Ann Inst Stat Math (2018) 70:1077-1114 @ CrossMark
https://doi.org/10.1007/510463-017-0616-y

A constructive hypothesis test for the single-index
models with two groups

Jun Zhang! . Zhenghui Feng? . Xiaoguang Wang?>

Received: 25 May 2016 / Revised: 19 August 2017 / Published online: 13 September 2017
© The Institute of Statistical Mathematics, Tokyo 2017

Abstract Comparison of two-sample heteroscedastic single-index models, where
both the scale and location functions are modeled as single-index models, is studied
in this paper. We propose a test for checking the equality of single-index parameters
when dimensions of covariates of the two samples are equal. Further, we propose two
test statistics based on Kolmogorov—Smirnov and Cramér—von Mises type functionals.
These statistics evaluate the difference of the empirical residual processes to test the
equality of mean functions of two single-index models. Asymptotic distributions of
estimators and test statistics are derived. The Kolmogorov—Smirnov and Cramér—von
Mises test statistics can detect local alternatives that converge to the null hypothesis at a
parametric convergence rate. To calculate the critical values of Kolmogorov—Smirnov
and Cramér—von Mises test statistics, a bootstrap procedure is proposed. Simulation
studies and an empirical study demonstrate the performance of the proposed proce-
dures.
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1 Introduction

Single-index models (SIMs) have attracted a large amount of attention. A SIM is a
generalization of multivariate linear regression models with an unknown link func-
tion, and it relaxes the restrictive assumptions imposed on the parametric models of
conditional mean functions. When the regression function should be estimated in a
nonparametric context, the dimensionality of covariates plays a crucial role. Among
the many existing dimension reduction techniques, SIMs assume the link function to
be a univariate function applied to the projection of an explanatory covariate vector
on to some direction, and they avoid some drawbacks of fully nonparametric methods
such as the curse of dimensionality, difficulty of interpretation, and lack of extrapola-
tion ability. Hence, SIMs have a wide range of applications in areas such as economics
and finance. There have been many papers that consider the estimation of the link func-
tion, the single-index parameter and related issues. See for example, Xia et al. (2002),
Wang et al. (2015), Hérdle et al. (1993), Xu and Zhu (2012), Feng et al. (2013), Feng
and Zhu (2012), Li et al. (2014), and Peng and Huang (2011).

How to compare two regression functions is a common topic. For example, in
medical research, this problem arises when comparing two functions of the mean
reaction time for drug use and the control group. In this paper, suppose we have
two independent samples following the single-index heteroscedastic regression model
(with two groups):

Y1 = g1 (B5X1) + o1 (ByX1) e,

(1)
Yy = g2 (r§X2) + 02 (y§X2) €2,

where 7 denotes transposition throughout this paper. In model (1), X is a p-
dimensional covariate vector and X is a g-dimensional covariate vector. Fors = 1, 2,
Y are the response variables, and g, (1) and o (1) are unknown univariate smooth func-
tions. Throughout this paper, we assume that functions o (#), s = 1, 2 are positive. The
error terms €5, s = 1, 2 satisfy E(e;) = 0 and E(ef) = 1. The condition E(ef) =1
used here is assumed for identifiability. Parameter B is an unknown index vector that
belongs to the parameter space Bg = {ﬂ =B, B2, -, BT eRP Bl =1,8 >
0}, and similarly, we define that y, € B, = {y =LYyt Ryl =
1,y1 >0, }

Among the various methods of estimation, there is little literature that considers the
comparison of SIMs between two groups. Classical methods use parametric regression
models for two groups and to compare the two regression functions g; and g», they
compare the resulting parameters of the models. A disadvantage of this approach is
that it requires the parametric models to be specified, which is often difficult. As we
indicated above, the single-index structure is more appropriate in terms of its easier
interpretation and ability to relax the restrictive assumptions. Single-index model (1)
has two groups, and the comparison of the regression functions of two groups has been
extensively investigated in the literature if the dimensions of X and X» equal each
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other and are both equal to one, i.e., p = ¢ = 1. See for example, Kulasekera (1995),
Ggrgens (2002), Kulasekera and Wang (1997), Koul and Schick (1997), and Neumeyer
and Dette (2003). Feng et al. (2015) proposed a Wilcoxon-type generalized likelihood
ratio test to deal with the data that is possibly affected by outlying observations and
heavy-tailed distributions. Zhang et al. (2010) considered test methods to compare
the mean functions of two samples drawn from functional data sets by proposing L>-
norm-based and bootstrap-based test statistics for this purpose. For the comparison
of SIMs, Lin and Kulasekera (2010) proposed an ANOVA-type approach to compare
two or more SIMs by assuming that the dimensions of X and X, are equal, i.e.,
p = g. Under this scenario, Lin and Kulasekera (2010) proposed an F-statistic to
check By = yo and g1 = g simultaneously. Suppose that p = ¢ and g1 = go,
then the null hypothesis in Lin and Kulasekera (2010) becomes Hy : By = y(, and
the convergence rate of the F-statistic is m, where n; is the sample size of

group s, s = 1,2, and A is the bandwidth used for nonparametric kernel smoothing.
It is known that the convergence rates of the estimates of (B, y) are faster than
the nonparametric estimates of g;(u) and g>(u). Hence, the F-statistic proposed by
Lin and Kulasekera (2010) is not optimal for testing o : By = y. Let us consider
another special setting. If we know 8, = ), and we further want to test H{, : g1 = ga.
Neumeyer and Dette (2003) proposed using F -statistic to test this, which can detect an
alternative hypothesis converging to the null hypothesis with a rate that is slower than
the parametric rate. Because the test proposed by Lin and Kulasekera (2010) is not
optimal for testing either the equality of single-index parameters or the equality of the
mean function, this motivates us to propose test procedures with optimal convergence
rates.

The first goal of this paper is to propose an estimation procedure and a hypothesis
test for the unknown single-index parameters. The profile estimation equations are
adopted to estimate the single-index parameters that are associated with large sample
properties of the estimators. If the dimensions of covariates X| and X, are equal,
a Wald-type statistic is proposed to test Hp : By = p. Note that the restrictions
IBoll = 1 and ||y(|l = 1 mean that the single-index parameters 8, and y are on
the boundary of a unit ball. Therefore, we use the popular “leave-one-component out”
method for estimating the single-index parameter (Cui et al. 2011; Li et al. 2010; Yu
and Ruppert 2002), and we show that the test statistic asymptotically converges to a
standard x 2 distribution with p — 1, rather than p the degree of freedom.

The second goal is to check whether the mean functions g (#) and g>(u) are equal
or not, i.e., test Ho : g1 = go. The idea of constructing a test statistic for Hy is
implemented by comparing the estimated error distributions I:}S (t),s = 1,2 obtained
under the full model (1) with the estimated error distribution functions ﬁy{m . (1),

s = 1,2 obtained under the null hypothesis 5{0. Under iﬁo, the estimator of dis-

tribution function Fe (¢) for €, can be obtained from the residuals based on errors
e~ — Y1—B85X1) —-g1(y5X2)
Ho.l = a1(BGX1) 02(y(X2)

€35,1 = €1 and €5, , = €2. Hence, the test procedure for j-vCo is completed by first

and €5 , = . Itis easily seen that if 9760 is true, then

estimating the distribution functions F¢ (¢) under model (1) and UTCO. We then use these
estimated distribution functions to propose the Kolmogorov—Smirnov test statistic and
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Cramér—von Mises test statistic. We obtain the asymptotic expressions for the estima-
tors of F¢, (t) under model (1) and under J(y. The weak convergence properties for
the estimators of the error distribution functions are revealed. Finally, the limiting dis-
tributions of the Kolmogorov—Smirnov and Cramér—von Mises test statistics are also
derived. To mimic the null distributions of the test statistics, a bootstrap procedure is
proposed to define the p values. We conducted Monte Carlo simulation experiments
to examine the performance of the proposed procedures. Our simulation results show
that the proposed methods perform well both for estimation and hypothesis testing.

This paper is organized as follows. In Sect. 2, we propose the estimation procedure
for By, Yo, 8s(u) and og(u), s = 1,2. A hypothesis for testing B = y is also
considered. In Sect. 3, we provide the estimators of the error distribution functions
and propose test statistics to check the equality of the mean functions. A bootstrap
procedure is also proposed to mimic the null distributions of test statistics. In Sect. 4,
we report the results of simulation studies. All the technical proofs of the asymptotic
results are given in the Appendix.

2 Estimation of B, y, g1(u), g2(u), o (u) and o; (u)

For notational simplicity, we define w[1; = B, a)ﬁi BV = B, ..., Bp)" and

wp] = y, wfg =y = (3n,..., y,)". Similarly, we define w110 = B, and
H]) 0= ﬁ and w[21,0 = Yo, “’Eg,o = y(()l) for the true values.

Suppose that we have two samples {Xy;, Y1;,i = 1,...,n1} and {Xy;, Y2;,i =

1, ..., n2} from model (1), where ng and s = 1, 2 are the sample sizes of two groups,

respectively. In the following, we propose estimation procedures for the parameters
B and y(. The profile least squares estimation procedure used in Liang et al. (2010)
is employed here. Our procedure has three steps:

1. Givenw(], we can approximate gy (u) by g (u,)+g7 (u+) (u—u,) inaneighborhood
of u, for s = 1, 2. Minimizing (2) with respect to asg and ay|

ns

Z {Ysi — as0 — a1 (0] Xsi — )} Kn, (0 Xsi —u). ()

i=1

T ) — ] wFS]Xsi —u : :
Here, K, (w[S]X si—u) =h; 'K — where K (1) is a kernel function
s

and hy is a bandwidth. Let (a4, ds1) be the minimizer of (2). Then, the estimator
of gs(u) is obtained as

gs(u (O] s]) = &sO
ns 20(u, W[s] )TnS,Ol(u w[s]) nY 10(u, ws])Tny 11(u, W([s )

. 3)
nS,OO(u, (l)[s])TnS,ZO(u» (l)[s]) - Tns,l()(u’ w[x])

s 1}
where Ty, 1,1, (1, @[5)) = ni i K (@] X — u) (@ X — w1 Y2 forly =
0,1,2andl, =0, 1.
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2. Similar to (2) and (3), the local linear smoothing technique is used to estimate
variance function o/2(u), and we obtain that

A2
Gs (u7 w[S])
Sns,ZO(us w[s])Snx,Ol (u, c‘)[s]) - Sns,IO(uv w[x])Sns,ll(u’ w[s])

: L@
SnS,OO(u» (l)[s])Sns,ZO(ua w[s]) - Snx,lo(u’ w[s])

where
Sns 1112(u W[ ])

= n_? Z[ si gs (w[y]Xbl’ w[a])) ] Khx (wfs]Xxi - u)(wf_g]Xxi - l")lls

i=1

forly =0,1,2andl, =0, 1.

3. We now proceed to estimate wi,],0 using the profile estimation function (Cui et al.
2011; Liang et al. 2010) and the “leave-one-component out” procedure in the
following estimation equation

(D
W, (co[s]>

d f ~ A
= Z Hg5 (w[s]st: W5] ) [Xsi - Vs(wﬁy]Xsi: w[s]):l (o Z(Q’[ts]Xsi, w[s])

i=1
x [Ysi— s (@[ X i, ®i))] (5)
where, g (u, wi5) = W, Jo = aw[s]/awfj]) is the Jacobian matrix with
<1>r 1~ [o®
‘Iw[s] = W1 H ‘
Iis1-1

where Ijj—1 = diag(l, ..., 1), an identity matrix of size p — 1 for s = 1 and
q — 1 for s = 2, respectively. Moreover, V;(u, w(,)) is the local linear estimator of

T
Vs sy (1), Where Vg (1) = (E(Xs,1|wf Xy =), ... Xy 0l X, = u))
for s = 1,2, vy = p and v = g¢q. The estimator Vg(u ®[s)) is defined
as ‘,}S(u,w[s]) = (‘A/s,l(u’w[s])w-w YI)A(M w[s])) , Where V?l(u w[?]) =

Z:lil bnswi(u,w[s])xs,li f —
Z:lsl ns, i(u, w[Y]) o l B
u)[ ng,20(U, @[5]) — (wﬁv]Xsi = )T, 10(u, wm)]'

, Vs, Where bns,i(u, w[x]) = Khs (w.[ES]Xst
Let & a) o denote the solution of the estimation equation Wy, (@ ( g]) ) = 0. Then,

é)ﬁ]) 0 H and the estimator of @(4],0 is defined

(:)[s],O,l is obtained by (:)[S],()’] =./1-
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1082 J. Zhang

T
as Q5.0 = (@[51,0,1 , &EJ])TO) . Finally, the estimators of g (u) and 052(14) are obtained

by substituting @ with @) 0 in (3) and (4), respectively.
In what follows, A®? = AAT for any matrix or vector A. We list the conditions
needed in our asymptotic results.

(C1) E[X A < oo, E[X 1] <ooforr =1,...,pand!l = 1,...,q, and the
covariance matrices SZA, s = 1, 2 defined in Theorem 1 are both finite.

(C2) For s = 1,2, functions gs(u), os(u), E(Xs,llw[TS]XS =u),l =1,...,v,
vy = p and v» = ¢, and the density function fwfq x, (u) of random variable
a)EY]X s are twice continuously differentiable with respect to u. Their second
derivatives are uniformly Lipschitz continuous on C; = {u = w[fs]xs 1 X| €
X1 CRP,xp € Xo CR?, B € Bg,y € By}, where X is a compact support

set. Furthermore, 1nf fw X (u) > 0and 1ntf og(u) > co > 0 for some positive
uely

constant cg, and _/O'S ) for,, ,x, Wdu < 0o
(C3) Kernel function K (u) is a symmetric bounded density function supported on
[—A, A], satisfying a Lipschitz condition, and has twice continuous bounded
derivative, satisfying K/)(£A) = 0 for j = 0, 1, 2,3, and [ s?>K (s)ds # 0.
(C4) Asn — oo, the bandwidths kg, s = 1, 2 satisfy hs(log ns)H‘sO — 0, nsh? -0

(log ng)>+2%0
and CE7
S

(C5) For s = 1,2, model error ¢ satisfies E [e?] < 00, the distribution function
Fe, (1) of € is twice continuously differentiable. Further, the density function

fe, (1) of € satisfies ffé (t)dFe () < 00, sup fe, () < oo, sup|t|f€S (1) < o0
teR

— 0 for some constant 5o > 0.

and supt |fE ()| < oo.
teR :
Theorem 1 Under the conditions (C1)—(C4), we have
1 1 L _
s (a)&io - wfs])’o) — N (0, 2 1) ,
where
2, = 15, F [7@]0X 00,2 @010X0) [Xs = Viwro @5 XD]% | Jupg

and Vs g, 0 () = (X s |wﬁg],0X s = u) Furthermore, by a simple application of the

multlvarlate delta-method, we also have

. L
Vs (@570 — @) — N (0, Jop 0925 J’A]O)

Remark 1 The population version of (5) when wfyl]) = wg]) o 1s defined as

ng

M\ _ .

W (“’m 0) =D DY /A &)
i=1

X [ Xsi = Vsopyo @ Xsi) ] 0,2 (@F X i) [Yei — 8 (@0 Xsi)] .-
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The function W}, (wg]) 0) satisfies the second Bartlett identity as Cui et al. (2011)
claimed, that is,

IW* (wfl])o)
Ry K
E[W:s (“’&)0) W, (“’Evll)O)]:_E —m | =% (0)
aw[s]yo

This makes the estimators (Q)EJ]) o semi-parametric efficiency (Cui et al. 2011).

3 Test statistics and their asymptotic properties
3.1 Testing the equality of single-index parameters

When the dimension of X is equal to the dimension of X5, i.e., p = ¢, we are
interested in

Ho : Bg =y against H; : By # Y. @)

By the identifiability condition and the fact that first component of 8, and y, are all
positive, (7) is equivalent to

ﬁ(l) (1) agamst g_(:* . ﬂ(l) ) (8)
We propose the test statistic
@O L PO RNG|
nlnz = (ﬁo - ( )) A (:BO - 7(())>’

where

n A2, 57 ~ -1

-~ g (BoX1i, Bo) PN 5 192

A= [J/; ZA;ATO—’AO [Xli - Vl(ﬁ(r)thﬁo)] I3,
0937 07 (BoX1is Bo),

—1

np 2

8 (P X2, o) [ o e

| JE Yy e X2~—v2(yoxz,;,0)] .
|: 7o ; 22(y0X2l’ 7’0), ' ! Yo

Theorem 2 Under the conditions of Theorem 1, if

m +n — X € (0, 1), we have

L
Tniny —> 5c; Xp 1

If the null hypothesis Hy (or FH; o) is true, the pooled-sample {Xy;, Y1;, X2j, Y2}

can be used to re-estimate B (= }’0) Analogous to (5), we estimate B by using the
“pooled” estimation equation
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1084 J. Zhang

W6 E Y3 58 X B) [ Xsi = Vo™X, B)] 672 X i B)

s=1i=1

X [Ysi — & (B Xy, ﬂ)] . )

Here, g>(u, B), 62(u, B) and Vo (u, B) are defined according to g2 (u, y), 62(u, y)

3% (u,pB)
(1) gZaZ .

Denote the estimator from (9) as B, and define the final estimator of 8, under the

1 1
o .3 (gf)ot> Similar to Theorem 1, we

and Va(u, y) by substituting y with B, respectively. Moreover, g, (u, B) =

null hypothesis H as Bﬂ'fo = ( H B
obtain the following asymptotic result.

Theorem 3 Under the conditions of Theorem 2, we have

Jarwnz (Boe, — B5") = N (0,-1.23).

where

25,
! — 2
= 1J5 E [P BEX 0T 2BIX 1) [X1 = Vg, BEX D],

+ (1= 27, E [82(B5 X003 2 (B5X2) [X2 = Va g, (BEX2)] ™ | U, (10)

Also, a simple application of the multivariate delta-method makes that
- L _
iz (Bag, — Bo) = N (0. 75,250 7,) -

3.2 Testing the equality of the mean functions
The idea for testing the equality of the mean functions, i.e.,

Fo : g1(u) = go(u) foreach u, (11)
against

Hi @ g1(u) # ga(u) for some u,

is based on a comparison between the estimated error distribution F Tlo.es (1) obtained
under 5_,(0 and the estimated error distribution I:"Q (¢) obtained under the alternative
hypothesis (Neumeyer and Van Keilegom 2010; Van Keilegom et al. 2008; Dette et al.
2007). That is, we adopt the Kolmogorov—Smirnov or Cramér—von Mises test statistics
for the processes
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Fitye, ) = Fe, (1) and Fig, (1) — Fey (1),

We first introduce the method for obtaining estimators F Tlo.cs (t) and IA'}S (t). Under
the null hypothesis ?Co, the estimators of F, (¢) and F¢,(7) are obtained as

. 1 <~ (. . Yy — é’z([g(r)xlw Y0)

F5tp.6,(0) = o ZI [6:?(0,11' < t}, where €57 1; = l& (BTX é e
i=1 1 0Xlis Po

Yo —§1()A’(T)X2i,ﬁo)
276 X2i, ¥0)

R 1 & . .
Py = o3 [egy 1], where 2, =
i=l1

and under the alternative hypothesis H 1»

“ 1 X Yy — ¢ Atx.7A

Foy=—>"I{éen <1}, whereé; = —— %lr(ﬂo 1i, B)
m i=1 Ul(ﬂoxli,ﬂo)

. 1 np Y'—A AIX‘,A

Fe,(t) = — Zl {é2i <1}, where &, = 2 é?f(yo 2 70)'
na 02 (YoX2i, Vo)

i=1

Under i(o, the difference between two functions 13970’ . (t) and I:"ES (t),fors =1,2,

will be small. In other words, if 9’:(0 holds, the processes are not distinguishable.
Whereas under the alternative hypothesis, the differences should be obvious. To test
Ho, we propose Kolmogorov—Smirnov and Cramér—von Mises type functionals based
on the following test statistics:

KS 12| A ~ 12 ] A ~
Tnlnz = ?:Ignl/ ‘Fﬁo,el(t) - F€1 (t)’ + fgﬂg’%/ ’Fﬁo,ez(t) - Ffz(t)‘ ’
and
oM N N 2 . ~ A 2 .
T, =1 [ By 0 = B0 dBa 0 +m2 [ By 0 = Fo ] a0,

Theorem 4 shows that f*}x (t) consistently estimates Fe (), and Theorems 5 and

6 show that ﬁf}vfo, o (t) can consistently estimate the distribution of error €T0s =

Y1—-8B85X1) i Yo—g1(y5X2) _
o1(B5X1) Is =1} + 02 (y5X2) I{s =2}.

Theorem 4 Suppose the conditions of Theorem 3 and condition (C5) are satisfied,
we have the following asymptotic expression:

Fe, () — Fe,(1)

= [l{es,- < 1) = Fey 0+ £, 0) <E”'+%(63f_1)>}+”1’(ns”2)’ a2
$i=1
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1086 J. Zhang

uniformly int e R, s =1, 2.
Remark 2 Note that the asymptotic result of Theorem 4 is the same as Theorem 2.1
in Neumeyer and Van Keilegom (2010). In fact, the process /7 (ﬁes (t) — Fe, (t)),

t € R, converges weakly to a zero-mean Gaussian process Z(¢) with a covariance
function

E|: (1{6; <} — Fe (1) + fe, (11) (65 + %(632 - 1)))
L)
X (I{Gs <t}-— Fes(tZ) + fes(tZ) <€s + E(Es - 1))) ],

for any 1 < 1.
Next, we present the asymptotic expressions for Fg (1) and Fig  (1). In

the following, we define Dy(u) = %@g;(m’ Dy(u) = %(5)2(14)’ Pfo) =
fﬂ(T)XI () o2 (u) d
Tygx, W) o1(u)?

F& (0 = E[Fe (1 + Ds(wf0X,)].

-g;(w[rs]ﬁ()Xs)

N, = E L
_Gs (w[s],()Xs)

Vs,wm,o (w.[r_y]’()XS)} ’

/ ‘L'X
Mi(1) = E | fe, (r — Di(BX 1) %W,ﬂo(ﬂé)ﬁ)} ;
L 0
r / TX
My(t) = E | fe, (1 — D2(¥5X2)) %w,yo(rsm] :
L 0

Theorem 5 Under the conditions of Theorem 4, we have

ns

N 1
Fity.e, () = Fi (0 = — > 1 {esi = Ds(@f 0 Xsi) <t} = Fiy  (©)
¥ =1
-
2
o D fe (1 = Dy(@fy 0 X)) (€ = 1)

i=1

1 &
+ |:n_2 Zfel (t - D1()’6X2i)) pf,g(y(f)Xzi)ezl-:| I{s =1}
i=1

1 «
+ |:Z foz (l — DZ(,B(T;XU)) P;},(ﬂéX“)eh} I{s =2}
i=1

g

1 g/ (@[ 0 Xsi)
-1 s\7[s1,0
+ M (1) Jop, 025 n—SZJr

———— X — Vs,0 (w1 0 Xsi) | €si
wm’oas(wﬁy],()xsi)[ St $,@[51,0 \*[s],0 H] s

i=

+0P(I’l1_1/2 +n2_1/2).
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Under the null hypothesis 9-C0, we have the following asymptotic results.

Theorem 6 Under the conditions of Theorem 4, if IJTfo holds, we have
1 &
Fitpe ) = Fe () = fo O+ D e+ o, (ONE Ty 0 27
s

gs(w 85 (@51 04 5i) Xi) .
Z “’leOO- (w[s] OX“) [XSi - Vs,wm,o (w[s],OXSi)] Esi

1
+ |:f63 (l)a Zp/’,a()’axﬁ)@i] I{s =1}

|:f€5 (t)_ Zp (ﬁoxll)ell] I{s = 2}

+op(ny /+ 51/2)~

Note that the limiting process of Theorem 6 is a product of two objects: one is a
deterministic density function f,, (¢) only depending on ¢, and the other is a summa-
tion of random variables with mean zero that are independent of 7. According to the
asymptotic results of Theorem 6, the continuous mapping theorem entails the weak

convergence properties of test statistics TnK]Sn , and ‘I,C”hflz

Theorem 7 Under the conditions of Theorem 4, if 57(0 holds, we have

3'll<18V12 —> (Sup fei (t)> 1§ + (SUP féz(ﬂ) 1,
teR teR

M=, ( f fi(r)dFﬂ(n)s%( f fé(z)dFEQ(t)) n’,

where & and n are two zero-mean normal random variables with the covariance and
variances as

I —A A
Covig.m) = || ——E [pfgwoxn] J T E [era 5],

Var(§) = N{Jg, 27 I, N1 + 7 [,Ofg(yOXz)] ¥,

. 1—x
Var(n):N%J,,OSZZIJ;ONz—i- —=E[p2B5X0) |+ 1.

Theorem 8 reveals that the 11m1t1ng behavior of the two test statistics T,'fsnz and ‘IS%IZ
can detect the local alternative 9—(1 i, With order O((ny + n2)~ 172y converging to

the null hypothesis fHo
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1088 J. Zhang

Considering the local alternative hypothesis

Fimm - 8100) = g2(u) + w(u), forevery u. (13)

1
n1+n2

We can have the following asymptotic result.

Theorem 8 Under the conditions of Theorem 4, if the local alternative hypothesis
(13) holds, we have

L
Ty —> (SUP fel(t)> & +bi| + (Sulg fez(t)) ln + b2l
te

teR

M=, ( / fEdF, (r)) & +b1)>+ ( f fiadF., (r)) (n + b2)?,

9. ¢ 3¢
where by = —v/AE [ Lo x'.)>] and by = T — AE [(’,‘2(5,%5]-

3.3 A wild bootstrap procedure

In this subsection, we use the smooth residual bootstrap method proposed by Neumeyer
and Van Keilegom (2010) and Neumeyer (2009) to mimic the distributions of the test
statistics TXS and TM _ The procedure is summarized as follows:

niny niny*

KS CM

Step 1 Compute ‘IMZ and T, . '

Step 2 Generate B times i.i.d. variables ¢jp fori = 1,...,n,, b = 1,..., B,
and s = 1,2 from a standard normal distribution N(0, 1). They are inde-
pendent of the original sample {Y;, X5i,i = 1,...,n5,s = 1,2}. Let

A AT P A AT D
€1 = —Y”A_gfgﬂoxlf’ﬁo), &y = Li=8200X2.70) o the estimators of €; and
61(ByX1i.B0) 62 X2i,¥0)
€2;, respectively, and standard them by
~ 1 ~
N €li = 5y ?;1 €1i .
€1i = N2 i=1,...,ny,
1 nj 2 1 ny o o~
(v - e
A 1 ny A
5 €2 — - i—1 €2i .
& = 7 i=1,...,n.

N 1/2°
1 na ~ 1 ny -
I 2ty [621' T 2ui=1 621’]
Let
€rp=6i+tansp i=1,...,n,, b=1,...,B, (14)
where a,, = cs,lns_l/ 4 for some positive constants ¢, 1, s = 1, 2 (Neumeyer
2009; Neumeyer and Van Keilegom 2010). Then, define the “bootstrap”-

response Y|, and YJ;, as
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~ AT i ~ AI 3 ~ .
Yip = 81(BoX1i. Bo) +61(BoX1i, Bo)élip, i =1, ..., 01,
Y3, = 80 X2i, 7o) + 0200 X2, P))Exip, i = 1,...,n2.

Step 3 For each b, we use bootstraps {Y;‘;b, X, i=1,...,n5,5s =1, 2} and re-
NOER n ~ (b ~ ~
calculate the bootstrap estimators ﬂé ), y(()b) g%h) (u, ﬂ(() )), géh) (u, yg’)),

N ~(b N N . .
al(b) (u, ,3(() )>, and crz(b) (M, }'(()b)). We then obtain the bootstrap test statis-

tics %,I,(lsn(f ) and %Sll\ﬁgh)_

. .. KS(b) xCM(b)

Step 4 We calculate the 1 — k quantile of the bootstrap test statistics B, » Bun,
b =1, ... B as the k-level critical value.

3.4 Extension to k groups

Suppose we have k (k > 3) independent samples following the single-index het-
eroscedastic regression model:

Ys = g (@f;1.0Xs) + 05 (0f10Xs) &, s=1,....k (15)

Fors =1, ..., k, Y is the response variable, g, (1) and oy (u), are unknown univariate
smooth functions, where function oy (u) is assumed to be positive. Further, X is the
gs-dimensional covariate vector. Error term € satisfies E(e5) = 0 and E(esz) =1.
Parameter w[s),0 is an unknown index vector that belongs to the parameter space
BS = {w[s] = (a)m’l, ey a)[s],qs)f € R, ||a)[5]|| =1, W[s],1 > 0}.

We consider testing the equality of the mean functions, i.e.,

Feo: g1(u) = g2(u) = -~ = gi(u) for each u. (16)
Under null hypothesis 9761(,0, the estimators of F¢ (f),s =1, ..., k are obtained as
ns

. 1 R
Ft 0.6, () = s Z ! {Eﬁk,o,si = t} ’
S =1

S Ysi — 85 (@4,1.0X dyi» @[s1,0) for d, = s
Hoo.si 0 ((:)[rs],oxsiv ®[51,0) ’ * ’

and set {1, 2, ..., k}isequal to {d;, da, ..., di}. If under the null hypothesis ﬁ-VCk,o is
not true, we define

1 o Ysi - gx ((:)[TS],OXSZ" (:)[s],O)

Fe(t) = — Y I{é; <t},whereéy; = ———— .
@) =+ ;: {ei <1} = o Bro)
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To test J-Ck,0, we propose using the Kolmogorov—Smirnov and Cramér—von Mises type
functional based test statistics:

/ A
k’llnz Zsupns ‘Fﬂfkoe()_
lteR

€s

and

Tins = Z"vf!%oe RO IR0)

Similarly, we can also use the smooth residual bootstrap method introduced in Sect. 3.3

to mimic the distributions of test statistics TkKi o and ‘Iglf
2’

4 Implementation

In this section, we report simulation results to evaluate the performance of the proposed
estimators and test statistics. Here, the Epanechnikov kernel K (1) = 0.75(1 —*)* is
used. Note that under-smoothing is necessary as Condition (C4) requires that n Sh;‘ —
0. To meet this requirement, we follow the suggestion in Carroll et al. (1997) by
choosing the order of O (ny 1/5) X n 2/15 O(nx_m) for bandwidth Aj;.

The selection procedure for A is 1mp1emented as follows. First, we minimize cross-
validation score CV(h) to obtain bandwidth Ay 1; then, we use bandwidth A as

—2/15

hy = ny * hg 1. The cross-validation score is defined as

ng . 2
CV(h) = nS_I Z {Ysi - g[s,_,'] (V[S,fib w[s,,i],o)} ,
i=1

where V,_; = @f _i1,0Xsi» and & ;0 and g (IA/[_,-],(I)[S’#]’O) are com-
puted similarly to (3) with the ith observation deleted. For the choices of a,,
in (14), Neumeyer (2009); Neumeyer and Van Keilegom (2010) suggested using
= ¢, 1n:1/4 for some positive constants cs 1, s = 1, 2. In this section, we use

-1 . .
=1, /* and the numerical results are stable when we use a shift around ap,.

dn

ap, =
Example 1 In this example, we generate 500 realizations from models (1) and choose
sample sizes n1 = ny = 50, 100, 300 and 500:

g1(u) = ga(u) = 2exp (u), 01 (u) = exp(u), o2(u) = (1 +u)’.

1. Parameter estimation. We consider 8y = (2, 1, 0, =2, l)f/m, X1 ~ Ns5(0, X))
with 21 = (01,4j), 015 = 0.5/ and yo = (1, 2,3, D7 /15, X2 ~ N4(0, T>)
with X5 = (02,), 02,ij = (—0.5)"~J|. The model errors €| and €, independently
follow a standard normal diAstribution N0, 1).

The simulation results for 8 and p are reported in Tables 1 and 2, respectively.
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Table 1 The mean (M), standard error (SD) and means squared error (MSE) of Bo and arccos([?o, Bo)

Bo arccos(ﬁo, Bo)

n =50

M 0.6012 0.3287 0.0028 —0.6083 0.3229 0.2060

SD 0.1238 0.1133 0.1201 0.0715 0.0956 0.1296

MSE 50.5148 43.6036 41.8572 19.4543 30.8682 170.6115
n =100

M 0.6298 0.3292 0.0127 —0.6134 0.3234 0.1113

SD 0.0533 0.0535 0.0550 0.0448 0.0590 0.0501

MSE 9.1718 10.9649 11.5210 8.5556 12.0104 44.7091
n =300

M 0.6323 0.3229 0.0066 —0.6249 0.3182 0.0603

SD 0.0264 0.0320 0.0311 0.0253 0.0277 0.0239

MSE 6.9070 10.5784 10.0215 6.9104 7.6257 14.2168
n =500

M 0.6349 0.3180 0.0064 —0.6267 0.3171 0.0456

SD 0.0189 0.0255 0.0248 0.0178 0.0208 0.0188

MSE 3.5930 6.4643 6.4848 3.4546 4.3016 8.3059

MSE is in the scale of x10™%

The values of ﬁo and y are close to the true values of 8 and y, respectively,
and the values of MSE(/%, Bo) and MSE(p, ) decrease. Moreover, the angles
(in radians) of arccos(,@o, Bo) and arccos(y, ) become closer to zero when
sample size n increases to 500. These simulation results show that the estimation
procedure proposed in Sect. 2 works well.

2. Test procedure for B, = p,. We investigate the performance of test statistic

Toimy. Let By = (1,2,3,4)7/+/30, y(()fgco] = (2,3,4)7/+/30 + C, and the first

elementof o ¢, be Yo 1 1,1 = /1 = 17§, 1c,l|> Both X | and X, follow normal

distribution ~ N4(0, X3) with 3 = (03;;) and 03 ;; = 0.5/ /1. The model errors
€1 and €, independently follow from a standard normal distribution N (0, 1).

Note that the null hypothesis J( considered in (8) is true if and only if C, = 0. The
simulation results are reported in Fig. 1. Typically, when Cy = 0, then By = p,
holds. The rejection probabilities are 0.0091, 0.0277, 0.0548, 0.1123 for n = 300
and 0.0095, 0.0261, 0.0524, 0.1077 for n = 500. These simulation results of T}, .,
for Cop = 0 are close to 0.01, 0.025, 0.05, 0.10 when the null hypothesis 3y (or
X ) is true. This indicates that T, ,, can provide proper rejection probabilities
under the null hypothesis Ho ( or Jj ). We compare these results with those of
the Kullback—Leibler (KL) statistic proposed by Lin and Kulasekera (2010). In
Figs. 1 and 2, we plot the empirical powers obtained by test statistic T}, ,, and the
KL statistic. The performances of test statistic J),,,, are more powerful than the
KL statistic in both figures. This is not surprising as we indicated in Sect. 1. The
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Table 2 The mean (M), standard error (SD) and means squared error (MSE) of p(, and arccos(p . ¥()

Yo MCCOS(?O! YO)

n =50

M 0.2036 0.5125 0.7679 0.2581 0.1676

SD 0.1324 0.1039 0.0632 0.0878 0.1236

MSE 63.3573 34.0945 15.0437 28.3204 142.2371
n =100

M 0.2584 0.5169 0.7699 0.2660 0.0422

SD 0.0285 0.0223 0.0198 0.0288 0.0286

MSE 2.0215 1.9285 1.1102 2.8322 8.9105
n =300

M 0.2585 0.5164 0.7743 0.2581 0.0142

SD 0.0109 0.0080 0.0058 0.0083 0.0089

MSE 1.1678 0.6292 0.3373 0.6724 2.3069
n =500

M 0.2578 0.5157 0.7751 0.2582 0.0122

SD 0.0079 0.0075 0.0052 0.0078 0.0072

MSE 0.7214 0.5652 0.2709 0.4691 2.2267

MSE is in the scale of x10™4

convergence rate of the KL statistic for testing the null hypothesis 3o (or )

. . . 1
is slower than 7, ,,, which has a parametric convergence rate of O <m) In

Fig. 2, the power functions of both statistics increase rapidly and approach one
when the value of C, increases and sample size n increases to 500.

Example 2 In this example, we investigate the performances of the estimators I:"ES )
and ijo 6‘(t) for s = 1,2, and test statistics Kflsnz and ‘Igll\ﬁz We generate 1000
realizations and choose sample sizes of ny = np = 50, 100, 300, 500. The data

generating process is considered as follows:
g1) = 2exp(0.51), g2(u) = g1(u) + Dou®, 01 (u) = 01 (u) = exp(0.5u).  (17)

In this example, we set B, = yo = %(2, 1,0, —2)". The covariates X; and
X, are independently generated from normal distribution N4(0, X4) with X4 =
(04,ij)1<i,j<4» O4,ij = 0.5!"=J1. The model errors €; and € independently follow
a standard normal distribution N (0, 1).

1. Estimation for I:}S (t) and I:ECO .. (t) under null hypothesis Hy. The performance

of estimator I:}S (t) and its true distribution F¢ (¢) is evaluated using the average
squared error (ASE) and the average absolute error (AAE)

no . 2 no R
ASE=n;'y" [FES () - F., (lv)] . AAE =g Y| ) — Fe (1)

v=1 s=1
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Power

Power

Significant level 0.01 Significant level 0.025
1 1
0.8 1 0.8
S 06
0.6 g
o
o
0.4 0.4
0.2 0.2
0 0 ! ! !
0 0.0025 0.005 0.0075 0.01 0 0.0025 0.005 0.0075 0.01
Co Co
Significant level 0.05 Significant level 0.10

Power

0 0.0025 0.005 0.0075 0.01 0 0.0025 0.005 0.0075 0.01
Co Co

Fig. 1 Power calculations of hypothesis test B = y, n = 50 (dashed lines) and n = 100 (dotted line).
“+” for Ty n, and “o” for KL statistic

2.

where {l1, ..., l,,} are the given grid points in the interval [—-2, 2], and ng = 400
is the number of grid points.

In Table 3, we report the numerical results of ASE and AAE for the estimators
Fe (t)and F. Fo.es (t) when D, = Oands = 1, 2. The four estimators perform better

as sample size n increases. The performance of l:"es (1) is better than 13"5;(0 o (1) inthis
simulation study. Figure 3a, b show that there is little difference between estimators
Fe (t)and Fj(o . (t) for sample size n = 500 when D, = 0, which indicates small

values for Kolmogorov—Smirnov test statistic ‘IEISHZ and Cramér—von Mises test

statistic ‘ISMZ In Fig. 3, we also present the plots of I:"ES (t) and I:“J:CO o () when
D, = 0.5 and D, = 1. It is easily seen that larger values of D, lead to a larger
deviation of F Tlo.es (t) from F¢ (t), which indicates large values of Kolmogorov—

Smirnov test statistic ‘Z;flsnz and Cramér—von Mises test statistic TSMZ
Test statistics for g1 (#) = g»(u). In each simulation for the power calculation, 200
and 1000 bootstrap samples were generated. We also compared our results with

those of the KL statistic proposed by Lin and Kulasekera (2010). The simulation
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Fig. 2 Power calculations of hypothesis test B = y, n = 300 (dashed lines) and n = 500 (dotted line).
“+” for Ty n, and “o” for KL statistic

results for the test statistics KL, ‘Z}flsn 5

and

r:;:CM

ninz

are reported in Tables 4 and 5. It

is clear that all empirical levels obtained by the bootstrap test statistics proposed in
Sect. 3.3 for TXS and TN are close t0 0.01, 0.025, 0.05, 0.10 when D, = 0 and

nin nin

the sample sizel n2 > 300,1 which indicates that the bootstrap method can provide
proper rejection probabilities. When the value of D,, increases, the power functions
increase rapidly and approach one as sample size n increases. Moreover, in Table 4,
the KL statistics are more powerful than T,Iflsn , and ‘Isll\,’{z when the bootstrap sample
is 200. If the bootstrap sample increases, for instance, to 1000 as shown in Table 5,
the performance of statistic isl]\ﬁz becomes better than the KL statistics when the
sample size n > 300, and statistic ’)Z,’flsnz and the KL statistic perform similarly.

5 Real data analysis

In this example, we analyze the Boston housing price dataset (available from the
Machine Learning Repository at the University of California-Irvine) to illustrate our
proposed method. In the Boston Housing Dataset, there are 506 instances and vari-
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Table 3 The mean (M) and standard error (SD) for ASE and AAE

ASE AAE
Fey()  Fygpe ) Fo()  Fogy () Fe()  Fagpe () Fo(t)  Fagy e,

n =50
M 14.2245  19.6098 13.7245  22.1191 0.2025 0.2198 0.1987  0.1898
SD  14.0023  18.9933 141012 21.9934 0.1384  0.1180 0.0997  0.1109
n =100
M 67123 11.8856 6.2897 14.7765 0.0991 0.1011 0.0982  0.0998
SD  6.3329 10.9987 6.3098 15.2109 0.0595  0.0559 0.0497  0.0264
n =300
M 25913 6.7190 2.3426 5.8062 0.0391  0.0569 0.0378  0.0543
SD  2.5775 5.8823 1.2911 5.2894 0.0125 0.0216 0.0092  0.0253
n =500
M 1.5453 3.1023 1.5139 3.2483 0.0295  0.0487 0.0294  0.0387
SD  1.3138 3.6113 1.2007 3.3413 0.0100  0.0196 0.0081  0.0228

ASE is in the scale of x10™4

ables indicating the size, location and environment of the property as well as its selling
price and other relevant variables that measure the socioeconomic status of neighbor-
hood. We focus our analysis on eight attributes: MEDV (Y): the median value of
owner-occupied homes in USD 1000’s, RM (X1): the average number of rooms per
dwelling, AGE (X>): the proportion of owner-occupied units built prior to 1940, DIS
(X3): the weighted distances to five Boston employment centers, RAD (X4): an index
of accessibility to radial highways, TAX (Xs): the full-value property-tax rate per
USD 10,000, PTRATIO (X¢): the pupil-teacher ratio by town, BLACKS (X7): the
transformed proportion of Blacks which is calculated by 1000(Bk — 0.63)2, where Bk
is the proportion of blacks by town. For this dataset, we use the covariate NOX (the
nitric oxide concentration per 10 million) to split the dataset into two groups. Group 1
is defined by the values of NOX that are less than its median, and Group 2 was defined
by the values of NOX that are greater or equal to its median. We use single-index
model (1) to analyze the eight attributes.

Corresponding to covariates (X1, X2, ..., X7), parameters B, and y, and the
associated p values (p Bo and pj ) were obtained as follows:

f!o _{0.2099, 0.0996, —0.9637, 0.0274, —0.0006, —0.1029, —0.0771
Pg, ~10.2708, 0.0000, 0.0000, 0.5446, 0.8177, 0.0989, 0.0000 )’

and

Yo \ _ (0.8517, —0.5103, —0.0852, 0.0662, —0.0032, —0.0155, 0.0486
Py, ) \0.0000, 0.0000, 0.2464,0.2047, 0.1217, 0.8205, 0.0000 /"
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Fig. 3 The plots of true values of Fe, (¢) (solid line), the plots of estimator I:}S (t) (dotted line) and the
plots of estimator F Teo.es (t) (dashed line). a, b is the case of D, = 0 (under the null hypothesis Hjy), ¢, d

is the case of D, = 0.5 (under the alternative hypothesis 9761 ), and e, f is the case of D, = 1.0 (under the
alternative hypothesis J{)
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Fig. 4 Group I: the plot for the estimator g (u) (solid line) against estimated single-index B(I)Xl in the
left panel, along with the associated 95% pointwise confidence intervals (dotted lines); Group 2: the plot
for estimator g, (u) (solid line) against estimated single-index }76X 2 in the right panel, along with the
associated 95% pointwise confidence intervals (dotted lines)

The p values are calculated by estimating the asymptotic variances of ﬁo and y,
obtained in Theorem 1. The value of test statistic T,,,, for this dataset is 301.8392,

which is substantially larger than the 99% quantile of x62. The values of [AJO, Vo, and
Tuin, indicate that the true values B and p( are not equal for the two groups. Next,
we used the test statistic proposed by Stute and Zhu (2005) to check whether the
single-index models are appropriate for these two groups. The associated value of
the test statistics is 1.4902 with a p value of 0.1361 for Group 1 and 1.4873 with
a p value of 0.1401 for Group 2. This indicates that the single-index models are
appropriate for these two groups. The estimators g1 (u) and g, (u) along with their
95% pointwise confidence bands are presented in Fig. 4. The figure for Group 1(high
NOX concentration) shows that the values of MEDYV decrease with index 3 (t) X1, while
the figure for Group 2 (lower NOX concentration) shows that the values of MEDV
increase with index p{X». This is not surprising, as the air pollution index NOX
is fairly strong related to life quality and hence house price. We conducted 1000
bootstraps to test g1(u) = g»(u), and the corresponding ‘I,Iflsnz and QE% are both
larger than the 97.5% quantile of 1000 bootstraps. This suggests a rejection of the
null hypothesis Ho. Lastly, we present the estimated figures for the variance functions
alz(u) and azz(u) along with their associated 95% pointwise confidence intervals in
Fig. 5. In Fig. 5, the heteroscedastic single-index regression model is appropriate for
Group 1, and a homoscedastic single-index regression model is more appropriate for
Group 2, as constant function 622(14) = nll :21 622(}76X2i) is encapsulated in the
95% pointwise confidence bands.
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Fig. 5 Group 1: the plot for the estimator 612 (u) (solid line) against estimated single-index B(T)X 1 in the
left panel, along with the associated 95% pointwise confidence intervals (dotted lines) and a horizontal line
for &12 () = % Z,n;l 312 (B(;Xli); Group 2: the plot for estimator [722 (u) (solid line) against estimated
single-index }76 X in the right panel, along with the associated 95% pointwise confidence intervals (dotted

lines) a horizontal line for &22 (u) = % Z,nil &12(}76X2,-)
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Appendix
5.1 Proofs of Theorems 1 and 3

Lemma 1 Suppose that X;,i = 1,...,n are i.i.d. random vectors. Let m(x) be a
continuous function and its derivatives up to second order are bounded, satisfying
E[m2(X)] < oo. E[m(X)|B*X = u] has a continuous bounded second derivative
on u. Let K (u) be a bounded positive function with a bounded support satisfying the
Lipschitz condition: there exists a neighborhood of the origin, say Y, and a constant
¢ > 0 such that for any € € Y: |K(u + €) — K (u)| < cle|. Given that h = n=¢ for
some d < 1, we have, for syo > 0, and j =0, 1, 2,

sup
(x,BeXxA

n TY. _ BT\
LS KnBXi — B0 (M) m(Xo)

n h
i=1
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— e x (Box) E[m(X)|B5X = Box]uk j — hS(BGx) ik, j+1

= Op(cn),

where A = {B € ©,||B — Byl < Cn~'/?} for some positive constant C, ® =
(B.181 = 1. 51 > 0}, uks = [ 'KW1, SB) = 4= | frx ) E[m(X) 185X

1450 3 1/2
(IOg n) 0 } + ]’l2.

= u]} lu=g7 x> and ¢, = { o

Proof This proof can be completed by a similar argument of Lemma A.4 in Wang
et al. (2010). See also the Lemma A6.1 in Xia (2006). O

Proofs of Theorems I and 3 We present the proof of Theorem 3. The proof of Theo-

loa 1450 1 1/2

rem 1 is similar and we omit the details. We define ¢, = { Y
nghg

s = 1, 2 for simplicity in the following.
~(1
Proof Note that W, ,, (ﬂ (%)O) = 0. Taylor expansion entails that

e )

(e8]
. i nzawn;r;g )(ﬂm_;;g“ [\/‘n1+_n2(3ggo_ ﬁél)ﬂ’ (18)

~(1) , A(1
where ﬂ(() ) is between ,BE}C)O and ,BE)I).

Step I In the following, we define N = n| + n; for simplicity. In this step, we deal
with N=V2W, 0, (,Bél)). Using Lemma 1 and the detailed proofs of Lemma

A4 in Zhang et al. (2014), we have g, (B{Xsi. Bo) = &s(B(Xsi) + Op(cns),
Vs(BoXsi, Bo) = Vs.p,(ByXsi) + Op(cns), for s = 1, 2. Moreover,

Sny .1 (BoX1is Bo)
1
= D Kn (BiX1; = BiX 0BG X1; — B3 X1 0P (BiX1))e,
j=1
ni

2
o D K (BoX1j — BX 1) (B5X1j — B5X1)"
j=1

x [g1(B5X 1)) — 81(B5X 1. Bo)] o1 (B X1))er

1 <
o D Kn (B5X1; — B X1)(B5 X1 — BGX1)"
j=1
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x (185X 1)) — §1(B3X 1. Bo)]”
= ! faex, (B X100 (BEX1)pki, + Op(h cut + hifcl)), (19)

forly = 0,1,2. Usmg (19), we obtaln 2(ﬂOXl,,ﬁO) = o (136X1,-) +
Op(cu1). Slmllarl}’, (,B()XZI’ .BO) =0y (.B()X2z) + Op(cn2).

Let GY ,(u, B) = E [Y{" (X1 — x}|B" X1 = u] fprx ), K}, () = 5K’ (u/
h1). Using condition (C3), we have
E|:8ﬂ ni, lllz(ﬂ X, ﬁ):|

X1
B 7ZE[K’;‘(““ praosy (T4 ) @ -t
" i=1 hy
ny

1
o D E[Kn (B Xy = B0 05 (X =) (" X — 70 1 = ]
i=1

2
l +v
= =) G BT BN T g I v = 1)

v=0
3
- l X(v T v
+ 3 S IEGT BT BT il 2 1)+ OG), (20)
v=0 "
where G1 (u B) = —G’l‘ I (u, B), and I{u} is the indicator function. Sim-

ilar to the proof of Theorem 3.1 in Fan and Gijbels (1996) and Lemma A.5 in
Zhang et al. (2014), together with (20) and Lemma 1, we can have

Ag1(B" X 1i, .3)‘

aph I
(lognp)!+so
= Jg, [X1i = Vi, (BoX10)] &1 (Bo X11) + O (h ﬂ/% .
1
2D
Under the null hypothesis 3o,
382(B" X2i, ,3)‘
9D =gy
(log np)1+so
= Jg, [X2i — Va,8,(B6X2)] 82 (B§X2i) + Op (h% + gn2T .
2
(22)
Define that 9, (u, By) = h2 Ty, ,20(u, ﬁo),,1 n1.00(H, ﬂo) 2h2 T2 2,

Bo)and Ly, (u, Bo) = = o Ty 20(u, Bo) Ty 01 (1, Bo)— 2h2 Toy 10, Bo) Ty 11
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A Ly (u,Bo) N 9L, (u,By)/0u
(u, Bp). Then, gi(u, By) = Wuﬂs) and g (u, By) = Q’lll(—u;o) -
L,,,(u,ﬂgogain;g(;,ﬂo)/au. Following the proof of Lemma A.5 in Zhang et al.
nyp Vo P(

(2014), together with Lemma 1 and (20), we have g|(u, By) = g)(u) +

145 N
P<h%+\/—(log,zlh)? - ) and &1(B5X1i,By) = & (BiX1) + Op (k7
L+ A 1+sy
+ /_ﬂognnllh)?_(’)_ Similarly, & (u, Bg) = g5(u) + Op (h% + /e °>,

S I+
85(BE X2, Bo) = g5(BEX2i) + Op <h2 + [ GeEm 2 ),

nh3

Using the asymptotic results (21) and (22) and the condition of that o +n2 =

n (logn1)2+2‘0 (10gn2)2+2x0
Ny — A € (0,1, as max{ P e — 0, and also
max{nlh?, nzhg} — 0, we have
1
(n1 +n2)” 172 Wmnz (ﬂ( )>
ni 71/2 g g1 (ByX1i, By)

e | X1~ ViB X,
n1+n2 = ﬂOAlz(ﬂ()Xllsﬂ())l: i — Vi(Bo X1 ﬂo)]

x [Y1i — g1(B5 X1, .30)]

n3 —1/2 gZ(ﬂ()X2lvﬂ()) ORIV
\/n1+n2 Z Bo 22 BT X B 52(Br X2 Bo) [Xzz Vz(ﬁonuﬂo)]

Y21 - gZ(BOXZIa BO)]

ni 1/2 —1
n1+n2 Z]ﬂogl(ﬂoxll ) [X1i = Vig, (BoX 1] oy (BE X 1i)ei

na

—12 _
o / Zléogé(ﬂ(r)Xzi) [X2i— Va8, (BEX20)] 05 ' (BE X202
im1

+op (1), (23)

where V3 g (B3 X2) = E[X2]B(X2].

Step 2 In this sub-step, we deal with —— m +nz T‘ﬁ(” POk Define
(1), def =
€
nlnz(ﬂo ) = ni+ny Z |: si _gs(ﬁOXsuﬂO)]

i=1

1
X% {75867 X,0. B [ Xsi = V(87,1 )] 6728 X, B} |

s=

ﬂ(l)=ﬁ(()l) )
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and
<ﬂé”
o +m é; { s A/(ﬂOXs“ ﬂO) [ ‘A/S('B(T)XS[’ 'EO)]
x 6,2 (Bo Xsi. ﬁo)} e (g;:(l)ﬂ . B_pD)
=By
Then,

1 8anlnz (ﬂ(l))
ni+ny ag ',g(l)zgf)l) B

~(1) ~ ()
Snlnz(ﬂ() )+Ln]n2(ﬁ0 )s (24)
M2 ~(Dt

- ~(1 ~(1
where B = ( 1-— ﬁo Bo s By ) Note that /3(()) is between ﬂ(g{)O and

ﬂ(l) By using (18) we have Bﬁo = ﬂ(()l) + Op((n) +n2)~ V).

Note that /30 LN ,8(1) “(1) LN ,B(l) and /}0 LN Y0 Yo LN Y- Together
with (21)—(22) and cond1t1on of that — X € (0, 1), we have

n+n

(1) P

"2/pt
g (BpX1)
Loy By ) > 2T E [$

o2 (BiX1)
g2 (BEX2)
o2(BiX2)

[X1 - Vl,ﬂo(ﬂéXO]@ﬂ I8y

+(1 =15 E [ [X2— Vag, (ﬁgxz)]éﬂ g, (25)

~(1
Moreover, a direct calculation for 8, (ﬂ(())) and Lemma 1 entail that
(1)
nlng (ﬂo

= op(l). Together with (23) and (25), we complete the proof of Theorem
2. O

5.2 Proof of Theorem 3
Proof From the proof of Theorem 3, we can have that
(e)] 1
S (B - 80))
ni
—1_—1)2
= 27072 IE gl (BEX 1) [X1i — Vi g, (B§X1i)]

i—1
L5 X 1i)er: +op(1), (26)
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NI 7(1))
_ 2 _
= 2;'ny" Z B VEXai) [Xai — Vo, (v X20)] 05 (B5 Xai)eai + 0p (1).
@7

Under the null hypothesis Ho : By = y, we can have

e (B - 78)
- (f(ﬂé”—ﬂ“)) (5 ﬂ“)))+0p(1)

Vi V1—=a
Moreover,
(n1 +n2)A

ny +n; []T 1SN 2P(BoX i, Bo)

1
ni Boni = 6282 X 11, By, [Xu—Vl(ﬁoXu,ﬂo)] J30:|

—1

ni +no 1 < 825 Xai. 7o) . .92

+ Jf - ?[XZ'_VZ()’IXZ',Y )] J5
ny [”nzzaﬂyaxzi,yo), ’ 0TI T T

sz —szl
— +1—x

Then, the Slutsky Theorem and continuous mapping theorem entail that

‘In]nz
~ CD\]" ~ -1 €)) A(l)
= [vnl +no (ﬂo -7 )] ((n1 +n2)A) [vnl +ny (ﬁo - )]
76 Xp 1
We complete the proof of Theorem 3. O

5.3 Proof of Theorem 4

Lemma 2 Suppose that conditions (C1)~(C5) hold. Let F¢ (t|2y,) be the distribution
Yy _<§x (&)_;[OX.S »&)s.O)

function of €5 = conditional on the data 2,, = {Xi, Ysi};’;1 (i.e.,

f;'.v (C’l\);()Xs ,C?J_y,())

considering g (d)sf 0Xs C?)s,o) , O (c?)sT o0Xss @s,o) as fixed functionson x) fors = 1,2
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respectively. Here, &1,0 = Bo and &2,0 = p. Then, we have

sup n; 12 i <t} — Hey <t} = Fe (t120) + Fe, (1)]
te

—1/2

= op (nl ) , (28)

sup |n 12 [1{é2 <1t} — Ier <1} = Fe) (11 20y) + Fe, ()]
teR

_ oP( 2”2). (29)

Proof In the following, we only prove (28), the proof of (29) is similar and we omit
the details. Let

= {1{61 SthX)+ filX)} = Hey <t} — Peg = tfo(X) + fi(X1))

+ Pl <niteR fi, o e MY @D,

where M 11+8 (9R?) is the class of all differential functions f (u) defined on the domain
RY of x1 and || fl14s < 1. Here 7 is a compact set of R” and

I fllits
af(x1) [0f (x1,1) — df (x1,2)]
= sup If(x1)I+Z sup | === + o
Y. = 1xleiRp X1 XL1x12€R7 lx1,1 —x12ll

Using Lemma 1 and ||ﬁ0 - Boll = OP(nfl/z), and similar to the proofs of (21) and
(22), we have that

&iBoxr. Bo) = 21(Bfx0) + 0 (' 4 e (30)

61Box1. Bo) = o1(Bgx1) = Op (n7 2+ ). 31

uniformly in x; € RY. Let A, (x1) = g‘(ﬂox’(f((;;(;’;'(ﬂ”xl), By, (x) = —&gﬁ%’%;ﬁo)

So, (30) and (31) entail P (A,l1 c Ml”‘s(i)%f)) S 1Lp (Bn1 c M}“(mg’)) S las

nih
(logflﬂ)ll“
By directly using the Corollary 2.7.2 of van der Vaart and Wellner (1996), the

2
bracketing number N[ (vz, MIIJ”S (RD), L2(P)) can be at most exp (cov_%> for

some positive constant cg, According to the proof of Lemma 1 in Appendix B of
Akritas and Van Keilegom (2001), and then the class & defined above is a Donsker
o

class, i.e., we have that / \/N[ 1(0, O, L2(P))dv < oo. Then, the proof of (28) is
0

ny — 00, hi — 0 and — 0.

complete. O
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Proof of Theorem 4 We can have that

Fe, (1) — Fe (1)

1

ni
= D Ien St} = Fo(t) + (Fey (t120)) — Fey (D) + Ruy 1 (1), (32)
i=1

where R, 1(t) = op (nl_l/z) uniformly in ¢ € R by using Lemma 2. Taylor expansion
entails that

Fe (1| 2y)) — Fe, (1)
=”/U%O+twm@0—4J+Am@D)—FAOHan@D
=fama/wmﬁo—1MEn@D+ﬁAD/Am&UM§KM)

+/f;(t+v;‘l(r,x1)) [([Buy (x1) = 11+ Agy (x)) d Fx, (x1)
= Ry, 2(t) + Ry 3(2) + Ry, 4(0), (33)
where vj;l (¢, x1) is between O and [ By, (x1) — 1] + A,, (x1). Note that

An1 (x1)
_ &iBox1 Bo) — @1(BEx1, By) | @1Box1. Bo) — g(BEx)

o1(Byx1) o1(Byx1)

(34)

Recall the definition of g;(u, By) and using Lemma 1,
g1(Box1. Bo) — g1(Box1)
1 ni

= e (B 2 K (BoXai = B X1t + Op(cn). (35
n1fﬂ5x1(ﬂ(’)x1)§ m (BoX1i — Byx1) o1(B5 X 1€ p(cn). (35)

Similar to (21), we can also have

21Box 1, Bo) — 21(BEx1, Bo)

T T P 1 1+s
= [x1 = Vi, (BoxD] 1 (Box1) (ﬂo - ﬂo) +0p (h% + F%) ,
nihy

(36)

Together with (34), (35) and (36), we have

ni
Rova®) = fa @) [ Ane0dFxy o0 = P20 Y ey b opr. @7
i=1
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Similarly,

67 (l%xl, 30) — o (BEx1)
1

" g BoxOM ZKhl (B5X1i — Box1) o7 (ByX1i)(ef; — 1)
By X1

i=1

+2[w1 = Vig, (B5xD] o1 (Bix o] (B5x ) (Bo — Bo) +or0i; D). 38)

Then, Taylor expansion for 612 (ﬁ(r)x Bo) —/ 012 (Bx) and asymptotic expression
(38) entail that

R, 2(t) = £, (1) / [By, (1) — 11dFx, (x1)

1 < _
=1f,, (t)z—nl;(ei- — 1) +opn;'?). (39)

Moreover, (34), (39) and Condition (C5) entail that R,,, 4(1) = op(n; /%) uniformly
in ¢. Together with (32), (26) and (37)-(39), we complete the proof of Theorem 2.

O
5.4 Proof of Theorems 5 and 6
. o * _ 2B X1)—g1 (ﬂSXl))]
Proof Recalling the definition of FfJTfo,el (t)=FE [Fel (t + T SEn )
. 1 &
Fitge ) = Fig, (0 = = D Hég, <) —Fg O
i=1
1 5X 1) — g2(BE X i
_ 1 1{61i n g1(BoX1i) - 22(BoX1i) - t} Ny
n = o1(ByX1i) 0-€1
[ Faty.e, 0 an) = F, O]+ $1100), (40)
where Fﬁo, 2 (t|74,n,) be the distribution function of @;CO’I = MM condi-

61(BoX.Bo)
tional on the data %;,,,, = {X1;, Y1, X2j,Yj, 1 <i <ny, 1< j<n}, and similar
to the analysis of Lemma 2, we have sup|Sy, 1(?)| = op (nl_l/ 2). Taylor expansion
teR
entails that
Fg’-vco,gl (”%ﬂﬂz) - F%Co,el(t)

_ g1(Box1) — g2(Box1) B
= /Fel <t+ o1 (BLxD) +[Bp, (x1) — 1]z
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22(Box1, P0o) —gz(ﬁ6x1)> e
+ o1 (BTx 1) dFy, (x1) FHO’Q (1)
= [ s (t+ L _fgzw‘)xl)) (B, (x1) — 1d Fy, (x1)
U](ﬂoxl)
g1(Box1) — gz(ﬁﬁm)) 22(Box1, 7o) — gz(ﬁéxl)dF
+/f“ <’+ 1 (Bx 1) o1 Bix1) x ()
+ Ry, (). 41)

Similar to the analysis of (21), we can have that

A AT A
22(Box1,¥0) — &2(Byx1,vo)

N 1 1+s
= gh(BxxT (Bo— Bo) + Or (hg + /%) . (42)
nah;

Recall the definition of g2(u, y() and using Lemma 1,

22(Box1,¥0) — &2(Box1)

1 2
= K }’TXZ‘ - ﬂfxl O'z(yTXZ.)EZ. + OP(C ) (43)
n2 fyix, (Box1) ; 2 (v6X2i — Byxi1) 0X2i)e€zi s

We can also show that R,,,,(#) defined in (41) is o,o(nl_l/2 + n2—1/2) uniformly in
t € R. Together with (39), (42) and (43), we have

Fg'f'fo,gl (”%11112) - F%O,Gl(t)

Q4 0X1i) — 0X1i
_ ;712(6121' “ b/, (t L 81BGX 1) — £2(Bo X, ))
i=1

o1(BoX1i)
g1(B5X1) — g2(B5X 1) &>(BoX) B L 3
tE [fﬂ <t - o1(ByX1) ) o1(ByX) V1,ﬂ0(ﬂ0X)] <ﬂ0 ﬂo)

1 & 0 X2i) — EX2i)\ JBrix: (Yo X2i) oa(yE X o
+_Zf€1 <H_g1(70 2i) — &2(¥ 21)) By X1 (YoX2i) oa(p) 2l)€2i

o1(yoX2i) Tyix, (Y X2i) o1(y(X2i)

Recalling the definitions of D;(u) and p s (1), we complete the proof of Theorem 5.
Moreover, the proof of Theorem 6 is completed by following the asymptotic result of
Theorem 5 and recalling that D1 (u) = D> (u) = 0 under the null hypothesis, we omit
the details. m|
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5.5 Proof of Theorem 7

Proof By using the detailed proof of Theorem 1 in Stute et al. (2008), the class of
functions

1 n(Box1)
Jni+nzo1(Byxr)
_F (t— m(Box1)

“ Jni+np o1(Byx)

is a Vapnik-Chervonenkis class with envelop function 4 (Pollard 1984, Ch. 2). Then,
we can have that

- _ 1 uBiXn) _
; |:I {Gh == Vi +na Ul(ﬂ(T)Xu)} —Heu = t}:|

1

1 w(BoX1) >]
— E | F — T Fe,
[ (t Jni+n2o1(ByX1) +Fa

Moreover, Taylor expansion entails that

E [Fﬂ (r I N 10:12.90) ﬂ _ R0

@z(él,x1)=1{61§t— }—1{€1Sl}

>+F€1([)

a2
n

=op(n]'?). (44)

Vni+nyo1(ByX1)
1 ,U«(ﬁéXl)i| “12 0 12
= — ——— | 4o +n . 45
Jni+n, Ve [Gl(ﬂéxl) (n ") @)
If the local alternative hypothesis Iy, , is true, together with (44) and (45), we have
~ A 1 w(ByX1) ]
F= ty—F,(t) = _—
5’60,61( ) 61( ) \/]’”Tfel( ) [ 1(ﬂ6X1)
T r gl(ﬂo ]’ . T . .
+f61(t)Nl ‘]ﬂoszl Z BOU](ﬂoX D [Xll - V],ﬂo(ﬂOXll)] €1i

1 & 1 &
+ fa )~ Z pra (VY3 Xo)ex + fo (1) > e
i i=1

+0p(n1 +n2_1/2

).

We can also obtain a similar expression for E Too.c2 (t)— I:}z (¢) and we omit the details.
Using the continuous mapping theorem, we complete the proof of Theorem 7. O
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