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Abstract Establishing the convergence of splines can be cast as a variational problem
which is amenable to a �-convergence approach. We consider the case in which the
regularization coefficient scales with the number of observations, n, as λn = n−p.
Using standard theorems from the �-convergence literature, we prove that the general
spline model is consistent in that estimators converge in a sense slightly weaker than
weak convergence in probability for p ≤ 1

2 . Without further assumptions, we show
this rate is sharp. This differs from rates for strong convergence using Hilbert scales
where one can often choose p > 1

2 .

Keywords Variational methods · �-convergence · Pointwise convergence · General
spline model · Nonparametric smoothing

1 Introduction

Given a Hilbert space, H, with dual H∗, the general spline problem (Kimeldorf and
Wahba 1971; Wahba 1990) is to recover μ† ∈ H from observations, {(Li , yi )}n

i=1 ⊆
H∗ × R, and the model

yi = Liμ
† + εi , (1)

where εi and Li are independent random variables taking values inR andH∗, respec-
tively. We assume thatH can be decomposed intoH = H0 ⊕H1 where, for l = 0, 1,
(Hl , ‖ · ‖l) are themselves both Hilbert spaces. For example, one may apply the
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theory to the special spline problem (also referred to as smoothing splines) where
H = Hm([0, 1]) (m ≥ 1) is the Sobolev space of degree m and the observation
operators are of the form Liμ = μ(ti ) in which ti is sampled from some distribution
over [0, 1]. Throughout this paper, we refer to (1) as the general spline model when
Li ∈ H∗ and H is any Hilbert space, and the special spline model when Li is the
pointwise evaluation operator andH = Hm .

Establishing convergence and the rate of convergence of estimatesμn ofμ† remains
a current area of research (Bissantz et al. 2004, 2007; Claeskens et al. 2009; Hall and
Opsomer 2005; Kauermann et al. 2009; Lai and Wang 2013; Lukas 2006; Wang et al.
2011). These results establish strong convergence, in the sense of convergence with
respect to a norm, and related rates of the special spline problem. Convergence with
respect to the norm in the original space is typically not achievable so convergence
results are inweaker topologies (equivalently larger spaces). This paper fills a gap in the
literature by establishing the convergence of the general spline problem in the original
space in the sense that ∀F ∈ H∗, F(μn) converges in probability to F(μ†). There exist
results for pointwise convergence of the special spline problem with equally spaced
(ti = i

n ) data points (Li and Ruppert 2008; Shen and Wang 2011; Xiao et al. 2012;
Yoshida and Naito 2012, 2014). Our results do not assume data points are equally
spaced (we do however require that they are iid) and we consider the general case
where Li are bounded and linear operators (not necessarily pointwise evaluation).

We assume that dim(H0) = m < ∞ and dim(H1) = ∞. This can be seen as
a multi-scale decomposition of H. The projection of a function μ ∈ H into the
subspace H0 is a coarse approximation of that function. Continuing with the special
spline example, one can write

μ(t) =
m−1∑

i=0

∇ iμ(0)

i ! t i +
∫ t

0

(t − u)m−1

(m − 1)! ∇mμ(u) du

for any μ ∈ Hm . The space H0 is then the space of polynomials of degree at most
m − 1. Hence dim(H0) = m. Imposing a penalty on the H1 space, we construct a
sequence of estimators μn of μ† as the minimizers of

fn(μ) = 1

n

n∑

i=1

|yi − Liμ|2 + λn‖χ1μ‖21

where χi : H → Hi (i = 0, 1) is the projection of H onto Hi . This paper addresses
the asymptotic behaviour (as n → ∞) of the general spline problem and in particular
how one should choose λn to ensure μn converges (in the weak sense that ∀F ∈ H∗,
F(μn) converges in probability to F(μ†)) to μ†. An alternative, but closely related,
method is the penalized spline problem, for example Eilers and Marx (1996), where
the estimate μ† is found by minimizing fn over functions of the form μ = ∑�

i=1 ai Bi

where Bi are a set of B-splines and penalizing the coefficients ai or derivatives of μ.
Typically, �  n, so the complexity of the problem decreases.

There are two bodies of literature on the specification of λn . On the one hand, there
are methods which define λn as the minimizer of some loss function, for example
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Convergence of general smoothing splines 719

average square error. This class of techniques includes cross-validation Wahba and
Wold (1975), generalized cross-validation Craven and Wahba (1979) and penalized
likelihood techniques (Hastie and Tibshirani 1990; Hurvich et al. 1998; Kou and Efron
2002; Mallows 1973; Sakamoto et al. 1986; Wahba 1985). These methods provide a
numerical value of λn for a given n and a given set of data. In the case of special
splines, there are many results on the asymptotic behaviour of λn and μn for these
methods, see for example (Aerts et al. 2002; Cox 1983; Craven and Wahba 1979; Li
1987; Speckman and Sun 2001; Utreras 1981, 1983; Wand 1999). The alternative
approach, and the one we take in this paper, is to choose a sequence such that the
estimates μn converge to μ† in an appropriate sense at the fastest possible rate. This
strategy gives a scaling regime for λn , but it does not in general give specific numerical
values of λn , i.e. it provides the optimal rate of convergence but not the associated
multiplicative constant.

When considering strong convergence, many results in the literature demonstrate
μn → μ† in a norm via the use of Hilbert scales—see, for example, Cox (1988),
Nychka and Cox (1989), Ragozin (1983), Speckman (1985), Stone (1982) and Utreras
(1985). It is not typically possible to obtain strong convergence with respect to the
original norm, and it is common to resort to the use of weaker norms; for example, in
the special spline problem, one starts with the space Hs but looks for convergence in
L2. The alternative, which is pursued in this paper, is to considermodes of convergence
related to weak convergence in the original space, H.

Note that for special splines strong convergence in a larger space is a weaker result
than weak convergence in the original space: by the Sobolev embedding theorem,
weak convergence in Hs implies strong convergence in L2; however, the converse
does not hold.

In this paper, we show that the estimators of the general spline problem converge
in a sense slightly weaker than convergence weakly in probability in the large data

limit, μn ⇀ μ†, for regularization λn that scales to zero no faster than n− 1
2 . In this

scaling regime, we say that the general spline problem is consistent. For insufficient
regularization, the spline estimators may in some sense ‘blow up’. In particular, for
scaling outside this regimewe construct (uniformly bounded) observation operators Li

such that E
[‖μn‖2] → ∞. Hence, without further assumptions our results are sharp.

We note that these results have practical implications. If we are interested in esti-
mating μ† at a point t , then we let F(μ) = μ(t) where F ∈ H∗. In this setting, weak
convergence, or the pointwise form considered in this paper, is the natural mode of
convergence to consider. If one is interested in a global approximation ofμ†, then con-
vergence ofμn −μ† in an appropriate norm is themore relevant. The two formulations
imply different scaling results for λn .

There are many results in the ill-posed inverse problems literature that may be
applied to the strong convergence of the general spline problem, for brevity we only
mention those most relevant to this work. In Wahba (1985), two different methods of
estimating λn were compared as n → ∞ using the general spline formulation. The
reproducing kernel Hilbert space setting was used in Kimeldorf and Wahba (1970)
which also discussed the probabilistic interpretation behind the estimator μn . In Cox
(1988) and Nychka and Cox (1989), the authors prove the strong convergence and
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optimal rates for the spline model using an approximation 1
n

∑n
i=1 L∗

i Li ≈ U where
U is compact, positive definite, self-adjoint and with dense inverse. See also Carroll
et al. (1991) and Mair and Ruymgaart (1996) that consider ill-posed inverse problems
without noise using similar methods. In these papers, the scaling regime for λn is given
in termsof the rate of decay of the eigenvalues of the inverse covariance (regularization)
operator C−1 (where ‖ · ‖1 = ‖C−1 · ‖L2 ).

There are many more recent results addressing the asymptotic properties of splines,
including (Claeskens et al. 2009; Hall and Opsomer 2005; Kauermann et al. 2009; Lai
and Wang 2013; Li and Ruppert 2008; Shen and Wang 2011; Wang et al. 2011; Xiao
et al. 2012; Yoshida and Naito 2012, 2014). Many of these recent results concern the
asymptotics of penalized splines where one fixes the number of knot points as apposed
to the smoothing spline case where the number of knots is equal to the number of data
points.

It is known that the special spline problem is equivalent to a white noise problem
(Brown and Low 1996). Strong convergence and rates for the white noise problem
have been well studied see, for example, Agapiou et al. (2013), Bissantz et al. (2007),
Goldenshluger and Pereverzev (2000) and references therein.

An interesting related result, due to Silverman (1984), gives the convergence of the
smoothing kernel. That is, we can write the estimator μn of μ given data {(ti , yi )}n

i=1
in the form

μn(s) = 1

n

n∑

i=1

Kn(s, ti )yi

for a Kernel Kn (see Lemma 8). Silverman showed that Kn(·, t) converges to some K
uniformly on [ε, 1 − ε] for every ε > 0 and each t (the result is valid for the special
spline model and penalizing the second derivative). Whilst this result gives intuition
into how the kernel behaves, it does not imply the convergence of the smoothing spline.
Indeed, the convergence is not valid at the end points {0, 1} and does not account for
randomness in the observations yi . In other words, Kn(·, t) → K (·, t) does not imply
the convergence of μn (or any characterization of the limit such as we give in this
paper as a solution to a variational problem). Silverman’s result is, however, valid for
a larger range of λ than we have here. For convergence of the kernel, it is enough that
1
λ

= o(n2−δ) for any δ > 0. Our results concerning the pointwise convergence of the

smoothing spline hold for λ satisfying 1
λ

= O(n
1
2 ).

One advantage of our approach is that we gain intuition in what happens when
λn → 0 too quickly. Our results show a critical rate, with respect to the scaling of λn , at
which themethodology is ill-posed below this rate andwell-posed at or above this rate.
The second advantage of our approach is that, by using the�-convergence framework,
as long aswe can show thatminimizers are uniformly bounded the convergence follows
easily (we also need to show the �-limit is unique, but for our problem this is not
difficult). This is easier than showing, directly, that μn −μ† converges to zero. We are
consequently able to employ simpler assumptions than those required by more direct
arguments.
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Convergence of general smoothing splines 721

The outline of this paper is as follows. In the next section, we introduce some
preliminary material. This starts by defining the notation we use in the remainder
of the paper. We then remind the reader of Gâteaux derivatives, the �-convergence
framework and the spline methodology, respectively. Section 3 contains the results
for the convergence of the general spline model under appropriate conditions on the
scaling in the regularization using the �-convergence framework. We discuss the
special spline model in Sect. 4.

2 Preliminary material

2.1 Notation

We use the following standard definitions for rates of convergence.

Definition 1 We define the following.

(i) For deterministic sequences an and rn , where rn are positive and real valued, we
write an = O(rn) if

an
rn

is bounded. If an
rn

→ 0 as n → ∞, we write an = o(rn).
(ii) For random sequences an and rn , where rn are positive and real valued, we write

an = Op(rn) if
an
rn

is bounded in probability: for all ε > 0 there exists Mε, Nε

such that

P

(∣∣∣∣
an

rn

∣∣∣∣ ≥ Mε

)
≤ ε ∀n ≥ Nε .

If an
rn

→ 0 in probability: for all ε > 0

P

(∣∣∣∣
an

rn

∣∣∣∣ ≥ ε

)
→ 0 as n → ∞

we write an = op(rn).

Definition 2 For deterministic positive sequences an and bn , we write an � bn to
mean there exists M < ∞ such that an ≤ Mbn for all n.

Throughout this paper, we say that a sequence of parameter estimators is consistent
if, for any value of the “parameters” (splines in our setting), they converge in the sense
made precise in Theorem 9 to the true value.

We will assume εi and Li are independent sequences of iid random variables. Our
estimatorsμn are also random variables, and therefore we can reach only probabilistic
conclusions about the convergence of μn .

We will work on a probability space (	,F ,P) rich enough to support a countably
infinite sequence of observations (Li , yi )i≥1. All stochastic quantifiers are taken with
respect to P unless otherwise stated. It will be convenient to introduce the natural
filtration associated with the marginal sequence (Li ), and we define for n ∈ N, Gn =
σ(L1, . . . , Ln), a sequence of sub-σ -algebras ofF .We useE[·|Gn] to denote a version
of the associated conditional expectation.
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722 M. Thorpe, A. M. Johansen

To emphasize the dependence on the realization ω ∈ 	, and hence of the data
sequence, of our functionals, we write f (ω)

n .
For an operator U : H → H, we will use Ran(U ) to denote the range of U , i.e.

Ran(U ) = {μ ∈ H : ∃ν ∈ H s.t. Uν = μ}.

When U is linear, the operator norm is defined by

‖U‖L(H,H) := sup
‖μ‖≤1

‖Uμ‖.

We denote the support of a probability measure φ on a topological space I endowed
with its Borel σ -algebra, by supp(φ), i.e.

supp(φ) = inf

{
I ′ : I ′ ⊂ I, I ′ is closed, and

∫

I\I ′
φ(dt) = 0

}
.

A sequence of probability measures Pn on a Polish space is said to weakly converge
to a probability measure P if for all bounded and continuous functions h we have

Pnh → Ph.

where we write Ph = ∫
h(x) P(dx). If Pn weakly converges to P , then we write

Pn ⇒ P .

2.2 The Gâteaux derivative

Definition 3 We say that f : H → R is Gâteaux differentiable at μ ∈ H in direction
ν ∈ H if the limit

∂ f (μ; ν) = lim
r→0

f (μ + rν) − f (μ)

r

exists. We may define second-order derivatives by

∂2 f (μ; ν, ν′) = lim
r→0

∂ f (μ + rν′; ν) − ∂ f (μ; ν)

r

for μ, ν, ν′ ∈ H. Similarly for higher-order derivatives, to simplify notation, when it
is clear, we write

∂s f (μ; ν) := ∂s f (μ; ν, . . . , ν).
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Convergence of general smoothing splines 723

Theorem 4 (Taylor’s Theorem) If f : H → R is m times continuously Gâteaux
differentiable on a convex subset K ⊂ H, then, for μ, ν ∈ K :

f (ν) = f (μ) + ∂ f (μ; ν − μ) + 1

2!∂
2 f (μ; ν − μ, ν − μ) + · · ·

+ 1

(m − 1)!∂
m−1 f (μ; ν − μ, . . . , ν − μ) + Rm

where

Rm(μ, ν − μ) = 1

(m − 1)!
∫ 1

0
(1 − t)m−1∂m f ((1 − t)μ + tν; ν − μ) dt.

2.3 �-convergence

Variational methods, and in particular �-convergence, have been used by the authors
previously to prove consistency of estimators which arise as solutions to a variational
problem (Thorpe and Johansen 2016; Thorpe et al. 2015). We have the following
definition of �-convergence with respect to weak convergence.

Definition 5 (�-convergence Braides 2002, Definition 1.5) LetH be a Banach space.
A sequence fn : H → R∪{±∞} is said to�-converge on the domainH to f∞ : H →
R ∪ {±∞} with respect to weak convergence on H, and we write f∞ = �- limn fn ,
if for all ν ∈ H we have

(i) (lim inf inequality) for every sequence (νn) weakly converging to ν

f∞(ν) ≤ lim inf
n→∞ fn(νn);

(ii) (recovery sequence) there exists a sequence (νn) weakly converging to ν such
that

f∞(ν) ≥ lim sup
n→∞

fn(νn).

When it exists, the �-limit is always weakly lower semi-continuous (Braides 2002,
Proposition 1.31) and therefore the minimum of the �-limit over weakly compact sets
is achieved. An important property of�-convergence is that it implies the convergence
of almost minimizers whereμn is a sequence of almost minimizers of fn if there exists
a sequence δn with δn → 0 and fn(μn) ≤ inf fn + δn . In particular, we will make use
of the following well known result which can be found in Braides (2002, Theorem
1.21).

Theorem 6 (Convergence of Minimizers) Let fn : H → R ∪ {±∞} be a sequence
of functionals on a Banach space (H, ‖ · ‖). Assume there exists a weakly compact
subset K ⊂ H with

inf
H

fn = inf
K

fn ∀n ∈ N.
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724 M. Thorpe, A. M. Johansen

If f∞ = �- limn fn and f∞ is not identically ±∞, then

min
H

f∞ = lim
n→∞ inf

H
fn .

Furthermore, if μn ∈ K are almost minimizers of fn, then any weak limit point
minimizes f∞.

A simple consequence of the above is the following corollarywhich avoids recourse
to subsequences.

Corollary 7 If in addition to the assumptions of Theorem 6 the minimizer of the �-
limit is unique, then any sequence of almost minimizers μn of fn converges weakly to
the minimizer of f∞.

2.4 The spline framework

In this subsection, we recap the spline methodology and find an explicit representation
for our estimators. In particular, we construct our estimate as aminimizer of a quadratic
functional. We will show the existence and uniqueness of the minimizer.

We consider the separable Hilbert space H with inner product and norm given
by (·, ·) and ‖ · ‖, respectively. We assume we can write H = H0 ⊕ H1 where
(H0, (·, ·)0, ‖ · ‖0), (H1, (·, ·)1, ‖ · ‖1) are Hilbert spaces with dim(H0) = m and
dim(H1) = ∞. We may write

‖μ‖ = ‖μ‖0 + ‖μ‖1.

It is convenient to extend the domain of || · ||i fromHi toH, setting ‖μ‖i := ‖χiμ‖ =
‖χiμ‖i as H0 is orthogonal to H1 by assumption. For example, in the special spline
case,H0 is the space of polynomials of degree at most m −1 andH1 will be the space
of remainder terms

R(t) = μ(t) −
m−1∑

i=0

∇ iμ(0)

i ! t i .

The norm onH1 is ‖μ‖1 = ‖∇mμ‖L2 . Now, the projection of a functionμ ∈ H toH1
is just the projection μ �→ R given by the above expression. Clearly, ‖μ‖1 = ‖R‖1 =
‖χ1μ‖1. Since H0 is finite dimensional, we are free to choose the norm without
changing the topology; however, it is convenient to choose a norm that is orthogonal
toH1 when viewed as a function ofH. A natural choice is ‖μ‖20 = ∑m−1

i=0 |∇ iμ(0)|2.
The special spline problem is discussed more below, particularly in Sect. 4.

We wish to estimate μ† ∈ H given observations of the form (Li , yi ), and Li (as
well as yi ) is random. For convenience, we summarize the general spline model in the
definition below. One can also see, for example, Wahba (1990) for more details on the
general spline model.

The general spline model The general spline model is given by (1) where Li ∈ H∗
are random variables and εi are iid random variables from a centred distribution,
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φ0, with variance σ 2. The Li are assumed to be observed without noise and to be
members of a family indexed by I ⊂ R

d ; we write Lt to mean the operator L which
depends upon a parameter t ∈ I. The ‘randomness’ of L is characterized by the
distribution, φT , of a random index t ∈ I. For a sample ti ∼ φT , we write Li as
shorthand for Lti . The operator Li is therefore interpreted as a realization of Lti . We
assume that ti , εi are independent, and for convenience we define φLt μ† to be the
distribution φ0 shifted by −Ltμ

†. By the Riesz Representation Theorem, there exists
ηi ∈ H such that Liμ = (ηi , μ) for all μ ∈ H. The sequence of observed data points
(t1, y1), (t2, y2), . . . is a realization of a sequence of random elements on (	,F ,P).
To mitigate the notational burden, we suppress the ω-dependence of ti , yi and Li .

For example, in the case of special splines Liμ
† = μ†(ti ) for some ti a random vari-

able distributed in [0, 1]. Observing Li without noise is equivalent here to observing
ti without noise. We refer to Sect. 4 for more details.

We take our sequence of estimatorsμn ofμ† asminimizers, which are subsequently
shown to be unique, of f (ω)

n where

f (ω)
n (μ) = 1

n

n∑

i=1

(yi − Liμ)2 + λn‖μ‖21. (2)

By completing the square, we can easily show μn is given implicitly by

Gn,λn μ
n = 1

n

n∑

i=1

yiηi

where

Gn,λ = 1

n

n∑

i=1

ηi Li + λχ1 (3)

and for clarity we also suppress the ω-dependence of Gn,λ from the notation. It will be
necessary in our proofs to bound ‖Gn,λn ‖H∗ in terms of λn (for almost every sequence
of observations). We do this by imposing a bound on ‖Lt‖H∗ or equivalently on ‖ηt‖
for almost every t ∈ I. See Sect. 4 for a discussion of the special spline problem
and in particular how one can find ηi . In order to bound theH0 norm of μn , we need
conditions on our observation operators Lt . In particular, we will use the observation
operators to define a norm onH0. Hence, our proofs require a uniqueness assumption
of Lt in H0 (Assumption 3 below). It is not enough that Lt are unique over H as
this would not necessarily contain any information on theH0 projection of μn , e.g. if
Ltμ = Ltχ1μ for all μ ∈ H. For clarity and future reference, we now summarize the
assumptions described in the previous paragraphs.

Assumptions We make the following assumptions on f (ω)
n : H → R defined by (2)

and H.

1. Let (H, (·, ·), ‖ · ‖) be a separable Hilbert space with H = H0 ⊕ H1 where
(H0, (·, ·)0, ‖ · ‖0) and (H1, (·, ·)1, ‖ · ‖1) are Hilbert spaces. Assume dim(H) =
dim(H1) = ∞ and dim(H0) = m < ∞.
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2. The distribution of Li := Lti is specified implicitly by that of ti ∈ I ⊂ R
d , and

we assume ti
iid∼ φT .

3. We assume |supp(φT )| ≥ m and that the Lt are unique in H0 in the sense that if
Ltμ = Lrμ for all μ ∈ H0, then t = r .

4. There exists α > 0 such that ‖ηt‖ = ‖Lt‖H∗ ≤ α for φT -almost every t ∈ I.
For the general spline problem,we allowmultivariate regression, that is ti ∈ R

d , see
for example Xiao et al. (2013, Section 7) for multivariate P-splines. However, when
discussing the special spline problem, we will often assume d = 1 since, although
our convergence results still hold for d > 1, there are regularity issues such as that for
2m < d minimizers are not automatically continuous (for 2m > d the Sobolev space
Hm on R

d is embedded in C0, this is not true for 2m < d).
The existence of a unique minimizer to (2) is established in the following lemma.

Lemma 8 Define f (ω)
n : H → R by (2) and assume λn > 0. Under Assumptions

1–4, the operator Gn,λn : H → H defined by (3) has a well-defined inverse G−1
n,λn

on span{η1, . . . , ηn} for almost every ω ∈ 	. In particular, there almost surely exists
N < ∞ such that for all n ≥ N there exists a unique minimizer μn ∈ H to f (ω)

n which
is given by

μn = 1

n

n∑

i=1

yi G
−1
n,λn

ηi . (4)

Proof We claim that any minimizer of f (ω)
n lies in the setH0⊕ span{χ1η1, . . . , χ1ηn}

=: H′
n . If this is so, and it can be shown that G−1

n,λn
is well defined onH′

n , then we can
conclude the minimizer must be of the form (4).

We define 	′ ⊂ 	 by

	′ := {
ω ∈ 	 : the number of unique t j in {ti }∞i=1

is greater than m and ‖Li‖H∗ ≤ α ∀i} .

By Assumptions 3 and 4, P(	′) = 1. Let ω ∈ 	′ and then there exists N such
that for all n ≥ N we have that {Li }N

i=1 contains m distinct elements. Therefore,
‖μ‖2H′

n
:= 1

n

∑n
i=1(Liμ)2 +λn‖μ‖21 defines a norm onH′

n for any n ≥ N and, asH′
n

is finite dimensional, we arrive at the same topology whichever norm we choose.
We first show that any minimizer of f (ω)

n lies in H′
n . Let μ = ∑m

j=1 a jφ j +∑n
j=1 b jχ1η j + ρ where φ j are a basis for H0 and ρ ⊥ H′

n . Then, since Liρ =
(ηi , ρ) = 0 we have:

f (ω)
n (μ) = 1

n

n∑

i=1

(
yi − LiχH′

n
μ
)2 + λn

∥∥∥∥∥∥

n∑

j=1

b jχ1η j

∥∥∥∥∥∥

2

1

+ λn‖ρ‖21

where χH′
n
denotes the projection ontoH′

n . Trivially any minimizer of f (ω)
n must have

‖ρ‖1 = 0 and since ρ ∈ H1 this implies ρ = 0. Hence, minimizers of f (ω)
n lie inH′

n .
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Convergence of general smoothing splines 727

We now show that Gn,λn has a well-defined inverse on H′
n ; that is we want to

show that for any r ∈ H′
n there exists μn ∈ H′

n such that Gn,λn μ
n = r . The weak

formulation of Gn,λn μ
n = r is given by

B(μn, ν) = (r, ν) ∀ν ∈ H′
n

where

B(μ, ν) = 1

n

n∑

i=1

(Liμ)(Liν) + λn(χ1μ, χ1ν).

Now we apply the Lax-Milgram lemma to imply there exists a unique weak solution.
Clearly B : H′

n × H′
n → R is a bilinear form. We will show it is also bounded and

coercive. As ω ∈ 	′, ‖Li‖H∗ ≤ α and for μ, ν ∈ H′
n we have

|B(μ, ν)| ≤ 1

n

n∑

i=1

|LiμLiν| + λn‖μ‖1‖ν‖1

≤ α2‖μ‖‖ν‖ + λn‖μ‖1‖ν‖1
≤

(
α2 + λn

)
‖μ‖‖ν‖.

Hence, B is bounded. Similarly, for some constant c independent of μ,

B(μ,μ) = 1

n

n∑

i=1

(Liμ)2 + λn‖μ‖21 = ‖μ‖2H′
n

≥ c‖μ‖2

where the inequality follows by the equivalence of norms on finite dimensional spaces.
Hence, B is coercive and by the Lax-Milgram Lemma there exists a unique weak
solution. We have shown that for any r ∈ H′

n there exists μn ∈ H′
n such that

B(μn, ν) = (r, ν) for all ν ∈ H′
n .

A strong solution follows from the equivalence of the strong and weak topology
on finite dimensional spaces or alternatively from the following short calculation. We
have

(r, ν) =
(
1

n

n∑

i=1

(Liμ
n)ηi , ν

)
+ (

λnχ1μ
n, ν

) ∀ν ∈ H′
n .

Hence
(

r − 1

n

n∑

i=1

(Liμ
n)ηi − λnχ1μ

n, ν

)
= 0 ∀ν ∈ H′

n .

So choosing ν = r − 1
n

∑n
i=1(Liμ

n)ηi − λnχ1μ
n implies ‖r − 1

n

∑n
i=1(Liμ

n)ηi −
λnχ1μ

n‖2 = 0 and therefore
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r = 1

n

n∑

i=1

(Liμ
n)ηi − λnχ1μ

n = Gn,λn μ
n .

As this is true for all r ∈ H′
n we can infer the existence of an inverse operator

G−1
n,λn

: H′
n → H′

n such that G−1
n,λn

r = μn . One can verify that G−1
n,λn

is linear. As
ω ∈ 	′ was arbitrary, the result holds almost surely. ��

3 Consistency

We demonstrate consistency by applying the�-convergence framework. This requires
us to find the �-limit, to show that the �-limit has a unique minimizer and that the
minimizers of f (ω)

n are uniformly bounded. The next three subsections demonstrate
that each of these requirements is satisfied under the stated assumptions and allow the
application of Corollary 7 to conclude the consistency of the spline model, as sum-
marized in Theorem 9. We start by stating the remainder of the conditions employed.

Assumptions 5. We have λn = n−p with 0 < p ≤ 1
2 .

6. For ν ∈ H the following relation holds:

∫

I
(Ltν)2φT (dt) = 0 ⇔ ν = 0.

7. For each μ ∈ H, each Ltμ is continuous in t , i.e ‖Ls − Lt‖H∗ → 0 as s → t .

Assumption 5 gives the admissible scaling regime in λn . Clearly if p ≤ 0, then
λn �→ 0 and hence we expect the limit, if it even exists, to be biased towards solutions
more regular than μ†. We are required to show that the minimizers are bounded in
probability. To do so, we show they are bounded in expectation. We will show in
Theorem 11 that for p > 1

2 we cannot bound minimizers in expectation; hence, it is
not possible to extend our proofs for p /∈ (0, 1

2 ]. Theorem 9 holds as it does and not in
expectation because the �-convergence framework requires μn to be a minimizer and
as such we cannot make conclusions about the “average minimizer” since E[μn|Gn]
is not a minimizer.

We will show that the second derivative of f∞ in the direction ν is given by∫
I(Ltν)2 φT (dt). Assumption 6 is used to establish that f∞ is strictly convex, and
hence the minimizer is unique.

It will be necessary to show that

1

n

n∑

i=1

|Liμ| →
∫

I
|Ltμ| φT (dt) (5)

for all μ ∈ H with probability one. We impose Assumption 7 (together with Assump-
tion 4) to imply that Ltμ is continuous and bounded in t for allμ ∈ H and therefore by
the weak convergence of the empirical measure we infer that (5) holds for all μ ∈ H
and for almost every sequence {Li }∞i=1. In particular, we can define a set 	′ ⊂ 	

independent of μ, on which (5) holds, such that P(	′) = 1.
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Theorem 9 Define f (ω)
n : H → R by (2). Under Assumptions 1–7, the minimizer μn

of f (ω)
n converges in the following sense: for all ε, δ > 0 and F ∈ H∗ there exists

N = N (ε, δ, F) ∈ N such that

P

(∣∣∣F(μn) − F(μ†)

∣∣∣ ≥ ε
)

≤ δ for n ≥ N .

Remark 10 We view the mode of convergence in the above theorem as a natural
generalization of convergence in probability; it is weaker than convergence weakly
in probability, which would require that the convergence of μn → μ† were uniform
over F ∈ H∗ and not pointwise as established in the theorem.

The following theorem shows that if p > 1
2 , then without imposing further assump-

tions it is always possible to construct observation functionals {Lt }t∈I such that
E
[‖μn‖2] → ∞.

Theorem 11 Define f (ω)
n : H → R by (2), let μn be the minimizer of f (ω)

n and take
any α > 0 and p > 1

2 . Take Assumptions 1–2, and assume that λ = n−p. Then, there
exists a distribution φT on I such that ‖Lt‖H∗ = ‖ηt‖ ≤ α for almost every ω ∈ 	

(i.e. Assumption 4 holds) and E[‖μn‖2] → ∞.

In the special spline model, when λ → 0, too quickly the functions μn begin to
interpolate the data points {(ti , yi )}n

i=1, and hence the derivative of μn will not stay
bounded. Furthermore, when consideringweak convergence, one is restricting to finite

dimensional projections. It is therefore not surprising that n− 1
2 is the best we can do.

For p > 1
2 and a sequence of real-valued iid random variables Xi of finite variance

(which are not identically zero), we have n2p
E( 1n

∑n
i=1 Xi )

2 → ∞. In light of this,
elementary observation Theorem 11 is not surprising. The proof is given in Sect. 3.4.

3.1 The �-limit

We claim the �-limit of f (ω)
n , for almost every ω ∈ 	, is given by

f∞(μ) =
∫

I

∫ ∞

−∞
|y − Ltμ|2 φLt μ†(dy) φT (dt). (6)

Theorem 12 Define f (ω)
n , f∞ : H → R by (2) and (6), respectively. Under Assump-

tions 1–2, 5 and 7,

f∞ = �- lim
n

f (ω)
n

for almost every ω ∈ 	.

Proof We are required to show the two inequalities in Definition 5 hold with proba-
bility 1. In order to do this, we consider a subset of 	 of full measure, 	′, and show
that both statements hold for every data sequence obtained from that set.
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Define gμ(t, y) = (y − Ltμ)2. For clarity let P(d(t, y)) = φT (dt)φLt μ†(dy) and
Pn be the empirical measure associated with the observations, i.e. for any measurable
h : I × R → R we define Pnh = 1

n

∑n
i=1 h(ti , yi ). Further, let P(ω)

n denote the
measure arising from the particular realization ω. Defining:

	′ =
{
ω : P(ω)

n ⇒ P
}

∩
{

ω ∈ 	 : 1
n

n∑

i=1

ε2i (ω) → σ 2 and
1

n

n∑

i=1

εi (ω) → 0

}
,

thenP(	′) = 1 by the almost sure weak convergence of the empirical measure Dudley
(2002, Theorem 11.4.1) and the strong law of large numbers. Let ω ∈ 	′.

We start with the lim inf inequality. Pick ν ∈ H and let νn ⇀ ν. By Theorem 1.1
in Feinberg et al. (2014) we have

∫

I

∫ ∞

−∞
lim inf

n→∞,(t ′,y′)→(t,y)
gνn (t ′, y′) P(d(t, y))

≤ lim inf
n→∞

∫

I

∫ ∞

−∞
gνn (t, y) P(ω)

n (d(t, y))

= lim inf
n→∞ f (ω)

n (νn).

Now, we show
lim inf

n→∞,(t ′,y′)→(t,y)
gνn (t ′, y′) ≥ gν(t, y) (7)

which proves the lim inf inequality. Let (tm, ym) → (t, y) and then

(gνn (tm, ym))
1
2 = |ym − Ltm νn|

≥ |Ltm νn − y| − |ym − y|
≥ |y − Ltν

n| − |Ltm νn − Ltν
n| − |ym − y|

≥ |y − Ltν
n| − ‖Ltm − Lt‖H∗‖νn‖ − |ym − y|.

A consequence of the uniform boundedness principle is that any weakly convergent
sequence is bounded, and hence there exists some C > 0 such that ‖νn‖ ≤ C . It
follows from the above, and Assumption 7, that

lim inf
n→∞,m→∞ (gνn (tm, ym))

1
2 ≥ |y − Ltν| = (gν(t, y))

1
2 .

As our choice of sequence (tm, ym) was arbitrary, we can conclude that (7) holds.
For the recovery sequence, we choose ν ∈ H and let νn = ν. We are required to

show

Pgν ≥ lim sup
n→∞

(
P(ω)

n gν + λn‖μ‖21
)

= lim sup
n→∞

P(ω)
n gν.

Since we can write

gν(ti , yi ) = (Liμ
†)2 + ε2i + (Liν)2 + 2εi Liμ

† − 2Liμ
†Liν − 2εi Liν
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and each term is either a continuous and bounded functional, or its convergence is
addressed directly by the construction of 	′, we have P(ω)

n gν → Pgν as required. As
ω ∈ 	′ was arbitrary, the result holds almost surely. ��
Remark 13 Note that in the above theorem we did not need a lower bound on the
decay of λn (only that λn ≥ 0). We only used that λn = o(1).

3.2 Uniqueness of the �-limit

To show the �-limit has a unique minimizer, we show it is strictly convex. The fol-
lowing lemma gives the second Gâteaux derivative of f∞. After which we conclude
in Corollary 15 that the �-limit is unique.

Lemma 14 Under Assumptions 1–2 define f∞ : H → R by (6). Then, the first and
second Gâteaux derivatives of f∞ are given by

∂ f∞(μ; ν) = 2
∫

I

∫ ∞

−∞
(Ltμ − y)Lt (ν)φLt μ†(dy)φT (dt)

∂2 f∞(μ; ν, ζ ) = 2
∫

I
(Ltν)(Ltζ )φT (dt).

Proof We first compute the first Gâteaux derivative. We have

∂ f∞(μ; ν) = lim
r→0

∫

I

∫ ∞

−∞
(y − Lt (μ + rν))2 − (y − Ltμ)2

r
φLt μ†(dy)φT (dt)

= 2
∫

I

∫ ∞

−∞
(Ltμ − y)Lt (ν)φLt μ†(dy)φT (dt)

+ lim
r→0

r
∫

I

∫ ∞

−∞
(Ltν)2φLt μ†(dy)φT (dt)

= 2
∫

I

∫ ∞

−∞
(Ltμ − y)Lt (ν)φLt μ†(dy)φT (dt) recalling that Lt is linear.

The second Gâteaux derivative follows similarly.

∂2 f∞(μ; ν, ζ ) = lim
r→0

2
∫

I

∫ ∞

−∞
(Lt (μ + rζ ) − y)Ltν − (Ltμ − y)Ltν

r
×φLt μ†(dy)φT (dt)

= 2
∫

I

∫ ∞

−∞
(Ltν)(Ltζ )φLt μ†(dy)φT (dt)

= 2
∫

I
(Ltν)(Ltζ )φT (dt).

��
Corollary 15 Under Assumptions 1–2 and 6, define f∞ : H → R by (6). Then, f∞
has a unique minimizer which is achieved for μ = μ†.
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Proof It is easy to check that ∂ f∞(μ†; ν) = 0 for all ν ∈ H. By Lemma 14 and
Assumption 6, the second Gâteaux derivative satisfies ∂2 f∞(μ; ν) > 0 for all ν �= 0.
Then, by Taylor’s Theorem (and noting that f∞ is quadratic), for μ �= μ†,

f∞(μ) = f∞(μ†) + 1

2
∂2 f∞(μ†;μ − μ†) > f∞(μ†)

as required. ��

3.3 Bound on minimizers

In this subsection, we show that ‖μn‖ = Op(1). The bound in H0 can be obtained
using fewer assumptions (than the bound in H), which is natural considering H0 is
finite dimensional. We may choose the norm on H0 without changing the topology
(all norms are equivalent on finite dimensional spaces). We will use

‖μ‖0 =
∫

I
|Ltμ|φT (dt).

Loosely speaking, we can then write ‖μn‖0 � f (ω)
n (μn). The bound in H0 then

follows if min f (ω)
n is bounded. We make this argument rigorous in Lemma 16. After

this result, we concentrate on bounding μn inH.

Lemma 16 Define f (ω)
n : H → R by (2). Under Assumptions 1–5 and 7, the mini-

mizers μn of f (ω)
n are, with probability one, eventually bounded in H0, i.e. for almost

every ω ∈ 	 there exist constants C, N > 0 such that ‖μn‖0 ≤ C for all n ≥ N.

Proof We define P and P(ω)
n as in the proof of Theorem 12, let

	′ =
{
ω ∈ 	 : P(ω)

n ⇒ P
}

∩
{

ω ∈ 	 : 1
n

n∑

i=1

ε2i (ω) → σ 2 and
1

n

n∑

i=1

|εi (ω)| → P|ε1|
}

and μn be a minimizer of f (ω)
n . Assume ω ∈ 	′. As

f (ω)
n (μn) ≤ f (ω)

n (μ†) ≤ 1

n

n∑

i=1

ε2i + λ1‖μ†‖21 → σ 2 + λ1‖μ†‖21,

there exists N such that f (ω)
n (μn) ≤ σ 2 + λ1‖μ†‖21 + 1 for n ≥ N .

Note that for any a, b ∈ R we have

|a − b|2 ≥
{ |a − b| if |a − b| ≥ 1

|a − b| − 1 otherwise.
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In either case |a − b|2 ≥ |a − b| − 1 ≥ |a| − |b| − 1. Now

f (ω)
n (μ) = 1

n

n∑

i=1

(yi − Liμ)2 + λn‖μ‖21

≥ 1

n

n∑

i=1

(|Liμ| − |yi | − 1)

= 1

n

n∑

i=1

|Liμ| − 1

n

n∑

i=1

|yi | − 1

≥ 1

n

n∑

i=1

|Liμ| − 1

n

n∑

i=1

|Liμ
†| − 1

n

n∑

i=1

|εi | − 1

→
∫

I
|Ltμ|φT (dt) − c

where the convergence follows since |Ltμ| is a continuous and bounded functional in
t and c is given by

lim
n→∞

(
1

n

n∑

i=1

|Liμ
†| + 1

n

n∑

i=1

|εi | + 1

)
≤

∫

I
|Ltμ

†|φT (dt) + σ + 1 =: c.

We now show that
∫
I |Ltμ|φT (dt) is a norm onH0 and hence that the above constant,

c, is finite. This will also show that ‖μ‖0 ≤ f (ω)
n (μ) + c for n ≥ N , which completes

the proof.
The triangle inequality, absolute homogeneity and that

∫
I |Ltμ|φT (dt) ≥ 0 are

trivial to establish. By Assumption 3, we have at least m disjoint subsets of positive
measure (with respect to φT ) on I. If ∫I |Ltμ|φT (dt) = 0 then it follows that on
each of these subsets Ltμ = 0. AsH0 is m-dimensional this determines μ, and hence
μ = 0.

As ω ∈ 	′ was arbitrary and P(	′) = 1, the result holds almost surely. ��
Remark 17 In the above lemma, we did not need the lower bound on λn (only that
λn ≥ 0). The result holds for all λn = O(1).

Continuing with the bound in H, we write

μn = 1

n

n∑

i=1

Liμ
†G−1

n,λn
ηi + 1

n

n∑

i=1

εi G
−1
n,λn

ηi = G−1
n,λn

Unμ
† + 1

n

n∑

i=1

εi G
−1
n,λn

ηi (8)

where

Un = 1

n

n∑

i=1

ηi Li . (9)

We bound ‖G−1
n,λn

Unμ†‖ in Lemma 19 and ‖ 1
n

∑n
i=1 εi G

−1
n,λn

ηi‖ in Lemma 20.
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In the proof of Lemma 19, we show that G−1
n,λn

: Ran(Un) → Ran(Un). Lemma 18
gives the conditions necessary to infer the existence of a orthonormal basis of eigen-
functions {ψ(n)

j }∞j=1 of Ran(Un). Hence, we can write

‖G−1
n,λn

Unμ‖2 =
∞∑

j=1

(G−1
n,λn

Unμ,ψ
(n)
j )2.

From here, we exploit the fact that ψ(n)
j are eigenfunctions. We leave the details until

the proof of Lemma 19.
Lemma 20 is a consequence of being able to bound ‖G−1

n,λn
‖L(H,H) in terms of

λn . One is then left to show
( 1

n

∑n
i=1 εi

)2 = O( 1n ). We start by showing that Un is
compact, bounded, self-adjoint and positive semi-definite.

Lemma 18 Define Un by (9). Under Assumptions 1 and 4, Un is almost surely a
bounded, self-adjoint, positive semi-definite and compact operator on H.

Proof In this proof, we consider ω ∈ 	′ where 	′ = {ω : ‖ηi (ω)‖ ≤ α for all i},
noting that P(	′) = 1 by Assumption 4.

Boundedness of Un follows easily as

‖Unμ‖ ≤ 1

n

n∑

i=1

α2‖μ‖ = α2‖μ‖.

Let (·, ·)Rn be the inner product on R
n given by

(x, y)Rn = 1

n

n∑

i=1

xi yi ∀x, y ∈ R
n .

Now, for x ∈ R and ν ∈ H we have

(x, Liν)R1 = x Liν = x(ηi , ν) = (xηi , ν)

which shows L∗
i : R → H is given by L∗

i x = xηi . Now, if we define Tn =
(L1, . . . , Ln) : H → R

n , then for x ∈ R
n , ν ∈ H

(Tnν, x)Rn = 1

n

n∑

i=1

Liνxi =
(
1

n

n∑

i=1

xiηi , ν

)
.

Hence, T ∗
n x = 1

n

∑n
i=1 xiηi . We have shownUn = T ∗

n Tn and is therefore self-adjoint.
To show Un is positive semi-definite, we need

(Unν, ν) ≥ 0
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for all ν ∈ H. This follows easily as

(Unν, ν) = 1

n

n∑

i=1

(Liν)2 ≥ 0.

For compactness of Un (for n fixed), let νm be a sequence with ‖νm‖ ≤ 1. Since
|Liν

m | ≤ α for every ω ∈ 	′, there exists a convergent subsequence m p such that

Liν
m p → κi ∀i = 1, 2, . . . , n say.

So Unνm p → 1
n

∑n
i=1 ηiκi ∈ H as m p → ∞. Therefore, each Un is compact. ��

Using the basis whose existence is implied by the previous lemma, we can bound
the first term on the RHS of (8).

Lemma 19 Under Assumptions 1–4, define Gn,λn and Un by (3) and (9), respectively.
Then, with probability one we have

‖G−1
n,λn

Un‖L(H,H) ≤ 1

for all n.

Proof First note that dim(Ran(Un)) = dim(span{η1, . . . , ηn}) ≤ n. Without loss of
generality, we will assume dim(Ran(Un)) = n (else we can assume the dimension is
mn where mn ≤ n is an increasing sequence). Clearly χ1 is a self-adjoint, bounded
and compact operator on Ran(Un) as is Un by Lemma 18. Therefore, there exists a
simultaneous diagonalization ofUn and χ1 on Ran(Un), i.e. there exists β

(n)
j , γ

(n)
j and

ψ
(n)
j such that

Unψ
(n)
j = β

(n)
j ψ

(n)
j and χ1ψ

(n)
j = γ

(n)
j ψ

(n)
j

for all j = 1, 2, . . . , n. Since χ1 is the projection operator, wemust have γ
(n)
j ∈ {0, 1}.

Furthermore, ψ(n)
j form an orthonormal basis of Ran(Un). Since Un is positive semi-

definite, it follows that β(n)
j ≥ 0. We have

Gn,λn ψ
(n)
j = Unψ

(n)
j + λnχ1ψ

(n)
j =

(
β

(n)
j + λnγ

(n)
j

)
ψ

(n)
j .

So,

G−1
n,λn

ψ
(n)
j = 1

β
(n)
j + λn

ψ
(n)
j .

In particular, this shows that

G−1
n,λn

Un : H → Ran(Un).
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Assume μ ∈ H, ν ∈ Ran(Un), then

μ =
n∑

i=1

(μ,ψ
(n)
i )ψ

(n)
i + μ̂ and ν =

n∑

i=1

(ν, ψ
(n)
i )ψ

(n)
i

where μ̂ ∈ Ran(Un)
⊥. Therefore,

(Unμ,ψ
(n)
j ) =

n∑

i=1

(μ,ψ
(n)
i )(Unψ

(n)
i , ψ

(n)
j ) = β

(n)
j (μ,ψ

(n)
j )

(G−1
n,λn

ν, ψ
(n)
j ) =

n∑

i=1

(ν, ψ
(n)
i )(G−1

n,λn
ψ

(n)
i , ψ

(n)
j ) = 1

β
(n)
j + λnγ

(n)
j

(ν, ψ
(n)
j )

which implies

(G−1
n,λn

Unμ,ψ
(n)
j ) = 1

β
(n)
j + λnγ

(n)
j

(Unμ,ψ
(n)
j ) = β

(n)
j

β
(n)
j + λnγ

(n)
j

(μ,ψ
(n)
j ).

Hence

‖G−1
n,λn

Unμ‖2 =
n∑

j=1

(G−1
n,λn

Unμ,ψ
(n)
j )2

=
n∑

j=1

(
β

(n)
j

β
(n)
j + λnγ

(n)
j

)2

(μ,ψ
(n)
j )2

≤
n∑

j=1

(μ,ψ
(n)
j )2

≤ ‖μ‖2.

This proves the lemma. ��
We now focus on bounding ‖G−1

n,λn
νn‖ where νn = 1

n

∑n
i=1 εiηi .

Lemma 20 Under Assumptions 1–5, define Gn,λn by (3). Then

E

⎡

⎣
∥∥∥∥∥
1

n

n∑

i=1

εi G
−1
n,λn

ηi

∥∥∥∥∥

2
∣∣∣∣∣∣
Gn

⎤

⎦ = O(1) almost surely.

Proof Recalling B from the proof of Lemma 8, we have

(Gn,λn μ,μ) = B(μ,μ) ≥ λn‖μ‖21.
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This implies ‖Gn,λn μ‖ ≥ λn‖μ‖1. By Lemma 8, there exists a well-defined inverse
of Gn,λn at ηi , hence we let μ = G−1

n,λn
ηi and we have

‖G−1
n,λn

ηi‖1 ≤ 1

λn
‖ηi‖ ≤ α

λn
.

Almost surely. Now, define νn = 1
n

∑n
i=1 εiηi and

E

[∥∥∥G−1
n,λn

νn

∥∥∥
2

1

∣∣∣∣Gn

]
a.s.= σ 2

n2

n∑

i=1

∥∥∥G−1
n,λn

ηi

∥∥∥
2

1
≤ α2σ 2

nλ2n
.

Combined with Lemma 16 (the H0 bound), this proves the lemma. ��
Recalling (8) and via Lemmas 19 and 20, we obtain the following asymptotic bound

on minimizers inH.

Theorem 21 Under Assumptions 1–5, we have

E

[
‖μn‖2|Gn

]
= O(1) almost surely. (10)

This is a stronger result than we needed; we were only required to show that ‖μn‖
is bounded in probability. Taking expectation of (10), one has

E‖μn‖2 = O(1).

Hence, applying Chebyshev’s inequality, we may conclude that ‖μn‖ = Op(1).

Corollary 22 Under Assumptions 1–5, we have ‖μn‖ = Op(1).

We conclude this section with a brief analysis of the rate of convergence. For
any F ∈ H∗, by the Riesz Representation Theorem, there exists ξ ∈ H such that
F(μ) = (μ, ξ) for all μ ∈ H. Hence,

F(μn) − F(μ†) = ((G−1
n,λn

Un − Id)μ† + G−1
n,λn

νn, ξ)

where νn = 1
n

∑n
i=1 εiηi . DecomposingH intoH = Ran(Un) ⊕ Ran(Un)

⊥, one can
write

F(μn) − F(μ†) =
((

G−1
n,λn

Un − χRan(Un)

)
μ†, ξ

)

−
(
χRan(Un)⊥μ†, ξ

)
+

(
G−1

n,λn
νn, ξ

)

=
n∑

j=1

−λn

β
(n)
j + λn

(
μ†, ψ

(n)
j

) (
ψ

(n)
j , ξ

)

−
(
χRan(Un)⊥μ†, ξ

)
+

(
G−1

n,λn
νn, ξ

)
(11)
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where χRan(Un) is the projection onto Ran(Un). If we assume

lim
n→∞

n∑

j=1

1

β
(n)
j

< ∞, (12)

then

n∑

j=1

−λn

β
(n)
j + λn

(
μ†, ψ

(n)
j

) (
ψ

(n)
j , ξ

)
≤ ‖μ†‖‖ξ‖λn

n∑

j=1

1

β
(n)
j

.

And therefore the first term in (11) is of the order n−p. By the proof of Lemma 20, the
third term in (11) is of order 1√

nλn
. The second term is independent of λn . The optimal

rate of convergence is therefore found by balancing the first and third terms. This will
imply an optimal choice of p = 1

4 . We summarize in the following proposition.

Proposition 23 Under Assumptions 1–6, for F ∈ H∗ take ξ ∈ H such that F(μ) =
(μ, ξ) and assume (12) holds and that there exists q > 0 such that

∣∣∣‖μ†‖ − ‖χRan(Un)μ
†‖
∣∣∣ � n−q

where Un is defined by (9) and (β
(n)
j , ψ

(n)
j ) are an eigenvalue–eigenfunction pair for

Un. Then

E

[
|F(μn) − F(μ†)| |Gn

]
= O

(
n−p) + O

(
n−q) + O

(
1

λn
√

n

)
a.s. (13)

In particular, the optimal choice is p = 1
4 in which case the rate of convergence is

E

[
|F(μn) − F(μ†)| |Gn

]
= O

(
n
max

{
− 1

4 ,−q
})

.

Proof The argument preceding the theoremprovides the proof for the first term in (13),
and the third term is a consequence of Lemma 20. The second term follows easily from

∣∣∣
(
χRan(Un)⊥μ†, ξ

)∣∣∣ ≤ ‖ξ‖‖χRan(Un)⊥μ†‖ ≤ ‖ξ‖
(
‖μ†‖ − ‖χRan(Un)μ

†‖
)
.

The optimal rate is a consequence of choosing p that minimizes n−p +
n p−0.5. ��

The conditions of the above theorem are difficult to theoretically verify. Even for
the special spline problem, the authors know of no method to check whether assump-
tion (12) holds and whether such a q exists. We leave further investigation into the
rate of convergence for future works.
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3.4 Sharpness of the scaling regime: Proof of Theorem 11

Proof of Theorem 11 Fix any α > 0, and without loss of generality we can choose
{ηt }t∈I such that ‖ηt‖ = α for all t ∈ I. Define Lt ∈ H by Lt = (ηi , ·).

In the proof of Lemma 8, we showed

∣∣(Gn,λn μ, ν)
∣∣ ≤ (α2 + λn)‖μ‖‖ν‖.

Letting ν = Gn,λn μ, for μ ∈ span{η1, . . . , ηn}, one has

‖Gn,λn μ‖2 ≤ (α2 + λn)‖μ‖‖Gn,λn μ‖.

And hence

‖Gn,λn μ‖ ≤ (α2 + λn)‖μ‖.

which implies

‖G−1
n,λn

μ‖ ≥ 1

α2 + λn
‖μ‖.

Now, for νn = 1
n

∑n
i=1 εiηi , we consider

E

[
‖G−1

n,λn
νn‖2

∣∣∣Gn

]
≥ 1

(α2 + λn)2
E

[
‖νn‖2|Gn

]

a.s.= σ 2α2

λ2nn(α2 + λn)2

→ ∞

as λ2nn → 0. Hence, by taking expectations:

E

[
‖G−1

n,λn
νn‖2

]
→ ∞.

By noting

E

[
‖μn‖2

]
= E

[
‖G−1

n,λn
Unμ†‖2

]
+ E

[
‖G−1

n,λn
νn‖2

]

we conclude the proof. ��

4 Application to the special spline model

Consider the application to the special spline case, Liμ = μ(ti ). We let

H = Hm :=
{

g : [0, 1] → R s.t ∇ i g abs. cts. for i = 1, 2, . . . , m − 1 and ∇m g ∈ L2
}

.
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For m ≥ 1, H is a reproducing kernel Hilbert space and therefore Li as defined
are linear and bounded operators on H. See Bogachev (1998) and Wahba (1990) for
more details on reproducing kernel Hilbert spaces. The special spline solution is the
minimizer of

fn(μ) = 1

n

n∑

i=1

(yi − μ(ti ))
2 + λn‖∇mμ‖2L2

over all μ ∈ Hm . It can be shown that the minimizer μ(n) of fn is a piecewise
polynomial of degree 2m − 1 in each interval (ti , ti+1) for i = 0, . . . , n (where we
define t0 = 0 and tn+1 = 1), for example see Wahba (1990, Section 1.3).

This section discusses the following points.

1. The decomposition H = H0 ⊕ H1 where H0 is finite dimensional.
2. The function ηt corresponding to (ηt , μ) = Ltμ = μ(t).

The other assumptions needed to apply Theorem 9 are Assumption 3 and Assump-
tion 6. Assumption 3 is

μ(t) = μ(r) for all polynomials μ of degree at most m − 1 then t = r

which clearly holds. Assumption 6 becomes

∫ 1

0
|ν(t)|2φT (dt) = 0 ⇔ ν = 0

which, for example, is true if φT (dt) = φ̂T (t) dt and φ̂T (t) > 0 for all t ∈ [0, 1].
1. The decomposition H = H0 ⊕ H1 For μ ∈ H by Taylor expanding μ from 0, we
can write:

μ(t) =
m−1∑

i=0

∇ iμ(0)

i ! t i + R(t)

where ∇ i R(0) = 0 for all i = 0, 1, . . . , m − 1. Hence, R ∈ H1 where

H1 =
{

g ∈ Hm : ∇ i g(0) = 0 for all i = 0, 1, . . . , m − 1
}

.

A Poincaré inequality holds on this space so ‖μ‖21 = ∫ 1
0 |∇mμ(t)|2 dt is a norm on

H1.
We define H0 to be the span of the functions ζi defined by

ζi (t) = t i

i ! for i = 0, 1, . . . , m − 1.
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The space is equipped with the inner product

(μ, ν)0 =
m−1∑

i=0

∇ iμ(0)∇ iν(0).

The space H0 has dim(H0) = m.
2. The functions ηt In the above, R is given by

R(t) =
∫ 1

0

(t − u)m−1+
(m − 1)! ∇mμ(u) du =

∫ 1

0
G(t, u)∇mμ(u) du

where (u)+ = max{0, u} and

G(t, u) = (t − u)m−1+
(m − 1)!

is the Green’s function for ∇mμ = ν and boundary conditions ∇ jμ(0) = 0 for all
0 ≤ j ≤ m − 1.

We claim that ηt ∈ Hm satisfying (ηt , μ) = μ(t) are given by

ηt (r) =
m−1∑

i=0

ζi (t)ζi (r) +
∫ 1

0
G(t, u)G(r, u) du =: η0t (r) + η1t (r).

Furthermore, η0t ∈ H0 and η1t ∈ H1 for all t ∈ [0, 1]. The proof follows directly from
calculating

(ηt , μ) =
m−1∑

i=0

∇ iηt (0)∇ iμ(0) +
∫ 1

0
∇mηt (u)∇mμ(u) du

and noticing

∇ iηt (r) =
m−1∑

j=1

ζ j (t)
[
∇ iζ j (r)

]

r=0
= ζi (t) for i < m

∇mηt (r) = ∇m
r

∫ 1

0
G(t, u)G(r, u) du = G(t, r).

One can easily show that ‖ηt‖ ≤ 1 for all t ∈ [0, 1].
Continuity of ηt follows easily. As each polynomial is Lipschitz continuous on the

interval [0, 1], there exists a constant Ci (depending on the order of the polynomial i)
such that |ζi (t) − ζi (s)| ≤ Ci |t − s|. Now for the integral term, let m ≥ 2 and s ≥ t
then:
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742 M. Thorpe, A. M. Johansen

∣∣∣∣
∫ 1

0
(G(s, u) − G(t, u)) G(r, u) du

∣∣∣∣

=
∣∣∣∣
∫ 1

0

(
Is>u

(s − u)m−1

(m − 1)! − It>u
(t − u)m−1

(m − 1)!
)

G(r, u) du

∣∣∣∣

≤
∫ s

t

(s − u)m−1

(m − 1)! G(r, u) du

+ 1

(m − 2)!
∫ t

0
|s − t | g(r, u) du

≤ m|s − t |
[(m − 1)!]2 .

The case m = 1 is similar. It follows that ‖Ls − Lt‖H∗ = ‖ηs − ηt‖ ≤ C |s − t | for
some C < ∞ and hence Lt is continuous.
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