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Abstract Comparison of two-sample heteroscedastic single-index models, where
both the scale and location functions are modeled as single-index models, is studied
in this paper. We propose a test for checking the equality of single-index parameters
when dimensions of covariates of the two samples are equal. Further, we propose two
test statistics based onKolmogorov–Smirnov andCramér–vonMises type functionals.
These statistics evaluate the difference of the empirical residual processes to test the
equality of mean functions of two single-index models. Asymptotic distributions of
estimators and test statistics are derived. The Kolmogorov–Smirnov and Cramér–von
Mises test statistics can detect local alternatives that converge to the null hypothesis at a
parametric convergence rate. To calculate the critical values of Kolmogorov–Smirnov
and Cramér–von Mises test statistics, a bootstrap procedure is proposed. Simulation
studies and an empirical study demonstrate the performance of the proposed proce-
dures.
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1 Introduction

Single-index models (SIMs) have attracted a large amount of attention. A SIM is a
generalization of multivariate linear regression models with an unknown link func-
tion, and it relaxes the restrictive assumptions imposed on the parametric models of
conditional mean functions. When the regression function should be estimated in a
nonparametric context, the dimensionality of covariates plays a crucial role. Among
the many existing dimension reduction techniques, SIMs assume the link function to
be a univariate function applied to the projection of an explanatory covariate vector
on to some direction, and they avoid some drawbacks of fully nonparametric methods
such as the curse of dimensionality, difficulty of interpretation, and lack of extrapola-
tion ability. Hence, SIMs have a wide range of applications in areas such as economics
and finance. There have beenmany papers that consider the estimation of the link func-
tion, the single-index parameter and related issues. See for example, Xia et al. (2002),
Wang et al. (2015), Härdle et al. (1993), Xu and Zhu (2012), Feng et al. (2013), Feng
and Zhu (2012), Li et al. (2014), and Peng and Huang (2011).

How to compare two regression functions is a common topic. For example, in
medical research, this problem arises when comparing two functions of the mean
reaction time for drug use and the control group. In this paper, suppose we have
two independent samples following the single-index heteroscedastic regression model
(with two groups): {

Y1 = g1
(
βτ
0X1

)+ σ1
(
βτ
0X1

)
ε1,

Y2 = g2
(
γ τ
0X2

)+ σ2
(
γ τ
0X2

)
ε2,

(1)

where τ denotes transposition throughout this paper. In model (1), X1 is a p-
dimensional covariate vector and X2 is a q-dimensional covariate vector. For s = 1, 2,
Ys are the response variables, and gs(u) andσs(u) are unknownunivariate smooth func-
tions. Throughout this paper,we assume that functionsσs(u), s = 1, 2 are positive. The
error terms εs , s = 1, 2 satisfy E(εs) = 0 and E(ε2s ) = 1. The condition E(ε2s ) = 1
used here is assumed for identifiability. Parameter β0 is an unknown index vector that
belongs to the parameter space Bβ = {

β = (β1, β2, . . . , βp)
τ ∈ R

p, ‖β‖ = 1, β1 >

0
}
, and similarly, we define that γ 0 ∈ Bγ = {

γ = (γ1, γ2, . . . , γq)
τ ∈ R

q , ‖γ ‖ =
1, γ1 > 0,

}
.

Among the various methods of estimation, there is little literature that considers the
comparison of SIMs between two groups. Classical methods use parametric regression
models for two groups and to compare the two regression functions g1 and g2, they
compare the resulting parameters of the models. A disadvantage of this approach is
that it requires the parametric models to be specified, which is often difficult. As we
indicated above, the single-index structure is more appropriate in terms of its easier
interpretation and ability to relax the restrictive assumptions. Single-index model (1)
has two groups, and the comparison of the regression functions of two groups has been
extensively investigated in the literature if the dimensions of X1 and X2 equal each
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Hypothesis Testing for the Single-Index Models 1079

other and are both equal to one, i.e., p = q = 1. See for example, Kulasekera (1995),
Gørgens (2002), Kulasekera andWang (1997), Koul and Schick (1997), andNeumeyer
and Dette (2003). Feng et al. (2015) proposed aWilcoxon-type generalized likelihood
ratio test to deal with the data that is possibly affected by outlying observations and
heavy-tailed distributions. Zhang et al. (2010) considered test methods to compare
the mean functions of two samples drawn from functional data sets by proposing L2-
norm-based and bootstrap-based test statistics for this purpose. For the comparison
of SIMs, Lin and Kulasekera (2010) proposed an ANOVA-type approach to compare
two or more SIMs by assuming that the dimensions of X1 and X2 are equal, i.e.,
p = q. Under this scenario, Lin and Kulasekera (2010) proposed an F-statistic to
check β0 = γ 0 and g1 ≡ g2 simultaneously. Suppose that p = q and g1 ≡ g2,
then the null hypothesis in Lin and Kulasekera (2010) becomes H0 : β0 = γ 0, and
the convergence rate of the F-statistic is 1

(n1+n2)
√
h
, where ns is the sample size of

group s, s = 1, 2, and h is the bandwidth used for nonparametric kernel smoothing.
It is known that the convergence rates of the estimates of (β0, γ 0) are faster than
the nonparametric estimates of g1(u) and g2(u). Hence, the F-statistic proposed by
Lin and Kulasekera (2010) is not optimal for testing H0 : β0 = γ 0. Let us consider
another special setting. If we know β0 = γ 0, andwe further want to testH

′
0 : g1 ≡ g2.

Neumeyer and Dette (2003) proposed using F-statistic to test this, which can detect an
alternative hypothesis converging to the null hypothesis with a rate that is slower than
the parametric rate. Because the test proposed by Lin and Kulasekera (2010) is not
optimal for testing either the equality of single-index parameters or the equality of the
mean function, this motivates us to propose test procedures with optimal convergence
rates.

The first goal of this paper is to propose an estimation procedure and a hypothesis
test for the unknown single-index parameters. The profile estimation equations are
adopted to estimate the single-index parameters that are associated with large sample
properties of the estimators. If the dimensions of covariates X1 and X2 are equal,
a Wald-type statistic is proposed to test H0 : β0 = γ 0. Note that the restrictions
‖β0‖ = 1 and ‖γ 0‖ = 1 mean that the single-index parameters β0 and γ 0 are on
the boundary of a unit ball. Therefore, we use the popular “leave-one-component out”
method for estimating the single-index parameter (Cui et al. 2011; Li et al. 2010; Yu
and Ruppert 2002), and we show that the test statistic asymptotically converges to a
standard χ2 distribution with p − 1, rather than p the degree of freedom.

The second goal is to check whether the mean functions g1(u) and g2(u) are equal
or not, i.e., test H̃0 : g1 ≡ g2. The idea of constructing a test statistic for H̃0 is
implemented by comparing the estimated error distributions F̂εs (t), s = 1, 2 obtained
under the full model (1) with the estimated error distribution functions F̂H̃0,εs

(t),

s = 1, 2 obtained under the null hypothesis H̃0. Under H̃0, the estimator of dis-
tribution function Fεs (t) for εs can be obtained from the residuals based on errors

εH̃0,1
= Y1−g2(βτ

0X1)

σ1(β
τ
0X1)

and εH̃0,2
= Y2−g1(γ τ

0X2)

σ2(γ
τ
0X2)

. It is easily seen that if H̃0 is true, then

εH̃0,1
= ε1 and εH̃0,2

= ε2. Hence, the test procedure for H̃0 is completed by first

estimating the distribution functions Fεs (t) under model (1) and H̃0.We then use these
estimated distribution functions to propose the Kolmogorov–Smirnov test statistic and
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1080 J. Zhang

Cramér–von Mises test statistic. We obtain the asymptotic expressions for the estima-
tors of Fεs (t) under model (1) and under H̃0. The weak convergence properties for
the estimators of the error distribution functions are revealed. Finally, the limiting dis-
tributions of the Kolmogorov–Smirnov and Cramér–von Mises test statistics are also
derived. To mimic the null distributions of the test statistics, a bootstrap procedure is
proposed to define the p values. We conducted Monte Carlo simulation experiments
to examine the performance of the proposed procedures. Our simulation results show
that the proposed methods perform well both for estimation and hypothesis testing.

This paper is organized as follows. In Sect. 2, we propose the estimation procedure
for β0, γ 0, gs(u) and σs(u), s = 1, 2. A hypothesis for testing β0 = γ 0 is also
considered. In Sect. 3, we provide the estimators of the error distribution functions
and propose test statistics to check the equality of the mean functions. A bootstrap
procedure is also proposed to mimic the null distributions of test statistics. In Sect. 4,
we report the results of simulation studies. All the technical proofs of the asymptotic
results are given in the Appendix.

2 Estimation of β0, γ 0, g1(u), g2(u), σ 2
1 (u) and σ 2

2 (u)

For notational simplicity, we define ω[1] = β, ω
(1)
[1] = β(1) = (β2, . . . , βp)

τ and

ω[2] = γ , ω
(1)
[2] = γ (1) = (γ2, . . . , γq)

τ . Similarly, we define ω[1],0 = β0 and

ω
(1)
[1],0 = β

(1)
0 and ω[2],0 = γ 0, ω

(1)
[2],0 = γ

(1)
0 for the true values.

Suppose that we have two samples {X1i ,Y1i , i = 1, . . . , n1} and {X2i ,Y2i , i =
1, . . . , n2} from model (1), where ns and s = 1, 2 are the sample sizes of two groups,
respectively. In the following, we propose estimation procedures for the parameters
β0 and γ 0. The profile least squares estimation procedure used in Liang et al. (2010)
is employed here. Our procedure has three steps:

1. Givenω[s],we can approximate gs(u)by gs(u∗)+g′
s(u∗)(u−u∗) in a neighborhood

of u∗ for s = 1, 2. Minimizing (2) with respect to as0 and as1

ns∑
i=1

{
Ysi − as0 − as1

(
ωτ[s]Xsi − u

)}2
Khs

(
ωτ[s]Xsi − u

)
. (2)

Here, Khs (ω
τ[s]Xsi −u) = h−1

s K

(
ωτ[s]Xsi − u

hs

)
where K (u) is a kernel function

and hs is a bandwidth. Let (âs0, âs1) be the minimizer of (2). Then, the estimator
of gs(u) is obtained as

ĝs(u,ω[s]) = âs0

= Tns ,20(u,ω[s])Tns ,01(u,ω[s]) − Tns ,10(u,ω[s])Tns ,11(u,ω[s])
Tns ,00(u,ω[s])Tns ,20(u,ω[s]) − T 2

ns ,10
(u,ω[s])

. (3)

where Tns ,l1l2(u,ω[s]) = 1
ns

∑ns
i=1 Khs (ω

τ[s]Xsi − u)(ωτ[s]Xsi − u)l1Y l2
si for l1 =

0, 1, 2 and l2 = 0, 1.
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Hypothesis Testing for the Single-Index Models 1081

2. Similar to (2) and (3), the local linear smoothing technique is used to estimate
variance function σ 2

s (u), and we obtain that

σ̂ 2
s (u,ω[s])

= Sns ,20(u,ω[s])Sns ,01(u,ω[s]) − Sns ,10(u,ω[s])Sns ,11(u,ω[s])
Sns ,00(u,ω[s])Sns ,20(u,ω[s]) − S2ns ,10(u,ω[s])

, (4)

where

Sns ,l1l2(u,ω[s])

= 1

ns

ns∑
i=1

[(
Ysi − ĝs(ω

τ[s]Xsi ,ω[s])
)2]l2

Khs (ω
τ[s]Xsi − u)(ωτ[s]Xsi − u)l1,

for l1 = 0, 1, 2 and l2 = 0, 1.
3. We now proceed to estimate ω[s],0 using the profile estimation function (Cui et al.

2011; Liang et al. 2010) and the “leave-one-component out” procedure in the
following estimation equation

Wns

(
ω

(1)
[s]
)

def=
ns∑
i=1

J τ
ω[s] ĝ

′
s(ω

τ[s]Xsi ,ω[s])
[
Xsi − V̂s(ω

τ[s]Xsi ,ω[s])
]
σ̂−2
s (ωτ[s]Xsi ,ω[s])

× [
Ysi − ĝs(ω

τ[s]Xsi ,ω[s])
]
, (5)

where, ĝ′
s(u,ω[s]) = ∂ ĝs (u,ω)

∂u , Jω[s] = ∂ω[s]/∂ω
(1)
[s] is the Jacobian matrix with

Jω[s] =
⎛
⎝−ω

(1)τ
[s] /

√
1 −

∥∥∥ω(1)
[s]
∥∥∥2

I[s]−1

⎞
⎠ ,

where I[s]−1 = diag(1, . . . , 1), an identity matrix of size p − 1 for s = 1 and
q − 1 for s = 2, respectively. Moreover, V̂s(u,ω[s]) is the local linear estimator of

Vs,ω[s](u),whereVs,ω[s](u) =
(
E(Xs,1|ωτ[s]Xs = u), . . . , E(Xs,vs |ωτ[s]Xs = u)

)τ

for s = 1, 2, v1 = p and v2 = q. The estimator V̂s(u,ω[s]) is defined

as V̂s(u,ω[s]) =
(
V̂s,1(u,ω[s]), . . . , V̂s,vs (u,ω[s])

)τ

, where V̂s,l(u,ω[s]) =∑ns
i=1 bns ,i (u,ω[s])Xs,li∑ns

i=1 bns ,i (u,ω[s])
, for l = 1, . . . , vs , where bns ,i (u,ω[s]) = Khs (ω

τ[s]Xsi −
u)
[
Tns ,20(u,ω[s]) − (ωτ[s]Xsi − t)Tns ,10(u,ω[s])

]
.

Let ω̂
(1)
[s],0 denote the solution of the estimation equation Wns

(
ω̂

(1)
[s],0

)
= 0. Then,

ω̂[s],0,1 is obtained by ω̂[s],0,1 =
√
1 −

∥∥∥ω̂(1)
[s],0

∥∥∥2, and the estimator ofω[s],0 is defined
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1082 J. Zhang

as ω̂[s],0 =
(
ω̂[s],0,1, ω̂(1)τ

[s],0
)τ

. Finally, the estimators of gs(u) and σ 2
s (u) are obtained

by substituting ω with ω̂[s],0 in (3) and (4), respectively.
In what follows, A⊗2 = AAτ for any matrix or vector A. We list the conditions

needed in our asymptotic results.

(C1) E[X4
1,r ] < ∞, E[X4

2,l ] < ∞ for r = 1, . . . , p and l = 1, . . . , q, and the
covariance matrices Ωs , s = 1, 2 defined in Theorem 1 are both finite.

(C2) For s = 1, 2, functions gs(u), σs(u), E(Xs,l |ωτ[s]Xs = u), l = 1, . . . , vs ,
v1 = p and v2 = q, and the density function fωτ[s]Xs (u) of random variable
ωτ[s]Xs are twice continuously differentiable with respect to u. Their second
derivatives are uniformly Lipschitz continuous on Cs = {u = ωτ[s]xs : x1 ∈
X1 ⊂ R

p, x2 ∈ X2 ⊂ R
q ,β ∈ Bβ , γ ∈ Bγ }, where Xs is a compact support

set. Furthermore, inf
u∈Cs

fωτ[s]Xs (u) > 0 and inf
u∈Cs

σs(u) ≥ c0 > 0 for some positive

constant c0, and
∫

σ 2
s (u) fωτ[s],0Xs (u)du < ∞.

(C3) Kernel function K (u) is a symmetric bounded density function supported on
[−A, A], satisfying a Lipschitz condition, and has twice continuous bounded
derivative, satisfying K ( j)(±A) = 0 for j = 0, 1, 2, 3, and

∫
s2K (s)ds �= 0.

(C4) As n → ∞, the bandwidths hs , s = 1, 2 satisfy hs(log ns)1+s0 → 0, nsh4s → 0

and (log ns )2+2s0

nsh2s
→ 0 for some constant s0 > 0.

(C5) For s = 1, 2, model error εs satisfies E[ε4s ] < ∞, the distribution function
Fεs (t) of εs is twice continuously differentiable. Further, the density function
fεs (t) of εs satisfies

∫
f 2εs (t)dFεs (t) < ∞, sup

t∈R
fεs (t) < ∞, sup

t∈R
|t | fεs (t) < ∞

and sup
t∈R

t2| f ′
εs

(t)| < ∞.

Theorem 1 Under the conditions (C1)–(C4), we have
√
ns
(
ω̂

(1)
[s],0 − ω

(1)
[s],0

)
L−→ N

(
0,Ω−1

s

)
,

where

Ωs = J τ
ω[s],0E

[
g

′2
s (ωτ[s],0Xs)σ

−2
s (ωτ[s],0Xs)

[
Xs − Vs,ω[s],0(ω

τ[s]X1)
]⊗2

]
Jω[s],0 ,

and Vs,ω[s],0(u) = E
(
Xs |ωτ[s],0Xs = u

)
. Furthermore, by a simple application of the

multivariate delta-method, we also have

√
ns
(
ω̂[s],0 − ω0

) L−→ N
(
0, Jω[s],0Ω

−1
s J τ

ω[s],0

)
.

Remark 1 The population version of (5) when ω
(1)
[s] = ω

(1)
[s],0 is defined as

W∗
ns

(
ω

(1)
[s],0

)
=

ns∑
i=1

J τ
ω[s],0g

′
s(ω

τ[s]Xsi )

× [
Xsi − Vs,ω[s],0(ω

τ[s]Xsi )
]
σ−2
s (ωτ[s]Xsi )

[
Ysi − gs(ω

τ[s]Xsi )
]
.
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Hypothesis Testing for the Single-Index Models 1083

The function W∗
ns

(
ω

(1)
[s],0

)
satisfies the second Bartlett identity as Cui et al. (2011)

claimed, that is,

E
[
W∗

ns

(
ω

(1)
[s],0

)
W∗τ

ns

(
ω

(1)
[s],0

)]
= −E

⎡
⎣∂W∗

ns

(
ω

(1)
[s],0

)
∂ω

(1)
[s],0

⎤
⎦ = nsΩs . (6)

This makes the estimators ω̂
(1)
[s],0 semi-parametric efficiency (Cui et al. 2011).

3 Test statistics and their asymptotic properties

3.1 Testing the equality of single-index parameters

When the dimension of X1 is equal to the dimension of X2, i.e., p = q, we are
interested in

H0 : β0 = γ 0 against H1 : β0 �= γ 0. (7)

By the identifiability condition and the fact that first component of β0 and γ 0 are all
positive, (7) is equivalent to

H∗
0 : β

(1)
0 = γ

(1)
0 against H∗

1 : β
(1)
0 �= γ

(1)
0 . (8)

We propose the test statistic

Tn1n2 =
(
β̂

(1)
0 − γ̂

(1)
0

)τ

Â
−1
(
β̂

(1)
0 − γ̂

(1)
0

)
,

where

Â =
[
J τ

β̂0

n1∑
i=1

ĝ
′2
1 (β̂

τ

0X1i , β̂0)

σ̂ 2
1 (β̂

τ

0X1i , β̂0),

[
X1i − V̂1(β̂

τ

0X1i , β̂0)
]⊗2

J
β̂0

]−1

+
[
J τ
γ̂ 0

n2∑
i=1

ĝ
′2
2 (γ̂

τ
0X2i , γ̂ 0)

σ̂ 2
2 (γ̂

τ
0X2i , γ̂ 0),

[
X2i − V̂2(γ̂

τ
0X2i , γ̂ 0)

]⊗2
Jγ̂ 0

]−1

.

Theorem 2 Under the conditions of Theorem 1, if n1
n1+n2

→ λ ∈ (0, 1), we have

Tn1n2
L−−→
H∗

0

χ2
p−1.

If the null hypothesis H0 (or H∗
0) is true, the pooled-sample {X1i ,Y1i , X2 j ,Y2 j }

can be used to re-estimate β0 (=γ 0). Analogous to (5), we estimate β0 by using the
“pooled” estimation equation
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1084 J. Zhang

Wn1n2(β
(1))

def=
2∑

s=1

ns∑
i=1

J τ
β ĝ

′
s(β

τ Xsi ,β)
[
Xsi − V̂s(β

τ Xsi ,β)
]
σ̂−2
s (βτ Xsi ,β)

× [
Ysi − ĝs(β

τ Xsi ,β)
]
. (9)

Here, ĝ2(u,β), σ̂2(u,β) and V̂2(u,β) are defined according to ĝ2(u, γ ), σ̂2(u, γ )

and V̂2(u, γ ) by substituting γ with β, respectively. Moreover, ĝ′
2(u,β) = ∂ ĝ2(u,β)

∂u .

Denote the estimator from (9) as β̂
(1)
H0

, and define the final estimator of β0 under the

null hypothesis H0 as β̂H0
=
(√

1 −
∥∥∥β̂(1)

H0

∥∥∥2
2
, β̂

(1)τ
H0

)τ

. Similar to Theorem 1, we

obtain the following asymptotic result.

Theorem 3 Under the conditions of Theorem 2, we have

√
n1 + n2

(
β̂

(1)
H0

− β
(1)
0

)
L−→ N

(
0p−1,Ω

−1
H0

)
,

where

ΩH0

= λJ τ
β0
E
[
g

′2
1 (βτ

0X1)σ
−2
1 (βτ

0X1)
[
X1 − V1,β0

(βτ
0X1)

]⊗2
]
Jβ0

+ (1 − λ)J τ
β0
E
[
g

′2
2 (βτ

0X2)σ
−2
2 (βτ

0X2)
[
X2 − V2,β0

(βτ
0X2)

]⊗2
]
Jβ0

. (10)

Also, a simple application of the multivariate delta-method makes that

√
n1 + n2

(
β̂H0

− β0

)
L−→ N

(
0p, Jβ0

Ω−1
H0

J τ
β0

)
.

3.2 Testing the equality of the mean functions

The idea for testing the equality of the mean functions, i.e.,

H̃0 : g1(u) = g2(u) for each u, (11)

against

H̃1 : g1(u) �= g2(u) for some u,

is based on a comparison between the estimated error distribution F̂H̃0,εs
(t) obtained

under H̃0 and the estimated error distribution F̂εs (t) obtained under the alternative
hypothesis (Neumeyer and Van Keilegom 2010; Van Keilegom et al. 2008; Dette et al.
2007). That is, we adopt the Kolmogorov–Smirnov or Cramér–vonMises test statistics
for the processes
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F̂H̃0,ε1
(t) − F̂ε1(t) and F̂H̃0,ε2

(t) − F̂ε2(t).

We first introduce the method for obtaining estimators F̂H̃0,εs
(t) and F̂εs (t). Under

the null hypothesis H̃0, the estimators of Fε1(t) and Fε2(t) are obtained as

F̂H̃0,ε1
(t) = 1

n1

n1∑
i=1

I
{
ε̂H̃0,1i

≤ t
}
, where ε̂H̃0,1i

= Y1i − ĝ2(β̂
τ

0X1i , γ̂ 0)

σ̂1(β̂
τ

0X1i , β̂0)
,

F̂H̃0,ε2
(t) = 1

n2

n2∑
i=1

I
{
ε̂H̃0,2i

≤ t
}
, where ε̂H̃0,2i

= Y2i − ĝ1(γ̂
τ
0X2i , β̂0)

σ̂2(γ̂
τ
0X2i , γ̂ 0)

,

and under the alternative hypothesis H̃1,

F̂ε1(t) = 1

n1

n1∑
i=1

I
{
ε̂1i ≤ t

}
, where ε̂1i = Y1i − ĝ1(β̂

τ

0X1i , β̂0)

σ̂1(β̂
τ

0X1i , β̂0)
,

F̂ε2(t) = 1

n2

n2∑
i=1

I
{
ε̂2i ≤ t

}
, where ε̂2i = Y2i − ĝ2(γ̂

τ
0X2i , γ̂ 0)

σ̂2(γ̂
τ
0X2i , γ̂ 0)

.

Under H̃0, the difference between two functions F̂H̃0,εs
(t) and F̂εs (t), for s = 1, 2,

will be small. In other words, if H̃0 holds, the processes are not distinguishable.
Whereas under the alternative hypothesis, the differences should be obvious. To test
H̃0, we propose Kolmogorov–Smirnov and Cramér–vonMises type functionals based
on the following test statistics:

TKS
n1n2 = sup

t∈R
n1/21

∣∣∣F̂H̃0,ε1
(t) − F̂ε1(t)

∣∣∣+ sup
t∈R

n1/22

∣∣∣F̂H̃0,ε2
(t) − F̂ε2(t)

∣∣∣ ,
and

TCM
n1n2 = n1

∫ ∣∣∣F̂H̃0,ε1
(t) − F̂ε1(t)

∣∣∣2 d F̂ε1(t) + n2

∫ ∣∣∣F̂H̃0,ε2
(t) − F̂ε2(t)

∣∣∣2 d F̂ε2(t).

Theorem 4 shows that F̂εs (t) consistently estimates Fεs (t), and Theorems 5 and
6 show that F̂H̃0,εs

(t) can consistently estimate the distribution of error εH̃0,s
=

Y1−g2(βτ
0X1)

σ1(β
τ
0X1)

I {s = 1} + Y2−g1(γ τ
0X2)

σ2(γ
τ
0X2)

I {s = 2}.

Theorem 4 Suppose the conditions of Theorem 3 and condition (C5) are satisfied,
we have the following asymptotic expression:

F̂εs (t) − Fεs (t)

= 1

ns

ns∑
i=1

[
I {εsi ≤ t}−Fεs (t)+ fεs (t)

(
εsi + t

2
(ε2si −1)

)]
+oP

(
n−1/2
s

)
, (12)
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1086 J. Zhang

uniformly in t ∈ R
1, s = 1, 2.

Remark 2 Note that the asymptotic result of Theorem 4 is the same as Theorem 2.1

in Neumeyer and Van Keilegom (2010). In fact, the process
√
ns
(
F̂εs (t) − Fεs (t)

)
,

t ∈ R, converges weakly to a zero-mean Gaussian process Zs(t) with a covariance
function

E

[(
I {εs ≤ t1} − Fεs (t1) + fεs (t1)

(
εs + t1

2
(ε2s − 1)

))

×
(
I {εs ≤ t2} − Fεs (t2) + fεs (t2)

(
εs + t2

2
(ε2s − 1)

))]
,

for any t1 ≤ t2.
Next, we present the asymptotic expressions for F̂H̃0,ε1

(t) and F̂H̃0,ε2
(t). In

the following, we define D1(u) = g2(u)−g1(u)
σ1(u)

, D2(u) = g1(u)−g2(u)
σ2(u)

, ρ f,σ (u) =
fβτ

0 X1
(u)

fγ τ
0 X2

(u)
σ2(u)
σ1(u)

, and

F ∗̃
H0,εs

(t) = E
[
Fεs

(
t + Ds(ω

τ[s],0Xs)
)]

,

Ns = E

[
g′
s(ω

τ[s],0Xs)

σs(ω
τ[s],0Xs)

Vs,ω[s],0(ω
τ[s],0Xs)

]
,

M1(t) = E

[
fε1
(
t − D1(β

τ
0X1)

) g′
2(β

τ
0X1)

σ1(β
τ
0X1)

V1,β0
(βτ

0X1)

]
,

M2(t) = E

[
fε2
(
t − D2(γ

τ
0X2)

) g′
1(γ

τ
0X2)

σ2(γ
τ
0X2)

V2,γ 0
(γ τ

0X2)

]
.

Theorem 5 Under the conditions of Theorem 4, we have

F̂H̃0,εs
(t) − F ∗̃

H0,εs
(t) = 1

ns

ns∑
i=1

I
{
εsi − Ds(ω

τ[s],0Xsi ) ≤ t
}− F ∗̃

H0,εs
(t)

+ t

2ns

ns∑
i=1

fεs
(
t − Ds(ω

τ[s],0Xsi )
)
(ε2si − 1)

+
[
1

n2

n2∑
i=1

fε1
(
t − D1(γ

τ
0X2i )

)
ρ f,σ (γ τ

0X2i )ε2i

]
I {s = 1}

+
[
1

n1

n1∑
i=1

fε2
(
t − D2(β

τ
0X1i )

)
ρ−1
f,σ (βτ

0X1i )ε1i

]
I {s = 2}

+ Mτ
s (t)Jω[s],0Ω

−1
s

1

ns

ns∑
i=1

J τ
ω[s],0

g′
s(ω

τ[s],0Xsi )

σs(ω
τ[s],0Xsi )

[
Xsi − Vs,ω[s],0(ω

τ[s],0Xsi )
]
εsi

+ oP
(
n−1/2
1 + n−1/2

2

)
.

123



Hypothesis Testing for the Single-Index Models 1087

Under the null hypothesis H̃0, we have the following asymptotic results.

Theorem 6 Under the conditions of Theorem 4, if H̃0 holds, we have

F̂H̃0,εs
(t) − F̂εs (t) = fεs (t)

1

ns

ns∑
i=1

εsi + fεs (t)N
τ
s Jω[s],0Ω

−1
s

× 1

ns

ns∑
i=1

J τ
ω[s],0

g′
s(ω

τ[s],0Xsi )

σs(ω
τ[s],0Xsi )

[
Xsi − Vs,ω[s],0(ω

τ[s],0Xsi )
]
εsi

+
[
fεs (t)

1

n2

n2∑
i=1

ρ f,σ (γ τ
0X2i )ε2i

]
I {s = 1}

+
[
fεs (t)

1

n1

n1∑
i=1

ρ−1
f,σ (βτ

0X1i )ε1i

]
I {s = 2}

+ oP
(
n−1/2
1 + n−1/2

2

)
.

Note that the limiting process of Theorem 6 is a product of two objects: one is a
deterministic density function fεs (t) only depending on t , and the other is a summa-
tion of random variables with mean zero that are independent of t . According to the
asymptotic results of Theorem 6, the continuous mapping theorem entails the weak
convergence properties of test statistics TKS

n1n2 and TCM
n1n2 .

Theorem 7 Under the conditions of Theorem 4, if H̃0 holds, we have

TKS
n1n2

L−→
(
sup
t∈R

fε1(t)

)
|ξ | +

(
sup
t∈R

fε2(t)

)
|η|,

TCM
n1n2

L−→
(∫

f 2ε1(t)dFε1(t)

)
ξ2 +

(∫
f 2ε2(t)dFε2(t)

)
η2,

where ξ and η are two zero-mean normal random variables with the covariance and
variances as

Cov(ξ , η) =
√
1 − λ

λ
E
[
ρ−1
f,σ (βτ

0X1)
]

+
√

λ

1 − λ
E
[
ρ f,σ (γ τ

0X2)
]
,

Var(ξ) = Nτ
1 Jβ0

Ω−1
1 J τ

β0
N1 + λ

1 − λ
E
[
ρ2
f,σ (γ τ

0X2)
]

+ 1,

Var(η) = Nτ
2 Jγ 0

Ω−1
2 J τ

γ 0
N2 + 1 − λ

λ
E
[
ρ−2
f,σ (βτ

0X1)
]

+ 1.

Theorem 8 reveals that the limiting behavior of the two test statistics TKS
n1n2 and T

CM
n1n2

can detect the local alternative H̃1,n1n2 with order O((n1 + n2)−1/2) converging to
the null hypothesis H̃0.
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Considering the local alternative hypothesis

H̃1,n1n2 : g1(u) = g2(u) + 1√
n1 + n2

μ(u), for every u. (13)

We can have the following asymptotic result.

Theorem 8 Under the conditions of Theorem 4, if the local alternative hypothesis
(13) holds, we have

TKS
n1n2

L−→
(
sup
t∈R

fε1(t)

)
|ξ + b1| +

(
sup
t∈R

fε2(t)

)
|η + b2|,

TCM
n1n2

L−→
(∫

f 2ε1(t)dFε1(t)

)
(ξ + b1)2 +

(∫
f 2ε2(t)dFε2(t)

)
(η + b2)2,

where b1 = −√
λE

[
μ(βτ

0X1)

σ1(β
τ
0X1)

]
and b2 = √

1 − λE
[

μ(γ τ
0X2)

σ2(γ
τ
0X2)

]
.

3.3 A wild bootstrap procedure

In this subsection,weuse the smooth residual bootstrapmethodproposedbyNeumeyer
and Van Keilegom (2010) and Neumeyer (2009) to mimic the distributions of the test
statistics TKS

n1n2 and TCM
n1n2 . The procedure is summarized as follows:

Step 1 Compute TKS
n1n2 and TCM

n1n2 .
Step 2 Generate B times i.i.d. variables ςib for i = 1, . . . , ns , b = 1, . . . , B,

and s = 1, 2 from a standard normal distribution N(0, 1). They are inde-
pendent of the original sample {Ysi , Xsi , i = 1, . . . , ns, s = 1, 2}. Let
ε̂1i = Y1i−ĝ1(β̂

τ

0X1i ,β̂0)

σ̂1(β̂
τ

0X1i ,β̂0)
, ε̂2i = Y2i−ĝ2(γ̂

τ
0X2i ,γ̂ 0)

σ̂2(γ̂
τ
0X2i ,γ̂ 0)

be the estimators of ε1i and

ε2i , respectively, and standard them by

ε̃1i = ε̂1i − 1
n1

∑n1
i=1 ε̂1i(

1
n1

∑n1
i=1

[
ε̂1i − 1

n1

∑n1
i=1 ε̂1i

]2)1/2 , i = 1, . . . , n1,

ε̃2i = ε̂2i − 1
n2

∑n2
i=1 ε̂2i(

1
n2

∑n2
i=1

[
ε̂2i − 1

n2

∑n2
i=1 ε̂2i

]2)1/2 , i = 1, . . . , n2.

Let

ε̂∗
sib = ε̃si + ansςib i = 1, . . . , ns, b = 1, . . . , B, (14)

where ans = cs,1n
−1/4
s for some positive constants cs,1, s = 1, 2 (Neumeyer

2009; Neumeyer and Van Keilegom 2010). Then, define the “bootstrap”-
response Y ∗

1ib and Y ∗
2ib as
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Y ∗
1ib = ĝ1(β̂

τ

0X1i , β̂0) + σ̂1(β̂
τ

0X1i , β̂0)ε̂
∗
1ib, i = 1, . . . , n1,

Y ∗
2ib = ĝ2(γ̂

τ
0X2i , γ̂ 0) + σ̂2(γ̂

τ
0X2i , γ̂ 0)ε̂

∗
2ib, i = 1, . . . , n2.

Step 3 For each b, we use bootstraps
{
Y ∗
sib, Xsi , i = 1, . . . , ns, s = 1, 2

}
and re-

calculate the bootstrap estimators β̂
(b)
0 , γ̂

(b)
0 ĝ(b)

1

(
u, β̂

(b)
0

)
, ĝ(b)

2

(
u, γ̂

(b)
0

)
,

σ̂
(b)
1

(
u, β̂

(b)
0

)
, and σ̂

(b)
2

(
u, γ̂

(b)
0

)
. We then obtain the bootstrap test statis-

tics BKS(b)
n1n2 and B

CM(b)
n1n2 .

Step 4 We calculate the 1−κ quantile of the bootstrap test statisticsBKS(b)
n1n2 ,B

CM(b)
n1n2 ,

b = 1, . . . B as the κ-level critical value.

3.4 Extension to k groups

Suppose we have k (k ≥ 3) independent samples following the single-index het-
eroscedastic regression model:

Ys = gs
(
ωτ[s],0Xs

)+ σs
(
ωτ[s],0Xs

)
εs, s = 1, . . . , k. (15)

For s = 1, . . . , k, Ys is the response variable, gs(u) and σs(u), are unknown univariate
smooth functions, where function σs(u) is assumed to be positive. Further, Xs is the
qs-dimensional covariate vector. Error term εs satisfies E(εs) = 0 and E(ε2s ) = 1.
Parameter ω[s],0 is an unknown index vector that belongs to the parameter space
Bs = {

ω[s] = (ω[s],1, . . . , ω[s],qs )τ ∈ R
qs , ‖ω[s]‖ = 1, ω[s],1 > 0

}
.

We consider testing the equality of the mean functions, i.e.,

H̃k,0 : g1(u) = g2(u) = · · · = gk(u) for each u. (16)

Under null hypothesis H̃k,0, the estimators of Fεs (t), s = 1, . . . , k are obtained as

F̂H̃k,0,εs
(t) = 1

ns

ns∑
i=1

I
{
ε̂H̃k,0,si

≤ t
}

,

ε̂H̃k,0,si
= Ysi − ĝs(ω̂

τ
[ds ],0Xds i , ω̂[s],0)

σ̂s(ω̂
τ
[s],0Xsi , ω̂[s],0)

, for ds �= s,

and set {1, 2, . . . , k} is equal to {d1, d2, . . . , dk}. If under the null hypothesis H̃k,0 is
not true, we define

F̂εs (t) = 1

ns

ns∑
i=1

I
{
ε̂si ≤ t

}
,where ε̂si = Ysi − ĝs(ω̂

τ
[s],0Xsi , ω̂[s],0)

σ̂s(ω̂
τ
[s],0Xsi , ω̂[s],0)

.
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1090 J. Zhang

To test H̃k,0, we propose using the Kolmogorov–Smirnov and Cramér–vonMises type
functional based test statistics:

TKS
k,n1n2 =

k∑
s=1

sup
t∈R

n1/2s

∣∣∣F̂H̃k,0,εs
(t) − F̂εs (t)

∣∣∣ ,
and

TCM
k,n1n2 =

k∑
s=1

ns

∫ ∣∣∣F̂H̃k,0,εs
(t) − F̂εs (t)

∣∣∣2 d F̂εs (t).

Similarly, we can also use the smooth residual bootstrapmethod introduced in Sect. 3.3
to mimic the distributions of test statistics TKS

k,n1n2
and TCM

k,n1n2
.

4 Implementation

In this section,we report simulation results to evaluate the performance of the proposed
estimators and test statistics. Here, the Epanechnikov kernel K (t) = 0.75(1− t2)+ is
used. Note that under-smoothing is necessary as Condition (C4) requires that nsh4s →
0. To meet this requirement, we follow the suggestion in Carroll et al. (1997) by
choosing the order of O(n−1/5

s ) × n−2/15
s = O(n−1/3

s ) for bandwidth hs .
The selection procedure for hs is implemented as follows. First, weminimize cross-

validation score CVs(h) to obtain bandwidth hs,1; then, we use bandwidth hs as

hs = n−2/15
s ∗ hs,1. The cross-validation score is defined as

CVs(h) = n−1
s

ns∑
i=1

{
Ysi − ĝ[s,−i]

(
V̂[s,−i], ω̂[s,−i],0

)}2
,

where V̂s,−i = ω̂
τ
[s,−i],0Xsi , and ω̂[s,−i],0 and ĝ[s,−i]

(
V̂[−i], ω̂[s,−i],0

)
are com-

puted similarly to (3) with the i th observation deleted. For the choices of ans
in (14), Neumeyer (2009); Neumeyer and Van Keilegom (2010) suggested using
ans = cs,1n

−1/4
s for some positive constants cs,1, s = 1, 2. In this section, we use

ans = n−1/4
s , and the numerical results are stable when we use a shift around ans .

Example 1 In this example, we generate 500 realizations from models (1) and choose
sample sizes n1 = n2 = 50, 100, 300 and 500:

g1(u) = g2(u) = 2 exp (u), σ1(u) = exp(u), σ2(u) = (1 + u)2.

1. Parameter estimation.We consider β0 = (2, 1, 0,−2, 1)τ /
√
10, X1 ∼ N5(0,	1)

with	1 = (σ1,i j ), σ1,i j = 0.5|i− j |, and γ 0 = (1, 2, 3, 1)τ /
√
15, X2 ∼ N4(0,	2)

with 	2 = (σ2,i j ), σ2,i j = (−0.5)|i− j |. The model errors ε1 and ε2 independently
follow a standard normal distribution N (0, 1).
The simulation results for β̂0 and γ̂ 0 are reported in Tables 1 and 2, respectively.
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Table 1 The mean (M), standard error (SD) and means squared error (MSE) of β̂0 and arccos(β̂0, β0)

β̂0 arccos(β̂0, β0)

n = 50

M 0.6012 0.3287 0.0028 −0.6083 0.3229 0.2060

SD 0.1238 0.1133 0.1201 0.0715 0.0956 0.1296

MSE 50.5148 43.6036 41.8572 19.4543 30.8682 170.6115

n = 100

M 0.6298 0.3292 0.0127 −0.6134 0.3234 0.1113

SD 0.0533 0.0535 0.0550 0.0448 0.0590 0.0501

MSE 9.1718 10.9649 11.5210 8.5556 12.0104 44.7091

n = 300

M 0.6323 0.3229 0.0066 −0.6249 0.3182 0.0603

SD 0.0264 0.0320 0.0311 0.0253 0.0277 0.0239

MSE 6.9070 10.5784 10.0215 6.9104 7.6257 14.2168

n = 500

M 0.6349 0.3180 0.0064 −0.6267 0.3171 0.0456

SD 0.0189 0.0255 0.0248 0.0178 0.0208 0.0188

MSE 3.5930 6.4643 6.4848 3.4546 4.3016 8.3059

MSE is in the scale of ×10−4

The values of β̂0 and γ̂ 0 are close to the true values of β0 and γ 0, respectively,
and the values of MSE(β̂0,β0) and MSE(γ̂ 0, γ 0) decrease. Moreover, the angles
(in radians) of arccos(β̂0,β0) and arccos(γ̂ 0, γ 0) become closer to zero when
sample size n increases to 500. These simulation results show that the estimation
procedure proposed in Sect. 2 works well.

2. Test procedure for β0 = γ 0. We investigate the performance of test statistic
Tn1n2 . Let β0 = (1, 2, 3, 4)τ /

√
30, γ

(1)
0,[Co] = (2, 3, 4)τ /

√
30 + Co and the first

element of γ 0,[Co] be γ 0,1,[Co] =
√
1 − ‖γ (1)

0,[Co]‖2. Both X1 and X2 follow normal

distribution∼ N4(0,	3)with	3 = (σ3,i j ) and σ3,i j = 0.5|i− j |. Themodel errors
ε1 and ε2 independently follow from a standard normal distribution N (0, 1).
Note that the null hypothesisH∗

0 considered in (8) is true if and only ifCo = 0. The
simulation results are reported in Fig. 1. Typically, when C0 = 0, then β0 = γ 0
holds. The rejection probabilities are 0.0091, 0.0277, 0.0548, 0.1123 for n = 300
and 0.0095, 0.0261, 0.0524, 0.1077 for n = 500. These simulation results ofTn1n2
for C0 = 0 are close to 0.01, 0.025, 0.05, 0.10 when the null hypothesis H0 (or
H∗

0 ) is true. This indicates that Tn1n2 can provide proper rejection probabilities
under the null hypothesis H0 ( or H∗

0 ). We compare these results with those of
the Kullback–Leibler (KL) statistic proposed by Lin and Kulasekera (2010). In
Figs. 1 and 2, we plot the empirical powers obtained by test statistic Tn1n2 and the
KL statistic. The performances of test statistic Tn1n2 are more powerful than the
KL statistic in both figures. This is not surprising as we indicated in Sect. 1. The
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Table 2 The mean (M), standard error (SD) and means squared error (MSE) of γ̂ 0 and arccos(γ̂ 0, γ 0)

γ̂ 0 arccos(γ̂ 0, γ 0)

n = 50

M 0.2036 0.5125 0.7679 0.2581 0.1676

SD 0.1324 0.1039 0.0632 0.0878 0.1236

MSE 63.3573 34.0945 15.0437 28.3204 142.2371

n = 100

M 0.2584 0.5169 0.7699 0.2660 0.0422

SD 0.0285 0.0223 0.0198 0.0288 0.0286

MSE 2.0215 1.9285 1.1102 2.8322 8.9105

n = 300

M 0.2585 0.5164 0.7743 0.2581 0.0142

SD 0.0109 0.0080 0.0058 0.0083 0.0089

MSE 1.1678 0.6292 0.3373 0.6724 2.8069

n = 500

M 0.2578 0.5157 0.7751 0.2582 0.0122

SD 0.0079 0.0075 0.0052 0.0078 0.0072

MSE 0.7214 0.5652 0.2709 0.4691 2.2267

MSE is in the scale of ×10−4

convergence rate of the KL statistic for testing the null hypothesis H0 (or H∗
0)

is slower than Tn1n2 , which has a parametric convergence rate of O
(

1
n1+n2

)
. In

Fig. 2, the power functions of both statistics increase rapidly and approach one
when the value of Co increases and sample size n increases to 500.

Example 2 In this example, we investigate the performances of the estimators F̂εs (t)
and F̂H̃0,εs

(t) for s = 1, 2, and test statistics TKS
n1n2 and TCM

n1n2 . We generate 1000
realizations and choose sample sizes of n1 = n2 = 50, 100, 300, 500. The data
generating process is considered as follows:

g1(u) = 2 exp(0.5u), g2(u) = g1(u) + Dou
2, σ1(u) = σ1(u) = exp(0.5u). (17)

In this example, we set β0 = γ 0 = 1
3 (2, 1, 0,−2)τ . The covariates X1 and

X2 are independently generated from normal distribution N4(0,	4) with 	4 =
(σ4,i j )1≤i, j≤4, σ4,i j = 0.5|i− j |. The model errors ε1 and ε2 independently follow
a standard normal distribution N (0, 1).

1. Estimation for F̂εs (t) and F̂H̃0,εs
(t) under null hypothesis H0. The performance

of estimator F̂εs (t) and its true distribution Fεs (t) is evaluated using the average
squared error (ASE) and the average absolute error (AAE)

ASE = n−1
0

n0∑
v=1

[
F̂εs (lv) − Fεs (lv)

]2
, AAE = n−1

0

n0∑
s=1

∣∣∣F̂εs (lv) − Fεs (lv)
∣∣∣ ,
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Fig. 1 Power calculations of hypothesis test β0 = γ 0, n = 50 (dashed lines) and n = 100 (dotted line).
“+” for Tn1n2 and “◦” for KL statistic

where {l1, . . . , ln0} are the given grid points in the interval [−2, 2], and n0 = 400
is the number of grid points.

In Table 3, we report the numerical results of ASE and AAE for the estimators
F̂εs (t) and F̂H̃0,εs

(t)whenDo = 0 and s = 1, 2.The four estimators performbetter

as sample sizen increases. The performance of F̂εs (t) is better than F̂H̃0,εs
(t) in this

simulation study. Figure 3a, b show that there is little difference between estimators
F̂εs (t) and F̂H̃0,εs

(t) for sample size n = 500 when Do = 0, which indicates small

values for Kolmogorov–Smirnov test statistic TKS
n1n2 and Cramér–von Mises test

statistic TCM
n1n2 . In Fig. 3, we also present the plots of F̂εs (t) and F̂H̃0,εs

(t) when
Do = 0.5 and Do = 1. It is easily seen that larger values of Do lead to a larger
deviation of F̂H̃0,εs

(t) from Fεs (t), which indicates large values of Kolmogorov–

Smirnov test statistic TKS
n1n2 and Cramér–von Mises test statistic TCM

n1n2 .
2. Test statistics for g1(u) = g2(u). In each simulation for the power calculation, 200

and 1000 bootstrap samples were generated. We also compared our results with
those of the KL statistic proposed by Lin and Kulasekera (2010). The simulation
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Fig. 2 Power calculations of hypothesis test β0 = γ 0, n = 300 (dashed lines) and n = 500 (dotted line).
“+” for Tn1n2 and “◦” for KL statistic

results for the test statistics KL, TKS
n1n2 and T

CM
n1n2 are reported in Tables 4 and 5. It

is clear that all empirical levels obtained by the bootstrap test statistics proposed in
Sect. 3.3 forTKS

n1n2 andT
CM
n1n2 are close to 0.01, 0.025, 0.05, 0.10 when Do = 0 and

the sample size n ≥ 300, which indicates that the bootstrap method can provide
proper rejection probabilities.When the value of Do increases, the power functions
increase rapidly and approach one as sample size n increases.Moreover, in Table 4,
theKLstatistics aremore powerful thanTKS

n1n2 andT
CM
n1n2 when the bootstrap sample

is 200. If the bootstrap sample increases, for instance, to 1000 as shown in Table 5,
the performance of statistic TCM

n1n2 becomes better than the KL statistics when the
sample size n ≥ 300, and statistic TKS

n1n2 and the KL statistic perform similarly.

5 Real data analysis

In this example, we analyze the Boston housing price dataset (available from the
Machine Learning Repository at the University of California-Irvine) to illustrate our
proposed method. In the Boston Housing Dataset, there are 506 instances and vari-
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Table 3 The mean (M) and standard error (SD) for ASE and AAE

ASE AAE

F̂ε1 (t) F̂H0,ε1 (t) F̂ε2 (t) F̂H0,ε2 (t) F̂ε1 (t) F̂H0,ε1 (t) F̂ε2 (t) F̂H0,ε2 (t)

n = 50

M 14.2245 19.6098 13.7245 22.1191 0.2025 0.2198 0.1987 0.1898

SD 14.0023 18.9933 14.1012 21.9934 0.1384 0.1180 0.0997 0.1109

n = 100

M 6.7123 11.8856 6.2897 14.7765 0.0991 0.1011 0.0982 0.0998

SD 6.3329 10.9987 6.3098 15.2109 0.0595 0.0559 0.0497 0.0264

n = 300

M 2.5913 6.7190 2.3426 5.8062 0.0391 0.0569 0.0378 0.0543

SD 2.5775 5.8823 1.2911 5.2894 0.0125 0.0216 0.0092 0.0253

n = 500

M 1.5453 3.1023 1.5139 3.2483 0.0295 0.0487 0.0294 0.0387

SD 1.3138 3.6113 1.2007 3.3413 0.0100 0.0196 0.0081 0.0228

ASE is in the scale of ×10−4

ables indicating the size, location and environment of the property as well as its selling
price and other relevant variables that measure the socioeconomic status of neighbor-
hood. We focus our analysis on eight attributes: MEDV (Y ): the median value of
owner-occupied homes in USD 1000’s, RM (X1): the average number of rooms per
dwelling, AGE (X2): the proportion of owner-occupied units built prior to 1940, DIS
(X3): the weighted distances to five Boston employment centers, RAD (X4): an index
of accessibility to radial highways, TAX (X5): the full-value property-tax rate per
USD 10,000, PTRATIO (X6): the pupil-teacher ratio by town, BLACKS (X7): the
transformed proportion of Blacks which is calculated by 1000(Bk−0.63)2, where Bk
is the proportion of blacks by town. For this dataset, we use the covariate NOX (the
nitric oxide concentration per 10 million) to split the dataset into two groups. Group 1
is defined by the values of NOX that are less than its median, and Group 2 was defined
by the values of NOX that are greater or equal to its median. We use single-index
model (1) to analyze the eight attributes.

Corresponding to covariates (X1, X2, . . . , X7)
τ , parameters β0 and γ 0 and the

associated p values (p
β̂0

and pγ̂ 0
) were obtained as follows:

(
β̂0
p
β̂0

)
=
(
0.2099, 0.0996, −0.9637, 0.0274, −0.0006, −0.1029, −0.0771
0.2708, 0.0000, 0.0000, 0.5446, 0.8177, 0.0989, 0.0000

)
,

and

(
γ̂ 0
pγ̂ 0

)
=
(
0.8517, −0.5103, −0.0852, 0.0662, −0.0032, −0.0155, 0.0486
0.0000, 0.0000, 0.2464, 0.2047, 0.1217, 0.8205, 0.0000

)
.
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Fig. 3 The plots of true values of Fεs (t) (solid line), the plots of estimator F̂εs (t) (dotted line) and the
plots of estimator F̂H̃0,εs

(t) (dashed line). a, b is the case of Do = 0 (under the null hypothesis H̃0), c, d

is the case of Do = 0.5 (under the alternative hypothesis H̃1), and e, f is the case of Do = 1.0 (under the
alternative hypothesis H̃1)
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Fig. 4 Group 1: the plot for the estimator ĝ1(u) (solid line) against estimated single-index β̂
τ
0X1 in the

left panel, along with the associated 95% pointwise confidence intervals (dotted lines); Group 2: the plot
for estimator ĝ2(u) (solid line) against estimated single-index γ̂ τ

0X2 in the right panel, along with the
associated 95% pointwise confidence intervals (dotted lines)

The p values are calculated by estimating the asymptotic variances of β̂0 and γ̂ 0
obtained in Theorem 1. The value of test statistic Tn1n2 for this dataset is 301.8392,
which is substantially larger than the 99% quantile of χ2

6 . The values of β̂0, γ̂ 0, and
Tn1n2 indicate that the true values β0 and γ 0 are not equal for the two groups. Next,
we used the test statistic proposed by Stute and Zhu (2005) to check whether the
single-index models are appropriate for these two groups. The associated value of
the test statistics is 1.4902 with a p value of 0.1361 for Group 1 and 1.4873 with
a p value of 0.1401 for Group 2. This indicates that the single-index models are
appropriate for these two groups. The estimators ĝ1(u) and ĝ2(u) along with their
95% pointwise confidence bands are presented in Fig. 4. The figure for Group 1(high
NOX concentration) shows that the values ofMEDV decrease with index β̂

τ

0X1, while
the figure for Group 2 (lower NOX concentration) shows that the values of MEDV
increase with index γ̂

τ
0X2. This is not surprising, as the air pollution index NOX

is fairly strong related to life quality and hence house price. We conducted 1000
bootstraps to test g1(u) = g2(u), and the corresponding TKS

n1n2 and TCM
n1n2 are both

larger than the 97.5% quantile of 1000 bootstraps. This suggests a rejection of the
null hypothesis H̃0. Lastly, we present the estimated figures for the variance functions
σ 2
1 (u) and σ 2

2 (u) along with their associated 95% pointwise confidence intervals in
Fig. 5. In Fig. 5, the heteroscedastic single-index regression model is appropriate for
Group 1, and a homoscedastic single-index regression model is more appropriate for
Group 2, as constant function σ̂ 2

2 (u) = 1
n1

∑n2
i=1 σ̂ 2

2 (γ̂
τ
0X2i ) is encapsulated in the

95% pointwise confidence bands.
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Fig. 5 Group 1: the plot for the estimator σ̂ 2
1 (u) (solid line) against estimated single-index β̂

τ
0X1 in the

left panel, along with the associated 95% pointwise confidence intervals (dotted lines) and a horizontal line
for σ̂ 2

1 (u) = 1
n1

∑n1
i=1 σ̂ 2

1 (β̂
τ
0X1i ); Group 2: the plot for estimator σ̂ 2

2 (u) (solid line) against estimated

single-index γ̂ τ
0X2 in the right panel, along with the associated 95% pointwise confidence intervals (dotted

lines) a horizontal line for σ̂ 2
2 (u) = 1

n2

∑n2
i=1 σ̂ 2

1 (γ̂ τ
0X2i )
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Appendix

5.1 Proofs of Theorems 1 and 3

Lemma 1 Suppose that X i , i = 1, . . . , n are i.i.d. random vectors. Let m(x) be a
continuous function and its derivatives up to second order are bounded, satisfying
E[m2(X)] < ∞. E[m(X)|βτ X = u] has a continuous bounded second derivative
on u. Let K (u) be a bounded positive function with a bounded support satisfying the
Lipschitz condition: there exists a neighborhood of the origin, say ϒ , and a constant
c > 0 such that for any ε ∈ ϒ: |K (u + ε) − K (u)| < c|ε|. Given that h = n−d for
some d < 1, we have, for s0 > 0, and j = 0, 1, 2,

sup
(x,β)∈X×�

∣∣∣∣1n
n∑

i=1

Kh(β
τ X i − βτ x)

(
βτ X i − βτ x

h

) j

m(X i )
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− fβτ
0X

(βτ
0x)E

[
m(X)|βτ

0X = βτ
0x
]
μK , j − hS(βτ

0x)μK , j+1

∣∣∣∣
= OP (cn),

where � = {β ∈ �, ‖β − β0‖ ≤ Cn−1/2} for some positive constant C, � =
{β, ‖β‖ = 1, β1 > 0}, μK ,l = ∫

t l K (t)dt, S(βτ
0x) = d

du

{
fβτ

0X
(u)E

[
m(X)|βτ

0X

= u
]} |u=βτ

0 x
, and cn =

{
(log n)1+s0

nh

}1/2
+ h2.

Proof This proof can be completed by a similar argument of Lemma A.4 in Wang
et al. (2010). See also the Lemma A6.1 in Xia (2006). ��
Proofs of Theorems 1 and 3 We present the proof of Theorem 3. The proof of Theo-

rem 1 is similar and we omit the details. We define cns =
{

(log ns)1+s0

nshs

}1/2
+ h2s for

s = 1, 2 for simplicity in the following.

Proof Note that Wn1n2

(
β̂

(1)
H0

)
= 0. Taylor expansion entails that

− 1√
n1 + n2

Wn1n2

(
β

(1)
0

)

=
⎡
⎣ 1

n1 + n2

∂Wn1n2

(
β(1)

)
∂β(1)

∣∣∣
β(1)=β̃

(1)
0

⎤
⎦[√n1 + n2

(
β̂

(1)
H0

− β
(1)
0

)]
, (18)

where β̃
(1)
0 is between β̂

(1)
H0

and β
(1)
0 .

Step 1 In the following, we define N = n1 + n2 for simplicity. In this step, we deal

with N−1/2Wn1n2

(
β

(1)
0

)
. Using Lemma 1 and the detailed proofs of Lemma

A.4 in Zhang et al. (2014), we have ĝs(βτ
0Xsi ,β0) = gs(β

τ
0Xsi ) + OP (cns),

V̂s(β
τ
0Xsi ,β0) = Vs,β0

(βτ
0Xsi ) + OP (cns), for s = 1, 2. Moreover,

Sn1,l11(β
τ
0X1i ,β0)

= 1

n1

n1∑
j=1

Kh1(β
τ
0X1 j − βτ

0X1i )(β
τ
0X1 j − βτ

0X1i )
l1σ 2

1 (βτ
0X1 j )ε

2
1 j

+ 2

n1

n1∑
j=1

Kh1(β
τ
0X1 j − βτ

0X1i )(β
τ
0X1 j − βτ

0X1i )
l1

× [
g1(β

τ
0X1 j ) − ĝ1(β

τ
0X1 j ,β0)

]
σ1(β

τ
0X1 j )ε1 j

+ 1

n1

n1∑
j=1

Kh1(β
τ
0X1 j − βτ

0X1i )(β
τ
0X1 j − βτ

0X1i )
l1
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× [
g1(β

τ
0X1 j ) − ĝ1(β

τ
0X1 j ,β0)

]2
= hl11 fβτ

0X1(β
τ
0X1i )σ

2
1 (βτ

0X1i )μKl1 + OP (hl11 cn1 + hl11 c
2
n1), (19)

for l1 = 0, 1, 2. Using (19), we obtain σ̂ 2
1 (βτ

0X1i ,β0) = σ 2
1 (βτ

0X1i ) +
OP (cn1). Similarly, σ̂ 2

2 (βτ
0X2i ,β0) = σ 2

2 (βτ
0X2i ) + OP (cn2).

Let Gx
1,w(u,β) = E

[
Yw
1 {X1 − x}|βτ X1 = u

]
fβτ X (u), K ′

h1
(u) = 1

h1
K ′(u/

h1). Using condition (C3), we have

E

[
∂

∂β
Tn1,l1l2 (β

τ x,β)

]

= 1

n1

n1∑
i=1

E

[
K ′
h1 (β

τ X1i − βτ x)J τ
β

(
X1i − x

h1

)
(βτ X1i − βτ x)l1Y l2

1i

]

+ 1

n1

n1∑
i=1

E
[
Kh1 (β

τ X1i − βτ x)J τ
β (X1i − x) l1(β

τ X1i − βτ x)l1−1 I {l1 ≥ 1}Y l2
1i

]

= −
2∑

v=0

l1 + v

v! J τ
β G

x(v)
1,l2

(βτ x,β)hl1−1+v
1 μK ,l1−1+v I {l1 + v ≥ 1}

+
3∑

v=0

l1
v! J

τ
β G

x(v)
1,l2

(βτ x,β)hl1−1+v
1 μK ,l1−1+v I {l1 ≥ 1} + O(hl1+2

1 ), (20)

where Gx(v)
1,l2

(u,β) = ∂v

∂uv Gx
1,l2

(u,β), and I {u} is the indicator function. Sim-
ilar to the proof of Theorem 3.1 in Fan and Gijbels (1996) and Lemma A.5 in
Zhang et al. (2014), together with (20) and Lemma 1, we can have

∂ ĝ1(β
τ X1i ,β)

∂β(1)

∣∣∣
β(1)=β̃

(1)
0

= J τ
β0

[
X1i − V1,β0

(βτ
0X1i )

]
g′
1(β

τ
0X1i ) + OP

(
h21 +

√
(log n1)1+s0

n1h31

)
.

(21)

Under the null hypothesis H0,

∂ ĝ2(β
τ X2i ,β)

∂β(1)

∣∣∣
β(1)=β̃

(1)
0

= J τ
β0

[
X2i − V2,β0

(βτ
0X2i )

]
g′
2(β

τ
0X2i ) + OP

(
h22 +

√
(log n2)1+s0

n2h32

)
.

(22)

Define that Qn1(u,β0) = 1
n1h21

Tn1,20(u,β0)
1
n1
Tn1,00(u,β0) − 1

n21h
2
1
T 2
n1,10

(u,

β0) andLn1(u,β0)= 1
n21h

2
1
Tn1,20(u,β0)Tn1,01(u,β0)− 1

n21h
2
1
Tn1,10(u,β0)Tn1,11
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(u,β0). Then, ĝ1(u,β0) = Ln1 (u,β0)

Qn1 (u,β0)
and ĝ′

1(u,β0) = ∂Ln1 (u,β0)/∂u
Qn1 (u,β0)

−
Ln1 (u,β0)∂Qn1 (u,β0)/∂u

Q2
n1

(u,β0)
. Following the proof of Lemma A.5 in Zhang et al.

(2014), together with Lemma 1 and (20), we have ĝ′
1(u,β0) = g′

1(u) +
OP

(
h21 +

√
(log n1)1+s0

n1h31

)
and ĝ′

1(β
τ
0X1i ,β0) = g′

1(β
τ
0X1i ) + OP

(
h21

+
√

(log n1)1+s0

n1h31

)
. Similarly, ĝ′

2(u,β0) = g′
2(u) + OP

(
h22 +

√
(log n2)1+s0

n2h32

)
,

ĝ′
2(β

τ
0X2i ,β0) = g′

2(β
τ
0X2i ) + OP

(
h22 +

√
(log n2)1+s0

n2h32

)
.

Using the asymptotic results (21) and (22) and the condition of that n1
n1+n2

=
n1
N → λ ∈ (0, 1), as max

{
(log n1)2+2s0

n1h21
,

(log n2)2+2s0

n2h22

}
→ 0, and also

max{n1h81, n2h82} → 0, we have

(n1 + n2)
−1/2Wn1n2

(
β

(1)
0

)

=
√

n1
n1 + n2

n−1/2
1

n1∑
i=1

J τ
β0

ĝ′
1(β

τ
0X1i ,β0)

σ̂ 2
1 (βτ

0X1i ,β0)

[
X1i − V̂1(β

τ
0X1i ,β0)

]
× [

Y1i − ĝ1(β
τ
0X1i ,β0)

]
+
√

n2
n1 + n2

n−1/2
2

n2∑
i=1

J τ
β0

ĝ′
2(β

τ
0X2i ,β0)

σ̂ 2
2 (βτ

0X2i ,β0)

[
X2i − V̂2(β

τ
0X2i ,β0)

]
× [

Y2i − ĝ2(β
τ
0X2i ,β0)

]
=
√

n1
n1 + n2

n−1/2
1

n1∑
i=1

J τ
β0
g′
1(β

τ
0X1i )

[
X1i − V1,β0

(βτ
0X1i )

]
σ−1
1 (βτ

0X1i )ε1i

+
√

n2
n1+n2

n−1/2
2

n2∑
i=1

J τ
β0
g′
2(β

τ
0X2i )

[
X2i −V2,β0

(βτ
0X2i )

]
σ−1
2 (βτ

0X2i )ε2i

+ oP (1), (23)

where V2,β0
(βτ

0X2) = E[X2|βτ
0X2].

Step 2 In this sub-step, we deal with 1
n1+n2

∂Wn1n2

(
β(1)

)
∂β(1)

∣∣
β(1)=β̃

(1)
0
. Define

Sn1n2(β̃
(1)
0 )

def= 1

n1 + n2

2∑
s=1

ns∑
i=1

[
Ysi − ĝs(β̃

τ

0Xsi , β̃0)
]

× ∂

∂β(1)

{
J τ
β ĝ

′
s(β

τ Xsi ,β)
[
Xsi − V̂s(β

τ Xsi ,β)
]
σ̂−2
s (βτ Xsi ,β)

} ∣∣∣
β(1)=β̃

(1)
0

,
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and

Ln1n2(β̃
(1)
0 )

def= 1

n1 + n2

2∑
s=1

ns∑
i=1

{
J τ

β̃0
ĝ′
s(β̃

τ

0Xsi , β̃0)
[
Xsi − V̂s(β̃

τ

0Xsi , β̃0)
]

×σ̂−2
s (β̃

τ

0Xsi , β̃0)
}∂ ĝs(β

τ Xsi ,β)

∂β(1)

∣∣∣∣
β(1)=β̃

(1)
0

.

Then,

1

n1 + n2

∂Wn1n2

(
β(1)

)
∂β(1)

∣∣∣∣
β(1)=β̃

(1)
0

= Sn1n2(β̃
(1)
0 ) + Ln1n2(β̃

(1)
0 ), (24)

where β̃0 =
(√

1 − β̃
(1)τ
0 β̃

(1)
0 , β̃

(1)τ
0

)τ

. Note that β̃
(1)
0 is between β̂

(1)
H0

and

β
(1)
0 . By using (18), we have β̂

(1)
H0

= β
(1)
0 + OP ((n1 + n2)−1/2).

Note that β̃
(1)
0

P−→ β
(1)
0 , γ̃ (1)

0
P−→ β

(1)
0 and β̃0

P−→ γ 0, γ̃ 0
P−→ γ 0. Together

with (21)–(22) and condition of that n1
n1+n2

→ λ ∈ (0, 1), we have

Ln1n2(β̃
(1)
0 )

P−→ λJ τ
β0
E

[
g

′2
1 (βτ

0X1)

σ 2
1 (βτ

0X1)

[
X1 − V1,β0

(βτ
0X1)

]⊗2

]
Jβ0

+ (1 − λ)J τ
β0
E

[
g

′2
2 (βτ

0X2)

σ 2
2 (βτ

0X2)

[
X2 − V2,β0

(βτ
0X2)

]⊗2

]
Jβ0

. (25)

Moreover, a direct calculation for Sn1n2(β̃
(1)
0 ) and Lemma 1 entail that

Sn1n2(β̃
(1)
0 )

= oP (1). Together with (23) and (25), we complete the proof of Theorem
2. ��

5.2 Proof of Theorem 3

Proof From the proof of Theorem 3, we can have that

√
n1
(
β̂

(1)
0 − β

(1)
0

)

= Ω−1
1 n−1/2

1

n1∑
i=1

J τ
β0
g′
1(β

τ
0X1i )

[
X1i − V1,β0

(βτ
0X1i )

]
σ−1
1 (βτ

0X1i )ε1i + oP (1), (26)
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√
n2
(
γ̂

(1)
0 − γ

(1)
0

)

= Ω−1
2 n−1/2

2

n2∑
i=1

J τ
γ 0
g′
2(γ

τ
0X2i )

[
X2i − V2,γ 0

(γ τ
0X2i )

]
σ−1
2 (βτ

0X2i )ε2i + oP (1).

(27)

Under the null hypothesis H0 : β0 = γ 0, we can have

√
n1 + n2

(
β̂

(1)
0 − γ̂

(1)
0

)
=
(√

n1√
λ

(
β̂

(1)
0 − β

(1)
0

)
−

√
n2√

1 − λ

(
γ̂

(1)
0 − β

(1)
0

))
+ oP (1)

L−−→
H∗

0

N

(
0p−1,

1

λ
Ω−1

1 + 1

1 − λ
Ω−1

2

)
.

Moreover,

(n1 + n2) Â

= n1 + n2
n1

[
J τ

β̂0

1

n1

n1∑
i=1

ĝ
′2
1 (β̂

τ

0X1i , β̂0)

σ̂ 2
1 (β̂

τ

0X1i , β̂0),

[
X1i − V̂1(β̂

τ

0X1i , β̂0)
]⊗2

J
β̂0

]−1

+ n1 + n2
n2

[
J τ
γ̂ 0

1

n2

n2∑
i=1

ĝ
′2
2 (γ̂

τ
0X2i , γ̂ 0)

σ̂ 2
2 (γ̂

τ
0X2i , γ̂ 0),

[
X2i − V̂2(γ̂

τ
0X2i , γ̂ 0)

]⊗2
Jγ̂ 0

]−1

P−→ 1

λ
Ω−1

1 + 1

1 − λ
Ω−1

2 .

Then, the Slutsky Theorem and continuous mapping theorem entail that

Tn1n2

=
[√

n1 + n2
(
β̂

(1)
0 − γ̂

(1)
0

)]τ (
(n1 + n2) Â

)−1
[√

n1 + n2
(
β̂

(1)
0 − γ̂

(1)
0

)]
× L−−→

H∗
0

χ2
p−1.

We complete the proof of Theorem 3. ��

5.3 Proof of Theorem 4

Lemma 2 Suppose that conditions (C1)–(C5) hold. Let Fε̂s (t |Qns ) be the distribution

function of ε̂s = Ys−ĝs (ω̂τ
s,0Xs ,ω̂s,0)

σ̂s (ω̂
τ
s,0Xs ,ω̂s,0)

conditional on the data Qns = {Xsi ,Ysi }nsi=1 (i.e.,

considering ĝs
(
ω̂τ
s,0xs, ω̂s,0

)
, σ̂s

(
ω̂τ
s,0xs, ω̂s,0

)
as fixed functions on xs ) for s = 1, 2
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respectively. Here, ω̂1,0 = β̂0 and ω̂2,0 = γ̂ 0. Then, we have

sup
t∈R

∣∣∣∣∣n−1
1

n1∑
i=1

[
I
{
ε̂1i ≤ t

}− I {ε1i ≤ t} − Fε̂1(t |Qn1) + Fε1(t)
]∣∣∣∣∣

= oP
(
n−1/2
1

)
, (28)

sup
t∈R

∣∣∣∣∣n−1
2

n2∑
i=1

[
I
{
ε̂2i ≤ t

}− I {ε2i ≤ t} − Fε̂2(t |Qn2) + Fε2(t)
]∣∣∣∣∣

= oP
(
n−1/2
2

)
. (29)

Proof In the following, we only prove (28), the proof of (29) is similar and we omit
the details. Let

O =
{
I {ε1 ≤ t f2(X1) + f1(X1)} − I {ε1 ≤ t} − P(ε1 ≤ t f2(X1) + f1(X1))

+ P(ε1 ≤ t); t ∈ R, f1, f2 ∈ M1+δ
1 (R

p
c )
}
,

where M1+δ
1 (R

p
c ) is the class of all differential functions f (u) defined on the domain

R
p
c of x1 and ‖ f ‖1+δ ≤ 1. Here Rp

c is a compact set of Rp and

‖ f ‖1+δ

= sup
x1∈Rp

c

| f (x1)| +
p∑

l=1

sup
x1∈Rp

c

∣∣∣∣∂ f (x1)∂x1l

∣∣∣∣+ sup
x1,1,x1,2∈Rp

c

|∂ f (x1,1) − ∂ f (x1,2)|
‖x1,1 − x1,2‖δ

.

Using Lemma 1 and ‖β̂0 − β0‖ = OP (n−1/2
1 ), and similar to the proofs of (21) and

(22), we have that

ĝ1(β̂
τ

0x1, β̂0) = g1(β
τ
0x1) + OP

(
n−1/2
1 + cn1

)
, (30)

σ̂1(β̂
τ

0x1, β̂0) = σ1(β
τ
0x1) = OP

(
n−1/2
1 + cn1

)
, (31)

uniformly in x1 ∈ R
p
c . Let An1(x1) = ĝ1(β̂

τ

0 x1,β̂0)−g1(βτ
0 x1)

σ1(β
τ
0 x)

, Bn1(x) = σ̂1(β̂
τ

0 x1,β̂0)

σ1(β
τ
0 x1)

.

So, (30) and (31) entail P
(
An1 ∈ M1+δ

1 (R
p
c )
)

→ 1, P
(
Bn1 ∈ M1+δ

1 (R
p
c )
)

→ 1 as

n1 → ∞, h1 → 0 and n1h1
(log n1)1+s → ∞.

By directly using the Corollary 2.7.2 of van der Vaart and Wellner (1996), the

bracketing number N[ ]
(
υ2, M1+δ

1 (R
p
c ), L2(P)

)
can be at most exp

(
c0υ

− 2p
1+δ

)
for

some positive constant c0, According to the proof of Lemma 1 in Appendix B of
Akritas and Van Keilegom (2001), and then the class O defined above is a Donsker

class, i.e., we have that
∫ ∞

0

√
N[ ](ῡ,O, L2(P))dῡ < ∞. Then, the proof of (28) is

complete. ��
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Proof of Theorem 4 We can have that

F̂ε1(t) − Fε1(t)

= 1

n1

n1∑
i=1

I {ε1i ≤ t} − Fε1(t) + (
Fε̂1(t |Qn1) − Fε1(t)

)+ Rn1,1(t), (32)

where Rn1,1(t) = oP (n−1/2
1 ) uniformly in t ∈ R by using Lemma 2. Taylor expansion

entails that

Fε̂1(t |Qn1) − Fε1(t)

=
∫ [

Fε1(t + t[Bn1(x1) − 1] + An1(x1)) − Fε1(t)
]
dFX1(x1)

= fε1(t)t
∫

[Bn1(x1) − 1]dFX1(x1) + fε1(t)
∫

An1(x1)dFX1(x1)

+
∫

f ′
ε1

(t + v∗
n1(t, x1))

{
t[Bn1(x1) − 1] + An1(x1)

}2
dFX1(x1)

= Rn1,2(t) + Rn1,3(t) + Rn1,4(t), (33)

where v∗
n1(t, x1) is between 0 and t[Bn1(x1) − 1] + An1(x1). Note that

An1(x1)

= ĝ1(β̂
τ

0x1,β0) − ĝ1(β
τ
0x1,β0)

σ1(β
τ
0x1)

+ ĝ1(β̂
τ

0x1,β0) − g(βτ
0x1)

σ1(β
τ
0x1)

. (34)

Recall the definition of ĝ1(u,β0) and using Lemma 1,

ĝ1(β
τ
0x1,β0) − g1(β

τ
0x1)

= 1

n1 fβτ
0X1(β

τ
0x1)

n1∑
i=1

Kh1

(
βτ
0X1i − βτ

0x1
)
σ1(β

τ
0X1i )ε1i + OP (cn1). (35)

Similar to (21), we can also have

ĝ1(β̂
τ

0x1,β0) − ĝ1(β
τ
0x1,β0)

= [
x1 − V1,β0

(βτ
0x1)

]τ
g′
1(β

τ
0x1)

(
β̂0 − β0

)
+ OP

(
h21 +

√
(log n1)1+s

n1h31

)
.

(36)

Together with (34), (35) and (36), we have

Rn1,3(t) = fε1(t)
∫

An1(x1)dFX1(x1) = fε1(t)

n1

n1∑
i=1

ε1i + oP (n−1/2
1 ). (37)
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Similarly,

σ̂ 2
1

(
β̂

τ

0x1, β̂0

)
− σ 2

1 (βτ
0x1)

= 1

f
βτ
0X1

(βτ
0x1)n1

n1∑
i=1

Kh1

(
βτ
0X1i − βτ

0x1
)
σ 2
1 (βτ

0X1i )(ε
2
1i − 1)

+ 2
[
x1 − V1,β0

(βτ
0x1)

]τ
σ1(β

τ
0x1)σ

′
1(β

τ
0x1)

(
β̂0 − β0

)
+ oP (n−1/2

1 ). (38)

Then, Taylor expansion for

√
σ̂ 2
1

(
β̂

τ

0x, β̂0

)
−
√

σ 2
1 (βτ

0x) and asymptotic expression

(38) entail that

Rn1,2(t) = t fε1(t)
∫

[Bn1(x1) − 1]dFX1(x1)

= t fε1(t)
1

2n1

n1∑
i=1

(ε21i − 1) + oP (n−1/2
1 ). (39)

Moreover, (34), (39) and Condition (C5) entail that Rn1,4(t) = oP (n−1/2
1 ) uniformly

in t . Together with (32), (26) and (37)–(39), we complete the proof of Theorem 2.
��

5.4 Proof of Theorems 5 and 6

Proof Recalling the definition of F ∗̃
H0,ε1

(t) = E
[
Fε1

(
t + g2(βτ

0X1)−g1(βτ
0X1)

σ (βτ
0X)

)]
.

F̂H̃0,ε1
(t) − F ∗̃

H0,ε
(t) = 1

n1

n1∑
i=1

I {ε̂H̃0,i
≤ t} − F ∗̃

H0,ε1
(t)

= 1

n1

n1∑
i=1

I

{
ε1i + g1(β

τ
0X1i ) − g2(β

τ
0X1i )

σ1(β
τ
0X1i )

≤ t

}
− F ∗̃

H0,ε1
(t)

+
[
FH̃0,ε̂1

(t |Vn1n2) − F ∗̃
H0,ε1

(t)
]

+ Sn1,1(t), (40)

where FH̃0,ε̂1
(t |Vn1n2) be the distribution function of ε̂H̃0,1

= Y−ĝ2(β̂
τ

0X,γ̂ 0)

σ̂1(β̂
τ

0X,β̂0)
condi-

tional on the data Vn1n2 = {X1i ,Y1i , X2 j ,Y2 j , 1 ≤ i ≤ n1, 1 ≤ j ≤ n2}, and similar

to the analysis of Lemma 2, we have sup
t∈R

|Sn1,1(t)| = oP (n−1/2
1 ). Taylor expansion

entails that

FH̃0,ε̂1
(t |Vn1n2) − F ∗̃

H0,ε1
(t)

=
∫

Fε1

(
t + g1(β

τ
0x1) − g2(β

τ
0x1)

σ1(β
τ
0x1)

+ [Bn1(x1) − 1]t
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+ ĝ2(β̂
τ

0x1, γ̂ 0) − g2(β
τ
0x1)

σ1(β
τ
0x1)

)
dFX1(x1) − F ∗̃

H0,ε1
(t)

= t
∫

fε1

(
t + g1(β

τ
0x1) − g2(β

τ
0x1)

σ1(β
τ
0x1)

)
[Bn1(x1) − 1]dFX1(x1)

+
∫

fε1

(
t + g1(β

τ
0x1) − g2(β

τ
0x1)

σ1(β
τ
0x1)

)
ĝ2(β̂

τ

0x1, γ̂ 0) − g2(β
τ
0x1)

σ1(β
τ
0x1)

dFX1(x1)

+ Rn1n2(t). (41)

Similar to the analysis of (21), we can have that

ĝ2(β̂
τ

0x1, γ 0) − ĝ2(β
τ
0x1, γ 0)

= g′
2(β

τ
0x1)x

τ
1

(
β̂0 − β0

)
+ OP

(
h22 +

√
(log n2)1+s0

n2h32

)
. (42)

Recall the definition of ĝ2(u, γ 0) and using Lemma 1,

ĝ2(β
τ
0x1, γ 0) − g2(β

τ
0x1)

= 1

n2 fγ τ
0X2(β

τ
0x1)

n2∑
i=1

Kh2

(
γ τ
0X2i − βτ

0x1
)
σ2(γ

τ
0X2i )ε2i + OP (cn2). (43)

We can also show that Rn1n2(t) defined in (41) is oP (n−1/2
1 + n−1/2

2 ) uniformly in
t ∈ R. Together with (39), (42) and (43), we have

FH̃0,ε̂1
(t |Vn1n2) − F ∗̃

H0,ε1
(t)

= t

2n1

n1∑
i=1

(ε21i − 1) fε1

(
t + g1(β

τ
0X1i ) − g2(β

τ
0X1i )

σ1(β
τ
0X1i )

)

+ E

[
fε1

(
t + g1(β

τ
0X1) − g2(β

τ
0X1)

σ1(β
τ
0X1)

)
g′
2(β

τ
0X)

σ1(β
τ
0X)

V1,β0
(βτ

0X)

]τ (
β̂0 − β0

)

+ 1

n2

n2∑
i=1

fε1

(
t + g1(γ τ

0X2i ) − g2(γ τ
0X2i )

σ1(γ
τ
0X2i )

)
fβτ

0X1(γ
τ
0X2i )

fγ τ
0X2(γ

τ
0X2i )

σ2(γ
τ
0X2i )

σ1(γ
τ
0X2i )

ε2i

+ oP (n−1/2).

Recalling the definitions of D1(u) and ρ f,σ (u), we complete the proof of Theorem 5.
Moreover, the proof of Theorem 6 is completed by following the asymptotic result of
Theorem 5 and recalling that D1(u) ≡ D2(u) ≡ 0 under the null hypothesis, we omit
the details. ��
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5.5 Proof of Theorem 7

Proof By using the detailed proof of Theorem 1 in Stute et al. (2008), the class of
functions

�t (ε1, x1) = I

{
ε1 ≤ t − 1√

n1 + n2

μ(βτ
0x1)

σ1(β
τ
0x1)

}
− I {ε1 ≤ t}

− Fε1

(
t − 1√

n1 + n2

μ(βτ
0x1)

σ1(β
τ
0x1)

)
+ Fε1(t)

is a Vapnik-Chervonenkis class with envelop function 4 (Pollard 1984, Ch. 2). Then,
we can have that

n−1/2
1

∣∣∣∣
n1∑
i=1

[
I

{
ε1i ≤ t − 1√

n1 + n2

μ(βτ
0X1i )

σ1(β
τ
0X1i )

}
− I {ε1i ≤ t}

]

− E

[
Fε1

(
t − 1√

n1 + n2

μ(βτ
0X1)

σ1(β
τ
0X1)

)]
+ Fε1(t)

∣∣∣∣ = oP
(
n−1/2
1

)
. (44)

Moreover, Taylor expansion entails that

E

[
Fε1

(
t − 1√

n1 + n2

μ(βτ
0X1)

σ1(β
τ
0X1)

)]
− Fε1(t)

= − 1√
n1 + n2

fε1(t)E

[
μ(βτ

0X1)

σ1(β
τ
0X1)

]
+ o

(
n−1/2
1 + n−1/2

2

)
. (45)

If the local alternative hypothesisH1n1n2 is true, together with (44) and (45), we have

F̂H̃0,ε1
(t) − F̂ε1(t) = − 1√

n1 + n2
fε1(t)E

[
μ(βτ

0X1)

σ1(β
τ
0X1)

]

+ fε1(t)N
τ
1 Jβ0

Ω−1
1

1

n1

n1∑
i=1

J τ
β0

g′
1(β

τ
0X1i )

σ1(β
τ
0X1i )

[
X1i − V1,β0

(βτ
0X1i )

]
ε1i

+ fε1(t)
1

n2

n2∑
i=1

ρ f,σ (Yγ τ
0X2i )ε2i + fε1(t)

1

n1

n1∑
i=1

ε1i

+ oP (n−1/2
1 + n−1/2

2 ).

We can also obtain a similar expression for F̂H̃0,ε2
(t)− F̂ε2(t) and we omit the details.

Using the continuous mapping theorem, we complete the proof of Theorem 7. ��
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