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Abstract Determining accurately when regime and structural changes occur in var-
ious time-series data is critical in many social and natural sciences. We develop and
show further the equivalence of two consistent estimation techniques in locating the
change point under the framework of a generalised version of the one-dimensional
Ornstein–Uhlenbeck process. Our methods are based on the least sum of squared
error and the maximum log-likelihood approaches. The case where both the existence
and the location of the change point are unknown is investigated and an informa-
tional methodology is employed to address these issues. Numerical illustrations are
presented to assess the methods’ performance.
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1 Introduction

1.1 Background

In this paper, we consider the generalised Ornstein–Uhlenbeck (OU) process in one-
dimensional set up. The OU process is commonly used to model the stochastic
dynamics of various financial variables. Certain economic indicators also have stylised
properties that are adequately captured by the OU process. Vasicek’s (1977) pioneer-
ing work, employing an OU model to price a zero-coupon bond, inspired a multitude
of research investigations from extensions addressing the model’s weakness of con-
stant mean-reverting level to various applications in economic and financial practice.
The importance of this stochastic process is also demonstrated by its ubiquity in many
fields. Amongst the finance and finance-related areas highlighting the usefulness of
OU process are electricity market (e.g., Erlwein et al. 2010), commodity futures mar-
ket (e.g., Date et al. 2013), weather derivatives (e.g., Elias et al. 2014), centra-bank
setting rate policy (e.g., Elliott and Wilson 2007), stochastic control-driven insurance
problems (e.g., Liang et al. 2011), spot freight rates in the shipping industry (e.g.,
Benth et al. 2015), risk management (e.g., Date and Bustreo 2016, and power genera-
tion (e.g., Howell et al. 2011). Applications of the OU process could be as well found
in biology (see Rohlfs et al. 2010), neurology (see Shinomoto et al. 1999), survival
analysis (see Aalen and Gjessing 2004), physics (see Lánský and Sacerdote 2001),
and chemistry (see Lu 2003, 2004).

To rectify the classical OU model’s inability to capture the evolution of a process
whose mean level varies with time, Dehling et al. (2010) introduced a generalised OU
process in which a time-dependent function describes its mean-reverting level. Such a
generalised version incorporates time-inhomogeneity and seasonality of mean rever-
sion simultaneously. Moreover, the generalised OU process is capable of modelling
drastic changes in certain time points (e.g., interest rates undergoing drastic moves
due to financial crisis, war, etc). Dehling et al. (2014) developed the framework in
the study of a change-point phenomenon in the generalised OU process to model the
drastic change.

Our contributions in this paper hinged on the research results primarily from two
research articles detailed as follows. The first is the paper of Dehling et al. (2010) in
which a maximum likelihood estimator (MLE) for the drift parameters of the diffusion
process is derived and the asymptotic properties, such as the asymptotic distribution of
the proposed MLE, are studied. Dehling et al. (2014) considered an extended model,
where there is one unknown change point and constructed a likelihood-ratio test statis-
tic in determining a candidate change point. This line of enquiry was continued by
Nkurunziza and Zhang (2016) who examined the asymptotic properties of both the
unrestricted and restrictedMLE for the drift parameters of the generalised OU process
with a single change point. In particular, based on the established asymptotic distri-
bution of the MLEs, a James-Stein-type shrinkage estimator for the drift parameters
is proposed in Nkurunziza and Zhang (2016) as an improvement. In the estimation of
the unknown change point, Nkurunziza and Zhang (2016) showed that the previously
established asymptotic properties also hold for any consistent estimator for the rate of
change point.
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Inference for a change-point problem under an OU setting 809

Nonetheless, both Dehling et al. (2014) and Nkurunziza and Zhang (2016) did not
provide any explicit method to estimate the change point. This deficiency inspired
the three main contributions of our paper. Firstly, we present two consistent meth-
ods to estimate the unknown change point. Secondly, we consider the case where
the existence of the change point is uncertain and propose an informational approach
to address this existence issue. Thirdly, the performance of the proposed methods
is theoretically analysed and validated by a numerical implementation. In practice,
many data series are characterised by some potential changes in structure, i.e., a sud-
den change in mean or variance and other model parameters. It is then of interest to
determine the (i) existence and (ii) location of the change point. This implies segre-
gating the data series into different segments and analysing them in a more efficient
way.

Investigations concerning change-point problems are not new. Inaugural contri-
butions to this field were spearheaded, for example, by Page (1954) and Shiryaev
(1963). Recent developments have focused on (i) the estimation of change points
and coefficients of linear regression models with multiple change points (cf. Bai
and Perron 1998; Perron and Qu 2006; Lu and Lund 2007; Gombay 2010; Chen
and Nkurunziza 2015); (ii) change-point testing for the drift parameters of a peri-
odic mean-reverting process (cf. Dehling et al. 2014); (iii) change-point analysis
involving stochastic differential equations (cf. De Gregorio and Iacus 2008; Iacus
and Yoshida 2012; Lee 2011; Lee and Guo 2015); (iv) applications in finance (cf.
Spokoiny 2009); (v) detection of malware within software (Yan et al. 2008); and (vi)
climatology (Reeves et al. 2007; Robbins et al. 2011; Gallagher et al. 2012). In gen-
eral, the analysis of change points could be described as a hypothesis-testing problem
for the existence of change points in various locations. Alternatively, this could be
viewed as a model selection problem that treats the change points as the additional
unknown parameters to be estimated. However, unlike ordinary least-squares estima-
tion, there is so far no closed-form estimation methods to calculate the change point
directly or in a few steps. The existing change-point estimation approaches are pre-
dominantly designed to perform a search at every possible location of a change point
with some efficient computational algorithms until some criteria are satisfied. The
well-knownalgorithms for change-point detection are the (i) binary segmentation algo-
rithm (Scott and Knott 1974; Sen and Srivastava 1975), (ii) segment-neighbourhood
algorithm (Auger and Lawrence 1989; Bai and Perron 1998) with adaption to the
restricted regression model (Perron and Qu 2006), and (iii) PELT algorithm (Killick
et al. 2012).

There are two types of scenarios for which change-point problems are examined
in the literature. In the first scenario, the number of change points is known, but their
exact locations are unknown (see Perron and Qu 2006; Chen and Nkurunziza 2015).
The second scenario covers the more general situation in which both the number and
the exact locations of the change points are unknown. The estimation methods under
the first scenario only require the identification of the exact locations of the change
points. Clearly, the performance assessment in the former scenario is relatively easier
than that in the latter scenario.
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1.2 Motivating examples

1.2.1 West Texas Intermediate (WTI) Cushing crude oil spot prices

The first motivating example of this paper is the West Texas Intermediate (WTI)
Cushing crude oil spot prices, which is often being considered as a benchmark in
oil pricing. The data set was compiled by Bloomberg with code “USCRWTIC” and
covers approximately 4 years of daily prices from 09 November 2011 to 09 November
2015 (i.e., 1008 trading days). During this period (see Fig. 7), there is a price decline
after September 2014 due to the conflict in the Middle East. It could be recalled that in
September 2014, there was an increase in the OPEC oil production led by a rebound
in the Libyan output. The dollar, on the other hand, continued to get stronger. These
events caused the decline of the crude oil prices and suggested the potential existence
of a change point in the data series.

Due to the potential existence of the change point, for this data set the classical OU
processwithout change-point is inappropriate.Our findings show, as detailed in Sect. 6,
that applying the classical method to the original data set produces very large Schwarz
information criterion (SIC) as compared to the proposed method which takes into
account the change point. Indeed, the proposed method increases the log-likelihood
value from 0.72 to 11.89 and reduces the SIC by 69%.

1.2.2 XAU currency

The secondmotivating example of this paper is theXAUcurrency,which is the standard
ticker symbol for one troy ounce of gold, considered as a currency to US dollar. This
implementation is carried out to show the nuances in dealing with data sets or its
transformed version whose change point is not clear-cut at the outset. The data set
is also obtained from Bloomberg with code “XAU”, and it is a 15-year data series
ranging from 03 November 2000 to 04 November 2015 (i.e., 3913 trading days).

Descriptive analysis of the data set suggests a certain trend in the XAU currency
series that changes over time. In particular, the currencywas increasing since the begin-
ning of the period until August 2011. Most notably after 2008 crisis, the increasing
slope became sharper as the investors flocked to gold market. The price was close to
$1900 in August 2011, and it remained above $1500 until April 2013. Then, the price
plunged due to the banking crisis in Cyprus and increasing worries about an imminent
change in the Federal Reserve’smonetary policy. These features in the pricemovement
suggest the potential existence of a change point.

By using the proposedmethod to the original data set, the log-likelihood is increased
from 1.43 to 12.62 and reduces the SIC by 43%. However, by using the proposed
method to the log-transformed data set, the proposedmethod does not allow to confirm
the existence of a change point. Nonetheless, the proposed method preserves a good
performance in terms of log-likelihood (7.06 vs. 3.31 for the classical method).

The remainder of this paper is organised as follows. In Sect. 2, we look at the
formulation of the change-point problem. We recapitulate in Sect. 3 the results of
both Dehling et al. (2014) and Nkurunziza and Zhang (2016) on MLE and the related
asymptotic properties which are useful in delving into the asymptotic performance
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Inference for a change-point problem under an OU setting 811

of our proposed methods. Section 4 considers the case where the existence of the
change point is certain, but its location is unknown; two estimation methods are put
forward to determine the unknown change point. The asymptotics of the estimators
are also discussed and hence, the asymptotic properties established in Nkurunziza and
Zhang (2016) also hold in our proposed techniques. The case where the existence
and the location of the change point are both unknown is explored in Sect. 5. We
develop an informational approach to detect the change point, and the consistency of
our methods is likewise theoretically demonstrated. Section 6 provides the numerical
implementation of our proposed methods on both simulated and observed financial
market data. The final section gives some concluding remarks.

2 Description of the single-change-point problem

Our main consideration in this paper is the change-point estimation strategy under a
generalised Ornstein–Uhlenbeck process with only one change point. We start with
Nkurunziza and Zhang’s (2016) framework , which assumes that a consistent estimator
exists for the unknown change point τ ∈ [0, T ]. The model under examination is the
generalised version of the Ornstein–Uhlenbeck (OU) process with SDE representation

dXt =
(
S(θ(1), t, Xt )I{t�τ } + S(θ(2), t, Xt )I{t>τ }

)
dt + σdWt , 0 < t ≤ T, (1)

where IA denotes the indicator function of the event A; τ is an unknown change point;
θ( j) = (μ

( j)
1 , . . . , μ

( j)
p ,−a( j))′ for j = 1, 2; the symbol ′ refers to the transpose

of a matrix; and S(θ( j), t, Xt ) = L( j)(t) − a( j)Xt = ∑p
i=1 μ

( j)
i ϕi (t) − a( j)Xt for

i = 1, . . . , p and j = 1, 2. Also, Wt is a one-dimensional Brownian motion defined
on some probability space (�,F , P).

In particular, we assume that there is one unknown change point τ = sT , 0 < s < 1
such that

S(θ(1), t, Xt ) =
p∑

i=1

μ
(1)
i ϕi (t) − a(1)Xt , 0 < t < τ,

S(θ(2), t, Xt ) =
p∑

i=1

μ
(2)
i ϕi (t) − a(2)Xt , τ ≤ t ≤ T,

where θ(1) =
(
μ

(1)
1 , . . . , μ

(1)
p ,−a(1)

)′
, for 0 < t < τ , and θ(2) =

(
μ

(2)
1 , . . . ,

μ
(2)
p , a(2)

)′
, for τ ≤ t ≤ T .

For the case when there is no change point, maximum likelihood estimators for the
drift parameters and their related asymptotic properties were derived in Dehling et al.
(2010). These results are reviewed in the next section and serve as a springboard for our
theoretical discussion. It has to be noted that our focus is the diffusion process described
by (1) in continuous time. Thus, in deriving the theoretical results, we consider the
diffusion parameter σ 2 to be known. In particular, σ 2 equals the quadratic variation of
the process. In the data analysis presented in Sect. 6, the quadratic variation is taken as
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σ̂ 2 = 1

T

N∑
i=1

(
Xti − Xti−1

)2 (2)

with 0 = t0 < t1 < · · · < tN = T . In a continuous-time process, we have
P
{
σ̂ 2 = σ 2

} = 1. The extended framework where the diffusion coefficient changes
after the change point is a natural research direction that is being pursued in our
on-going investigation.

3 Earlier MLE-based results and our new results

This section consists of two subsections: (i) review of the results for the MLE of
the drift parameters (without change point) along with the related asymptotic prop-
erties demonstrated in Dehling et al. (2010); and (ii) review of the MLE for the drift
parameters (with one change point) and the related asymptotic properties studied in
Nkurunziza and Zhang (2016).

In Nkurunziza and Zhang (2016), however, asymptotic normality for the MLE
estimator of the drift parameters is derived under the assumption that the estimator
is already consistent. In our case, we shall show (instead of assume) that such an
estimator of the change point is consistent, thereby proving the consistency properties
of the proposed estimator.

Notation The expressions “
p−−−→

T→∞ ”, “
D−−−→

T→∞ ”, and “
a.s.−−−→

T→∞ ” denote convergence in

probability, convergence in distribution, and convergence almost surely, respectively.
The “O(·)” stands for “Big O” describing the asymptotic behaviour of functions;
i.e., for a sequence of random variables Un and a corresponding set of constants an ,
Un = Op(an)meansUn/an is stochastically bounded in the sense that∀ε > 0, ∃ M >

0, 	 P(|Un/an| > M) < ε, ∀n. The symbol “small o” means Un = op(an),
i.e., Un/an converges in probability to zero as n approaches an appropriate limit.
ConsideringUn = op(an) is equivalent toUn/an = Op(1), convergence in probability
is defined here as limn→∞ (P(|Un/an)| ≥ ε) = 0.

3.1 Maximum likelihood estimator of the drift parameters

To gain some useful insights, we first consider the case where there is no change point
(θ(1) = θ(2)). We review briefly the MLE of the drift parameters proposed in Dehling
et al. (2010) under the following assumptions.

Assumption 1 P
(∫ T

0 S2(θ, t, Xt ) < ∞
)

= 1, for all 0 < T < ∞, for all θ ∈ θ .

With this assumption, Theorem 7.6 in Lipster and Shiryaev (2001) may be used to
find an explicit expression for the corresponding likelihood function.

Suppose that there is no any change point in [0, T ]. Then, let C[0, T ] be the space
of continuous, real-valued function on [0, T ] and let B[0, T ] be the Borel σ -field
associated with C[0, T ]. Let PB be the probability measure generated by the Brownian
motion on (C[0, T ],B[0, T ]), i.e., PB(A) = P{ω : B ∈ A}, A ∈ B[0, T ]. Suppose
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further that PX is the probability measure generated by the observation XT of the
process with SDE specified in (1). Then, the likelihood function of XT is

L(θ, XT ) = dPX

dPB
(XT )

= exp

(
1

σ 2

∫ T

0
S(θ, t, Xt )dXt − 1

2σ 2

∫ T

0
S2(θ, t, Xt )dXt

)
. (3)

Therefore, the MLE of the drift parameters is given by

θ̂ = Q−1
(0,T ) R̃(0,T ) =

(
1

T
Q(0,T )

)−1 1

T
R̃(0,T ), (4)

where

Q(0,T ) =
⎡
⎣

∫ T
0 ϕ2

1(t)dt . . .
∫ T
0 ϕ1(t)ϕp(t)dt − ∫ T0 ϕ1(t)Xtdt

. . .

− ∫ T0 Xtϕ1(t)dt . . . − ∫ T0 Xtϕp(t)dt
∫ T
0 X2

t dt

⎤
⎦ ,

and R̃(0,T ) = (
∫ T
0 ϕ1(t)dXt , . . . ,

∫ T
0 ϕp(t)dXt ,−

∫ T
0 XtdXt )

′.
Note that the MLE introduced above could be evaluated by applying the Euler’s

discretisation to (1), and then getting a linear model and applying the ordinary least-
squares estimation method to provide an estimator containing the Riemann and Ito
sums. Then, the OLS estimator will converge into the MLE estimator as 	t → 0.

For the existence of Q−1
(0,T ), it is shown in Remark 3 of Dehling et al. (2010) that

T Q−1
(0,T ) exists almost surely if T is large enough. Moreover, as stated in Nkurunziza

and Zhang (2016), the positive definiteness of 1
T Q(0,T ) holds under the following

assumption.

Assumption 2 For T > 0, the base function {ϕi (t), i = 1, . . . , p} is Riemann-
integrable on [0, T ] and satisfies

1. Periodicity. That is, ϕi (t + v) = ϕi (t), for all i = 1, . . . , p and v is the period
observed in the data.

2. Orthogonality. That is, for all j, k = 1, . . . , p,
∫ v

0 ϕ j (t)ϕk(t)dt is equal to v if
j = k and 0 otherwise.

3. For large T , the family of base functions {ϕi (t), i = 1, . . . , p} is incomplete.

The first and second items in Assumption 2 correspond to similar assumptions in
Dehling et al. (2014), and the third item is used to establish the positive definiteness
of 1

T Q(0,T ). It should be noted that the link between the incomplete base functions
and positive definiteness of 1

T Q(0,T ) is discussed in Zhang (2015), and Nkurunziza
and Zhang (2016) applies this result directly. To provide a self-contained exposition,
we recall below Proposition 2.1.1 of Zhang (2015), which characterises the positive
definiteness of 1

T Q(0,T ).
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Proposition 1 (Proposition 2.1.1 of Zhang (2015)) The base functions {ϕi (t), i =
1, . . . , p} are incomplete if and only if 1

T Q(0,T ) is a positive definite matrix.

Hence, for the rest of this paper, we assume that the sample size T is an integral
multiple of the period length v, i.e., T = Nv for some integer N . Without loss of
generality, we let v = 1 and this implies that ϕ j (t + 1) = ϕ j (t).

Inspired by the results ofDehling et al. (2010) andDehling et al. (2014), Nkurunziza
and Zhang (2016) first studied the case where the change point in (1) exists and known
to be τ 0 = s0T , 0 < s0 < 1 and derived the results in estimating θ(1) and θ(2). In
particular,

θ̂ (1) = Q−1
(0,s0T )

R̃(0,s0T ) = θ(1) +
(
1

T
Q(0,s0T )

)−1 1

T
R(0,s0T ) (5)

and

θ̂ (2) = Q−1
(s0T,T )

R̃(s0T,T ) = θ(2) +
(
1

T
Q(s0T,T )

)−1 1

T
R(s0T,T ), (6)

where R(a,b) =
(∫ b

a ϕ1(t)dWt , . . . ,
∫ b
a ϕp(t)dWt ,−

∫ b
a XtdWt

)′
for 0 ≤ a < b ≤ T .

Also, the asymptotic properties of the above proposed MLEs are well studied in
Dehling et al. (2010) for the case when there is no change point and Nkurunziza and
Zhang (2016) for the case of a single change point. To summarise these results, we
first go back to the case when there is no change point. By (1), we have

∫ T

0
ϕi (t)dXt =

p∑
j=1

μ j

∫ T

0
ϕi (t)ϕ j (t)dt − a

∫ T

0
ϕi (t)Xtdt + σ

∫ T

0
ϕi (t)dWt ,

for i = 1, . . . , p, and

∫ T

0
XtdXt =

p∑
j=1

μ j

∫ T

0
Xtϕ j (t)dt − a

∫ T

0
X2
t dt + σ

∫ T

0
XtdWt .

It follows that

θ̂ = Q−1
(0,T ) R̃(0,T ) = θ + σQ−1

(0,T )R(0,T ) = θ + σT Q−1
(0,T )

1

T
R(0,T ).

By Ito’s lemma, the SDE in (1) has the solution

Xt = e−at X0 + h(t) + Nt , (7)

where h(t) = e−at
p∑

i=1

μi

∫ t

0
easϕi (s)ds and Nt = σe−at

∫ t

0
easdWs .

The uniform boundedness of solution (7) follows from the results in Nkurunziza
and Zhang (2016). Using similar methods employed in the proof of Theorem 6.1 in
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Nkurunziza and Zhang (2016) together with the mean-reversion property in the drift
term of the OU process, one may verify that the SDE (1) admits a strong and unique
solution that is uniformly bounded in L2, and

sup
t≥0

E(X2
t ) ≤ K1, (8)

for 0 < K1 < ∞.
Note that the process {Xt , t ≥ 0} is not stationary in the ordinary sense. Thus, it is

impossible to apply the ergodic theorem directly. To go around this problem, Dehling
et al. (2010) introduced a stationary solution for t ∈ R instead of t ≥ 0. That is,

X̃t = h̃(t) + Ñt , (9)

where h̃(t) = e−at∑p
i=1 μi

∫ t
−∞ easϕi (s)ds and Ñt = σe−at

∫ t
−∞ easdB̃s, with

(B̃s)s∈R denotes a bilateral Brownian motion, i.e.,

B̃s = Bs1R+(s) + B̄−s1R−(s).

Here, (Bs)s≥0 and (B̄s)s≥0 are two independent standard Brownian motions and
1A stands for the indicator function over the set A. It follows from (8) and Lemma 4.3
in Dehling et al. (2010) that the sequence of C[0, 1]-valued random variablesWk(s) =
X̃k−1+s , 0 ≤ s ≤ 1, k ∈ N is stationary and ergodic. Then, by Proposition 4.5 of
Dehling et al. (2010),

1

T

∫ T

0
X̃tϕ j (t)dt

a.s.−−−→
T→∞

∫ 1

0
h̃(t)ϕ j (t)dt (10)

and
1

T

∫ T

0
X̃2
t dt

a.s.−−−→
T→∞

∫ 1

0
h̃2(t)dt + σ 2

2a
. (11)

Moreover, it follows from Lemma 4.4 in Dehling et al. (2010) that under Assump-
tion 2,

|X̃t − Xt | a.s.−−−→
t→∞ 0. (12)

Using (12), the following properties hold:

1

T

∫ T

0
X̃tϕ j (t)dt − 1

T

∫ T

0
Xtϕ j (t)dt

a.s.−−−→
T→∞ 0

and
1

T

∫ T

0
X̃2
t dt − 1

T

∫ T

0
X2
t dt

a.s.−−−→
T→∞ 0.

Then, it follows from (10) and (11) that

1

T

∫ T

0
Xtϕ j (t)dt

a.s.−−−→
T→∞

∫ 1

0
h̃(t)ϕ j (t)dt
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and
1

T

∫ T

0
X2
t dt

a.s.−−−→
T→∞

∫ 1

0
h̃2(t)dt + σ 2

2a
.

Hence,
T Q−1

(0,T )

a.s.−−−→
T→∞ 
−1

0 , (13)

where


0 =
[
Ip �

�′ w

]
,

with �(0,T ) = (
∫ 1
0 h̃(t)ϕ1(t)dt, . . . ,

∫ 1
0 h̃(t)ϕp(t)dt)′ and w = ∫ 10 h̃2(t)dt + σ 2

2a .
Furthermore, under Assumptions 1–2, by following the techniques in Nkurunziza

and Zhang (2016), one can verify that

1√
T

(θ̂ − θ)
D−−−→

T→∞ ρ ∼ Np+1(0, 

−1
0 ).

In Sect. 3 of Nkurunziza and Zhang (2016) (or see Chapter 2 and pertinent proofs in
Appendix B of Zhang 2015), the above asymptotic properties are extended to the case
of a single change point in the following way. To this end, we write

h̃(1)(t) := e−a(1)t
p∑

i=1

μ
(1)
i

∫ t

−∞
ea

(1)sϕi (s)ds

and

h̃(2)(t) := e−a(2)t
p∑

i=1

μ
(2)
i

∫ t

−∞
ea

(2)sϕi (s)ds.

Then
1

T

∫ s0T

0
X̃tϕ j (t)dt

a.s.−−−→
T→∞ s0

∫ 1

0
(h̃(1))(t)ϕ j (t)dt (14)

and
1

T

∫ s0T

0
X̃2
t dt

a.s.−−−→
T→∞ s0

(∫ 1

0
(h̃(1))2(t)dt + σ 2

2a(1)

)
, (15)

where X̃t is the process defined in (9). Similarly,

1

T

∫ T

s0T
X̃tϕ j (t)dt

a.s.−−−→
T→∞ (1 − s0)

∫ 1

0
(h̃(2))(t)ϕ j (t)dt (16)

and
1

T

∫ T

s0T
X̃2
t dt

a.s.−−−→
T→∞ (1 − s0)

(∫ 1

0
(h̃(2))2(t)dt + σ 2

2a(2)

)
. (17)
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Using (12), the following properties hold:

1

T

∫ s0T

0
X̃tϕ j (t)dt − 1

T

∫ s0T

0
Xtϕ j (t)dt

a.s.−−−→
T→∞ 0,

1

T

∫ s0T

0
X̃2
t dt − 1

T

∫ s0T

0
X2
t dt

a.s.−−−→
T→∞ 0,

1

T

∫ T

s0T
X̃tϕ j (t)dt − 1

T

∫ T

s0T
Xtϕ j (t)dt

a.s.−−−→
T→∞ 0,

and
1

T

∫ T

s0T
X̃2
t dt − 1

T

∫ T

s0T
X2
t dt

a.s.−−−→
T→∞ 0.

Hence, it follows that

1

T
Q(0,s0T )

a.s.−−−→
T→∞ s0
1, (18)

T Q−1
(0,s0T )

a.s.−−−→
T→∞

1

s0

−1

1 , (19)

1

T
Q(s0T,T )

a.s.−−−→
T→∞ (1 − s0)
2, (20)

and

T Q−1
(s0T,T )

a.s.−−−→
T→∞

1

(1 − s0)

−1

2 , (21)

where


1 =
[
Ip �1
�′

1 w1

]
and 
2 =

[
Ip �2
�′

2 w2

]

with �i =
(∫ 1

0 h̃(i)(t)ϕ1(t)dt, . . . ,
∫ 1
0 h̃(i)(t)ϕp(t)dt

)′
and wi = ∫ 1

0 (h̃(i))2(t)dt +
σ 2

2a(i) , i = 1, 2. Furthermore, it follows from Proposition 6.2 in Nkurunziza and Zhang
(2016) (or from Proposition 3.1) that both 
1 and 
2 are positive definite provided
that Assumptions 1–2 hold.

3.2 New results for the analysis of asymptotic properties

Based on the established results in Sect. 3.1, we provide a proposition which is useful
in illustrating the asymptotic properties of the estimator for the change point.

Proposition 2 For η ∈ (0, s0], we have
1

T
Q(0,ηT )

a.s.−−−→
T→∞ η
1,

1

T
Q(ηT,s0T )

a.s.−−−→
T→∞ (s0 − η)
1,

and
1

T
Q(ηT,T )

a.s.−−−→
T→∞ (s0 − η)
1 + (1 − s0)
2, (22)
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Furthermore, for η ∈ (s0, 1],
1

T
Q(ηT,T )

a.s.−−−→
T→∞ (1 − η)
2,

1

T
Q(s0T,ηT )

a.s.−−−→
T→∞ (η − s0)
2,

and
1

T
Q(0,ηT )

a.s.−−−→
T→∞ s0
1 + (η − s0)
2. (23)

The proof of Proposition 2 follows from Proposition 6.1 in Nkurunziza and Zhang
(2016). Moreover, for the case where the change point is unknown, Nkurunziza and
Zhang (2016) assumed that there exists a consistent estimator of the unknown change
point and derived the same asymptotic properties for the drift parameters based on the
consistent estimator assumption of a change point.

4 Two methods in the estimation of the change point

Wedevelop the least sumof squared error (LSSE) andmaximum log-likelihood (MLL)
methods to yield an estimator for the unknown change point τ , and investigate its
consistency under these two methods.

4.1 Least sum of squared error method

This subsection first introduces the LSSE method and then studies the consistency
of the proposed estimator. To calculate the residuals, we apply the Euler–Maruyama
discretisation method to (1). Consider a partition 0 = t0 < · · · < tn = T on a given
time period [0, T ] with a constant increment 	t = ti+1 − ti . Hence, Yi = Xti+1 − Xti
and Zi = (ϕ1(ti ), . . . , ϕp(ti ),−Xti )(	t ), and the discretized process is given by

Yi = Ziθ + εi , ti ∈ [0, T ], (24)

where ε is the error term given by σ
√

	t N , and N is the standard normal term. In this
case, we could use the least-squared (LS) method to estimate the change point. The
details of the LS method will be discussed in the next section. Based on (24), let τ 0

be the exact value of the unknown change-point τ . Then, τ 0 can be estimated using
the least sum of squared errors (SSE) method described as

τ̂ = argmin
τ

SSE(τ ), (25)

where

SSE(τ ) =
∑

ti∈[0,T ]
(Yi − Zi θ̂ (τ ))′(Yi − Zi θ̂ (τ )) (26)

and θ̂ (τ ) is the estimator of θ with the change point given by τ . More precisely, from
Nkurunziza and Zhang (2016), θ̂ = (θ̂ (1), θ̂ (2)) where
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Inference for a change-point problem under an OU setting 819

θ̂ (1) = Q−1
(0,τ̂ )

R̃(0,τ̂ ) and θ̂ (2) = Q−1
(τ̂ ,T )

R̃(τ̂ ,T ).

Consistency of the proposed estimator
Under Assumptions 1–2,

∑
ti∈[0,τ 0] Z ′

i Zi and
∑

ti∈(τ 0,T ] Z ′
i Zi , the respective discre-

tised versions of Q(0,τ 0) and Q(τ 0,T ) are both positive definite with probability 1
provided that the base functions {ϕi (t), i = 1, . . . , p} are incomplete. Moreover,
it follows from Proposition 6.2 in Nkurunziza and Zhang (2016) (or from Proposi-
tion 3.1) that both 1

s0T
Q(0,τ 0) and 1

(1−s0)T
Q(τ 0,T ) converge in probability to some

positive definite matrices for large T , and so are their respective discretised versions.
Hence, for large T , it is reasonable to impose a useful assumption in proving the
consistency of the estimator of the change point.

Assumption 3 Suppose that there exists an L0 > 0 such that for all L > L0 the
minimum eigenvalues of 1

L

∑
ti∈(τ 0,τ 0+L] Z ′

i Zi and of 1
L

∑
ti∈(τ 0−L ,τ 0] Z ′

i Zi , as well

as their respective continuous-time versions 1
L Q(τ 0,τ 0+L) and

1
L Q(τ 0−L ,τ 0], are all

bounded away from 0.

For more details about the above assumption, reader is referred to Perron and Qu
(2006) (see also Chen and Nkurunziza 2015). Below are two propositions pertinent to
the consistency of the rate of change point specified by ŝ = τ̂ /T , where τ̂ is given by
(25).

Proposition 3 Suppose that θ(1) − θ(2), the shift in the drift parameters, is of fixed

nonzero magnitude independent of T . Then, under Assumptions 1–3, ŝ − s0
P−−−→

T→∞ 0.

Proposition 4 Suppose the conditions in Proposition 3 hold. Then, for every ε > 0,
there exists a C > 0 such that for large T , P(T |ŝ − s| > C) < ε.

The proofs of Propositions 3 and 4 are provided in Appendix A. Proposition 3
shows that the estimated rate ŝ is consistent for s0 and Proposition 4 shows that
the rate of convergence is T . From these two propositions, we conclude that the
proposed estimator satisfies the consistency assumption required in Nkurunziza and
Zhang (2016). Hence, it follows from Proposition 2.1 inNkurunziza andZhang (2016)
that √

T (θ̂(τ̂ ) − θ0)
D−−−→

T→∞ N2p+2(0, σ
2
̃−1), (27)

where 
̃−1 = diag
(

1
s0


−1
1 , 1

1−s0

−1

2

)
and τ̂ are obtained from (25).

Remark 1 Note that in this paper, we focus on the case where the shift in drift param-
eters θ(1) and θ(2) indicated in (1) is independent of time T . However, in reality we
may encounter the case where the shift is time dependent, and in particular, as T tends
to infinity, the shift may shrink towards 0 at rate vT , i.e., θ(1) − θ(2) = MvT , where
M is independent of T and vT −−−→

T→∞ 0. In this case, the validity of Proposition 3

and Proposition 4 depends on the speed vT . In fact, using similar arguments as in the
proofs of these two propositions (see Appendix A), one may show that if vT −−−→

T→∞ 0

and T 1/2−r∗
vT −−−→

T→∞ ∞ for some 0 < r∗ < 1/2, then under Assumptions 1–3, we
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have (i) ŝ − s0
P−−−→

T→∞ 0 and (ii), for every ε > 0, there exists a C > 0 such that for

large T , P(T v2T |ŝ − s| > C) < ε. (See Remark 3 in Appendix A).

4.2 Maximum log-likelihood method

We introduce the maximum log-likelihood (MLL) method pertinent to the study of
the consistency of the proposed estimator. By Theorem 7.6 in Lipster and Shiryaev
(2001), the log-likelihood function of (1) (see also Dehling et al. 2010; Nkurunziza
and Zhang 2016) is

logL∗((0, T ), θ) = 1

σ 2

∫ T

0
S(θ, t, Xt )dXt − 1

2σ 2

∫ T

0
S2(θ, t, Xt )dt. (28)

Apparently, in practice the integrals
∫ T
0 S(θ, t, Xt )dXt and

∫ T
0 S2(θ, t, Xt )dt need

to be approximated using appropriate finite sums that depend on some discrete sam-
pling for which the discretisations are very small. It has to be noted as well that
there is no mechanism that allows the collection of data in continuous time. To this
end, consider the partition 0 = t0 < t1 < t2 < · · · < tN = T with tk = T k

2n ,
k = 0, 1, . . . , N , and let δk,N = tk − tk−1, k = 1, 2, . . . , 2n . As in Le Breton (1976),
one can approximate logL∗((0, T ), θ) by

logLN (τ, θ) = 1

σ 2

N∑
k=1

S(θ, tk, Xtk )
(
Xtk − Xtk−1

)−
n1∑
k=1

S2(θ, tk, Xtk )δk,N . (29)

The following result is useful in proving that logL∗
N ((0, T ), θ) is a good approx-

imation for logL∗((0, T ), θ). Let ϕ(t) = (
ϕ1(t), ϕ2(t), . . . , ϕp(t)

)′, �(t) =(
ϕ′(t), X (t)

)′, and δN = max1�k�N δk,N . Denote the parameter space by �.

Proposition 5 Let μT
θ be the probability measure induced by a generalised OU pro-

cess. We have

(i)
∥∥∥∑N

k=1 �(tk)(Xtk − Xtk−1) − ∫ T0 �(t)dXt

∥∥∥ � δ
1/2
N VN ,

(ii)
∥∥∥∑N

k=1 δk,N�(tk)�′(tk) − ∫ T0 �(t)�′(t) dt
∥∥∥ � δ

1/2
N ωN .

In the above, {VN }∞N=1 and {ωN }∞N=1 are sequences of random variables that are
bounded in μT

θ -probability for all θ ∈ � ⊂ R
p+1.

The proof of Proposition 5 follows directly fromLemma 6 in Le Breton (1976). The
consequence of Proposition 5 is the following corollary that legitimises logLN (τ, θ) as
a very good approximation for logL∗((0, T ), θ)whenever the step of the discretisation
is very small.

Corollary 1 Suppose �0 is a compact subset of the parameter space �. Then

‖ logL∗
N ((0, T ), θ) − logL∗((0, T ), θ)‖ � δ

1/2
N ω∗

N
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and {ω∗
N }∞N=1 is a sequence of random variables that is bounded in μT

θ -probability
for all θ ∈ �0.

Proof By combining the triangle and Cauchy–Schwarz inequalities, we obtain

‖ logL∗
N ((0, T ), θ) − logL∗((0, T ), θ)‖

� ‖θ‖
σ 2

∥∥∥∥∥
N∑

k=1

�(tk)(Xtk − Xtk−1) −
∫ T

0
�(t)dXt

∥∥∥∥∥

+ ‖θ‖2
2σ 2

∥∥∥∥∥
N∑

k=1

δk,N�(tk)�
′(tk) −

∫ T

0
�(t)�′(t) dt

∥∥∥∥∥ ,

for any θ ∈ �0. In addition, since �0 is a compact subset, there exists an M0 > 0
such that ‖θ‖ + ‖θ‖2 � M0 for all θ ∈ �0. Then, employing Proposition 5,

‖ logL∗
N ((0, T ), θ) − logL∗((0, T ), θ)‖ � M0

σ 2 δ
1/2
N VN + M0

2σ 2 δ
1/2
N ωN = δ

1/2
N ω∗

N

with ω∗
N = M0(2VN + ωN )/σ 2. This completes the proof. ��

When a change point τ exists, an alternative method to estimate the unknown
change point is via the maximum of the log-likelihood function

logL(τ, θ) = logL∗((0, τ ), θ(1)) + logL∗((τ, T ), θ(2)). (30)

Relying on Corollary 1 along with the fact that the set of dyadic rationals on [0, 1] is
dense on [0, 1], we propose to approximate logL(τ, θ) by

log L̂n(τ, θ) = 1

σ 2

n1∑
k=1

S(θ(1), tk, Xtk )
(
Xtk − Xtk−1

)−
n1∑
k=1

S2(θ(1), tk, Xtk )
T

2n

+ 1

σ 2

2n∑
k=n1+1

S(θ(2), tk, Xtk )
(
Xtk − Xtk−1

)

−
2n∑

k=n1+1

S2(θ(2), tk, Xtk )
T

2n
, (31)

where 0 = t0 < t1 < t2 < · · · < t2n = T with tk = T k
2n , k = 0, 1, . . . , 2n .

That is, tk − tk−1 = T
2n , k = 1, 2, . . . , 2n , and n1 is unknown integer such that

tn1 � τ = sT < tn1+1.
Based on the approximated log-likelihood function in (31), we estimate τ by τ̂ =

T n̂1
2n where

n̂1 = argmax
n1

log L̂n(τ, θ̂ (τ )). (32)
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Or equivalently,
n̂1 = argmin

n1
−2 log L̂n(τ, θ̂ (τ )), (33)

where θ̂ is the MLE of θ based on τ̂ . Thus, we estimate s by ŝ = n̂1
2n .

Consistency of the proposed estimator
To investigate the consistency behaviour of the proposed estimator τ̂ obtained from
(32), we update Assumption 3 to the following version:

Assumption 4 Suppose that there exists an L∗
0 > 0 such that under Assump-

tions 1–3, for all L > L∗
0 the minimum eigenvalues of the following two

symmetric matrices 1
2L [Q(0,τ 0)Q

−1
(0,τ 0+L)

Q(τ 0,τ 0+L) + Q(τ 0,τ 0+L)Q
−1
(0,τ 0+L)

Q(0,τ 0)]
and 1

2L [Q(τ 0,T )Q
−1
(τ 0−L ,T )

Q(τ 0−L ,τ 0)+Q(τ 0−L ,τ 0)Q
−1
(τ 0−L ,T )

Q(τ 0,T )] are all bounded
away from 0.

Then, similar to the LSSEmethod, for the estimator τ̂ given by (32), we also provide
two propositions below regarding the consistency of ŝ.

Proposition 6 Suppose that θ(1) − θ(2), the shift in the drift parameters, is of fixed
nonzeromagnitude independent of T . Then, under Assumptions 1–2 andAssumption 4,

ŝ − s0
P−−−→

T→∞ 0.

The next proposition gives the rate of convergence, T , for τ̂ .

Proposition 7 Under the same conditions of Proposition 6, we have that for every
ε > 0, there exists a C > 0 such that for large T , P(T |ŝ − s| > C) < ε.

The proofs of Propositions 6 and 7 are provided in Appendix A. Proposition 6
establishes that the estimated rate ŝ is consistent for s0, and Proposition 7 shows that
the rate of convergence is T . Moreover, in case the shift in the drift parameters is of
shrinkingmagnitude, the discussions inRemark 1 also hold for this case. Propositions 6
and 7 imply that the proposed estimator satisfies the consistency assumption required
in Nkurunziza and Zhang (2016). Thus, the asymptotic normality in (27) also holds
when τ̂ are obtained from (32).

Remark 2 To see the connection between equations (32) and (25), one may apply the
Riemann sum approximationwith increment	t to approximate the integrals inside the
log-likelihood function logL(τ, θ̂ ) specified in (30). The result of the approximation
is of the form 1

σ 2

∑
ti∈[0,T ] θ̂ (τ )′V (t)′(Xti+1 − Xti ) − 1

2σ 2

∑
ti∈[0,T ](θ̂(τ )′V (t)′)2	t .

Furthermore, if the increment 	t is same as that in the LSSE method, we have
Xti+1 − Xti = Yi and V (t) = Zi/	t . Then, after some algebraic computations,
such approximation can be transformed to 1

2	tσ 2 (
∑

ti∈[0,T ] Y ′
i Yi − SSE(τ )). Hence,

for an observed process Xt , t ∈ [0, T ] with same constant 	t and known σ , (25)
and the Riemann sum approximation of (32) are equivalent. This finding will also be
confirmed by the simulation results highlighted in Sect. 6.

5 Existence of a change point

In Sect. 4, we introduced two estimation methods for the case where the existence of
the single change point is affirmative, that is, the number of change points is known to

123



Inference for a change-point problem under an OU setting 823

be 1. In this section, we shall deal with the extended change-point problem in which
the number of change points may be either 0 or 1. In this case, it is of interest to test
the existence of the change point and to determine its exact location if it exists. One
popular methodology in the change-point literature in detecting the unknown number
of change points is by treating it as a model selection problem. For instance, note that
the existence of the change point in (1) also increases the number of drift parameters
from p + 1 to 2(p + 1). Hence, detecting the existence of change points is equivalent
to selecting a statistical model from two candidate models and this could be solved
by using the informational approach. This approach deems that the most appropriate
model is the one that minimises the log-likelihood-based information criterion

IC(m) = −2 logL(τ̂ , θ̂ ) + (m + 1)h(p)φ(T ). (34)

In (34), logL(τ, θ̂ ) is defined in (30); τ̂ is obtained via (32) corresponding to each m,
where m is the potential number of change points to be determined (m = 0 or 1 in
this case); h(p) = p+ 1 if there is no change in the diffusion coefficient σ before and
after the change point or p + 2 if there is a change in σ (i.e. σ = σ (1) for t ∈ [0, τ 0]
and σ = σ (2) for t ∈ (τ 0, T ]); and φ(T ) is a non-decreasing function of T .

Note that if the number of change points is known, then the term (m+1)h(p)φ(T )

is fixed, and (34) is equivalent to the maximum log-likelihood method introduced in
the previous section. The efficiency of the information criterion depends on the choice
of the penalty criterion φ(T ). For example, if φ(T ) = 2, then (34) reduces to the
well-known Akaike information criterion (AIC) (Akaike 1973). However, in practice,
a model selected byminimising the AICmay not be asymptotically consistent in terms
of the model order; see for example, Schwarz (1978). Many modified versions, thus,
were proposed to overcome this problem. One of the modifications is the Schwarz
information criterion (SIC) (Schwarz 1978) entails the setting of φ(T ) as the log
transform of the sample size. SIC has been successfully applied to the change-point
analysis in the literature, and it gives an asymptotically consistent estimate of the
order of the true model. Hence, we only focus on SIC on this particular theoretical
development.

Further, it may be of interest to see which of the two penalty criteria we should
use: φ(T ) = log(T ) or φ(T ) = log(T/	t ), where 	t is the increment defined in
the previous section. Hence, in the ensuing discussion of our examples, we take into
account these two criteria. (Note that log T is just a special case of log(T/	t ) =
log(T ) − log(	t ) with 	t = 1).

Consider the hypothesis

H0 : m0 = 0 versus H1 : m0 = 1. (35)

Based on (34), the rejection region for the null hypothesis in (35) is given by IC(m =
0) ≥ IC(m = 1). Moreover, the asymptotic significant level and power of the above
test are investigated via the following results.

Proposition 8 Suppose Assumptions 1–2 and 4 hold. Then, under H0 in (35),
limT→∞ P (IC(m = 0) ≥ IC(m = 1)) = 0. Moreover, under H1, limT→∞
P (IC(m = 0) > IC(m = 1)) = 1.
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The proof of Proposition 8 is presented in Appendix B. Let m̂ = argminm∈{0,1} IC(m)

with φ(T ) = log T or log(T/	t ). We then have the following.

Corollary 2 Under Assumptions 1–2 and 4, m̂ − m0 P−−−→
T→∞ 0.

The proof of Corollary 8 is immediate from Proposition 8. For a fixed 	t and large T ,
Corollary 2 shows that the two criteria, log(T ) and log(T/	t ), lead to asymptotically
consistent estimate of the number of change points. For small T , we use Monte-
Carlo simulation to compare the performance of these two criteria. Simulation results
indicate that it would be more appropriate to use φ(T ) = log(T/	t ) when T is small
as φ(T ) = log T tends to over-estimate the number of change points, i.e., overfitting
the model.

6 Numerical demonstrations

In this numerical work, we use in Sect. 6.1 the Monte-Carlo simulation technique to
evaluate the performance of the (i) two estimation methods proposed in (25) and (32)
in detecting the unknown location of a change point assumed to already exist, and (ii)
method in (34) for testing the existence of a change point. In Sect. 6.2, we implement
the above methods on some observed financial market data and illustrate the various
implementation details.

6.1 Monte-Carlo simulation study

Our simulation considers two different scenarios. In the first scenario, we study the
performance of the proposed methods under a classical OU process. In the second
scenario, the performance evaluation of the proposed methods is applied to a peri-
odic mean-reverting OU process. Each scenario consists of 1000 iterations. In each
iteration, we first generate a desired simulated process based on the Euler-Maruyama
discretisation scheme given a period T and pre-assigned “true” parameters such as the
coefficients and rate of change point. Next, we estimate and record the rate of change
points by applying (25) and (32) on the simulated process as well as the number of
changepoints estimatedby (34). To investigate the performanceof (34), assuming there
is no change point, we re-generate a simulated process with no change point and apply
(34) to estimate and record again the number of change points. After 1000 iterations,
we analyse the performance of the proposed methods based on the recorded results.

6.1.1 Simulation setup

Scenario 1: Classical OU process

Two classical OU processes are considered with stochastic dynamics

dXt =
{

(0.08 − 0.1Xt )dt + 0.2dWt , if 0 < t < 0.5T

(2.5 − 1Xt )dt + 0.2dWt , if 0.5T < t < T .
(36)
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Equation (36) includes one change point occurring at τ 0 = 0.5T (s0 = 0.5). This
process is generated to determine the performance of the methods proposed in (25)
and (32).

When there is one change point, we study the performance of (34) by considering
the SDE

dXt = (2.5 − Xt )dt + 0.2dWt , 0 < t < T . (37)

Scenario 2: Periodic mean-reverting OU process
For this scenario, we consider a mean-reverting OU process, with 2-dimensional peri-

odic incomplete orthogonal set of functions
{
1,

√
2 cos

(
π t
2	t

)}
, given by

dXt =
⎧⎨
⎩

[
0.08 + 0.02

√
2 cos

(
π t
2	t

)
− 0.1Xt

]
dt + 0.2dWt , if 0 < t < 0.5T

[
2.5 + 1.2

√
2 cos

(
π t
2	t

)
− 1Xt

]
dt + 0.2dWt , if 0.5T < t < T,

(38)
where 	t = ti+1 − ti is the increment in the given time period [0, T ].

Similarly, we study the performance of (34), under the assumption that there is no
change point, using the SDE

dXt =
(
2.5 + 1.2

√
2 cos

(
π t

2	t

)
− Xt

)
dt + 0.2dWt , if 0 < t < T . (39)

We choose T = 5, 10, 20 and 50, and 	t = 1/252 and the starting point X0 =
0.05. Simulated sample paths for the processes (36)–(39) with different time periods
(T = 5 and 50) are shown in Figs. 1, 2, 3 and 4.
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Fig. 1 Sample series for (36) under scenario 1 with one change point
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Fig. 4 Sample series for (39) under scenario 2 without a change point

Table 1 Mean and MSE of ŝ under scenario 1 (36)

T LSSE method MLL method

Mean MSE Mean MSE

5 0.4986794 0.0003834606 0.4987587 0.0003823898

10 0.499711 0.0001417382 0.4997503 0.0001417427

20 0.5004065 8.622138 × 10−5 0.5004069 8.623254 × 10−5

50 0.4999693 7.983829 × 10−6 0.4999696 7.982264 × 10−6

6.1.2 Discussion of simulation results

Estimating the rate of change point

We first look at the performance of (25) and (32) in estimating the corresponding rate
of change point in (36) and (38), respectively. Note that in each iteration, we apply
(25) and (32) to the same simulated process; hence, results from these two methods
are expected to be close to each other. The mean and mean-squared error (MSE) of
the estimated rate of change point ŝ for (36) based on LSSE and MLL methods are
summarised in Table 1, and the results for (38) are displayed in Table 2.

To illustrate further the simulated results, the corresponding histograms for ŝ in
(36) are depicted in Fig. 5 under scenario 1, and in Fig. 6 under scenario 2.

Estimating and testing the number of change points
Here, we evaluate the performance of the proposed method by utilising the percent
accuracy (PA) metric defined by
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Table 2 Mean and MSE of ŝ under scenario 2 (38)

T LSSE method MLL method

Mean MSE Mean MSE

5 0.4992968 0.0001146825 0.4996579 0.0001042964

10 0.5003373 1.884511 × 10−5 0.500502 2.130748 × 10−5

20 0.5002268 6.765125 × 10−6 0.5002948 6.991292 × 10−6

50 0.5001443 1.750852 × 10−6 0.5001291 1.742431 × 10−6

PA(m0) = 1

1000

1000∑
i=1

I(m̂i=m0) × 100%,

where m̂i is the estimated number of change points in the i th iteration. Note that

1 − PA(0) = 1

1000

1000∑
i=1

I(IC(m̂i=0)≥IC(m̂i=1)),

which is the empirical significance level. Further,

PA(1) = 1

1000

1000∑
i=1

I(IC(m̂i=0)≥IC(m̂i=1)),

which is the empirical power of the proposed test.
As stated in the previous subsection, we aim to assess the performance of (34);

and for this purpose we use the criteria φ(T ) = log T and φ(T ) = log(T/	t ).
Moreover, for h(p), we also consider two cases: h(p) = p + 1 and h(p) = p + 2
for whether or not there is a potential change in the diffusion coefficient σ specified
in (1). Consequently, we make a comparison on the basis of four penalty criteria:
(p + 1) log T , (p + 2) log T , (p + 1) log(T/	t ) and (p + 2) log(T/	t ). The results
are reported in Tables 3, 4, 5 and 6 for each of the scenarios.

From Tables 1 and 2 as well as the plotted histograms, we see that both pro-
posed methods (25) and (32) estimate very accurately the exact rate of change point
(s0 = 0.5). In addition, as the time period T increases from 10 to 50, the MSEs of
the two estimators decrease. These outcomes confirm the theoretical findings for the
asymptotic consistency of our two proposed methods.

For the estimated number m̂ of change points, one could see that, when there exists
one change point in the model, (34) gives a high empirical power in both scenar-
ios with different penalty criteria and time periods; see Tables 3 and 5. Within the
penalty criteria employed, φ(T ) = log T provides slightly better empirical power
than that of φ(T ) = log(T/	t ). When there is no change point, Tables 4 and 6
reveal that the empirical significance levels, under different penalty criteria, decrease
as T increases. These results also imply that our proposed method is asymptotically
consistent.
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Fig. 5 Histogram of ŝ for scenario 1 (36)
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Table 3 Empirical power of the test (in %), under scenario 1 (36)

T (p + 1) log T (p + 2) log T (p + 1) log(T/	t ) (p + 2) log(T/	t )

T = 5 100 100 98.9 96.5

T = 10 100 100 99.4 97.3

T = 20 100 100 99.7 97.5

T = 50 100 100 99.6 97.2

Table 4 Empirical significance level (in %), under scenario 1 (37)

T (p + 1) log T (p + 2) log T (p + 1) log(T/	t ) (p + 2) log(T/	t )

T = 5 83.1 67.6 1.5 0.1

T = 10 67.5 46.8 0.6 0

T = 20 54.4 17.9 0 0

T = 50 19.8 5.2 0 0

Table 5 Empirical power of the test (in %), under scenario 2 (38)

T (p + 1) log T (p + 2) log T (p + 1) log(T/	t ) (p + 2) log(T/	t )

T = 5 100 100 100 100

T = 10 100 100 100 100

T = 20 100 100 100 100

T = 50 100 100 100 100

Table 6 Empirical significance level (in %), under scenario 2 (39)

T (p + 1) log T (p + 2) log T (p + 1) log(T/	t ) (p + 2) log(T/	t )

T = 5 78.7 55.4 0.4 0

T = 10 57.2 29.5 0 0

T = 20 38.5 13.8 0 0

T = 50 10.8 2.6 0 0

Amongst the 4 penalty criteria, we observe that when φ(T ) = log T , the empirical
significance level is relatively high when T is small, whilst the empirical significance
level decreases when we change h(p) from p + 1 to p + 2. This outcome tells us
that it would be more appropriate in this case to use a penalty criterion that is larger
than h(p)φ(T ) = (p + 1) log T for better estimation. On the other hand, when using
φ(T ) = log(T/	t ), the performance is significantly improved compared to that of
φ(T ) = log T . In both scenarios, one could see that when the time period is small
(T = 5 and T = 10), the empirical significance level of the proposed method is
relatively high when using φ(T ) = log T , but decreases to almost 0% when φ(T ) =
log(T/	t ).
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Overall, based on the results in Tables 3, 4, 5 and 6 for different cases, we find that
for a bigger T , m̂ obtained via (34) under four different penalty criteria all perform
consistently in estimating the number of change points. However, when T is small,
the performance based on the criterion h(p)φ(T ) = (p + 1) log(T/	t ) is efficient
and stable vis-á-vis the other criteria in each case. This suggests that h(p)φ(T ) =
(p + 1) log(T/	t ) is appropriate for this simulation study.

6.2 Implementation on observed financial market data with discussion

We apply the estimation methods (25), (32) and (34) to two different financial market
data series. For each series, we fit the process with the following two different mean-
reverting OU processes with one change point.

dXt =
{

(μ
(1)
1 − a(1)Xt )dt + σdWt , if 0 < t < sT,

(μ
(2)
1 − a(2)Xt )dt + σdWt , if sT < t < T,

(40)

dXt =
⎧
⎨
⎩

(μ
(1)
1 + √

2 cos( π t
2	t

)μ
(1)
2 − a(1)Xt )dt + σdWt , if 0 < t < sT

(μ
(2)
1 + √

2 cos( π t
2	t

)μ
(2)
2 − a(1)Xt )dt + σdWt , if sT < t < T,

(41)

where Xt is the target of interest (i.e., spot price, log-transformed spot price, daily
return, etc.) at time t . The no-change-point versions of (40) and (41) are

dXt = (μ1 − aXt )dt + σdWt , if 0 < t < T, (42)

dXt =
(

μ1 + √
2 cos

(
π t

2	t

)
μ2 − aXt

)
dt + σdWt , if 0 < t < T . (43)

For (40) and (41), we apply (25) and (32) to estimate the unknown change point,
whilst for (42) and (43), we train the MLE of drift parameters based on the entire time
period. Then, we use (34) to test the existence of a change point. In our formulation,
σ is assumed to remain unchanged for the entire time period, and thus it may be
estimated using the data’s realised volatility, i.e., σ̂ = (

∑
ti∈[0,T ](Xti+1 −Xti )

2/T )1/2.
Alternatively, one may fit the data series to the model, take the standard error of the
residuals and then divide it by

√
	t (see Smith 2010).

When σ is time dependent, EWMA- and GARCH-type volatility estimation meth-
ods may be used. However, under this situation the MLE and related asymptotic
properties established in Dehling et al. (2010) as well as the asymptotic properties
derived in this paper may need re-evaluation as they are all based on the time-
independent assumption of the diffusion coefficient σ . In this paper, we consider
σ to be time independent and after the estimated results are obtained, the most suit-
able model is chosen as the one yielding the least SIC value. In addition, we also
report the log-likelihood for comparison. To this end, we let LL0 and LL1 denote the
log-likelihood under H0 and H1, respectively.
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Table 7 Change-point detection results for the WTI crude oil prices

Model LSSE method MLL method m̂ LL1 LL0 IC(m = 1) IC(m = 0)

(40) 2014-09-26 2014-09-26 1 11.89 0.72 3.87 12.39

(41) 2014-09-26 2014-09-26 1 9.96 3.99 9.96 12.76
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Fig. 7 WTI Cushing crude oil spot prices (09 November 2011–09 November 2015)

6.2.1 Application to West Texas Intermediate Cushing crude oil spot price

The first data set is the time series of West Texas Intermediate Cushing crude oil spot
prices, which was first described in Sect. 1.2.1. Our interest in this data set is justified
by the fact that, as mentioned in Sect. 1.2.1, it is often being considered as a benchmark
in oil pricing. Furthermore, themodelling of and point-change detection in commodity
prices are important in the valuation of commodity derivatives and risk management
of portfolios with large commodity holdings.

For our preliminary attempt, we set the WTI crude oil spot price to be our target
of interest. To fit the model, we choose T = 4 and so 	t = 4/1008. With the data
fitted to the two candidate models using the proposed methods, we display the results
shown in Table 7 and Fig. 7.

Looking at Table 7 and Fig. 7, one can see that the value of the log-likelihood
increases as the number of the coefficients in the model increases. Further, both candi-
date models confirm the existence of a change point (m̂ = 1) during this time period.
Under both models, the detected change point is the same (i.e., 26 September 26 2014)
for the proposed methods. On the other hand, despite the log-likelihood comparison
showing that the periodic mean-reverting model (41) produces higher log-likelihood
than the classical OU process with change point (40), the SIC, nonetheless, suggests
that (40) is more appropriate than (41) for this data series.

As suggested in Chen (2010), we also analyse the log-transformed WTI crude oil
spot prices. We examine the log-transformed WTI crude oil spot prices as our target
of interest and re-apply the proposed techniques. The results are shown in Table 8 and
Fig. 8. It is worth noting that the detected change points for this log-transformed spot
prices are still the same (i.e., 26 September 2014), as well as the behaviour of log-
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Table 8 Change-point detection for the log-transformed WTI crude oil prices

Model LSSE method MLL method m̂ LL1 LL0 IC(m = 1) IC(m = 0)

(40) 2014-09-26 2014-09-26 1 8.15 0.82 11.37 12.18

(41) 2014-09-26 2014-09-26 0 13.68 4.26 14.12 12.20
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Fig. 8 Log-transformed WTI Cushing crude oil spot prices (09 November 2011–09 November 2015)

likelihood (increase as the number of coefficients in the model increases); although,
this time around, the results based on (41) fail to pass the test on the existence of a
change point (m̂ = 0). Judging from the SIC numbers, model (40) is again better than
model (41). This suggests that (40), with the change point occurring on 26 September
2014, is more suitable for both the WTI Cushing crude oil price data and its log-
transformed series.

Based on our primary statistics of interest, defined here as the estimated change
point τ̂ and the associated MLE θ̂ (1) and θ̂ (2)) obtained from the proposed methods,
we use model (40) to generate a simulated crude oil price data set and log-transformed
crude oil price data series. Additionally, we also generate a simulated data series based
on (42) for comparison. The two simulated series are presented side-by-side in Fig. 9.
By comparing the simulated series in Figs. 9 and 10 to the original series (shown
in Figs. 7, 8), we see that the simulated series generated by (40), with the change
point occurring on 26 September 2014, is closer to the original series than the one
generated by (42). This confirms the efficiency of the proposedmethods for this series.
In forecasting the future value (after 26 September 2014) ofWTI crude oil spot prices,
the practitioner should use the second relation in Eq. (40).

6.2.2 Application to XAU currency

We apply as well the proposedmethods to the XAU currency data, which are described
in Sect. 1.2.2. This data set refers to the time series of prices, in US dollars, for a troy
ounce of gold. Our interest in this kind of data set is motivated by the pricing of
currency swaps, futures and options.

123



Inference for a change-point problem under an OU setting 835

2012 2013 2014 2015 2016

40
50

60
70

80
90

10
0

Simulated series of USCRWTIC (with 1 change point)

time

U
S

C
R

W
TI

C

2014−09−26

2012 2013 2014 2015 2016

40
60

80
10

0

Simulated series of USCRWTIC (without change point)

time

U
S

C
R

W
TI

C

Fig. 9 Simulated series of WTI Cushing crude oil spot price (09 November 2011–09 November 2015)
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Fig. 11 Evolution of the XAU currency (03 November 2000–04 November 2015)

Figure 11 shows that the trend of XAU currency series changed over time. As in
the previous study, we take both the XAU currency and its logarithm as our targets
of interest. To fit the data with the candidate models, we choose T = 15 and 	t =
15/3913. The results for the XAU currency are depicted in Table 9 and Fig. 11, whilst
the results for the log-transformed XAU currency are shown in Table 10 and Fig. 12.

For the original XAU currency, one can see that log-likelihood increases as the
number of coefficients in the model increases. Further, (40) successfully detects one
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Table 9 Change-point detection for XAU currency (15 years)

Model LSSE method MLL method m̂ LL1 LL0 IC(m = 1) IC(m = 0)

(40) 2013-04-08 2013-04-08 1 12.62 1.43 7.83 13.67

(41) 2013-04-08 2013-04-08 0 13.31 1.81 23.01 21.18

Table 10 Change-point detection for the log-transformed XAU currency (15 years)

Model LSSE method MLL method m̂ LL1 LL0 IC(m = 1) IC(m = 0)

(40) 2011-08-19 2011-08-19 0 7.08 3.25 18.92 10.04

(41) 2011-08-19 2011-08-19 0 7.41 3.46 34.80 17.89
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Fig. 12 Log-transformed XAU currency (03 November 2000–04 November 2015)

change point on 08 April 2013, whilst (41) fails to detect the change point (m̂ = 0).
However, the SIC comparison shows that the classical OU process (SIC= 7.83) is
more appropriate than the periodic mean-reverting model (41) (SIC= 21.18); we,
therefore, select (40) with the change point on 08 April 2013 as the suitable model for
this series.

For the log-transformed XAU currency, Fig. 12 illustrates visually that the series is
smoother than the original series (see Fig. 11), and the potential change in the series
becomes less clear. Applying the proposedmethods, both (40) and (41) detect the same
change point on 19 August 2011, which is the time when the log-transformed XAU
currency almost reaches the highest value. Although the comparison of log-likelihood
functions indicates that imposing a change point in the model can produce higher log-
likelihood and (40) is still more suitable than (41) in terms of the SIC, both models
fail to pass the test for the existence of change point (m̂ = 0). These results suggest
that for this log-transformed data series, imposing a change point into the model is
not as efficient as compared to the original XAU currency series.

Similar to the previous study, we also generate, employing the estimated values
of the primary statistics of interest, some simulated series based on (40) and (41) for
both XAU currency and its log transform. The results are given in Fig. 13 for the
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Fig. 13 Simulated series of XAU currency (03 November 2000–04 November 2015)
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Fig. 14 Simulated series of log-transformed XAU currency (03 November 2000–04 November 2015)

original XAU currency and Fig. 14 for the log-transformed XAU currency, respec-
tively.

For the original XAU currency, the comparison shows that the simulated series
generated by (40)with the change point on 08April 2013 is closer to the original series,
especially around the location where the change point happens; this is in contrast to
the model without a change point. This result confirms the efficiency of employing
the change-point process (40) in improving the estimation of this series. However, the
change in the log-transformed series is not clear as the difference between the two
simulated series becomes small; they are both close to the original log-transformed
series. This means that there may be no need to impose a change point for this log-
transformed series; this is because the improvement is not as significant to the one
obtained in the original series.

To probe matters on this series further, we change the starting date of the data series
to 04 November 2008. This reduces the time period from 15 years to 7 years, and one
can see from Fig. 15 that the XAU currency levels in this time period are all higher
than $700.We re-apply the methods to the XAU currency data and its log-transformed
series. Table 11 and Fig. 15 show the results for the original XAU currency, and
Table 12 and Fig. 16 display the results for the log-transformed XAU currency.

As one can see from the results, for the original XAU currency, the detected change
points based on (25) and (32) in both models are still the same as in the 15 years’ time
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Fig. 15 XAU currency (04 November 2008–04 November 2015)

Table 11 Change-point detection for XAU currency (7 years)

Model LSSE method MLL method m̂ LL1 LL0 IC(m = 1) IC(m = 0)

(40) 2013-04-08 2013-04-08 0 9.26 2.28 11.50 10.47

(41) 2013-04-08 2013-04-08 0 9.62 2.56 25.80 17.40

Table 12 Change-point detection for the log-transformed XAU currency (7 years)

Model LSSE method MLL method m̂ LL1 LL0 IC(m = 1) IC(m = 0)

(40) 2011-08-19 2011-08-19 0 6.06 2.95 17.90 9.11

(41) 2009-02-23 2009-02-23 0 7.06 3.31 30.92 15.89

period, suggesting the consistency of the proposed methods. Further, the comparisons
of log-likelihood suggest that increasing the number of coefficients in the model is
useful in producing higher log-likelihood. This finding is consistent with the previous
study. However, after applying (34) to test the existence of change point, we find that
both models fail to pass the test. This tells us that using (42) would be enough for
modelling the series for this time period. Accordingly, in forecasting the future values
of XAU currency, the practitioner does not need to take into account the existence of
the change point; hence, he should use model (42).

On the other hand, after applying the log transformation to the XAU currency, the
SIC reveals that the model (40) is still more suitable than (41) for this case. More-
over, as one can see from the results shown in Table 12, together with the simulated
series provided in Figs. 17 and 18, similar outcome as in the case of log-transformed
XAU currency with 15 years’ time period again suggests that for this log-transformed
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Fig. 16 XAU currency (04 November 2008–04 November 2015)
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Fig. 18 Simulated series of log-transformed XAU currency (04 November 2008–04 November 2015)

data series, the improvement from employing a model with a change point is not
as significant as the one in the original XAU currency series with a 15-years time
period.
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7 Conclusion

The theoretical results and illustrative examples, involving both simulated and
observed data, of this paper were motivated by the practical considerations of point-
change detection. Such motivations are driven by applications centred on confirming
significant changes in the time-series data so that proper responses and policies
could be put in place as in the case of interest rate-setting behaviour of mone-
tary regulatory authority, design of trading strategies in hedging and speculation,
appropriate calibration of models in financial product valuation, amongst others. Our
main contribution highlighted the development of MLL- and LSSE-based methods
in showing the existence or non-existence of a change point and in determining
the unknown location whenever such a change point exists. We established the
equivalence of the estimators for the change point under the two methods. In addi-
tion, we provided conditions so that our estimators for the change-point location
are asymptotically consistent, which in turn aided the design of an efficient imple-
mentation algorithm. Our work certainly gives impetus for the investigation and
development of methodology suited in tackling the multiple-change-point problem,
which is what we commonly encounter in practice. Our research results aim to lay
down the groundwork so that further modifications could be made and new ideas
could be adopted in making further progress in point-change detection involving
time series models with more complex and elaborate dynamics and stylised fea-
tures.
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Appendix A Proofs of Propositions 3, 4, 6 and 7

Appendix A.1 Preliminaries for the proofs of Propositions 3 and 4

In this section, we let ||A|| denote the Euclidean norm for a vector A and ||B|| =√
trace(B ′B) for a matrix B. Further, let ûi be the residual of the i th element in (24)

based on the estimated change point τ̂ . That is, ûi = Yi−Zi θ̂
( j) = Ziθ

( j)−Zi θ̂
( j)+ui ,

j = 1 for 0 < i ≤ τ̂ and τ = τ̂ estimated by (25). Similarly, let û0i be the residual
of the i th element in (24) based on the exact change point τ 0 and the associated
MLE of θ( j) denoted by θ( j,0), j = 1, 2. Without loss of generality, we assume that
τ̂ > τ 0.
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The proofs of Propositions 3 and 4 both rely on investigating the behaviour of

φ

⎛
⎝ ∑

ti∈[0,T ]
û′
i ûi −

∑
ti∈[0,T ]

û0′i û0i

⎞
⎠ . (44)

We divide the time period [0, T ] involved in (44) into 3 sub-intervals: [0, τ 0], (τ 0, τ̂ ]
and (τ̂ , T ]. Then, by substituting the expressions for ûi and û0i into (44) and applying
the identity (a + b)2 = a2 + 2ab + b2 to expand the quadric error terms, we have

Expression(44) = φ

⎛
⎝ ∑

ti∈[0,τ 0]
(Zi (θ

(1) − θ̂ (1)))2 +
∑

ti∈(τ 0,τ̂ ]
(Zi (θ

(2) − θ̂ (1)))2

+
∑

ti∈(τ̂ ,T ]
(Zi (θ

(2) − θ̂ (2)))2

⎞
⎠ (45)

−φ
∑

ti∈[0,τ 0]
(Ziθ

(1) − Zi θ̂
(1,0))2 − φ

∑

ti∈(τ 0,T ]
(Ziθ

(2) − Zi θ̂
(2,0))2

(46)

+ 2φ

⎛
⎝ ∑

ti∈[0,τ 0]
ui Z

′
i (θ̂

(1,0) − θ̂ (1)) +
∑

ti∈(τ 0,τ̂ ]
ui Z

′
i (θ̂

(2,0) − θ̂ (1))

+
∑

ti∈(τ̂ ,T ]
ui Z

′
i (θ

(2,0) − θ̂ (2))

⎞
⎠ , (47)

where φ is a positive scalar to be defined later, θ̂ (1) = Q−1
(0,τ̂ )

R̃(0,τ̂ ), θ̂ (2) =
Q−1

(τ̂ ,T )
R̃(τ̂ ,T ), θ̂ (1,0) = Q−1

(0,τ 0)
R̃(0,τ 0), and θ̂ (2,0) = Q−1

(τ 0,T )
R̃(τ 0,T ), respectively.

It follows as well from the proof of Corollary 3.1 in Nkurunziza and Zhang (2016)
(see also Proposition 4.1 in Dehling et al. 2010) that R̃(0,τ 0) = Q(0,τ 0)θ

(1) +σ R(0,τ 0),

R̃(τ 0,τ̂ ) = Q(τ 0,τ̂ )θ
(2) + σ Rτ 0,τ̂ , R̃(τ 0,T ) = Q(τ 0,T )θ

(2) + σ R(τ 0,T ) and R̃(τ̂ ,T ) =
Q(τ̂ ,T )θ

(2) + σ R(τ̂ ,T ). Therefore, θ̂
(1,0) − θ(1) = σQ−1

(0,τ 0)
R(0,τ 0), and θ̂ (2,0) − θ(2) =

σQ−1
(τ 0,T )

R(τ 0,T ). In this case, we have expression

(46) = −φσ 2

⎛
⎝R′

(0,τ 0)Q
−1
(0,τ 0)

∑

ti∈[0,τ 0]
Z ′
i Zi Q

−1
(0,τ 0)

R(0,τ 0)

+ R′
(τ 0,T )

Q−1
(τ 0,T )

∑

ti∈(τ 0,T ]
Z ′
i Zi Q

−1
(τ 0,T )

R(τ 0,T )

⎞
⎠ . (48)
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Similarly,

θ̂ (1,0) − θ̂ (1) = σQ−1
(0,τ 0)

R(0,τ 0) − Q−1
(0,τ̂ )

Q(τ 0,τ̂ )(θ
(2) − θ(1)) − σQ−1

(0,τ̂ )
R(0,τ̂ ),

(49)

θ̂ (2,0) − θ̂ (1) = σQ−1
(τ 0,T )

R(τ 0,T ) − Q−1
(0,τ̂ )

Q(0,τ 0)(θ
(1) − θ(2)) − σQ−1

(0,τ̂ )
R(0,τ̂ ),

(50)

θ̂ (2,0) − θ̂ (2) = σQ−1
(τ 0,T )

R(τ 0,T ) − σQ−1
(τ̂ ,T )

R(τ̂ ,T ), (51)

and expression

(47) = 2φ

⎛
⎝ ∑

ti∈[0,τ 0]
ui Z

′
i (49) +

∑

ti∈(τ 0,τ̂ ]
ui Z

′
i (50) +

∑
ti∈(τ̂ ,T ]

ui Z
′
i (51)

⎞
⎠ . (52)

Proof of Proposition 3 Take φ = 1

T
. In general, (44) is non-positive with probability

1 since by (25), τ̂ is chosen from all possible values in [0, T ] to minimise the SSR,
whilst τ 0 is just a particular value in [0, T ]. Hence, it suffices to show that if the rate
of τ 0, given by s0 = τ 0/T , can not be consistently estimated by ŝ = τ̂ /T , then (44)
> 0 with positive probability and thus we have a contradiction.

First, note that in case that the rate of the change point τ 0 cannot be consistently
estimated, then with positive probability there exists an η > 0 such that ŝT − s0T >

ηT > L0 for large T . In this case, we have (45) ≥ C1||θ(1) − θ(2)||2 for some C1 > 0
with positive probability (see Bai and Perron 1998, Lemma 2).

To proceed further, we prove the following inequality. Note that by (8), supt≥0 E
((Xt )

2) ≤ K1 for some K1 with 0 < K1 < ∞. This implies that for 0 < τ ∗
1 < τ ∗

2 ≤ T ,

∫ τ∗
2

τ∗
1

E(X2
t )dt ≤ K1(τ

∗
2 − τ ∗

1 ). (53)

Further, by the Markov inequality and Ito isometry, together with inequality (53) and
Assumption 2, we have

P

(
1√

τ ∗
2 − τ ∗

1

|
∫ τ2

∗

τ∗
1

XtdWt | > K ∗
)

≤
E
(
| ∫ τ∗

2
τ∗
1
XtdWt |2

)

(τ ∗
2 − τ ∗

1 )(K ∗)2
=

∫ τ∗
2

τ∗
1
E(X2

t )dt

(τ ∗
2 − τ ∗

1 )(K ∗)2

≤ K1(τ
∗
2 − τ ∗

1 )

(τ ∗
2 − τ ∗

1 )(K ∗)2
= K1

(K ∗)2
,P

(
1√

τ ∗
2 − τ ∗

1

∣∣∣∣∣
∫ τ2

∗

τ∗
1

ϕi (t)dWt

∣∣∣∣∣ > K ∗
)

≤
E

(∣∣∣∫ τ∗
2

τ∗
1

ϕi (t)dWt

∣∣∣
2
)

(τ ∗
2 − τ ∗

1 )(K ∗)2
≤ 1

(K ∗)2
.
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Hence, by letting K ∗ = loga
∗
T or K ∗ = (τ̂ − τ 0)a

∗
for 0 < a∗ < 1/2, the above

probability tends to 0 as T tends to infinity. This implies that

1√
τ ∗
2 − τ ∗

1

||R(τ∗
1 ,τ∗

2 )||

= Op(log
a∗

T ) or Op((τ̂ − τ 0)a
∗
) for any 0 < τ ∗

1 < τ ∗
2 ≤ T . (54)

Similarly, for the discretised case, 1√
τ∗
2 −τ∗

1
||∑ti∈(τ∗

1 ,τ∗
2 ] Ziui || = Op(loga

∗
T ) or

Op((τ̂ − τ 0)a
∗
). Furthermore, it follows from Proposition 2 and the Continuous Map-

ping Theorem that

∣∣∣∣
∣∣∣∣
1

T
Q(τ∗

1 ,τ∗
2 )

∣∣∣∣
∣∣∣∣ = Op(1) and ||T Q−1

(τ∗
1 ,τ∗

2 )
|| = Op(1) (55)

for any τ ∗
1 , τ ∗

2 ∈ {0, τ 0, τ̂ , T } such that τ ∗
1 < τ ∗

2 . Then, applying the Cauchy–Schwarz
inequality to (48) and (52), together with above asymptotic results, we have that (46)
and (47) are both op(1). Hence, (44) is dominated by (45), which is positive, and thus

gives a contradiction. Therefore, ŝ − s0
P−−−→

T→∞ 0. ��

Proof of Proposition 4 Write φ := 1
τ̂−τ 0

and Vη := {τ : |τ − τ 0| ≤ ηT }. It follows
from Proposition 3 that for each η > 0, P(τ̂ ∈ Vη) −−−→

T→∞ 1. Therefore, we only need

to investigate the sum of squared error SSE(τ̂ ) for those τ̂ ∈ Vη. For C > 0, define
the set Vη(C) = {τ : C < |τ − τ 0| < ηT } and let τ̂ be the estimated change point
with the minimum taken over the set Vη(C). Then, it suffices to show that the order
of these three terms, or one of the three terms is larger than all of the remaining terms
in (44), and that leads to a contradiction since the term (44) ≤ 0 with probability 1.

First notice that (45) is Op(1) instead of op(1). Hence, it is difficult to compare it
with (44) directly. In this case, we need to factorise the term (44). We observe that

∑

ti∈[0,τ 0]
(Zi (θ

(1) − θ̂ (1)))2 = (a1) + (a2) + (a3),

where

(a1) = (θ(1) − θ(2))′Q(τ 0,τ̂ )Q
−1
(0,τ̂ )

∑

ti∈[0,τ 0]
Z ′
i Zi Q

−1
(0,τ̂ )

Q(τ 0,τ̂ )(θ
(1) − θ(2)),

(a2) = R(0,τ̂ )σ
2Q−1

(0,τ̂ )

∑

ti∈[0,τ 0]
Z ′
i Zi Q

−1
(0,τ̂ )

R(0,τ̂ )

(a3) = 2σ(θ(1) − θ(2))′Q(τ 0,τ̂ )Q
−1
(0,τ̂ )

∑

ti∈[0,τ 0]
Z ′
i Zi Q

−1
(0,τ̂ )

R(0,τ̂ ).
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Similarly,

∑

ti∈(τ 0,τ̂ ]
(Zi (θ

(2) − θ̂ (1)))2 = (a4) + (a5) + (a6),

where

(a4) = (θ(1) − θ(2))′Q(0,τ 0)Q
−1
(0,τ̂ )

∑

ti∈(τ 0,τ̂ ]
Z ′
i Zi Q

−1
(0,τ̂ )

Q(0,τ 0)(θ
(1) − θ(2)),

(a5) = R(0,τ̂ )σ
2Q−1

(0,τ̂ )

∑

ti∈(τ 0,τ̂ ]
Z ′
i Zi Q

−1
(0,τ̂ )

R(0,τ̂ ),

(a6) = 2σ(θ(1) − θ(2))′Q(0,τ 0)Q
−1
(0,τ̂ )

∑

ti∈(τ 0,τ̂ ]
Z ′
i Zi Q

−1
(0,τ̂ )

R(0,τ̂ ).

and

∑
ti∈(τ̂ ,T ]

(Ziθ
(2) − Zi θ̂

(2))′(Ziθ
(2) − Zi θ̂

(2))

= σ 2R(τ̂ ,T )Q
−1
(τ̂ ,T )

∑
ti∈(τ̂ ,T ]

Z ′
i Zi Q

−1
(τ̂ ,T )

R(τ̂ ,T ) = (a7).

One could see that φ(a1), φ(a4) and φ(a6) are all of order op(1). Additionally, by
Theorem A.1 in Tobing and McGilchrist (1992), we have that for large T ,

Q−1
(0,τ̂ )

= Q−1
(0,τ 0)

+ Op

(
τ̂ − τ 0

T 2

)
. (56)

Therefore,

R′
(0,τ̂ )

Q−1
(0,τ̂ )

∑

ti∈[0,τ 0]
Z ′
i Zi Q

−1
(0,τ̂ )

R(0,τ̂ ) − R′
(0,τ 0)Q

−1
(0,τ 0)

∑

ti∈[0,τ 0]
Z ′
i Zi Q

−1
(0,τ 0))

R(0,τ 0))

= (R(0,τ 0) + R(τ 0,τ̂ ))
′
(
Q−1

(0,τ 0)
+ Op

(
τ̂ − τ 0

T 2

)) ∑

ti∈[0,τ 0]
Z ′
i Zi

(
Q−1

(0,τ 0)

+ Op

(
τ̂ − τ 0

T 2

))
(R(0,τ 0) + R(τ 0,τ̂ ))

− R(0,τ 0)Q
−1
(0,τ 0)

∑

ti∈[0,τ 0]
Z ′
i Zi Q

−1
(0,τ 0))

R(0,τ 0)

= Op

(
τ̂ − τ 0

T 2

)
R(0,τ 0)

∑

ti∈[0,τ 0]
Z ′
i Zi Q

−1
(0,τ 0))

R(0,τ 0)

+ Op

(
(τ̂ − τ 0)2

T 4

)
R(0,τ 0)

∑

ti∈[0,τ 0]
Z ′
i Zi R(0,τ 0)
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+ 2R(0,τ 0)Q
−1
(0,τ 0)

∑

ti∈[0,τ 0]
Z ′
i Zi Q

−1
(0,τ 0)

R(τ 0,τ̂ )

+Op

(
τ̂ − τ 0

T 2

)
R(0,τ 0)Q

−1
(0,τ 0)

∑

ti∈[0,τ 0]
Z ′
i Zi R(τ 0,τ̂ )

+ Op

(
τ̂ − τ 0

T 2

)
R(0,τ 0)

∑

ti∈[0,τ 0]
Z ′
i Zi Q

−1
(0,τ 0)

R(τ 0,τ̂ )

+ Op

(
(τ̂ − τ 0)2

T 4

)
R(0,τ 0)

∑

ti∈[0,τ 0]
Z ′
i Zi R(τ 0,τ̂ )

+ R(τ 0,τ̂ )Q
−1
(0,τ 0)

∑

ti∈[0,τ 0]
Z ′
i Zi Q

−1
(0,τ 0)

R(τ 0,τ̂ )

+ Op

(
τ̂ − τ 0

T 2

)
R(τ 0,τ̂ )Q

−1
(0,τ 0)

∑

ti∈[0,τ 0]
Z ′
i Zi R(τ 0,τ̂ )

+ Op

(
(τ̂ − τ 0)2

T 4

)
R(τ 0,τ̂ )

∑

ti∈[0,τ 0]
Z ′
i Zi R(τ 0,τ̂ ). (57)

Since τ̂ − τ 0 ≤ ηT for each η > 0, and using the asymptotic results in the proof of
Proposition 3 with small enough η, we have φσ 2 (57) = op(1). Similarly,

φσ 2

⎛
⎝R(τ̂ ,T )Q

−1
(τ̂ ,T )

∑
ti∈(τ̂ ,T ]

Z ′
i Zi Q

−1
(τ̂ ,T )

R(τ̂ ,T )

− R(τ 0,T )Q
−1
(τ 0,T )

∑

ti∈(τ 0,T ]
Z ′
i Zi Q

−1
(τ 0,T )

R(τ 0,T )

⎞
⎠ = op(1).

Consequently, (a2) + (a4) + (45) = op(1). For (a3), we have

(θ(1) − θ(2))′Q(0,τ 0)Q
−1
(0,τ̂ )

∑
ti∈(τ 0,τ̂ ] Z ′

i Zi

τ̂ − τ 0
Q−1

(0,τ̂ )
Q(0,τ 0)(θ

(1) − θ(2))

= (θ(1) − θ(2))′Q(0,τ 0)

(
Q−1

(0,τ 0)
+ Op

(
τ̂ − τ 0

T 2

)) ∑
ti∈(τ 0,τ̂ ] Z ′

i Zi

τ̂ − τ 0

(
Q−1

(0,τ 0)

+ Op

(
τ̂ − τ 0

T 2

))
Q(0,τ 0)(θ

(1) − θ(2))

= (θ(1) − θ(2))′
∑

ti∈(τ 0,τ̂ ] Z ′
i Zi

τ̂ − τ 0
(θ(1) − θ(2)) + op(1),

with (θ(1) − θ(2))′
∑

ti∈(τ0,τ̂ ] Z
′
i Zi

τ̂−τ 0
(θ(1) − θ(2)) ≥ γ1||θ(1) − θ(2)||2, where γ1 is the

minimum eigenvalue of
∑

ti∈(τ0,τ̂ ] Z
′
i Zi

τ̂−τ 0
. Under Assumption 4 with a suitable choice
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of C , we have that for τ̂ ∈ Vη(C), γ1 is bounded away from 0. Hence, φ(a3) ≥
C2||θ(1) − θ(2)||2 for some C2 > 0. Moreover, applying (56) to (47), together with
some factorisations, we have that (47) = op(1). Therefore, the term φ(a3) dominates
all others and it is positive with probability 1 for large T . This implies that with
large probability, (44) > 0, which gives a contradiction. This indicates that with large
probability τ̂ cannot be in the set Vη(C) and hence P(T |ŝ − s0| ≥ C) ≤ ε when T is
large. ��

Remark 3 As discussed in Remark 1 in Sect. 4, in case the shift is of shrinking mag-
nitude with shrinking speed vT , the asymptotic behaviour (i) discussed in Remark 1
may be verified by following the same arguments in the proof of Proposition 3 with
φ = 1

T 2r∗ , togetherwith the fact that Tφ||θ(1)−θ(2)||2 = (T 1−2r∗
v2T ||M||2) −−−→

T→∞ ∞
and log T/T 2r∗ −−−→

T→∞ 0. On the other hand, (ii) may be verified by following similar

arguments as in the proof of Proposition 4 to investigate the set Vη(C, vT ) = {τ :
C/v2T < |τ − τ 0| < ηT } instead of Vη(C).

Appendix A.2 Proofs of Propositions 6 and 7

Write V (t) := (ϕ1(t), . . . , ϕp(t),−Xt ) and let logL1 be the log-likelihood function
based on the estimated change point τ̂ and the associated MLE (θ̂ (1), θ̂ (2)). That is,

logL1 = 1
σ 2 (
∫ τ̂

0 S(θ̂ (1), t, Xt )dXt + ∫ T
τ̂

S(θ̂ (2), t, Xt )dXt ) − 1
2σ 2 (

∫ τ̂

0 S2(θ̂ (1), t, Xt )

dt+∫ T
τ̂

S2(θ̂ (2), t, Xt )dt. Similarly, we let logL0 be the log-likelihood function based

on the exact value of change point τ 0 and the associated MLE (θ̂ (1,0), θ̂ (2,0)). Then,
the proofs of Propositions 6 and 7 rely on the behaviour of

φ(logL1 − logL0). (58)

Now, without loss of generality, suppose first that τ̂ > τ 0 and divide the time period
[0, T ] into three sub-intervals: [0, τ 0], (τ 0, τ̂ ] and (τ̂ , T ]. Using relation (1), along
with some algebraic manipulation, we have expression

(58) = 1

2σ 2

(∫ τ 0

0
(V (t)θ̂ (1))2dt +

∫ τ̂

τ 0
(V (t)θ̂ (1))2dt +

∫ T

τ̂

(V (t)θ̂ (2))2dt

)

− 1

2σ 2

(∫ τ 0

0
(V (t)θ̂ (1,0))2dt +

∫ τ̂

τ 0
(V (t)θ̂ (2,0))2dt +

∫ T

τ̂

(V (t)θ̂ (2,0))2dt

)

+ 1

σ

(∫ τ 0

0
(V (t)θ̂ (1))dWt +

∫ τ̂

τ 0
(V (t)θ̂ (1))dWt +

∫ T

τ̂

(V (t)θ̂ (2))dWt

)

− 1

σ

(∫ τ 0

0
(V (t)θ̂ (1,0))dWt +

∫ τ̂

τ 0
(V (t)θ̂ (2,0))dWt +

∫ T

τ̂

(V (t)θ̂ (2,0))dWt

)
.
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We plug in the expressions of the MLEs, and after some algebraic computations, we
get

(58) = φ

σ

(
2(θ(1) − θ(2))′R(τ 0,τ̂ ) − 2(θ(1) − θ(2))′Q(τ 0,τ̂ )Q

−1
(0,τ̂ )

R(0,τ̂ )

)
(59)

+ 3φ

2

(
R′

(0,τ̂ )
Q−1

(0,τ̂ )
R(0,τ̂ ) − R′

(0,τ 0)Q
−1
(0,τ 0)

R(0,τ 0) + R′
(τ̂ ,T )

Q−1
(τ̂ ,T )

R(τ̂ ,T )

)

(60)

− 3φ

2
R′

(τ 0,T )
Q−1

(τ 0,T )
R(τ 0,T ) (61)

− φ

2σ 2 (θ(1) − θ(2))′Q(0,τ 0)Q
−1
(0,τ̂ )

Q(τ 0,τ̂ )(θ
(1) − θ(2)). (62)

The remaining parts of the proofs for Propositions 6 and 7 depend on investigating
the asymptotic behaviours of (59)–(62).

Proof of Proposition 6. Letφ = 1

T
. Note that logL1 is taken to be themaximumof the

log-likelihood function from all possible choices of τ ∈ [0, T ], whilst logL0 is based
on one particular change point τ 0 ∈ [0, T ]. It follows from the definition of MLE that
(58) ≥ 0 with probability 1. However, if the rate of change point s0 is not consistently
estimated by ŝ, then with positive probability, we have τ̂ − τ 0 = (ŝ − s0)T > L∗

0,
where L∗

0 is defined in Assumption 4. In this case, under Assumptions 3 and 4, the
minimum eigenvalue of D∗ = 1

2(ŝ−s0)T
(Q(0,τ 0)Q

−1
(0,τ̂ )

Q(τ 0,τ̂ )+Q(τ 0,τ̂ )Q
−1
(0,τ̂ )

Q(0,τ 0))

is bounded away from 0. Denoting this mimimum eigenvalue by γ2, we have

φ

2σ 2 (θ(1) − θ(2))′Q(0,τ 0)Q
−1
(0,τ̂ )

Q(τ 0,τ̂ )(θ
(1) − θ(2))

= (ŝ − s0)

4σ 2 (θ(1) − θ(2))′D∗(θ(1) − θ(2)) ≥ (ŝ − s0)γ2
4σ 2 ||θ(1) − θ(2)||2.

(63)

So, (62) ≤ −C3||θ(1) − θ(2)||2 with C3 = (ŝ − s0)γ2
4σ 2 > 0.

Using (54) and (55), together with the Cauchy–Schwarz inequality, along with
some algebraic computations, we find that (59)–(61) are all of order op(1). Hence,
(58) is dominated by (62), which is negative. This means that (58) < 0 with positive
probability, which is a contradiction. Therefore, for large T and ∀ε > 0, ŝ − s0 < ε.

This implies that ŝ − s0
P−−−→

T→∞ 0, which completes the proof. ��

Proof of Proposition 7 Write φ := 1

τ̂ − τ 0
and Vη := {τ : |τ − τ 0| ≤ ηT }. Then, it

follows from Proposition 6 that for each η > 0, P(τ̂ ∈ Vη) −−−→
T→∞ 1. Therefore, we

only need to investigate the asymptotic behaviour of (59)–(62) for those τ̂ ∈ Vη. For
C > 0, define the set Vη(C) = {τ : C < |τ − τ 0| < ηT } and let τ̂ be the estimated
change point with the minimum taken over the set Vη(C). Then, it suffices to show
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that for some C > 0, such that for any τ̂ ∈ Vη(C), (44) < 0 with positive probability,
and this leads to a contradiction since the term (44)≤ 0 with probability 1. This would
imply that for some C > 0 and any 0 < η < 1, the global optimisation cannot be
achieved on the set Vη(C). Thus, with large probability, |τ̂ − τ 0| ≤ C .

First note that under Assumption 4, with a suitable C such that C > L0, it follows
from (63) that (62) ≤ −C3||θ(1) − θ(2)||2 for some C3 > 0.

Next, for (59), by (54) and the Cauchy–Schwarz inequality, we have

2(θ(1) − θ(2))′R(τ 0,τ̂ )

σ (τ̂ − τ 0)
≤ 2

σ
√

τ̂ − τ 0
||θ(1) − θ(2)||

∣∣∣∣
∣∣∣∣

1√
τ̂ − τ 0

R(τ 0,τ̂ )

∣∣∣∣
∣∣∣∣

= (τ̂ − τ 0)a
∗−1/2Op(1),

where 0 < a∗ < 1/2, and

2(θ(1) − θ(2))′Q(τ 0,τ̂ )Q
−1
(0,τ̂ )

R(0,τ̂ )

σ (τ̂ − τ 0)
≤ 2

σ
√
T

||θ(1) − θ(2)||
∣∣∣∣
∣∣∣∣
Q(τ 0,τ̂ )

(τ̂ − τ 0)

∣∣∣∣
∣∣∣∣ ||T Q−1

(0,τ̂ )
||
∣∣∣∣
∣∣∣∣
1√
T
R(0,τ̂ )

∣∣∣∣
∣∣∣∣ = op(1).

For (61), applying again TheoremA.1 in Tobing andMcGilchrist (1992), we have that
for large T ,

Q−1
(τ 0,T )

= Q−1
(τ̂ ,T )

+ Op

(
τ̂ − τ 0

T 2

)
. (64)

Together with (56), we obtain

R′
(0,τ̂ )

Q−1
(0,τ̂ )

R(0,τ̂ ) − R′
(0,τ 0)Q

−1
(0,τ 0)

R(0,τ 0)

= R′
(τ 0,τ̂ )

Q−1
(0,τ 0)

R(τ 0,τ̂ ) − 2R′
(0,τ 0)Q

−1
(0,τ 0)

R(τ 0,τ̂ )

+ Op

(
τ̂ − τ 0

T 2

)
R′

(0,τ̂ )
R(0,τ̂ )

and

R′
(τ 0,T )

Q−1
(τ 0,T )

R(τ 0,T ) − R′
(τ̂ ,T )

Q−1
(τ̂ ,T )

R(τ̂ ,T )

= R′
(τ 0,τ̂ )

Q−1
(τ̂ ,T )

R(τ 0,τ̂ ) − 2R′
(τ̂ ,T )

Q−1
(τ̂ ,T )

R(τ 0,τ̂ )

+ Op

(
τ̂ − τ 0

T 2

)
R′

(τ 0,T )
R(τ 0,T ).

From (54), (55), together with the Cauchy–Schwarz inequality, we have (61) = op(1)
for large T . Therefore, by choosing a suitable large C , we obtain (62) + (59) < 0,
which implies that (58) < 0 and this gives a contradiction. Therefore, with large
probability, τ̂ cannot be in the set Vη(C) and hence P(T |ŝ − s0| ≥ C) ≤ ε when T
is large. ��
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Appendix B Proof details of Proposition 8

This proof can be completed by comparing IC(m = 0) and IC(m = 1) under H0 and
H1, respectively. Moreover, note that log(T/	t ) = log T − log(	t ) and log T is just
a special case of log(T/	t ) with 	t = 1. Hence, in the succeeding proof, we only
prove the case φ(T ) = log(T/	t ) with 	t a fixed constant.

Proof of Proposition 8 Under H0, m0 = 0 and θ(1) = θ(2). In this case, for IC(m =
0), it follows from (1) that

IC(m = 0) = −2

(
1

σ 2

∫ T

0
S(θ̂ (1), t, Xt )dXt − 1

2σ 2

∫ T

0
S(θ̂ (1), t, Xt )

2dt

)

+ h(p) log(T/	t ) = −2

(
1

2σ 2 θ(1)′Q(0,T )θ
(1) + 2

σ
θ(1)′R(0,T )

+ 3σ 2

2
R′

(0,T )Q
−1
(0,T )R(0,T )

)
+ h(p) log(T/	t ).

Assume further that we get τ̂ from (32) when m is set to 1 (note that in this case θ(2)

is still equal to θ(1)). Then,

IC(m = 1) = − 1

σ 2 θ(1)′Q(0,T )θ
(1) − 4

σ
θ(1)′R(0,T ) − 3R′

(0,τ̂ )
Q−1

(0,τ̂ )
R(0,τ̂ )

− 3R′
(τ̂ ,T )

Q−1
(τ̂ ,T )

R(τ̂ ,T ) + 2h(p)(log T − log(	t ))

so that

IC(m = 1) − IC(m = 0) = 3R′
(0,T )Q

−1
(0,T )R(0,T ) − 3R′

(0,τ̂ )
Q−1

(0,τ̂ )
R(0,τ̂ )

− 3R′
(τ̂ ,T )

Q−1
(τ̂ ,T )

R(τ̂ ,T ) + h(p)(log T − log(	t )).

(65)

Moreover, by (54) and (55), together with the Cauchy–Schwarz inequality,

R′
(0,T )Q

−1
(0,T )R(0,T ) ≤ || 1√

T
R(0,T )||2||T Q−1

(0,T )|| = Op(log
2a∗

T ),

where 0 < a∗ < 1/2. Similarly, R′
(0,τ̂ )

Q−1
(0,τ̂ )

R(0,τ̂ ) and R′
(τ̂ ,T )

Q−1
(τ̂ ,T )

R(τ̂ ,T ) are also

of order Op(log2a
∗
T ). Therefore, for large T and fixed 	t , (65) is dominated by

h(p) log T , which is positive. This implies that under H0, the probability of IC(m =
0) > IC(m = 1) tends to 0 as T tends to ∞.

Under H1, let τ 0 be the exact value of the change point and τ̂ be the estimator of
τ 0 obtained from (32). Without loss of generality, we assume that τ̂ > τ 0. So,

IC(m = 0) = − 1

σ 2 θ(2)′Q(0,T )θ
(2)

− 1

σ 2 (θ(1) − θ(2))′Q(0,τ 0)Q
−1
(0,T )Q(0,τ 0)(θ

(1) − θ(2))
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− 3R′
(0,T )Q

−1
(0,T )R(0,T ) − 4

σ
θ(2)′R(0,T )

− 4

σ
(θ(1) − θ(2))′Q(0,τ 0)Q

−1
(0,T )R(0,T )

− 4

σ 2 θ(2)′Q(0,τ 0)(θ
(1) − θ(2)) + h(p)(log T − log(	t )),

and

IC(m = 1) = − 1

σ 2 θ(2)′Q(0,T )θ
(2)

− 1

σ 2 (θ(1) − θ(2))′Q(0,τ 0)Q
−1
(0,τ̂ )

Q(0,τ 0)(θ
(1) − θ(2))

− 3R′
(0,τ̂ )

Q−1
(0,τ̂ )

R(0,τ̂ ) − 3R′
(τ̂ ,T )

Q−1
(τ̂ ,T )

R(τ̂ ,T )

− 4

σ
(θ(1) − θ(2))′Q(0,τ 0)Q

−1
(0,τ̂ )

R(0,τ̂ )

− 4

σ
θ(2)′R(0,T ) − 4

σ 2 θ(2)′Q(0,τ 0)(θ
(1) − θ(2))

+ 2h(p)(log T − log(	t )).

Therefore,

IC(m = 1) − IC(m = 0) = − 1

σ 2 (θ(1) − θ(2))′Q(0,τ 0)(Q
−1
(0,τ̂ )

− Q−1
(0,T ))Q(0,τ 0)(θ

(1) − θ(2))

− 3R′
(0,τ 0)Q

−1
(0,τ 0)

R(0,τ 0) − 3R′
(τ 0,T )

Q−1
(τ 0,T )

R(τ 0,T )

+ 3R′
(0,T )Q

−1
(0,T )R(0,T ) − 4

σ
(θ(1) − θ(2))′Q(0,τ 0)

× Q−1
(0,τ̂ )

R(0,τ̂ ) − 4

σ
(θ(1) − θ(2))′Q(0,τ 0)Q

−1
(0,T )R(0,T )

+ h(p)(log T − log(	t )).

Multiplying both sides of the above identity by 1
T , and using (54), (55) and theCauchy–

Schwarz inequality, we have

1

T
(IC(m = 1) − IC(m = 0))

= 1

σ 2 (θ(1) − θ(2))′ 1
T
Q(τ 0,τ̂ )T Q−1

(0,τ̂ )

1

T
Q(0,τ 0)(θ

(1) − θ(2))

− (1 − s0)

σ 2 (θ(1) − θ(2))′ 1

(1 − s0)T
Q(τ 0,T )Q

−1
(0,T )Q(0,τ 0)(θ

(1) − θ(2))

+ op(1). (66)
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Note that the second term in (66) is equal to

− (1 − s0)

σ 2 (θ(1) − θ(2))′ 1

2(1 − s0)T
(Q(τ 0,T )Q

−1
(0,T )Q(0,τ 0)

+ Q(0,τ 0)Q
−1
(0,T )Q(τ 0,T ))(θ

(1) − θ(2)).

Using the similar argument as in the proof of Proposition 6, we have that under
Assumption 4, the second term is less than −C4||θ(1) − θ(2)||2 for some C4 > 0. It
also follows from Proposition 7 that || 1T Q(τ 0,τ̂ )|| = τ̂−τ 0

T || 1
τ̂−τ 0

Q(τ 0,τ̂ )|| = op(1) for
large T . Thus, by (55), together with the Cauchy–Schwarz inequality we have

1

σ 2 (θ(1) − θ(2))′ 1
T
Q(τ 0,τ̂ )T Q−1

(0,τ̂ )

1

T
Q(0,τ 0)(θ

(1) − θ(2)) = op(1).

This tells us that (66) is dominated by the first term for large T and it is negative.
Therefore, IC(m = 0) > IC(m = 1) with probability 1. ��
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