ws+1,k,r = � + 1, Ws,k,r = �}
)

≤ u(r, k, �, θ), (4)
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where

u(r, k, �, θ) :=
∞∑

n=k+�

[
P(Yn,k ≥ r) ∧ [1 − F∗(�; θ, r, k)]

]
− (1 − �)+P(Yk,k ≥ r).

The function F∗ appearing above is the cumulative distribution function of a com-
pound Poisson distribution with structural parameter θ and compounding cumulative
distribution function

G(x) := G(x; r, k) :=

⎧
⎪⎪⎨

⎪⎪⎩

0, if x ≤ 0

1 − (k−x−1
r−1 )

(k−1
r−1)

, if x ∈ {1, . . . , k − r}
1, if x ≥ k − r + 1.

Proof First fix on arbitrary � ∈ N0 and r, k ∈ N with r ≤ k. Then note that by the
definition of the random variable Ut (�) the range of Ut (�), t ≥ k, equals {0, 1}, and
therefore

EP [Ut (�)] = P(Ut (�) = 1) = P

(
t⋃

s=k

{Ws+1,k,r = � + 1,Ws,k,r = �}
)

.

As a consequence, we may write

lim
t→∞EP [Ut (�)] = P

( ∞⋃

s=k

{Ys+1,k > r,Ws,k,r = �}
)

(5)

and we may state that the limit limt→∞ EP [Ut (�)] does exist.
Furthermore, Lemma 1 yields for every 0 < ε < 1/2, and for each t ∈ N with

t ≥ k that

EP [Ut (�, ε)] ≤ EP
[(
Wt,k,r − (� + ε)

)+ − (
Wk,k,r − (� + ε)

)+]
(
� + 1 − ε

)− (
� + ε

) (6)

= 1

1 − 2ε
EP

[(
Wt,k,r − � − ε

)
χ{Wt,k,r>�+ε}

]

− 1

1 − 2ε
EP

[(
Wk,k,r − � − ε

)
χ{Wk,k,r>�+ε}

]

= 1

1 − 2ε
EP

[(
Wt,k,r − � − ε

)
χ{Wt,k,r≥�+1}

]

− 1

1 − 2ε
EP

[(
Wk,k,r − � − ε

)
χ{Wk,k,r≥�+1}

]

≤ 1

1 − 2ε
EP

[(
Wt,k,r − � − ε

)
χ{Wt,k,r≥�+1}

]

− 1 − ε

1 − 2ε
P(Wk,k,r ≥ � + 1);
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letting now ε → 0+ and making use of the Monotone Convergence Theorem we
obtain

EP [Ut (�)] ≤ EP
[
(Wt,k,r − �)χ{Wt,k,r≥�+1}

]− P(Wk,k,r ≥ � + 1) (7)

≤ EP
[
(Wt,k,r − Wk+�−1,k,r )χ{Wt,k,r≥�+1}

]− (1 − �)+P(Yk,k ≥ r)

= EP

[
t∑

n=k+�

χ[r,∞)(Yn,k)χ{Wt,k,r≥�+1}

]

− (1 − �)+P(Yk,k ≥ r)

≤
t∑

n=k+�

[P(Yn,k ≥ r) ∧ P(Wt,k,r ≥ � + 1)] − (1−�)+P(Yk,k ≥ r). (8)

Noting that for each t ∈ N with t ≥ k + � and for each n ∈ {k + �, . . . , t} we have

P(Yn,k ≥ r) ≤ P(Yn,k ≥ 1) = 1 − P(Yn,k = 0) = 1 −
n∏

j=n−k+1

q j < 1

with the last equality being justified by the P-independence of {Xn}n∈N, we conclude
by the Cauchy criterion for series convergence that

∞∑

n=k+�

[P(Yn,k ≥ r) ∧ P(Wt,k,r ≥ � + 1)] < ∞.

Inequality (8) yields now, for each t ∈ N with t ≥ k

EP [Ut (�)] ≤
∞∑

n=k+�

[P(Yn,k ≥ r) ∧ P(Wt,k,r ≥ � + 1)] − (1 − �)+P(Yk,k ≥ r)

and letting t → ∞ we obtain, by virtue of the Fubini Theorem

lim
t→∞EP [Ut (�)] ≤

∞∑

n=k+�

lim
t→∞[P(Yn,k ≥ r) ∧ P(Wt,k,r ≥ � + 1)]

− (1 − �)+P(Yk,k ≥ r)

≤
∞∑

n=k+�

[P(Yn,k ≥ r) ∧ lim
t→∞ P(Wt,k,r ≥ � + 1)]

− (1 − �)+P(Yk,k ≥ r).

This result, condition (5), Corollary 3.3.3 of Boutsikas et al. (2009) and assumption
(3) prove the asymptotic result stated in (4). ��

According to the proof of Proposition 1, if we consider a t ∈ N with t ≥ k the
probability that the multiple scan statistic process will perform a jump from � to �+ 1
until trial t will be given by
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�t,k,r (�) := P

(
t⋃

s=k

{Ws+1,k,r = � + 1,Ws,k,r = �}
)

= P

(
t⋃

s=k+�−1

{Ws+1,k,r = � + 1,Ws,k,r = �}
)

=
t∑

s=k+�−1

P(Ys+1,k ≥ r,Ws,k,r = �);

the last equality holds true because the events {Ws+1,k,r = � + 1,Ws,k,r = �}, s ∈ N,
are disjoint. Therefore, we get that

�t,k,r (�) ≤
t+1∑

n=k+�

P(Yn,k ≥ r) =: u0(r, k, �, t).

Clearly, u0(r, k, �, t) is one of the most non-sophisticated or more “naive” upper
bounds (if not the most one) for the probability �t,k,r (�). It is also evident that it
is outperformed by the upper bound provided in condition (8); hence u0(r, k, �) :=
limt→∞ u0(r, k, �, t) = ∑∞

n=k+� P(Yn,k ≥ r) < ∞ is outperformed by the upper
bound given in the above proposition.

It is also worth noticing that the expectation in the right side of inequality (7) can
be also bounded as follows:

EP
[
(Wt,k,r − �)χ{Wt,k,r≥�+1}

] = EP [Wt,k,r ] − � − EP [(Wt,k,r − �)χ{Wt,k,r≤�}]

≤
∞∑

n=k

P(Yn,k ≥ r) − � + �P(Wt,k,r ≤ �)

=
∞∑

n=k

P(Yn,k ≥ r) − �[1 − P(Wt,k,r ≤ �)].

Thus, for fixed � ∈ N0 and r, k ∈ N with r ≤ k and for each t ∈ N with t ≥ k

u1(r, k, �, t) :=
∞∑

n=k

P(Yn,k ≥ r) − �[1 − P(Wt,k,r ≤ �)] − (1 − �)+P(Yk,k ≥ r)

is an upper bound for the probability �t,k,r (�). Then as in the proof of Proposition 1,
we apply the Monotone Convergence Theorem and take into account Corollary 3.3.3
of Boutsikas et al. (2009) to infer that if condition (3) is satisfied then

lim
t→∞ u1(r, k, �, t) =

∞∑

n=k

P(Yn,k ≥ r) − �[1 − F∗(�; θ, r, k)] − (1 − �)+P(Yk,k ≥ r)

= u1(r, k, �, θ)
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(where F∗ is as in Proposition 1) is an upper bound for the probability �k,r (�) :=
P(
⋃∞

s=k{Ws+1,k,r = � + 1, Ws,k,r = �}).
Obviously, u1(r, k, �, θ) is tighter than u0(r, k, �). It cannot be claimed, though,

that it is admissible, in the sense that it takes values in (0, 1), for all r, k, � as above.
Furthermore, the corresponding finite time horizon bound is more efficient than its
naive counterpart, i.e. u1(r, k, �, t) < u0(r, k, �, t), if and only if

P(Wt,k,r ≤ �) < 1 − 1

�

[
∑

n∈�

P(Yn,k ≥ r) + (1 − �)+P(Yk,k ≥ r)

]

,

where � := {k, . . . , k + � − 1} ∪ {t + 2, t + 3, . . .}.
Corollary 1 Under the assumptions of Proposition 1 the upper bound

u(r, k, �, θ) =
∞∑

n=k+�

[
P(Yn,k ≥ r) ∧ [1 − F∗(�; θ, r, k)]

]
− (1 − �)+P(Yk,k ≥ r)

can be evaluated, for fixed � ∈ N0 and r, k ∈ N with r ≤ k, and for each t ∈ N with
t ≥ k, by the aid of the following recursive formulae:

P(Yn,k = y) =
{∏k

j=1 qn−k+ j , if y = 0
(1/y)

∑y
j=1(−1) j−1P(Yn,k = y − j)T ( j), if y > 0,

(9)

where

T ( j) :=
k∑

i=1

(
pn−k+i

qn−k+i

) j

for each j, (10)

and

F∗(�; θ, r, k) :=
�∑

y=0

f∗(y; θ, r, k),

with

f∗(y; θ, r, k) =
{
e−θ , if y = 0

(θ/y)
∑(k−r+1)∧y

j=1 j[G( j) − G( j − 1)] f∗(y − j; θ, r, k), if y > 0,

(11)

where G is as in Proposition 1.

Proof The P-independence of the binary trials {Xn}n∈N yields for all r, k, t as above
and for each n ∈ {k, . . . , t} that PYn,k = PB(k; pn−k+1, . . . , pn); hence, conditions (9)
and (10) hold true (cf., e.g. Shah 1994). For the computation of the compound Poisson
part of u(r, k, �, θ) one may use either the recursive scheme of equation (12.4.6) of
Bowers et al. (1997) or Panjer’s recursions (cf., e.g. Bowers et al. 1997, Theorem
12.4.3), which lead to condition (11). Thus, our corollary follows by Proposition 1.

��
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In a similar way, the upper bounds u0(r, k, �) and u1(r, k, �, θ) can be explicitly
computed as well.

It follows by (9) and (10) that if pt → 0+ as t → ∞, then the probability P(Yt,k =
y) will do so for any y ∈ {1, . . . , k}; hence, there exists a positive integer t0 ≥ k such
that

∑∞
n=k+� P(Yn,k ≥ r) � ∑t0

n=k+� P(Yn,k ≥ r), where r, k, � are as in Corollary 1.
The latter suggests that it is most likely that there are values of r, k, �, t for which all
or some of the above upper bounds prove to be admissible.

Since it is immediate by the definition ofUt (�) that for any fixed � ∈ N0 the function
t �−→ Ut (�) is nondecreasing, it follows by the Monotone Convergence Theorem that
limt→∞ EP [Ut (�)] = EP [limt→∞ Ut (�)] = EP [U∞(�)], where the random variable
U∞(�) := limt→∞ Ut (�) denotes the number of jumps from � to �+1 for the multiple
scan statistic process.

Consider now the random variables U∞ := ∑∞
�=0 U∞(�) and Ut := ∑∞

�=0 Ut (�),
which obviously stand for the number of unit jumps that the multiple scan statistic
process presents in an infinite time horizon and until trial t , respectively. Then the
following result is a consequence of the definition of Ut , condition (8) and the Fubini
Theorem.

Corollary 2 Under the assumptions of Proposition 1 and for each t ∈ N with t ≥ k

the probability P
(⋃t−k+1

�=0
⋃∞

s=k{Ws+1,k,r = � + 1, Ws,k,r = �}
)
is upper bounded

by
t−k+1∑

�=0

t∑

n=k+�

[P(Yn,k ≥ r) ∧ P(Wt,k,r ≥ � + 1)] − (1 − �)+P(Yk,k ≥ r).

Motivated by Corollary 2, we raise the question whether upper bounds similar to the
one of Proposition 1 can be obtained for the expectation EP [U∞] as well? In fact, this
is not a trivial task and will not concern us more here.

4 An alternative approach via demisubmartingales

It is made clear by the preceding analysis that Lemma 1 is vital for establishing
all the asymptotic results given in Sect. 3 as it possesses a key role in the proof
of Proposition 1. The inequality provided by Lemma 1 was established under the
assumption that {Zn}n∈N is a P-a.s. nondecreasing sequence of random variables, and
was subsequently applied for a scan process. We shall now extend the result of Lemma 1
for the case where the same sequence is assumed to be a P-demisubmartingale, thereof
providing a useful tool to obtain upcrossing inequalities for a wider range of sequence
of random variables. As an illustration we indicate how one can use the more general
result for the case of the multiple scan statistic. This approach, in addition to an
alternative proof of Lemma 1, leads to some interesting theoretical results for the
multiple scan statistic, which possess their own merit.

To start with let us first point out that if a sequence {Zn}n∈N of random variables
on Ω is either a P-demisubmartingale or a N -demisupermartingale under P , then the
same applies for the sequence {Z (m1,m2)

n }n∈N defined by means of (2).
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To verify that, note that for each n ∈ {m1, . . . ,m2 −1} and for every f nonnegative
coordinatewise nondecreasing function on R

n we may write

In,m1,m2( f ) := EP

[(
Z (m1,m2)
n+1 − Z (m1,m2)

n

)
f
(
Z (m1,m2)

1 , . . . , Z (m1,m2)
m1

, . . . , Z (m1,m2)
n

)]

= EP [(Zn+1 − Zn) f (Zm1 , . . . , Zm1 , . . . , Zn)]
= EP [(Zn+1 − Zn)h(Z1, . . . , Zm1 , . . . , Zn)]

with the function h : Rn −→ R being defined as follows:

h(z1, . . . , zm1 , . . . , zn) := f (zm1 , . . . , zm1 , . . . , zn) for each (z1, . . . , zn) ∈ R
n .

The proof is completed by noting that since f is a nonnegative coordinatewise non-
decreasing function on R

n , the same will hold true for h as well.

We are now ready to present the extension of the upcrossing inequality given in
Lemma 1, for the case of demisubmartingales.

Proposition 2 Let m1,m2 ∈ N with m1 < m2.
If the sequence {Zn}n∈N is a P-demisubmartingale, then the following inequality

holds true:

EP [Ua,b(Zm1 , . . . , Zm2)] ≤ EP [(Zm2 − a)+ − (Zm1 − a)+]
b − a

for all a, b ∈ R such that a < b.

Proof First fix on arbitrary m1,m2 ∈ N with m1 < m2. Next define the sequence
{Z̃n}n∈N of random variables on Ω as follows:

Z̃n :=
{
Zn+m1−1, if n ∈ {1, . . . ,m2 − m1}
Zm2 , otherwise.

We shall now proceed by carrying out the next two steps.
(a) We shall prove that the sequence {Z̃n}n∈N is a P-demisubmartingale.

First note that for n ∈ {1, . . . ,m2−m1} and for every f nonnegative coordinatewise
nondecreasing function on R

n we get

H̃n( f ) := EP
[(
Z̃n+1 − Z̃n

)
f
(
Z̃1, . . . , Z̃n

)]

= EP [(Zn+m1 − Zn+m1−1) f (Zm1 , Zm1+1, . . . , Zn+m1−1)];

hence, letting j = n+m1 −1 ∈ {m1, . . . ,m2 −1} we deduce for every f nonnegative
coordinatewise nondecreasing function on R

j−m1+1 that

H̃n( f ) = EP

[(
Z (m1,m2)
j+1 − Z (m1,m2)

j

)
f
(
Z (m1,m2)
m1

, Z (m1,m2)
m1+1 , . . . , Z (m1,m2)

j

)]
.

(12)
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Since, as stated before, {Z (m1,m2)
n }n∈N is a P-demisubmartingale, it follows that for

each j ∈ {m1, . . . ,m2−1} and for every h nonnegative coordinatewise nondecreasing
function on R

j the inequality

EP

[(
Z (m1,m2)
j+1 − Z (m1,m2)

j

)
h
(
Z (m1,m2)

1 , . . . , Z (m1,m2)
j

)]
≥ 0

holds true. Consider now the function h1 : R j −→ R given by

h1(z1, . . . , zm1−1, zm1 , . . . , z j ) := 1(z1, . . . , zm1−1) f (zm1 , . . . , z j )

for each (z1, . . . , z j ) ∈ R
j , where 1 is the unit function on R

m1−1. Clearly, h1 is a
nonnegative coordinatewise nondecreasing function on R

j since f is so on R
j−m1+1;

hence, applying the last inequality for h = h1 and taking into account (12) we
infer that H̃n( f ) ≥ 0. The latter along with our assumption that {Zn}n∈N is a P-
demisubmartingale proves the statement given in the beginning of step (a).
(b) Consider, now, for any fixed a, b ∈ R with a < b the random variable

Ũa,b := Ua,b(Z̃1, . . . , Z̃m2−m1+1) = Ua,b(Zm1 , . . . , Zm2).

It follows by (a) that we may apply a well-known upcrossing inequality for demisub-
martingales (cf. Newman and Wright 1982 or better see, e.g. Prakasa Rao 2012,
Theorem 2.4.1) to deduce that

EP [Ũa,b] ≤ EP [(Z̃m2−m1+1 − a)+ − (Z̃1 − a)+]
b − a

,

which proves the proposition. ��
Lemma 2 Let k ∈ N be arbitrary but fixed, and let r ∈ N such that r ≤ k.

Then the following hold true:

(i) The multiple scan statistic process {Wt,k,r }t∈N is a P-submartingale.

If the sequence {Wt,k,r }t∈N is in addition either a P-demimartingale or a N - demisu-
permartingale under P, then

(ii) there exists a P-null set OW ∈ Σ such that for any ω /∈ OW condition
Wt,k,r (ω) = 0 holds for each t ∈ N;

(iii) P(
⋂r

j=1{X j = 1}) = 0.

Proof First fix on an arbitrary k, r ∈ N such that r ≤ k.
(i) It then follows for each t ∈ N that EP [Wt,k,r ] = ∑t

n=r P(Yn,k ≥ r) < ∞ as well
as

Wt+1,k,r − Wt,k,r = χ[r,∞)(Yt+1,k);
hence, for every f nonnegative measurable function on R

t such that the expectation
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964 M. V. Koutras, D. P. Lyberopoulos

Ht,k,r ( f ) := Ht,k,r (W1,k,r , . . . ,Wt,k,r ; f )

:= EP [(Wt+1,k,r − Wt,k,r ) f (W1,k,r , . . . ,Wt,k,r )]

exists, we get

Ht,k,r ( f ) = EP [χ[r,∞)(Yt+1,k) f (W1,k,r , . . . ,Wt,k,r )] ≥ 0, (13)

which completes the proof of (i).
(ii) Assume that {Wt,k,r }t∈N is a P-demimartingale. It then follows that condition (13)
is satisfied for each t ∈ N and for every f coordinatewise nondecreasing function
on R

t such that the expectation Ht,k,r ( f ) exists; hence, for f = f1 := −1 we get
P(Yt+1,k ≥ r) = 0 for each t ∈ N, implying that P(

⋃
t∈N{Yt+1,k ≥ r}) = 0 or

equivalently that P(
⋂

t∈N{Yt+1,k < r}) = 1, and so there is a universal P-null set
OW := OY ;r,k ∈ Σ such that for any ω /∈ OW condition Yn+1,k(ω) < r holds true
for each n ∈ N.

Assuming now that {Wt,k,r }t∈N is a N -demisupermartingale under P , we get by
(i) that for each t ∈ N and for every f nonnegative coordinatewise nondecreasing
function on R

t , such that the expectation Ht,k,r ( f ) exists, condition (13) holds true
but with “=” in the place of “≥”; hence, by an application of the latter for f = f2 := 1
we infer again that P(Yt+1,k ≥ r) = 0 for each t ∈ N, which proves assertion (ii).
(iii) If the sequence {Wt,k,r }t∈N is in addition either a P-demimartingale or a N -
demisupermartingale under P , then by the proof of (ii) we get that P(Yr,k = r) = 0
or equivalently P(

⋂r
j=1{X j = 1}) = 0. ��

By virtue of assertion (i) of Lemma 2 we may apply Proposition 2 in order to
rediscover the inequality that plays a key role in the proof of Proposition 1, that is (6).
So, the latter proposition can be derived once again by repeating the part of its proof
beyond the aforementioned key inequality. Therefore, all asymptotic results of Sect. 3
remain valid.

Thus, it can be stated that the alternative approach for proving the asymptotic results
of Sect. 3 differs from the first (and more direct) one, presented in that section, in the
following: herein the submartingale property of the multiple scan statistic process
together with the new upcrossing inequality, given in Proposition 2, was exploited
for deriving inequality (6), while in Sect. 3 the same inequality was proved by an
application of Lemma 1 in conjunction with the fact that the multiple scan statistic
process is a P-a.s. nondecreasing sequence of random variables on Ω .

Remarks. In view of Lemma 2, we may state the next interesting facts for the multiple
scan statistic process {Wt,k,r }t∈N:
(a) If the sequence {Wt,k,r }t∈N is either a P-demimartingale or a N -demisupermar-
tingale under P , then by assertion (i i) of the above lemma we get that
P(T (k)

r ≤ t) = 1 − P(Wt,k,r = 0) = 0 for each t ∈ N, where T (k)
r is the waiting time

for the first occurrence of a scan of type r/k, that is T (k)
r := min{n ∈ N : Yn,k ≥ r}.

Consequently, P(T (k)
r = ∞) = 1.

(b) If the sequence {Xn}n∈N is P-independent, then {Wt,k,r }t∈N cannot be either a
P-demimartingale or a N -demisupermartingale under P; this is so because otherwise
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Table 1 Bounds of �t,k,r (�) for four different choices of parameters (I: p = 0.1, θ = 0.1, (r, k) =
(4, 8), � = 4, II: p = 0.025, θ = 0.01, (r, k) = (3, 4), � = 3, III: p = 0.005, θ = 0.0005, (r, k) =
(3, 9), � = 5, IV: p = 0.005, θ = 0.0005, (r, k) = (3, 9), � = 0)

I t 55 56 57 58 59

Upper bound 0.187234 0.191489 0.195744 0.2 0.204255

II t 227 228 229 230 231

Upper bound 0.00124131 0.00124693 0.00125255 0.00125816 0.00126378

III t 155 156 157 158 159

Upper bound 0.00145779 0.00146805 0.00147832 0.00148858 0.00149885

IV t 155 156 157 158 159

Upper bound 0.00149885 0.00150912 0.00151938 0.00152965 0.00153991

assertion (i i i) of Lemma 2 would hold true, which would imply that p j = 0 for some
j ∈ {1, . . . , r + 1}.
(c) In a similar fashion with (b), we infer that if {Xn}n∈N is a P-homogeneous Markov
chain of first order with transition probabilities {ps,t }s,t∈{0,1} (cf., e.g. Shiryaev 1984),
such that

p1,1 = P(Xn+1 = 1 | Xn = 1) > 0 for each n ∈ N

then {Wt,k,r }t∈N cannot be either a P-demimartingale or a N -demisupermartingale
under P , since the Markov property yields P(

⋂r
j=1{X j = 1}) = pr−1

1,1 p1 > 0 for
r ∈ N.

5 Numerical results

In this section, Corollary 1 is exploited in order to compute upper bounds of the
probability �t,k,r (�) for various values of the parameters r, k, �, θ as well as of the
success probabilities pt .

A simple approach for obtaining these bounds so as condition (3) and condition
limt→0+ pt = 0 are fulfilled is the following one: first fix on an arbitrary θ ∈ (0,∞).
Next assign to r, k, � ∈ N, where r ≤ k, the specific values you wish (e.g. r = 12, k =
24, � = 10) as well as a very small value (e.g. p0 = 10−i for i ∈ {1, 2, 3}) to all

success probabilities pt . Finally, set t∗ :=
⌊

θ

(k−1
r−1)p

r
0(1−p0)k−r+1

⌋

+ k − 1, where �x�
denotes the integer part of the real number x . Then Corollary 1 can be applied for
computing the requested upper bounds for all t ≥ t∗. Table 1 gives such bounds for
five successive values of t with the first entry referring to t∗.

In Table 2 we present for specific choices of the parameters r, k, �, θ, p the bound
stated in Proposition 1 along with the corresponding simulated values for the proba-
bility �t,k,r (�) and the relative error

r.e. := upper bound-simulated value

simulated value
.
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Table 2 Computed bounds
versus simulated �t,k,r (�) for
(r, k, �, θ, p) =
(4, 10, 7, 0.1, 0.1) and
s = 10,000

t Sim Upper bound r.e.

60 0.0173 0.0293 0.6936

80 0.0253 0.0426 0.6838

100 0.0350 0.0559 0.5971

120 0.0462 0.0692 0.4978

140 0.0571 0.0825 0.4448

160 0.0699 0.0958 0.3705

180 0.0831 0.1091 0.3129

200 0.0983 0.1225 0.2462

220 0.1119 0.1358 0.2136

240 0.1260 0.1491 0.1833

260 0.1412 0.1624 0.1501

280 0.1595 0.1757 0.1016

300 0.1749 0.1890 0.0806

The simulated values have been obtained at each t as follows: First a sequence
x1, . . . , xt of t-random numbers from a Bernoulli distribution with success probability
p is generated. Then the sums yn,k = ∑n

j=n−k+1 x j and wn,k,r = ∑t
n=k χ[r,∞)(yn,k)

are recorded in separate lists. If the inequality max{wk,k,r , . . . , wt,k,r } ≥ � + 1 holds
true then 1 is assigned to the generated list of random numbers else 0 is done so. This
routine is performed for each of the s-simulated sequences (usually s = 10,000; a
larger value of s, namely s = 100,000, was used when greater accuracy was neces-
sary); the requested simulated probability is then given as the ratio of the sum of the
assigned units divided by s.

Extensive numerical experimentation revealed that, in general, the upper bound of
Proposition 1 appears to be quite conservative. The behaviour of approximation errors
with respect to the values of the parameters r, k, �, θ, p does not seem to follow a
specific pattern. However, under the condition θ � p and for θ, p taking values close
to 0, the bound produces tight values for the probability �t,k,r (�) and in addition
the corresponding relative errors behave as a nonincreasing function of the number
of trials t (see Table 2); therefore, one might state that our bound improves as time
evolves.

It is also worth mentioning that for all sets of parameter values that were exam-
ined the computing time for evaluating our bound was significantly smaller than the
computing time of the simulated values for �t,k,r (�). The evaluation of the simulated
values proved to be extremely time-consuming, and in some cases (e.g. for paramet-
ric vectors with θ, p close to 0 and large l) computationally intractable. Thus, it can
be stated that there are sets of parametric values for which our bound provides a
rough, nevertheless the only attainable estimate (in terms of computing time) for the
probabilities �t,k,r (�).

In closing we mention that the upper bound provided by Proposition 1 is not a
probability, and therefore, it may produce for certain values of the parameters (e.g.
p = 0.075, θ = 1.2, r = 2, k = 4, � = 7) inadmissible bounds (greater than
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one). Once again our numerical experimentation revealed that in general the bound
generates admissible values for

• small values of θ , namely θ ∈ (0, 1);
• small or moderate values of r ;
• small success probabilities pt , i.e. between 0.001 and 0.1.

6 A discussion on possible applications

In this section we shall discuss a couple of real-life situations where an interest for
either the event

⋃t
s=k{Wn,k,r = �,Wn+1,k,r = � + 1} or the event

⋃∞
s=k{Wn,k,r =

�,Wn+1,k,r = � + 1}; hence, for the probabilities �t,k,r (�) or �k,r (�) (where � ∈ N0
and r, k ∈ N with t ≥ k ≥ r ), respectively, may emerge. The first one was motivated
by Section 5 of Boutsikas and Koutras (2002), while the second was inspired from
sports practice.

Example 1 If each random variable Xn is equal to the indicator function of the event
that the reserve process of an insurance company drops below a critical level (say
α > 0) at time n, then the multiple scan statistic Wt,k,r will count the number of times
that the (discrete-time) reserve process presents r -such falls in moving time windows
of length k. Providing that values of Wt,k,r exceeding � raise a warning about the
evolution of the company’s reserve, �k,r (�) will give the probability of a “solvency
alarm” for the insurance company.

Example 2 A scouter of a basketball team wishes to make a (short) transfer list of
three-point shooters currently possessing moderate percentages, potentially improv-
able though. A first step towards this direction is to have a look at the shooters’ stats
and decide whether they will be included in his initial list basing on the following
criterion: detect those players scoring for more than � = 7 times r = 3 out of the last
k = 5 three-point shots every t = 100 shots. Assume now that the outcomes of the
three-point attempts of each player do not depend with each other as well as that the
success probability for each attempt deteriorates to zero as time passes, and that the
expected number of successful attempts will eventually settle to a positive number θ

(i.e. the requirements of Proposition 1). In fact, the latter assumptions may easily be
regarded as very realistic ones, since they can be interpreted as the “fatigue effect”
(limt→∞ pt = 0) in the performance of a three-point shooter (it is reasonable to
assume that θ > 0, since otherwise the player should definitely avoid calling himself
a shooter!). So, in this framework �100,3,5(7) denotes the probability of detecting a
member of the scouter’s (initial) list.

Implications for more areas of application (e.g. molecular biology) of our results can
be found in Section 5 of Boutsikas and Koutras (2002).
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