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Abstract This study considers rank estimation of the regression coefficients of the
single index regression model. Conditions needed for the consistency and asymptotic
normality of the proposed estimator are established. Monte Carlo simulation experi-
ments demonstrate the robustness and efficiency of the proposed estimator compared
to the semiparametric least squares estimator. A real-life example illustrates that the
rank regression procedure effectively corrects model nonlinearity even in the presence
of outliers in the response space.

Keywords Single index · Rank-based objective function · Strong consistency ·
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1 Introduction

The single index model (SIM) has gained widespread popularity in many areas of
research such as finance, economics, epidemiology, medical science and ecology.
One reason for its popularity is that it searches for a single linear combination of p-
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1116 H. F. Bindele et al.

covariatesX that can capturemost information about the relation between the response
Y and covariate X, thereby avoiding the “curse of dimensionality.” It is defined as

Yi = g0(Xτ
i β0) + εi , 1 ≤ i ≤ n , (1)

where β0 ∈ B ⊂ R
p is a vector of parameters, Xi ∈ X , where X is a sub-vector

space of Rp, are independent (but not necessarily identically distributed) p-variable
random covariate vectors, the function g0 is an unknown function and the model
errors εi are independent with conditional mean zero given the covariates. We will
assume that B is compact and E(Y |X) = E(Y |Xτβ0) = E(g0(Xτβ0)|Xτβ0);
that is, if we set m(x) = E(Y |X = x), we have m(X) = gβ0(X

τβ0) with
gβ(t) = E(g0(Xτβ0)|Xτβ = t). We are interested in direct inference, especially
in the estimation of the true parameter β0 in model (1). For reasons of identifiabil-
ity, we set the first element of β0 to be 1 (Delecroix et al. 2006). When gβ0(·) is
assumed to be the inverse of a known link function, this model belongs to the class of
the well-known generalized linear model (McCullagh and Nelder 1989). Because of
the flexibility and the interpretability that the SIM offers, this estimation problem has
experienced rapid development in both theory and methodology in the past few years.

Since both β0 and gβ0(·) are unknown, they need to be estimated. We typically
estimate gβ0(·) nonparametrically via kernel estimation and β0 via a minimization of
some objective function. Several authors, including Powell et al. (1989), Härdle and
Stoker (1989), Klein and Spady (1993), Ichimura (1993), Härdle et al. (1993), Sher-
man (1994), Horowitz and Härdle (1996), Hristache et al. (2001), Xia et al. (2002), Yu
and Ruppert (2002), Yin and Cook (2005) and (Delecroix et al. 2006), have proposed a
variety of approaches to solving this estimation problem. The commonly appliedmeth-
ods in the literature include the average derivative estimation (ADE) method and the
semiparametric least squares (SLS) estimation method. ADE estimates the expected
value of the weighted gradient of the regression function gβ , which is proportional to
β0. This method leads to

√
n-consistent estimator (Härdle and Tsybakov 1993). The

SLS estimation method obtains the estimator of β0 by minimizing the Euclidean norm
of the residuals Y − E(Y |Xτβ) as a function of β. The function gβ(t) is estimated
using nonparametric estimation such as Nadaraya–Watson (Ichimura 1993) or local
linear approximation (Carroll et al. 1997). Since ADE cannot be used to estimate β0
when the gradient of the regression function is zero, Xia (2006) proposed an esti-
mator based on the integration of the outer product of gradients using a local linear
approximation.

While ADE and SLS are asymptotically efficient when dealing with models that
have controlled designs and normal error distribution, they become inefficientwhenwe
have uncontrolled designs (high-leverage points) or non-normal (heavy-tailed or con-
taminated) error distributions. To overcome the latter issue, efforts have been devoted
to constructing robust estimators. Han (1987) proposed an estimator based on maxi-
mization of the rank correlation between the observed values and the values fitted by
the model. On the other hand, Delecroix et al. (2006) considered the M-estimation
procedure to down-weigh large residuals (possibly from heavy tails and outliers) as
an alternative to the SLS estimation. More recently, Feng et al. (2012) obtained an
estimator based on theWilcoxon rank-based procedure (Hettmansperger andMcKean
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2011). Although the estimator proposed by Feng et al. (2012) is robust against outliers
in response space, their method lacks the generality and adaptivity of the general rank
regression (Jaeckel 1972; Hettmansperger and McKean 2011). Moreover, the use of
the gradient, based on the derivative with respect to x in both Xia (2006) and Feng
et al. (2012), might reduce the applicability of their approaches since the function
x �→ E(Y |X = x) has to be assumed differentiable as a function of x. However, it is
quite common for x �→ E(Y |X = x) to be a discontinuous function of x. For example,
x could be comprised of both continuous and categorical predictors as in treatment
comparison studies including common ANCOVA type designs.

To overcome the deficiencies in the approaches of Xia (2006) and Feng et al. (2012)
and similar to the M-estimation approach by Delecroix et al. (2006), we propose a
general rank-based estimation approach, which is based on minimizing (2) or (4)
given below. Our proposed procedure is also geared toward addressing robustness
issues pertaining to outliers in the response space. Note that the objective function
defined by (2) or (4) includes the Wilcoxon rank-based objective function that was
used by Feng et al. (2012) which we find by taking a linear score generating function
ϕ (Hettmansperger and McKean 2011, p. 82). Rather than using the outer product of
gradients, we propose estimating β0 via minimizing (4), which in turn is defined on
the basis of the leave-one-out Nadaraya–Watson estimator of gβ0(·). As pointed out
in Delecroix et al. (2006), any technique that uses a nonparametric component in the
optimization procedure must take bandwidth selection into account. As in Delecroix
et al. (2006), this can be done by either using a separate minimization procedure over
(4), where the starting bandwidth is chosen to belong in Fn := {h : c1n−α1 < h <

c2n−α2}, for some constants c1, c2 > 0 and 1/8 < α1 < α2 < 1/4, or using a direct
joint estimation by minimizing (4) with respect to both β and h. Because of higher-
order asymptotic expansions of the rank estimator, finding the optimal bandwidth is a
complicated task and is left for future work.

We conclude this introduction by stating how the paper is organized. Section 2
provides the estimation procedures of both gβ0(·) and β0. The asymptotic properties
(consistency and

√
n-asymptotic normality) of the rank estimator are studied in Sects. 3

and 4. To demonstrate the appeal of the rank estimator for dealing with heavy-tailed
or contaminated error distribution settings, a simulation study is provided in Sect. 5.
The same section also contains an analysis of a real-world dataset demonstrating the
use of the proposed procedure. Proofs of theoretical results are given in Appendix.

2 Estimation

Let μβ0(t) be the probability density (mass) of Xτβ0, and for K being a kernel
function with bandwidth h ≡ hn satisfying hn → 0 as n → ∞, let μ̂

β̃
0
n
(t) =

(nhn)
−1 ∑n

k=1 K ((t − Xτ
k β̃

0
n)/hn), where β̃

0
n is a

√
n-preliminary estimator of β0.

For some positive constants c0 and c such that 0 < c0 ≤ c, set

Γ = {x : μβ0(x
τβ0) ≥ c} and Γn = {x : μ̂

β̃
0
n

(

xτ β̃
0
n

)

≥ c}.
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1118 H. F. Bindele et al.

Also, let Hn = [n−(1/2−ε), n−ε], for ε such that 0 < ε < 1/2. Clearly, Fn ⊂ Hn .
Thus, while all the theoretical results established in this paper are based onHn , there
are also valid on Fn (Delecroix et al. 2006).

Now, define the residuals zi (β) = Yi − gβ(Xτ
i β), 1 ≤ i ≤ n, and consider the

following rank objective function introduced by (Jaeckel 1972)

Dn(β) = 1

n

n
∑

i=1

IΓ (Xi )ϕ
( R(zi (β))

n + 1

)

zi (β), (2)

where R(zi (β)) is the rank of zi (β) among z1(β), . . . , zn(β), and ϕ : (0, 1) → R is
a bounded nondecreasing score function. Before dealing with the estimation of true
parameter β0, let us consider a nonparametric estimation of gβ(·). To that end, define
weights as

W i
nj (t) =

K
( t−Xτ

j β

hn

)

∑n
k �=i K

(

t−Xτ
k β

hn

) . (3)

and let ĝi
β,h(t) = ∑n

j �=i W i
nj (t)Y j be the leave-one-out Nadaraya–Watson estimator

of gβ(t), t ∈ A , where A := {xτβ : x ∈ X , β ∈ B}. The function ĝi
β,h(·) being a

known nonlinear function of β, we use it to define a rank dispersion analogous to (2)
as

˜Dn(β) = 1

n

n
∑

i=1

IΓn (Xi )ϕ
( R(νni (β))

n + 1

)

νni (β), (4)

where νin(β) = Yi − ĝi
β,h(Xτ

i β). Based on (2) and (4), let ̂βn and ˜βn be the rank
estimators of β0 defined as

̂βn = Argmin
β∈B

Dn(β) and ˜βn = Argmin
β∈B

˜Dn(β).

Theorem 1 provides the asymptotic equivalence between the two objective functions
given in Eqs. (2) and (4). The proof relies on Lemma 3 given in Appendix. The
following assumptions are necessary and sufficient in the theoretical development of
the paper.

Assumptions

(I1) ϕ is a nondecreasing, bounded and twice continuously differentiable score func-
tion with bounded derivatives, defined on (0, 1), satisfying:

∫ 1

0
ϕ(u)du = 0 and

∫ 1

0
ϕ2(u)du = 1.

(I2) As in (Delecroix et al. 2006), write gβ(t) as gβ(t) = E(Y |Xτβ = t) =:
rβ(t)/μβ(t). We assume that
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(i) For every β ∈ B, μβ(·) is the density of Xτβ with respect to the Lebesgue
measure on R, and there exists some constant c0 such that {t : μβ(t) = c} is
finite, for any c satisfying 0 < c0 ≤ c.

(ii) The functions (β, t) �→ μβ(t), (β, t) �→ rβ(t) and (β, t) �→ gβ(t) satisfy the
so-called L-condition. Just considering μβ(t), the L-condition states that for
all t1, t2 ∈ Λ, with Λ being a compact subset of R, and ∀ β1,β2 ∈ B, there
exist C > 0 independent of (β, t) and a ∈ (0, 1] such that

|μβ1(t1) − μβ2(t2)| ≤ C‖(β1, t1) − (β2, t2)‖a .

(iii) For any t ∈ R, β → gβ(t) is three time continuously differentiable, and
there exists a function J : X → R

+ not necessarily the same such that
|∇r

β [gβ(xτβ)]| ≤ J (x) with 0 < E[J p(X)] < ∞, for 0 < p ≤ 4 and for all
β ∈ B, where r = 0, 1, 2, 3, and ∇r

β is a differential operator of order r .
(I3) K (·) is a three times differentiable, symmetric, positive and compactly supported

kernel function with bandwidth hn ∈ Hn . Moreover, K ′(·) is of bounded varia-
tion.

(I4) sup
x

E[|Y |q |X = x] < ∞, for some q ≥ 2 and 0 < E{exp(λ‖X‖)} < ∞, for

some λ > 0.
(I5) β0 ∈ I nt (B) and for fixed n, β0,n is the unique minimizer of E[Dn(β)] such

that β0 = limn→∞ β0,n .
(I6) n−1 ∑n

i=1 IΓ (Xi )∇β0 [gβ0(X
τ
i β0)]{∇β0 [gβ0(X

τ
i β0)]}τ → Σ a.s., where Σ is

positive definite matrix.

Remark 1 Assumption (I1) is a common assumption in the rank estimation literature;
see Hettmansperger and McKean (2011). Assumptions (I2)–(I4) ensure the strong
consistency of the leave-one-out Nadaraya–Watson estimator of g0(·) (Delecroix et al.
2003, 2006). (I5) ensures the strong consistency of the proposed estimator, as estab-
lished in Theorem 3. This assumption is assumed in most of the regression problems
in a more stronger form; that is, β0 = Argmin

β∈B
E{Dn(β)} (Delecroix et al. 2006).

Together with the previous assumptions, (I6) is used to show the asymptotic normal-
ity of the gradient function. Also, (I6) is a common regression assumption usually
imposed on the design matrix and reduces to n−1 ∑n

i=1 XiXτ
i → Σ = E{XXτ } that

is imposed for the linear model: gβ0(X
τβ0) = Xτβ0 (Hettmansperger and McKean

2011).

Theorem 1 Under assumptions (I1)–(I4), lim
n→∞ sup

β∈B,h∈Hn

|˜Dn(β) − Dn(β)| =
0 a.s.

Remark 2 Note that the functions IΓ (X) and IΓn (X) in Eqs. (2) and (4) are trimming
devices introduced to keep theNadaraya–Watson estimator away from zero (Delecroix
et al. 2003, 2006). The existence of either ̂βn or ˜βn is ensured by the continuity
of the two objective functions over B compact. ̂βn is defined as a minimizer of
an objective function that depends on an unknown function g0; hence, although the
dispersion function uses independent residuals, it cannot be computed. On the other
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hand, we can compute˜βn , but the objective function involves dependent residuals as
ĝi
β,h(·), . . . , ĝi

β,h(·) are not independent. As it will be demonstrated in Appendix, the
two estimators possess the same asymptotic distribution. So for simplicity, we can use
˜βn for asymptotic inference in practice.

3 Consistency

Let (Ω,F , P) be a complete probability space. For i = 1, . . . , n, assume that εi (β0)

are i.i.d. with common distribution at the true β0, and for β �= β0, zi (β) are inde-
pendent with distribution Fi ≡ Fi,β . The following theorem gives the stochastic
equicontinuity of the sequence of rank objective functions {Dn(β)}n≥1 under the
above assumptions.

Theorem 2 Under (I1), (I2) and (I4), and for every β ∈ B,

Dn(β) − E{Dn(β)} → 0 a.s. as n → ∞.

Moreover, the sequence {Dn(β)}n≥1 is stochastically equicontinuous.

This result is used along with Lemma 1 to provide the strong consistency of ̂βn that
follows.

Theorem 3 Under (I1), (I2), (I4) and (I5), ̂βn → β0 a.s. as n → ∞.

As mentioned above, the proof of this theorem directly follows from Theorem 2 and
the following lemma whose proof of (i) is given in Appendix and that of (ii) can be
found in Andrews (1994), Newey and McFadden (1994) and Rao et al. (2014). So, for
the sake of brevity, the proof of (ii) will not be provided.

Lemma 1 Let {An(α)}n≥1 be a random objective function defined on a compact space
Θ such that α̂n = Argmin

α
An(α) and for fixed n, there is a unique α0,n ∈ Θ satisfying

α0,n = Argmin
α

E(An(α)), with E(An(α)) being continuous with respect to α. Assume

for α0 ∈ Θ , α0 = limn→∞ α0,n.

(i) If sup
α∈Θ

|An(α) − E(An(α))| → 0 a.s. as n → ∞, then α̂n → α0 a.s. as

n → ∞.
(ii) If for every α ∈ Θ , An(α) − E(An(α)) → 0 a.s. as n → ∞ and An(α) is

stochastically equicontinuous, then α̂n → α0 a.s. as n → ∞.

Theorem 4 Under assumptions (I1)–(I4),

lim
n→∞ sup

β∈B,h∈Hn

|E(˜Dn(β)) − E(Dn(β))| = 0 a.s.

and lim
n→∞ sup

β∈B,h∈Hn

|˜Dn(β) − E(˜Dn(β))| = 0 a.s.

Theorem 5 Under the assumptions of Theorem4and (I5),β0,n = Argmin
β∈B

E(˜Dn(β)).

These two theorems together with Lemma 1 imply that˜βn → β0 a.s. as n → ∞.
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Single index models under Rank Regression 1121

4 Asymptotic normality

We will denote the gradient and Hessian operators by ∇β = (

∂/∂βi
)

i and ∇2
β =

(

∂2/∂βi∂β j
)

i j , respectively, for β = (β1, . . . , βp)
τ , i, j = 1, . . . , p. Let Sn(β) =

−∇β Dn(β). Since ̂βn is a minimizer of Dn(β), we have Sn(̂βn) = 0. The gradient
function is explicitly given as

Sn(β) = 1

n

n
∑

i=1

IΓ (Xi )∇β [gβ(Xτ
i β)]ϕ

( R(zi (β))

n + 1

)

.

Theorem 6 Putting Tn(β) = n−1 ∑n
i=1 IΓ (Xi )∇β [gβ(Xτ

i β)]ϕ(

Fi (zi (β))
)

, we have
under assumptions (I1), (I2)–(iii) and (I4) that

lim
n→∞ sup

β∈B
|Sn(β) − Tn(β)| = 0 a.s.

This theorem implies that with probability 1, Sn(β) = Tn(β) + o(1). Then, per-
forming the second-order Taylor expansion of Tn(β) at the true parameter β0 gives

Tn(β) = Tn(β0) + (β − β0)
τ∇β0Tn(β0) + 1

2
(β − β0)

τ∇2
ξ Tn(ξ)(β − β0),

where ξ = λβ0 + (1 − λ)β for some λ ∈ [0, 1]. Thus, with probability 1,

Sn(β) = Tn(β0) + (β − β0)
τ∇β Tn(β0) + 1

2
(β − β0)

τ∇2
βTn(ξ)(β − β0) + o(1).

From this, we have

0 = Sn(̂βn) = Tn(β0) + ∇β0Tn(β0) · (̂βn − β0)

+ 1

2
(̂βn − β0)

τ · ∇2
ξn

Tn(ξn) · (̂βn − β0) + o(1),

where ξn = λβ0 + (1 − λ)̂βn . This implies that

[

∇β0Tn(β0) + 1

2
(̂βn − β0)

τ · ∇2
ξn

Tn(ξn)

]

(̂βn − β0) = −Sn(β0) + o(1).

The asymptotic properties of the quantities in brackets above are established in the
following theorem.

Theorem 7 Under assumptions (I1)–(I6), the following hold:

(a) ∇β0Tn(β0) = ∇β Tn(β)|β=β0 → W a.s., where

W = −E{IΓ (X)∇β0(gβ0(X
τ
i β0))[∇β0(gβ0(X

τ
i β))]τ f (ε)ϕ′(F(ε))}

+ E{IΓ (X)∇2
β0

[gβ0(X
τ
i β0)]ϕ(F(ε))},
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1122 H. F. Bindele et al.

where

∇β0 [gβ0(X
τ
i β0)] = ∇β [gβ(Xτ

i β)]|β=β0 and,

∇2
β0

[gβ0(X
τ
i β0)] = ∇2

β [gβ(Xτ
i β)]|β=β0

is a positive definite matrix,
(b) ∇2

ξn
Tn(ξn) = ∇2

β Tn(β)|β=ξn is almost surely bounded.

As consequence to this theorem, we have with probability 1

√
n(̂βn − β0) = −W−1√nSn(β0) + o(1), (5)

and thus, the asymptotic normality of the rank estimator is derived from that of√
nSn(β0). Note that if we assume that ε and X are independent,W can be expressed

using the rank scale parameter asW = γ −1
ϕ Σ similar to the linear model case, where

Σ = E{IΓ (X)∇β0

(

gβ0(X
τ
i β0)

)[∇β0

(

gβ0(X
τ
i β0)

)]τ },

γ −1
ϕ = ∫ 1

0 ϕ(u)ϕ f (u)du, where ϕ f (u) = f ′(F−1(u))/ f (F−1(u)), with f being the
density of ε(β0). The following two theorems give the asymptotic normality of Sn(β0)

and̂βn .

Theorem 8 Under assumptions (I1)–(I6),
√

nSn(β0)
D−→ N (0,Σ) as n → ∞.

Theorem 9 Under assumptions (I1)–(I6),
√

n(̂βn − β0)
D−→ N

(

0,W−1ΣW−1
)

.
If we restrict ourselves to the case where X and ε are independent, W−1ΣW−1 =
γ 2
ϕ Σ−1.

The proof of Theorem 9 is directly obtained by combining Eq. (5) and Theorem 8.
Now, define Mn(β) and ˜Mn(β) by

Mn(β) = (β − β0)
τ [∇β0Tn(β0)](β − β0) − (β − β0)

τ Sn(β0) + Dn(β0)

and

˜Mn(β) = (β − β0)
τ [∇β0

˜Tn(β0)](β − β0) − (β − β0)
τ
˜Sn(β0) + ˜Dn(β0),

where ˜Sn(β) = −∇ ˜Dn(β). This provides the following result, known as the asymp-
totic quadraticity, proved by Jaeckel (1972). LetBn := {β ∈ B : ‖β−β0‖ ≤ c/

√
n},

for some positive constant c, by just taking dn = O(1/
√

n) in Lemma 3.

Theorem 10 Under (I1)–(I6), ∀ε > 0, we have

lim
n→∞ Pβ0

[

sup
β∈Bn

|Dn(β) − Mn(β)| > ε
]

= 0 a.s., (6)
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and
lim

n→∞ Pβ0

[

sup
β∈Bn ,h∈Hn

|˜Dn(β) − ˜Mn(β)| > ε
]

= 0 a.s. (7)

Moreover,
lim

n→∞ sup
β∈Bn ,h∈Hn

| ˜Mn(β) − Mn(β)| = 0. a.s. (8)

This theorem gives rise to the following lemma whose proof can be constructed
by mimicking those given in Ichimura (1993) for the semiparametric least squares
approach or in Delecroix et al. (2006) for M-estimation with some minor modifica-
tions. We only provide the proof of equation (9) in Appendix, and those of Eqs. (10)
and (11) could obtained following similar arguments.

Lemma 2 Under (I1)–(I6), and for any ε > 0, the following results are obtained in
a straight forward manner:

lim
n→∞ P

[

∥

∥

√
n
(

Sn(β0) − ˜Sn(β0)
)∥

∥ > ε
]

= 0, (9)

lim
n→∞ P

{

sup
β∈Bn ,h∈Hn

∥

∥∇β Tn(β) − ∇β
˜Tn(β)

∥

∥ > ε
}

= 0, (10)

and
lim

n→∞ P
{

sup
β∈Bn ,h∈Hn

∥

∥∇2
β Tn(β) − ∇2

β
˜Tn(β)

∥

∥ > ε
}

= 0 a.s. (11)

Remark 3 Using a similar argument to the Taylor expansion that leads to Eq. (5), one
can easily show that

√
n
(

˜βn − β0
) = −˜W−1

n

√
n˜Sn(β0) + op(1), (12)

where

˜Wn = −1

n

n
∑

i=1

IΓn (Xi )∇β0

(

ĝi
β0,h

(Xτ
i β0)

)[∇β0

(

ĝi
β0,h

(Xτ
i β0)

)]τ fν(νin(β0))

ϕ′(Fν(νin(β0))) + 1

n

n
∑

i=1

IΓn (Xi )∇2
β0

[̂gi
β0,h

(Xτ
i β0)]ϕ(Fν(νin(β0)))

with Fν being the cumulative distribution function of νin(β0), and fν the corre-
sponding density. Also, from Eq. (10) and Theorem 7(a), and applying the dominated
convergence theorem, we get for any ε > 0 and h ∈ Hn ,

lim
n→∞ Pβ0

{

∥

∥˜Wn − W
∥

∥ > ε
}

= 0. (13)

This result is not surprising as it is also obtained by Newey (2004) who considered a
generalized methods of moments (GMM) estimator and pointed out that the estimator
obtained based on ĝi

β0,h
(t) has the same asymptotic covariancematrix as the one based

123



1124 H. F. Bindele et al.

on gβ0(t), t ∈ A0. Thus, both ̂βn and ˜βn have similar asymptotic relative efficiency.
For small sample sizes, however, one would expect ̂βn to be more efficient if gβ0(·)
was assumed to be known, as the estimation of gβ0(·) might introduce some loss in
efficiency.

Theorem 11 Under assumptions (I1)–(I6),
√

n(˜βn − β0)
D−→ N

(

0,W−1ΣW−1
)

.
Again, if we restrict ourselves to the case where X and ε are independent,
W−1ΣW−1 = γ 2

ϕ Σ−1.

Theorems 9 and 11 show that˜βn and̂βn have the same asymptotic distribution.

5 Simulation and real data studies

5.1 Simulation

To illustrate the performance of the proposed method, a simulation study is conducted
using the R software environment (R Development Core Team 2009). Three scenarios
are considered:
Scenario 1: To demonstrate the robustness of the proposed procedure independent of
the choice of the link function gβ(·), the response variable is generated according to
Eq. (1) with a variety of link functions, gβ(t), and different distributions for the model
errors (ε). The error distributions studied are the contaminated normal distribution
CN (ε) = (1 − ε)N (0, 1) + εN (0, 22) with different rates of contamination ε =
0, 0.01, 0.05, 0.1, 0.15, 0.25, the t and Chi-square distributions with different degrees
of freedom (d f = 5, 15, 25, 35, 45), and theLaplace distributionwith different sample
sizes (n = 15, 35, 55, 75, 95, 115). Except for the Laplace distribution case that has
different sample sizes, the sample size considered is n = 50. The link functions used
in the simulation are the identity link function defined by gβ(t) = t , the inverse link
function defined by gβ(t) = 1/t , the logistic link function defined by gβ(t) = et/(1+
et ), and the sine link function gβ(t) = (sin(2π t2))1/3 with t = xτβ = x1β0 + x2β1
where the true β is set at β0 = (1,

√
1/3)τ , x = (x1, x2), with xi ∼ U(1,2), for

i = 1, 2.
Scenario 2: We considered the same error distributions as in Scenario 1 but with
an increased sample of n = 200, for the CN (ε), t and χ2 distributions, and n =
250, 350, 450, for the Laplace distribution. Also, t = xτβ = x1β0 + x2β1 + β3x3 +
β4x4 where the true β is set at β0 = (1,

√
3/3, 0, 0) and x = (x1, x2, x3, x4), with

xi ∼ U(1,2) for i = 1, 2 and xi ∼ U(2,5), for i = 3, 4.
Scenario 3:We considered the same model error distributions as in Scenario 1 but we
set the link function as gβ(t) = sin

(

π(t−a)/(c−a)
)

, where a = √
3/2−1.645/

√
12,

c = √
3/2 + 1.645/

√
12. t = xτβ = β1x1 + β2x2 + β3x3, where the true β is set

at β0 = (1,
√
3/3,

√
3/3)τ for the true parameter, and x = (x1, x2, x3) a matrix

formed by the column vectors. To evaluate the performance of the procedures in the
presence of categorical predictors, we took x1 ∼ U(0,1), x2 ∼ Binomial(n, 0.4) and
x3 ∼ Binomial(n, 0.7) with n = 100. The model is the same as the one used in (Liu
et al. 2013), with the exception of the manner in which predictors are generated.
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Table 1 Relative efficiencies (REs) of the rank estimator of β0 = (1,
√
3/3) against the proportion of

contamination (ε) for the contaminated normal distribution, against the sample sizes (n) for the Laplace
distribution, and against the degrees of freedom (d f ) for the t and the Chi-square distributions

gβ (t) t et

1+et 1/t sin
1
3 (2π t2)

n ε d f β0 β0 β0 β0

CN (ε) 50 0.00 1.165 1.157 1.057 1.050 1.050 1.133 0.926 0.916

0.01 1.192 1.165 1.083 1.086 1.098 1.150 1.012 0.962

0.05 1.197 1.200 1.096 1.090 1.099 1.268 1.012 1.072

0.10 1.205 1.214 1.117 1.206 1.104 1.285 1.017 1.178

0.15 1.231 1.275 1.143 1.227 1.106 1.350 1.051 1.235

0.25 1.253 1.396 1.152 1.243 1.122 1.473 1.085 1.312

td f 50 5 1.234 1.270 1.114 1.229 1.165 1.164 1.077 1.131

15 1.176 1.180 1.105 1.227 1.121 1.137 1.027 1.052

25 1.141 1.157 1.103 1.169 1.100 1.124 1.019 1.003

35 1.125 1.064 1.091 1.122 1.096 1.049 1.004 0.996

45 1.084 1.064 1.081 1.046 1.052 1.018 0.990 0.991

χ2
d f 50 5 1.216 2.006 1.160 2.194 1.251 2.023 1.179 1.727

15 1.181 1.899 1.155 1.873 1.193 1.842 1.174 1.676

25 1.174 1.850 1.142 1.736 1.186 1.767 1.159 1.536

35 1.163 1.619 1.131 1.708 1.186 1.688 1.157 1.513

45 1.162 1.329 1.117 1.393 1.157 1.552 1.135 1.206

Laplace 15 1.157 1.221 1.082 1.065 1.059 1.209 1.023 1.073

35 1.258 1.231 1.109 1.277 1.095 1.231 1.033 1.125

55 1.350 1.368 1.152 1.328 1.099 1.305 1.065 1.319

75 1.504 1.379 1.165 1.338 1.191 1.323 1.152 1.350

95 1.633 1.485 1.186 1.371 1.200 1.337 1.175 1.464

115 1.949 1.593 1.208 1.574 1.202 1.379 1.188 1.467

In all three scenarios, the regression estimates were obtained using the nonlinear
minimization routine implemented in the function optim contained in the “stats”
package of R, where the score function in (2) was set to be the Wilcoxon defined as
ϕ(u) = √

12 (u − 0.5), and the kernel in (3) was taken to be the Epanechnikov kernel
K (u) = 0.75(1 − u2)I (|u| ≤ 1). Also the nonparametric estimator of gβ(·) was
obtained using the “npksum” function in the “np” package of R. As this estimation
involves a bandwidth selection, we considered a joint minimization of ˜Dn(β, h) with
the starting value of h ∈ {h : c1n−α1 < h < c2n−α2}, for some c1, c2 > 0, 1/8 <

α1 < α2 < 1/4.
From1000 simulations, relative efficiencies (REs) of the rank estimatorwith respect

to the SLS estimator were calculated by taking the ratio of the mean squared error
of the SLS estimates to that of the rank estimates. These are displayed in Tables 1,
2 and Fig. 1. While the threshold set at 1 represents equal performance for the two
estimators, the dashed line below 1 set at 3/π ≈ 0.95 is the theoretical asymptotic
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Fig. 1 Relative efficiencies (REs) of the rank estimators of the three true parameters against the proportionof
contamination for the contaminated normal distribution, against the sample sizes for theLaplace distribution,
and against the degrees of freedom for the t and the Chi-square distributions

relative efficiency (ARE) at the standard normal distribution. This is also the theoretical
ARE for t and Chi-square distributions as d f → ∞. For the Laplace distribution, the
theoretical ARE is 1.57.

Tables 1 and 2 clearly show that the rank estimator is generally more efficient than
the SLS estimator. As expected, the REs increase as the rate of contamination increases
for the CN (ε) distribution case while they decrease as d f increases for the t and
Chi-square distribution cases. For the CN case with ε = 0 (the standard normal
distribution), the RE is close to the ARE of 0.95 as expected. The same is true for
increasing d f of t and Chi-square distributions. For the Laplace distribution, the REs
increase as the sample size (n) increases approaching the theoretical ARE of 1.57. One
also notes that the four considered link functions perform similarly, in line with our
stipulation above that the efficiency comparison would be independent of the choice
of link function.

Figure 1 displays REs of the rank estimator with respect to the SLS estimator under
Scenario 3. Our observations remain the same as in Scenarios 1 and 2.

5.2 Real data example

We considered the county demographic information (CDI) data from the Geospatial
and Statistical Data Center of the University of Virginia provided in Kutner et al.
(2004). The data consist of information on 440 of the most populous counties in the
USA pertaining to the years 1990 and 1992. We considered the response Y to be
the logarithm of the number of active physicians and the predictors to be the total
population, total personal income, percent of population over 65, number of hospital
beds, land area and total number of serious crimes. LosAngeles County, CA, andCook
County, IL, represented obvious outliers in the Y direction with disproportionately
high number of physicians. The predictor matrix was centered and scaled to have
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Fig. 2 Residual plots for the original CDI data
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Fig. 3 Residual plots for the CDI data with outliers removed

mean zero and variance 1. We first fitted linear regression models using least squares
(lm in R) and Wilcoxon rank regression (Rfit in R) including all the data. We also
fitted both the semiparametric least squares and rank single index models for the data.
This process was repeated after removing the two outliers. Residual plots from these
fits are given in Figs. 2 and 3, where the top panels represent least squares and rank
linear regression residual plots while the bottom panes give the semiparametric least
squares and rank single index residual plots.
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Fig. 4 Cross-validation results for the CDI data with and without outliers

Table 3 Mean prediction error, median prediction error and the correction between Y and ̂Y from the 500
replications

Mean prediction error Median prediction error Correlation coefficient

SLS-outlier 0.310 0.290 0.869

Rank-SIM outlier 0.184 0.180 0.926

SLS-clean 0.128 0.125 0.946

Rank-SIM clean 0.127 0.124 0.947

The top panels of Figs. 2 and 3 clearly indicate that a linearmodel fit is not adequate.
The appropriate model appears to be nonlinear. The bottom panels of the figures show
that the residuals from the single index models have no nonlinearity indicating that
the models capture the underlying nonlinear pattern of relationship between Y and the
predictors. Thus, single index models clearly provide a superior analysis approach for
these data compared to linear models.

To evaluate the predictive performance of these single index models, we performed
a cross-validation study. The data were randomly split into 10 parts. Nine are used as
training set to fit the model while one was used as the testing set. We performed 500
replications and calculated the mean square prediction error by computing mean(Y −
̂Y )2 and median(Y − ̂Y )2 on the testing set. We also computed a simple Pearson
correlation of Y and ̂Y on the testing set to evaluate the linearity of the fit. The results
are displayed in Fig. 4 and Table 3.

For the original data, the semiparametric least squares fit single index model gave
higher prediction error and correspondingly lower correlation between true and pre-
dicted responses compared to the rank fit single index model. This indicates that the
existence of outliers reduces the ability of the semiparametric least squares procedure
to capture the correct underlying functional relationship. On the other hand, both the
semiparametric least squares and rank single index fits provided low prediction errors
in the absence of gross outliers. From the high correlation between the predicted and
true responses, we can infer that they also capture the functional relationship effec-
tivelywhen the obvious outliers are removed from the data. The change in fit wasmuch
more pronounced for the semiparametric least squares fit indicating its sensitivity to
outlying observations. These same observations are made considering the results in
Table 3, as it is observed that in the presence of outliers (SLS-Outlier, Rank-SIM Out-
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lier) in the response space, the SLS provides higher average (median) prediction error
compared to rank-based approach,which confirm the robustness of the rank-based esti-
mator when dealing with outliers in the response space. For the same scenario, based
on the estimated correlation coefficients, the rank-based provides a better fit than the
SLS. However, the two approaches show similar performance, once the outliers are
removed (SLS-Clean, Rank-SIM Clean).

Conclusion

The rank regression procedure proposed in this paper provides a robust and efficient
alternative to the least squares method for the fitting of single index models. One
should note, however, that robustness is only in the direction of the response. As in
least squares case, high-leverage points would still unduly affect the performance of
the proposed method. For studies with data containing high-leverage points, one may
consider weighted versions of the rank objective function such as the GR weighted
Wilcoxon (Naranjo andHettmansperger 1994), HBRweightedWilcoxon (Chang et al.
1999; Abebe and McKean 2013) or the general weighted signed-rank (Bindele and
Abebe 2012).

Appendix

This appendix contains proofs of the theoretical main results together with a key
Lemma due to Delecroix et al. (2006) that ensures the uniform strong consistency of
the leave-one-out Nadaraya–Watson estimator. For details regarding the proof of this
lemma, readers are referred to the aforementioned paper.

Lemma 3 Let Bn =: {β : ‖β − β0‖ ≤ dn}, where dn is some sequence decreasing
to zero. Then,

(a) if δ > 0, we have,

sup
β∈Bn ,h∈Hn

∣

∣

∣I{x:μ̂i
β,h(xτ β)≥c}(Xi ) − IΓ (Xi )

∣

∣

∣ ≤ IΓ δ (Xi ) + I(δ,∞)(Zn),

where Γ δ = {x : |μβ0,h(xτβ0) − c| ≤ δ} and

Zn = max
1≤i≤n

sup
β∈Bn ,h∈Hn

∣

∣

∣μ̂
i
β,h(Xτ

i β) − μβ0,h(Xτ
i β0)

∣

∣

∣ .

(b) Assume dn = o(1/
√

n), and there exists a sequence δn → 0 such that δn/n−aε →
∞ and δn[dn

√
n]−aε → ∞, for some a > 0, then I(δn ,∞)(Zn) = op(n−α),

for all α > 0. Moreover, together with assumptions (I2)–(I4), assuming that
E(|Y |2) < ∞, we have

max
1≤i≤n

sup
β∈B,h∈Hn

|̂gi
β,h(Xiβ) − gβ(Xiβ)|IΓ (Xi ) → 0 a.s. as n → ∞,
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and

max
1≤i≤n

sup
β∈B,h∈Hn

|∇β [̂gi
β,h(Xiβ)] − ∇β [gβ(Xiβ)]|IΓ (Xi ) → 0 a.s. as n → ∞.

Proof of Lemma 1 (i) By definition, we have An(α̂n) ≤ An(α0,n) and E(An(α0,n)) ≤
E(An(α̂n)). These inequalities give An(α̂n)−E(An(α̂n)) ≤ An(α̂n)−E(An(α0,n)) ≤
An(α0,n) − E(An(α0,n)). Thus,

|An(α̂n) − E(An(α0,n))| ≤ max{|An(α̂n) − E(An(α̂n))|, |An(α0,n) − E(An(α0,n))|}
≤ sup

α∈Θ

|An(α) − E(An(α))|.

Sinceα0,n is unique for anyfixedn,α0,n → α0 and sup
α∈Θ

|An(α)−E(An(α))| → 0 a.s.

as n → ∞, we have α̂n → α0 a.s. as n → ∞. ��

Proof of Lemma 2 We provide the proof of equation (9) and those of Eqs. (10) and
(11) could be obtained using similar arguments. By Chebyshev’s inequality, we have,
for any ε > 0,

Pβ0

(√
n‖˜Sn(β0) − Sn(β0)‖ > ε

) ≤ 1

ε2
E

{

n
∥

∥˜Sn(β0) − Sn(β0)
∥

∥

2
}

.

Setting ani (β0) = R(νni (β0))/(n + 1), bni (β0) = R(zi (β0))/(n + 1), let us intro-
duce the following notation: ψi (β0) = ϕ(ani (β0)) − ϕ(bni (β0)) and Ui (β0) =
IΓn (Xi )∇β0 [̂gi

β0,h
(Xτ

i β0)] − IΓ (Xi )∇β0 [gβ0(X
τ
i β0)].

E
{

n
∥

∥˜Sn(β0) − Sn(β0)
∥

∥

2
}

= 1

nε2
E

[(

n
∑

i=1

{

IΓn (Xi )∇β0 [̂gi
β0,h

(Xτ
i β0)]ϕ (ani (β0))

− IΓ (Xi )∇β0 [gβ0(X
τ
i β0)]ϕ (bni (β0))

})2
]

= 1

ε2
E

[

1

n

n
∑

i=1

U 2
i (β0)ϕ

2 (ani (β0))

]

+ 1

ε2
E

[

1

n

n
∑

i=1

{∇β0 [gβ0(X
τ
i β0)]

}2
ψ2

i (β0)

]

+ 2

ε2
E

⎡

⎣

1

n

n
∑

i< j

{∇β0 [gβ0(X
τ
i β0)]ϕ

(

anj (β0)
)}

Ui (β0)ψ j (β0)

⎤

⎦

= J1n + J2n + J3n .
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We now show that Jin → 0 as n → ∞, for i = 1, 2, 3. Indeed, from the boundedness
of ϕ, there exists a positive constant L such that |ϕ(u)| ≤ L , for all u ∈ (0, 1). Also

|ψi (β0)| ≤ |ϕ(ani (β0)) − ϕ(Fν(νni (β0)))|
+ |ϕ(Fν(νni (β0))) − ϕ(F(zi (β0)))| + |ϕ(F(zi (β0))) − ϕ(bni (β0))|.

For i = 1, . . . , n, Fν(νni (β0)) and F(zi (β0)) are independent uniformly distributed in
(0, 1) random variables. Following Chapter 6 of Hájek et al. (1999), it is obtained that
νni (β0)− Fν(νni (β0)) → 0 a.s. and bni (β0)− F(zi (β0)) → 0 a.s., for each i . Thus,
by continuity of ϕ and by Lemma 3, we have ϕ(ani (β0)) − ϕ(Fν(νni (β0))) → 0 a.s.
and ϕ(F(zi (β0))) − ϕ(bni (β0)) → 0 a.s., for each i . Also, by Lemma 3, we have
νni (β0) − zi (β0) → 0 a.s., from which by the continuity of the probability measure
and the continuity of ϕ, we have ϕ(Fν(νni (β0))) − ϕ(F(zi (β0))) → 0 a.s., for each
i . On the other hand,

‖Ui (β0)‖ ≤ |IΓn (Xi ) − IΓ (Xi )|‖∇β0 [̂gi
β0,h

(Xτ
i β0)‖ + ‖∇β0 [̂gi

β0,h
(Xτ

i β0)]
−∇β0 [gβ0(X

τ
i β0)]‖IΓ (Xi ).

For Xi ∈ Γ and for all ε > 0, there exists N > 0 such that for all n ≥ N ,

‖∇β0 [̂gi
β0,h

(Xτ
i β0)‖ < ‖∇β0 [g(Xτ

i β0)]‖ + ε ≤ J (Xi ) + ε.

ε being arbitrary, letting ε → 0, we have ‖∇β0 [̂gi
β0,h

(Xτ
i β0)‖ ≤ J (Xi ) < ∞ a.s., as

J is integrable. Thus, by Lemma 3, |IΓn (Xi )− IΓ (Xi )|‖∇β0 [̂gi
β0,h

(Xτ
i β0)‖ → 0 a.s.

and ‖∇β0 [̂gi
β0,h

(Xτ
i β0)] − ∇β0 [gβ0(X

τ
i β0)]‖IΓ (Xi ) → 0 a.s., for all i . Therefore,

‖Ui (β0)‖ → 0 a.s., for all i . Then

‖J1n‖ ≤ L2

ε2
E

(

max
1≤i≤n

‖Ui (β0)‖2
)

→ 0 a.s.,

by applying the dominated convergence theorem together with Lemma 3. Next, using
Cauchy–Schwarz inequality, we have

∥

∥J2n
∥

∥ ≤ 1

ε2
E

[

1

n

n
∑

i=1

J 2(Xi ) |ψi (β0)|2
]

≤ 1

ε2
E

⎡

⎣

(

1

n

n
∑

i=1

J 4(Xi )

)1/2 (

max
1≤i≤n

|ψi (β0)|4
)1/2

⎤

⎦ .

By the strong law of large numbers (SLLN), n−1 ∑n
i=1 J 4(Xi ) → E{J 4(X)} <

∞ a.s. Also, from the above discussion, max1≤i≤n |ψi (β0)|4 → 0 a.s. Thus, apply-
ing the dominated convergence theorem once again, we have J2n → 0 a.s. Moreover,
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using the simple inequality ab ≤ (a2+b2)/2 together with Cauchy–Schwarz inequal-
ity, we have

‖J3n‖ ≤ 2L

ε2
E

⎡

⎣

1

n

n
∑

i< j

J (Xi ) ‖Ui (β0)‖ |ψi (β0)|
⎤

⎦

≤ L

ε2
E

[

1

n

n
∑

i=1

J 2(Xi ) ‖Ui (β0)‖2
]

+ L

ε2
E

⎡

⎣

1

n

n
∑

j=1

|ψi (β0)|2
⎤

⎦

≤ L

ε2
E

⎡

⎣

(

1

n

n
∑

i=1

J 4(Xi )

)1/2 (

max
1≤i≤n

‖Ui (β0)‖4
)1/2

⎤

⎦

+ L

ε2
E

[

max
1≤ j≤n

|ψi (β0)|2
]

.

By Lemma 3, max
1≤i≤n

‖Ui (β0)‖4 → 0 a.s., and again, by the SLLN,
1

n

n
∑

i=1

J 4(Xi )

converges almost surely to E{J 4(X)} < ∞.Also, as before, max
1≤i≤n

|ψi (β0)|2 → 0 a.s.

To this end, once again, a direct application of the dominated convergence theorem
gives J3n → 0 a.s. and consequently, lim

n→∞ Pβ0

(√
n‖˜Sn(β0) − Sn(β0)‖ > ε

) = 0. ��
Proof of Theorem 1 In this proof, we take L to be an arbitrary positive constant not
necessarily the same, and as in the proof of Lemma 2, set bni (β) = R(νni (β))/(n +1)
and ani (β) = R(zi (β))/(n + 1). By definition of ˜Dn(β) and Dn(β), we have

˜Dn(β) − Dn(β) = 1

n

n
∑

i=1

[

IΓn (Xi ) − IΓ (Xi )
]

ϕ(bni (β))νni (β) (14)

+ 1

n

n
∑

i=1

IΓ (Xi ) [ϕ(bni (β))νni (β) − ϕ(ani (β))zi (β)] .

Considering the first term to the right-hand side of Eq. (14), we have

∣

∣

∣

∣

∣

1

n

n
∑

i=1

[

IΓn (Xi ) − IΓ (Xi )
]

ϕ(bni (β))νni (β)

∣

∣

∣

∣

∣

≤ 1

n

n
∑

i=1

∣

∣IΓn (Xi ) − IΓ (Xi )
∣

∣ |ϕ(bni (β))||νni (β)|

≤ L

n

n
∑

i=1

∣

∣IΓn (Xi ) − IΓ (Xi )
∣

∣ |νni (β)|

≤ L

n

n
∑

i=1

∣

∣IΓn (Xi ) − IΓ (Xi )
∣

∣ |Yi |
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+ L

n

n
∑

i=1

∣

∣IΓn (Xi ) − IΓ (Xi )
∣

∣ |̂gi
β,h(Xτ

i β) − gβ(Xτ
i β)|

+ L

n

n
∑

i=1

∣

∣IΓn (Xi ) − IΓ (Xi )
∣

∣ |gβ(Xτ
i β)|,

where L is the bound of ϕ, as ϕ is assumed bounded by assumption (I1). By Cauchy–
Schwarz inequality, we have

1

n

n
∑

i=1

∣

∣IΓn (Xi ) − IΓ (Xi )
∣

∣ |Yi | ≤
(

1

n

n
∑

i=1

∣

∣IΓn (Xi ) − IΓ (Xi )
∣

∣

2

)1/2 (

1

n

n
∑

i=1

|Yi |2
)1/2

.

The strong law of large numbers gives n−1 ∑n
i=1 |Yi |2 → E[|Y |2] < ∞ a.s. On the

other hand, we have,

1

n

n
∑

i=1

∣

∣IΓn (Xi ) − IΓ (Xi )
∣

∣

2 ≤ max
1≤i≤n

sup
h∈Hn

∣

∣IΓn (Xi ) − IΓ (Xi )
∣

∣

2

≤ max
1≤i≤n

sup
β∈Bn ,h∈Hn

∣

∣

∣I{x:μ̂i
β,h(xτ β)≥c}(Xi ) − IΓ (Xi )

∣

∣

∣

2

→ 0 a.s.,

as n → ∞, by Lemma 3. Similarly,

1

n

n
∑

i=1

∣

∣IΓn (Xi ) − IΓ (Xi )
∣

∣ |̂gi
β,h(Xτ

i β) − gβ(Xτ
i β)|

≤
(

1

n

n
∑

i=1

∣

∣IΓn (Xi ) − IΓ (Xi )
∣

∣

2

)1/2 (

1

n

n
∑

i=1

|̂gi
β,h(Xτ

i β) − gβ(Xτ
i β)|2 IΓ (Xi )

)1/2

≤
(

max
1≤i≤n

sup
β∈Bn ,h∈Hn

∣

∣IΓn (Xi ) − IΓ (Xi )
∣

∣

2

)1/2

×
(

max
1≤i≤n

sup
β∈Bn ,h∈Hn

|̂gi
β,h(Xτ

i β) − gβ(Xτ
i β)|2 IΓ (Xi )

)1/2

.

Again, by Lemma 3,

max
1≤i≤n

sup
β∈Bn ,h∈Hn

∣

∣IΓn (Xi ) − IΓ (Xi )
∣

∣

2 → 0 a.s.

and

max
1≤i≤n

sup
β∈Bn ,h∈Hn

|̂gi
β,h(Xτ

i β) − gβ(Xτ
i β)|2 IΓ (Xi ) → 0 a.s.
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Thus, n−1 ∑n
i=1

∣

∣IΓn (Xi ) − IΓ (Xi )
∣

∣ |̂gi
β,h(Xτ

i β) − gβ(Xτ
i β)| → 0 a.s. Moreover,

1

n

n
∑

i=1

∣

∣IΓn (Xi ) − IΓ (Xi )
∣

∣ |gβ(Xτ
i β)| ≤

(

1

n

n
∑

i=1

∣

∣IΓn (Xi ) − IΓ (Xi )
∣

∣

2

)1/2

×
(

1

n

n
∑

i=1

|gβ(Xτ
i β)|2

)1/2

.

Following the same argument as above, we have n−1 ∑n
i=1

∣

∣IΓn (Xi ) − IΓ (Xi )
∣

∣

2 →
0 a.s., and a direct application of the strong of large numbers gives

1

n

n
∑

i=1

|gβ(Xτ
i β)|2 → E{|gβ(Xτβ)|2} ≤ E{J 2(X)} < ∞ a.s.,

by assumption (I3) − (iii).

When it comes to the second term on the right-hand side of Eq. (14), it can be further
decomposed as follows

1

n

n
∑

i=1

IΓ (Xi ) [ϕ(bni (β))νni (β) − ϕ(ani (β))zi (β)]

= 1

n

n
∑

i=1

IΓ (Xi )ϕ(bni (β))[νni (β) − zi (β)]

+ 1

n

n
∑

i=1

IΓ (Xi ) [ϕ(bni (β)) − ϕ(ani (β))] zi (β).

Considering the first term to the right-hand side of this equation, we have

∣

∣

∣

∣

∣

1

n

n
∑

i=1

IΓ (Xi )ϕ(bni (β))[νni (β) − zi (β)]
∣

∣

∣

∣

∣

≤ L

n

n
∑

i=1

|̂gi
β,h(Xτ

i β) − gβ(Xτ
i β)|IΓ (Xi )

≤ max
1≤i≤n

sup
β∈Bn ,h∈Hn

|̂gi
β,h(Xτ

i β) − gβ(Xτ
i β)|IΓ (Xi )

which converges to 0 a.s. by Lemma 3. Now, let’s set Fiν(s) = P(νin(β) ≤ s) and
Fi (s) = P(zi (β) ≤ s). Then,

ϕ(bni (β)) − ϕ(ani (β)) = [ϕ(bni (β)) − ϕ(Fiν(νin(β)))]
+ [ϕ(Fiν(νin(β))) − ϕ(Fi (zi (β)))]
+ [ϕ(Fi (zi (β))) − ϕ(ani (β))].

As in the proof of Lemma 2, since for i = 1, . . . , n and for all β ∈ B, Fiν(νin(β)) and
Fi (zi (β)) are independent uniformly distributed random variables on (0, 1), following

123



1136 H. F. Bindele et al.

Hájek et al. (1999),we have, bni (β)−Fiν(νin(β)) → 0 a.s. and ani (β)−Fi (zi (β)) →
0 a.s., for each i . Applying the generalized continuousmapping theorem (Whitt 2011),
we have ϕ(bni (β)) − ϕ(Fiν(νin(β))) → 0 a.s. and ϕ(Fi (zi (β))) − ϕ(ani (β)) →
0 a.s., for each i and for all β ∈ B. Also, since νin(β) − zi (β) → 0 a.s., by the
continuity of the probabilitymeasure and the continuity ofϕ,wehaveϕ(Fiν(νin(β)))−
ϕ(Fi (zi (β))) → 0 a.s., for each i and for all β ∈ B. Thus,

∣

∣

∣

1

n

n
∑

i=1

IΓ (Xi ) [ϕ(bni (β)) − ϕ(ani (β))] zi (β)

∣

∣

∣

≤
(

1

n

n
∑

i=1

|ϕ(bni (β)) − ϕ(ani (β))|2
)1/2 (

1

n

n
∑

i=1

|zi (β)|2
)1/2

.

From this, we have

n−1
n

∑

i=1

|ϕ(bni (β)) − ϕ(ani (β))|2 ≤ max
1≤i≤n

sup
β∈B

|ϕ(bni (β)) − ϕ(ani (β))|2,

which converges almost surely to zero. Furthermore,

1

n

n
∑

i=1

|zi (β)|2 ≤ 1

n

n
∑

i=1

(|Yi | + |J (Xi )|)2 ≤ 1

n

n
∑

i=1

|Yi |2 + 1

n

n
∑

i=1

|J (Xi )|2

+ 2

(

1

n

n
∑

i=1

|Yi |2
)1/2 (

1

n

n
∑

i=1

J 2(Xi )

)1/2

:= J4n . (15)

By the strong law of large numbers, the entire expression on the right-hand side of this
inequality converges a.s. to E{|Y |2} + E{J 2(X)} + 2

(

E{|Y |2}E{J 2(X)})1/2 < ∞,
by assumptions (I2)–(iii) and (I4). Thus,

sup
β∈B

∣

∣

∣

∣

∣

1

n

n
∑

i=1

IΓ (Xi ) [ϕ(bni (β)) − ϕ(ani (β))] zi (β)

∣

∣

∣

∣

∣

→ 0 a.s.

Now, combining all these facts, we have sup
β∈B,h∈Hn

|˜Dn(β) − Dn(β)| → 0 a.s. ��

Proof of Theorem 2 Note that ϕ has a bounded first derivative. So, ϕ ∈ Lip(1). More-
over, by (I2)–(iii) and (I4), we have Var(zi (β)) < ∞, for all i and β ∈ B. Then

n
∑

i=1

Var(zi (β))

n2 ≤ σ 2
max(β)

n
= O(1/n),
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where σ 2
max(β) = max{Var(z1(β)), . . . ,Var(zn(β))}. Setting αn = 1/n and β = 1 in

the theorem of (Xiang 1995), we find that for every β ∈ B, Dn(β) − E{Dn(β)} →
0 a.s.

To complete the proof, we have to show that {Dn(β)}n≥1 is stochastically equicon-
tinuous. To that end, taking β1,β2 ∈ B, we have

Dn(β1) − Dn(β2)

= 1

n

n
∑

i=1

IΓ (Xi )

[

ϕ

(

R(zi (β1))

n + 1

)

zi (β1) − ϕ

(

R(zi (β2))

n + 1

)

zi (β2)

]

.

As in the proof of Theorem 1, set ani (β) = R(zi (β))/(n + 1). Then,

Dn(β1) − Dn(β2) = 1

n

n
∑

i=1

IΓ (Xi ) [ϕ (ani (β1)) zi (β1) − ϕ (ani (β2)) zi (β2)]

= 1

n

n
∑

i=1

IΓ (Xi )ϕ (ani (β1)) [zi (β1) − zi (β2)]

+ 1

n

n
∑

i=1

IΓ (Xi ) [ϕ (ani (β1)) − ϕ{Fi (zi (β1))}] zi (β2)

+ 1

n

n
∑

i=1

IΓ (Xi ) [ϕ{Fi (zi (β1))} − ϕ{Fi (zi (β2))}] zi (β2)

+ 1

n

n
∑

i=1

IΓ (Xi ) [ϕ{Fi (zi (β2))} − ϕ (ani (β2))] zi (β2).

Note that zi (β1) − zi (β2) = gβ1(X
τ
i β1) − gβ2(X

τ
i β2). Since gβ(·) is differentiable

with respect to β, applying the mean value theorem on the function gβ(Xτβ), there
exists ξ = λβ1 + (1 − λ)β2 for some λ ∈ (0, 1) such that

gβ1(X
τ
i β1) − gβ2(X

τ
i β2) = ∇ξ [gξ (X

τ
i ξ)](β1 − β2).

Then, by assumption (I2)–(iii) we have

|gβ1(X
τ
i β1) − gβ2(X

τ
i β2)| = |∇ξ [gξ (X

τ
i ξ)](β1 − β2)| ≤ J (Xi )‖β1 − β2‖.

Furthermore, set hi (β) = ϕ{Fi (zi (β))} = ϕ{Fi (Yi − gβ(Xτ
i β))}, where Fi is

a cumulative distribution function of zi (β), and therefore almost surely differ-
entiable. So by the mean value theorem, there exists η = λβ1 + (1 − λ)β2
for λ ∈ (0, 1) such that hi (β1) − hi (β2) = h′

i (η)(β1 − β2), with h′
i (η) =

−∇η[gη(Xτ
i η)] fi (zi (η))ϕ′{Fi (zi (η))} and fi (t) = d Fi (t)/dt . It is worth pointing out

that fi being a density is almost surely bounded. Thus, by assumption (I2) − i i i)
again together with the boundedness of ϕ′, we have ‖h′

i (η)‖ ≤ M J (Xi ) a.s.,
where M is such that | fi (zi (η))ϕ′{Fi (zi (η))}| ≤ M a.s. On the other hand, for
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i = 1, . . . , n, Fi (zi (β)) being independent uniformly distributed in the interval (0, 1),
for all β ∈ B, as in Theorem 1, following Hájek et al. (1999) again, it is obtained that
ani (β) − Fi (zi (β)) → 0 a.s., for all β ∈ B and for each i . By continuity of ϕ, we
have ϕ (ani (β)) − ϕ{Fi (zi (β))} → 0 a.s., for all β ∈ B and for each i . Thus,

max
1≤i≤n

|ϕ (ani (β)) − ϕ{Fi (zi (β))}| → 0 a.s.,

for all β ∈ B. Now

∣

∣

∣

∣

∣

1

n

n
∑

i=1

IΓ (Xi )ϕ (ani (β1)) [zi (β1) − zi (β2)]

∣

∣

∣

∣

∣

≤ ‖β1 − β2‖ L

n

n
∑

i=1

J (Xi ),

where L is such that |ϕ(t)| ≤ L , for all t ∈ (0, 1). Also, with probability 1, we have

∣

∣

∣

∣

∣

1

n

n
∑

i=1

IΓ (Xi ) [ϕ{Fi (zi (β1)) − ϕ{Fi (zi (β2))}] zi (β2)

∣

∣

∣

∣

∣

≤ ‖β1 − β2‖ M

n

n
∑

i=1

J (Xi )|zi (β2)|

≤ ‖β1 − β2‖M

(

1

n

n
∑

i=1

J 2(Xi )

)1/2 (

1

n

n
∑

i=1

|zi (β2)|2
)1/2

≤ ‖β1 − β2‖M

(

1

n

n
∑

i=1

J 2(Xi )

)1/2 (

1

n

n
∑

i=1

[|Yi | + J (Xi )]2
)1/2

.

Moreover,

∣

∣

∣

∣

∣

1

n

n
∑

i=1

IΓ (Xi ) [ϕ (ani (β1)) − ϕ{Fi (zi (β1))}] zi (β2)

∣

∣

∣

∣

∣

≤ 1

n

n
∑

i=1

|ϕ (ani (β1)) − ϕ{Fi (zi (β1))}| |zi (β2)|

≤
(

max
1≤i≤n

|ϕ (ani (β1)) − ϕ{Fi (zi (β1))}|2
)1/2

(

1

n

n
∑

i=1

[|Yi | + J (Xi )]2
)1/2

→ 0 a.s.

as max1≤i≤n |ϕ (ani (β1)) − ϕ{Fi (zi (β1))}|2 → 0 a.s. and

1

n

n
∑

i=1

(|Yi | + |J (Xi )|)2 ≤ J4n,
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where J4n , defined in Eq. (15), converges almost surely to a finite quantity by the
strong law of large numbers under assumptions (I2)–(iii) and (I4). Similarly,

∣

∣

∣

∣

∣

1

n

n
∑

i=1

IΓ (Xi ) [ϕ{Fi (zi (β2))} − ϕ (ani (β2))] zi (β2)

∣

∣

∣

∣

∣

converges almost surely to zero. Hence, with probability 1, we have

|Dn(β1) − Dn(β2)| ≤ Bn‖β1 − β2‖,

where

Bn =: L

n

n
∑

i=1

J (Xi ) + ×M

(

1

n

n
∑

i=1

J 2(Xi )

)1/2

J 1/2
4n + o(1).

For n large enough, Bn does not depend on β. From the fact that all terms in the
definition of Bn converge almost surely to a finite quantity, so does Bn . Therefore,
{Dn(β)}n≥1 is stochastically equicontinuous (Rao et al. 2014). ��
Proof of Theorem 4 Note that by Jensen inequality,

sup
β∈B,h∈Hn

|E(˜Dn(β)) − E(Dn(β))| ≤ E
(

sup
β∈B,h∈Hn

|˜Dn(β) − Dn(β)|
)

. (16)

Thus, together with Theorem 1, applying the dominated convergence theorem to the
right-hand side of this inequality, we obtain the result. On the other hand,

˜Dn(β) − E(˜Dn(β)) = ˜Dn(β) − Dn(β) + Dn(β) − E(Dn(β)) + E(Dn(β))

−E(˜Dn(β)).

Thus,

sup
β∈B,h∈Hn

|˜Dn(β) − E(˜Dn(β))| ≤ sup
β∈B,h∈Hn

|˜Dn(β) − Dn(β)|
+ sup

β∈B
|Dn(β) − E(Dn(β))|

+ sup
β∈B,h∈Hn

|E(Dn(β)) − E(˜Dn(β))|.
(17)

FromTheorems 1, 2 and Eq. (16), the terms to the right-hand side of Eq. (17) converge
to zero with probability 1. ��
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Proof of Theorem 5 By assumption (I6), β0,n = Argmin
β

E(Dn(β)) which implies

that

E(Dn(β0,n)) ≤ E(Dn(β)),

for all β ∈ B. On the other hand, by Theorem 4, we have

lim
n→∞ sup

β∈B,h∈Hn

|E(˜Dn(β)) − E(Dn(β))| = 0.

Thus, ∀ ε > 0, there exists N > 0 such that for all n ≥ N , |E(˜Dn(β))− E(Dn(β))| <

ε/2 for all β ∈ B. This implies that

− ε/2 + E(Dn(β0,n)) < E(˜Dn(β)). (18)

Also, for all n ≥ N , |E(Dn(β0,n)) − E(˜Dn(β0,n))| < ε/2. Thus, we have

− ε/2 + E
(

˜Dn
(

β0,n
))

< E
(

Dn
(

β0,n
))

. (19)

Equations (19) in (18) gives −ε + E(˜Dn(β0,n)) < E(˜Dn(β)), for all β ∈ B and for
all n ≥ N . Now ε being arbitrary, letting ε → 0, we have E(˜Dn(β0,n)) ≤ E(˜Dn(β)),
for all β ∈ B which completes the proof. ��
Proof of Theorem 6 Note that

Sn(β) − Tn(β) = 1

n

n
∑

i=1

IΓ (Xi )∇β [gβ(Xτ
i β)]

[

ϕ

(

R(zi (β))

n + 1

)

− ϕ (Fi (zi (β)))

]

.

So,

|Sn(β) − Tn(β)| ≤ 1

n

n
∑

i=1

J (Xi )

∣

∣

∣

∣

ϕ

(

R(zi (β))

n + 1

)

− ϕ (Fi (zi (β)))

∣

∣

∣

∣

by (I2) − i i i)

≤
{

1

n

n
∑

i=1

J 2(Xi )

}1/2 {

max
1≤i≤n

sup
β∈B

∣

∣

∣

∣

ϕ

(

R(zi (β))

n + 1

)

−ϕ (Fi (zi (β)))

∣

∣

∣

∣

2
}1/2

.

By continuity of ϕ and the fact that for i = 1, . . . , n, Fi (zi (β)) are independent
uniformly distributed in (0, 1), once again following (Hájek et al. 1999), we have
∣

∣

∣ϕ
(

R(zi (β))
n+1

)

− ϕ (Fi (zi (β)))

∣

∣

∣ → 0 a.s., for all i and β ∈ B. Thus,

max
1≤i≤n

sup
β∈B

∣

∣

∣

∣

ϕ

(

R(zi (β))

n + 1

)

− ϕ (Fi (zi (β)))

∣

∣

∣

∣

2

→ 0 a.s.
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On the other hand, n−1 ∑n
i=1 J 2(Xi ) → E[J 2(X)] < ∞ a.s. Hence,

lim
n→∞ sup

β∈B
|Sn(β) − Tn(β)| = 0 a.s. ��

Proof of Theorem 7 Note that

∇β0Tn(β0) = −1

n

n
∑

i=1

IΓ (Xi )∇β0 [gβ0(X
τ
i β)]{∇β0 [gβ0(X

τ
i β0)]}τ f (zi (β0))

ϕ′(F(zi (β0))) + 1

n

n
∑

i=1

IΓ (Xi )∇2
β0

[gβ(Xτ
i β0)]ϕ(F(zi (β0))).

A direct application of the strong of large numbers shows that ∇β0Tn(β0) → W a.s.
If we assume that X is independent of ε, we have

W = −E{IΓ (X)∇β0

(

gβ0(X
τβ)

)[∇β0

(

gβ0(X
τβ0)

)]τ }E{ f (ε)ϕ′(F(ε))}
+ E{IΓ (X)∇2

β0
[gβ(Xτβ0)]}E{ϕ(F(ε))}.

But

E
[

f (ε)ϕ′(F(ε))
] =

∫ ∞

−∞
f (ε)ϕ′(F(ε))d F(ε) = −

∫ ∞

−∞
f ′(ε)ϕ(F(ε))dε,

from integration by parts, since f (ε)ϕ(F(ε)) → 0 as ε → ±∞. Now, putting u =
F(ε), we have

∫ ∞

−∞
f ′(ε)ϕ(F(ε))dε = −

∫ 1

0
ϕ(u)ϕ f (u)du = −γ −1

ϕ .

On the other have, by assumption (I1), E
[

ϕ
(

F(ε))
)] = ∫ 1

0 ϕ(t)dt = 0. Thus,

W = γ −1
ϕ E{IΓ (X)∇β0

(

gβ0(X
τβ)

)[∇β0

(

gβ0(X
τβ0)

)]τ }.

On the other hand, to simplify notation, set Ai = ∇ξ [gξ (Xτ
i ξ)], Bi = ∇2

ξ
[gξ (Xτ

i ξ)]
and Ci = ∇3

ξ
[gξ (Xτ

i ξ)]

∇2
ξ Tn(ξ) = −3

n

n
∑

i=1

IΓ (Xi )BiAτ
i fi (zi (ξ))ϕ′(Fi (zi (ξ)))

+ 1

n

n
∑

i=1

IΓ (Xi )Ciϕ(Fi (zi (ξ)))

+ 1

n

n
∑

i=1

IΓ (Xi )AiAτ
i Ai f ′

i (zi (ξ))ϕ′(Fi (zi (ξ)))
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+ 1

n

n
∑

i=1

IΓ (Xi )AiAτ
i Ai f 2i (zi (ξ))ϕ′′(Fi (zi (ξ))).

From this, it can be easily shown that with each term to the right-hand side of this
equation is bounded by

3Ln−1
n

∑

i=1

exp{λ‖Xi‖}[J (Xi ) + J 2(Xi ) + J 3(Xi )],

which converges almost surely to 3L × E[exp{λ‖X‖}{J (X)+ J 2(X)+ J 3(X)}] < ∞,
by the strong law of large numbers under (I2)–(iii) and (I4). Thus, ∇2

β Tn(ξ) is almost
surely bounded and the result follows from Theorem 2. ��
Proof of Theorem 8 Wemimic the proof given inHettmansperger andMcKean (1998)
for the linear model. Set

Tn(β0) = 1

n

n
∑

i=1

IΓ (Xi )∇β0 [gβ0(X
τ
i β)]ϕ[F(εi (β0))].

It follows by a routine argument that
√

n(Sn(β0) − Tn(β0)) converges to 0 in prob-
ability. Hence, the proof will be completed by showing that

√
nTn(β0) converges to

the intended distribution. Using the Cramér–Wold device (Serfling 1980), let

U = n−1/2
n

∑

i=1

IΓ (Xi )aτ∇β0 [gβ0(X
τ
i β0)]ϕ[F(εi (β0))],

where a ∈ R
p. Since F is the distribution of ε(β0) and

∫ 1
0 ϕ(t)dt = 0, we have

E(U ) = 0. Also, since
∫ 1
0 ϕ2(t)dt = 1,

Var(U ) = 1

n

n
∑

i=1

E(IΓ (Xi )aτ∇β0

(

gβ0(X
τ
i β0)

)[∇β0

(

gβ0(X
τ
i β0)

)]τa → aτΣa a.s.

Note that U is the sum of independent functions of random variables which are not
necessarily identically distributed; hence, we need to establish the limit distribution
by the Lindeberg–Feller central limit theorem. To this end, set σ 2

n = Var(U ). Defining
An by

An = 1√
n

IΓ (Xi )∇β0

(

gβ0(X
τ
i β0)

)[∇β0

(

gβ0(X
τ
i β0)

)]τ ϕ[F(εi (β0))],

we need to show that

lim
n→∞

1

σ 2
n

n
∑

i=1

E[A2
n I {|An| > εσn}] = 0. (20)
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By assumption (I3)–(iii), ‖∇β0

(

gβ0(X
τ
i β)‖ ≤ J (Xi ) and so,

1√
n

∣

∣aτ∇β0

(

gβ0(X
τ
i β)

∣

∣ ≤ 1√
n

J (Xi )‖a‖.

J (·) being integrable, is almost surely bounded. Thus, there exists a positive constant
c such that J (Xi ) ≤ c a.s., and therefore, n−1/2|aτ∇β0

(

gβ0(X
τ
i β)| ≤ n−1/2c‖a‖ a.s.

Hence,

1√
n
|aτ∇β0

(

gβ0(X
τ
i β)| → 0 a.s. as n → ∞.

Set λn = n−1/2c‖a‖. Then, λn → 0 as n → ∞, and is independent of i . Since σ 2
n

converges to a positive quantity, the ratio σn/λn → ∞ as n → ∞. Now conditioning
on Xi , it is easy to see that

E[A2
n I {|An| > εσn}] ≤ E

[

ϕ2[F(ε(β0))]I
(

∣

∣ϕ[F(ε(β0))]
∣

∣ > εσn/λn

)]

×1

n

n
∑

i=1

E{IΓ (X)∇β0

(

gβ0(X
τ
i β0)

)[∇β0

(

gβ0(X
τ
i β0)

)]τ }.

In this expression, limn→∞ n−1 ∑n
i=1 E{IΓ (X)∇β0

(

gβ0(X
τ
i β0)

)[∇β0

(

gβ0(X
τ
i β0)

)]τ }
< ∞ by (I2)–(iii), (I4) and (I6). From the boundedness of ϕ and applying the domi-
nated convergence theorem, we have

E
[

ϕ2[F(ε(β0))]I
(

∣

∣ϕ[F(ε(β0))]
∣

∣ > εσn/λn

)]

→ 0 as n → ∞.

This shows that the limit in (20) goes to zero as n → ∞. ��
Proof of Theorem 10 Recall that from Eq. (2), for any Xi ∈ Γ ,

Dn(β) = 1

n

n
∑

i=1

ϕ
( R(zi (β))

n + 1

)

zi (β) = 1

n

n
∑

i=1

ϕ
( i

n + 1

)

z(i)(β),

where z(1)(β) ≤ z(2)(β) ≤ · · · ≤ z(n)(β). Since R(t) is a step function, it has a finite
number of jumps. The set of such jumps is finite and therefore has a zero probability.
Since gβ(·) is assumed to be three times continuously differentiable by (I2)–(iii),
Dn(β) is almost surely differentiable. From this, taking into account Theorem 6 and
expanding Dn(β) around β0 up to order 2, we have with probability 1,

Dn(β) = Dn(β0) + (β − β0)Sn(β0) + 1

2
(β − β0)

τ∇β Tn(ξ)(β − β0) + o(1),

where ξ = λβ0 + (1 − λ)β, for λ ∈ (0, 1). Thus,

Mn(β) − Dn(β) = (β − β0)
τ∇β0Tn(β0)(β − β0)
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−1

2
(β − β0)

τ∇β Tn(ξ)(β − β0) + o(1).

From this, we have

|Mn(β) − Dn(β)| ≤ ‖∇β0Tn(β0)‖‖β − β0‖2 + 1

2
‖∇β Tn(ξ)‖‖β − β0‖2 + o(1)

=
{

‖∇β0Tn(β0)‖ + 1

2
‖∇β Tn(ξ)‖

}

‖β − β0‖2 + o(1)

≤ 3L

2
‖β − β0‖2 1

n

n
∑

i=1

[J (Xi ) + J 2(Xi )] + o(1).

as ‖∇β0Tn(β0)‖ and ‖∇β Tn(ξ)‖ are bounded by Ln−1 ∑n
i=1[J (Xi ) + J 2(Xi )]. On

the other hand, n−1 ∑n
i=1[J (Xi ) + J 2(Xi )] → E

[

J (X) + J 2(X)
]

< ∞ a.s., by
assumption (I2)–(iii) and (I4). Now, for any β ∈ Bn , ‖β − β0‖ ≤ c/

√
n. This

implies that

sup
β∈Bn

|Mn(β) − Dn(β)| ≤ 3c2L

2n

1

n

n
∑

i=1

[J (Xi ) + J 2(Xi )] + o(1).

By Markov’s inequality, we have for any ε > 0 and for n large enough,

Pβ0

[

sup
β∈Bn

|Dn(β) − Mn(β)| > ε
]

≤ 1

ε
E

[

sup
β∈Bn

|Mn(β) − Dn(β)|
]

≤ 3c2L

2nε
E

{

1

n

n
∑

i=1

[J (Xi ) + J 2(Xi )]
}

.

A direct application of the dominated convergence theorem gives

lim
n→∞ E

{

1

n

n
∑

i=1

[J (Xi ) + J 2(Xi )]
}

→ E
{

[J (X) + J 2(X)]
}

< ∞.

Thus, lim
n→∞ Pβ0

[

sup
β∈Bn

|Dn(β) − Mn(β)| > ε
]

= 0. The proof of Eq. (8) is obtained

similarly, while that of Eq. (7) is obtained by combining Eq. (6) and Theorem 1. ��

Proof of Theorem 11 Equation (12) gives
√

n
(

β̃n −β0
) = −˜W−1

n
√

n˜Sn(β0)+op(1)
and by (9) we have

√
n˜Sn(β0) = √

nSn(β0) + op(1). Moreover, ˜W = W+ op(1) by
(13). SinceW is positive definite, we have

√
n
(

β̃n −β0
) = −W−1√nSn(β0)+op(1).

The result follows by Theorem 8. ��
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