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The supplementary material contains:

(a) A complete discussion on the regularity conditions used to establish the
main results in Sections 3 and 5.

(b) The detailed list of supporting lemma along with the proofs.

A Assumptions

Assumptions about the kernel function:

(K) K(·) is a symmetric and non-negative density function on [−1, 1].

Assumptions about the regression function:

(R1) For every j = 1, · · · , L, θj(·) has p derivatives.

(R2) For every j = 1, · · · , L, θ
(p)
j (·) satisfies a Lipschitz condition of degree

q ∈ (0, 1] in a neighborhood of z.

Assumptions about the bandwidth:

(H1) h+ (nh)−1 → 0 as n→∞.

Assumptions about distributions of (X,Z):

(D1) The densities fi, fij , fijk and fijk`, (1 ≤ i < j < k < ` ≤ n) as defined ear-
lier are bounded uniformly in large n in neighborhoods of all combinations
of arguments. We also assume for some ε > 0,

max
i1

sup
|ui1 |<ε

|fi1(ui1 + z)| <∞, max
is:s=1,2

sup
|uis |<ε

|fi1i2(ui1 + z, ui2 + z)| <∞.

(D2) For ε > 0, define

c(z, ε) = max
i,j,k

sup
|w|≤ε

|mi,jk(w + z)−mi,jk(z)|.

Assume that for some ε > 0,

lim sup
n→∞

c(z, ε) <∞. (1)
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(D3) Let gi,`k(z) = E(X2
i`X

2
ik|Zi = z) if ` 6= k or E(X4

i`|Zi = z) if ` = k. Assume
that n−1

∑n
i=1 gi,`k(z)fi(z) converges as n→∞ and for some ε > 0,

lim sup
n→∞

sup
|u|≤ε

|n−1
n∑
i=1

gi,`k(u+ z)fi(u+ z)− n−1
n∑
i=1

gi,`k(z)fi(z)| <∞

(2)

This assumption is needed to facilitate computation for the asymptotic
covariance of the estimates. Specifically, our strategy of proofs includes
applying WLLN to show that the term n−1

∑n
i=1E(Xi`Xik|Zi = z) con-

verges in probability to a fixed quantity (See Lemma 1). The complication
arises because (Xi, Zi), i = 1, · · · , n are not assumed to be iid, not even
independent. This is a much complicated situation than the standard VCM
where those are assumed to be iid in which case the standard and simpler
assumption is E(X`Xk|Z = z) exists and is finite. Since we are considering
a more general situation, we need the assumption (D3) to facilitate the
technical argument.
It is also worth mentioning that in the simpler setting of iid VCM a typical
assumption on X is EX2s

j < ∞ for s > 2, j = 1, · · · , l (Zhang and Lee
(2000)).

(D4) Define

ρij,`k(z1, z2) =
[
E(Xi`XikXj`Xjk|Zi = z1, Zj = z2)fij(z1, z2)

−E(Xi`Xik|Zi = z1)E(Xj`Xjk|Zj = z2)fi(z1)fj(z2)
]
.

Assume for some ε > 0,

lim
n→∞

n−2
n∑

i 6=j=1

sup
|u1|≤ε,|u2|≤ε

|ρij,`k(z1 + u1, z2 + u2)| = 0. (3)

This particular assumption is needed in different steps of our proof in
lieu of relaxing the independence condition of (Xi, Zi), i = 1, · · · , n which
is assumed to be true in the standard iid VCM literature. Note that
ρij,lk(z1, z2) = 0 under the standard assumption in a typical VCM setup
where Xi and Zi are independent and hence the assumption in (D4) is
trivially satisfied.

(D5) There exist finite valued functions λs1s2(z) and ψs1s2(z) such that with
βij = cov(ei, ej),

n−1
n∑
i=1

m∗i,s1s2(z) ∼ λs1s2(z) as n→∞,

n−2
∑n
i6=j=1 βijm

∗
ij,s1s2

(z)

n−2
∑n
i6=j=1 βij

∼ ψs1s2(z) as n→∞.
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Define the L× L matrix λ∗(z) such that its (j, k)-th element is λjk(z) for
j, k = 1, . . . , L and define the matrix

Λ =


ν0λ
∗(z) ν1λ

∗(z) . . . νpλ
∗(z)

ν1λ
∗(z) ν2λ

∗(z) . . . νp+1λ
∗(z)

...
...

. . .
...

νpλ
∗(z) νp+1λ

∗(z) . . . ν2pλ
∗(z)

 , (4)

where ν`1+`2 , `1, `2 = 0, · · · , p is as defined in (5). Similarly, let us define
the L × L matrix Ψ with ψjk(z) and κ̃(`1, `2) = κ`1κ`2(`1!`2!)−1 with κr
as defined in (4) replacing λjk(z) and ν`1+`2 .
It is interesting to note that in standard VCM setup where Xi and Zi
are independent (See, e.g., Fan and Zhang (1999)) a typical assumption is
E(X`Xk|Z = z) exists and finite for all z (in addition to the assumption
that fi(z) exists). This is essentially similar to the assumption we have
made through defining λs1,s2(z). In our case since we are also allowing for
heteroscedastic models where σ2 is a function of both (Xi, Zi), we need to
account for it in the definitions of m∗i,s1s2(z) and hence λs1,s2(z).
Regarding the expression for ψ, we need this definition to cope up with
the dependence structure within the errors. Note that, if the errors are
independent as in standard VCMs this definition of ψ is not needed.

(D6) Let us define the following quantities for any m,n, k, q ∈ {1, 2, · · · },

ρim1 (zi1) = E(σmi1 (Xi1 , Zi1)Xi1`1 |Zi1 = zi1),

ρim1 in2 (zi1 , zi2) = E(σmi1 (Xi1 , Zi1)σni2(Xi2 , Zi2)Xi1`1Xi2`2 |Zi1 = zi1 , Zi2 = zi2),

ρim1 in2 ik3 (zi1 , zi2 , zi3) = E(σmi1 (Xi1 , Zi1)σni2(Xi2 , Zi2)σki3(Xi3 , Zi3)

Xi1`1Xi2`2Xi3`3 |Zi1 = zi1 , Zi2 = zi2 , Zi3 = zi3),

ρim1 in2 ik3 i
q
4
(zi1 , zi2 , zi3 , ziq ) = E(σmi1 (Xi1 , Zi1)σni2(Xi2 , Zi2)σki3(Xi3 , Zi3)σqi4(Xi4 , Zi4)

Xi1`1Xi2`2Xi3`3Xi4`4 |Zi1 = zi1 , Zi2 = zi2 , Zi3 = zi3 , Zi4 = zi4).

Note that the ρ’s as defined above also depend on the indices of variable
X. However to make the notations simple we suppress those indices while
defining ρ.
We assume for some ε > 0,

max
i1

sup
|ui1 |<ε

|ρi21(ui1 + z)| <∞ , max
i1

sup
|ui1 |<ε

|ρi41(ui1 + z)| <∞,

max
is:s=1,2

sup
|uis |<ε

|ρi11i12(ui1 + z, ui2 + z)| <∞ , max
is:s=1,2

sup
|uis |<ε

|ρi21i22(ui1 + z, ui2 + z)| <∞

max
is:s=1,2

sup
|uis |<ε

|ρi31i12(ui1 + z, ui2 + z)| <∞ , max
is:s=1,2,3

sup
|uis |<ε

|ρi21i12i13(ui1 + z, ui2 + z, ui3 + z)| <∞.

(D7) Let us define tn = |n−2
∑n
i 6=j=1 βij |, sn = (nh)−1, and the scaling sequence

cn =

{
nh if tn/sn → c ∈ [0,∞),

n2
/∣∣∣∑n

i 6=j=1 βij

∣∣∣ if tn/sn →∞,
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For any ε > 0 let us define the following quantities:

ρ̃i1i2(z, z, ε)

= sup
|uis |<ε;s=1,2

|ρi21i22(ui1 + z, ui2 + z)fi1i2(ui1 + z, ui2 + z)

−ρi21(ui1 + z)ρi22(ui2 + z)fi1(ui1 + z)fi2(ui2 + z)|,

ρ̃i1i2i3(z, z, z, ε)

= sup
|uis |<ε;s=1,2,3

|ρi21i12i13(ui1 + z, ui2 + z, ui3 + z)fi1i2i3(ui1 + z, ui2 + z, ui3 + z)

−ρi21(ui1 + z)ρi12i13(ui2 + z, ui3 + z)fi1(ui1 + z)fi2i3(ui2 + z, ui3 + z)|,
ρ̃i1i2i3i4(z, z, z, z, ε)

= sup
|uis |<ε;s=1,2,3,4

|ρi11i12i13i14(ui1 + z, ui2 + z, ui3 + z, ui4 + z)fi1i2i3i4(ui1 + z, ui2 + z, ui3 + z,

ui4 + z)− ρi11i12(ui1 + z, ui2 + z)ρi13i14(ui3 + z, ui4 + z)fi1i2(ui1 + z, ui2 + z)

fi3i4(ui3 + z, ui4 + z)|.

We assume for some ε > 0,

n∑
is=1

s=1,2

ρ̃i1i2(z, z, ε) = op(n
2), (5)

n∑
is=1

s=1,2,3

|βi2i3 |ρ̃i1i2i3(z, z, z, ε) = op(n
2tn), (6)

n∑
is=1

s=1,··· ,4

|βi1i2βi3i4 |ρ̃i1i2i3i4(z, z, z, z, ε) = op(n
4t2n), (7)

with the understanding that the indices is in the above sums are not equal.
Note that under the standard VCM assumptions (i.e., Xi and Zi are inde-
pendent and the errors are homoscedastic) the assumptions in (D6) essen-
tially implies that E(Xi`|Zi = z) is bounded in a local neighborhood of z.
This is a reasonable assumption in standard VCM literature.
As mentioned earlier, in this work we are working under a more general
framework and it is easy to see that the quantities ρ̃ defined in (D7) are zero
when we have the usual VCMs. Hence the assumptions as in (5)-(7) as de-
fined in (D7) are practically redundant. In fact, the last two assumptions
in (D7) are trivially satisfied when the errors are independent. However
because of the fact that we are considering a more general case with het-
eroscedastic error variance as well as dependence among Xi and Zi, we are
compelled to make more complicated assumptions as in (D6) and (D7).

Assumptions about the weights {αij}:
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(W1) Define

bn = sup
j

( n∑
i=1

|αij |
)2
/

∞∑
j=−∞

( n∑
i=1

|αij |
)2
.

Assume that lim supn→∞ supj
∑n
i=1 α

2
ij ≤ ∞ and bn → 0 as n→ 0.

(W2) the covariances βij = cov(ei, ej), 1 ≤ i, j ≤ n, n ≥ 1 satisfy

lim
n→∞

n−2
∑
i 6=j

|βij | = 0, (8)

sup
n

sup
j

∞∑
i=1

|αij |+ sup
n

max
i=1,··· ,n

∞∑
j=−∞

|αij | <∞. (9)

Under our assumption that εi has finite variance

βij =

∞∑
k=−∞

αikαjk.

So, under (9),

lim sup
n→∞

n−1
n∑

i,j=1

|βij | ≤ ∞.

(W3) If sn/tn → 0, then
∑n
i,j,k=1 βijβik = o(n3tn) as n → ∞, where sn and tn

are as defined in (D7).

B Supporting Lemmas

Lemma 1 Under the assumptions (K), (H1), (D2) - (D4),

Brjk − κr(r!)−1n−1
n∑
i=1

mi,jk(z)→p 0 for r, j, k ≥ 0.

Proof We start by noting that for r, j, k ≥ 0,

E[(nh)−1
n∑
i=1

K{(Zi − z)/h}(Zi − z)rXijXik/h
rr!]

= E[(nh)−1
n∑
i=1

E(XijXik|Zi)K{(Zi − z)/h}(Zi − z)r/hrr!]

= n−1(r!)−1
n∑
i=1

∫
mi,jk(wh+ z)K(w)wrdw

= κr(r!)
−1n−1

n∑
i=1

mi,jk(z) + n−1(r!)−1
n∑
i=1

∫
K(w)wr{mi,jk(wh+ z)−mi,jk(z)}dw.
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As a consequence of (1), given any δ > 0, there exists large enough n, such
that the absolute value of the second term is bounded by

(r!)−1c(z, h)

∫
K(w)|wr|dw < δ.

Hence we have for all large enough n,∣∣∣E[(nh)−1
n∑
i=1

XijXikK{(Zi − z)/h}(Zi − z)r/hrr!]− κr(r!)−1n−1
n∑
i=1

mijk(z)
∣∣∣ < δ.

In addition,

var[(nh)−1
n∑
i=1

Xi`XikK{(Zi − z)/h}(Zi − z)r/hrr!]

= (nh)−2
n∑
i=1

var[Xi`XikK{(Zi − z)/h}(Zi − z)r/hrr!]

+(nh)−2
n∑

i 6=j=1

cov[Xi`XikK{(Zi − z)/h}(Zi − z)r, Xj`XjkK{(Zj − z)/h}(Zj − z)r]/h2r(r!)2.

(10)

The first term is bounded by

(nh)−2
n∑
i=1

E[E(X2
i`X

2
ik|Zi)K2{(Zi − z)/h}(Zi − z)2r/h2r(r!)2]

= (r!)−2(nh)−1
∫
K2(w)w2r

[
n−1

n∑
i=1

gi,`k(wh+ z)fi(wh+ z)
]
dw → 0,

where gi,`k(z) = E(X2
i`X

2
ik|Zi = z) if ` 6= k or E(X4

i`|Zi = z) if ` = k as
defined in (D3). The last limit holds according to our assumption in (2).

Also, for the covariance term in (10), we have

(r!)−2
∫
K(w1)wr1K(w2)wr2

[
n−2

n∑
i6=j=1

ρij,`k(w1h+ z, w2h+ z)
]
dw1dw2 → 0,

by assumption (3). Hence, the proof is completed. ut

Lemma 2 Under the assumptions (D1), (D6), (D7), and (W3),

c2nE(||T − E(T )||2)→p 0.

Proof To start with, let us first note that

E{T − E(T )}{T − E(T )}′ =

N∑
j,`=1

[E(WjW
′
jW`W

′
`)− E(WjW

′
j)E(W`W

′
`)] =

N∑
j,`=1

Sj`.
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A typical element of Sj` is given by

(nh)−4
n∑

is=1,s=1,··· ,4
αi1jαi2jαi3jαi4j/h

rs
[
E[

4∏
s=1

K{(Zis − z)/h}σis(Xis , Zis)(Zis − z)rsXis`s ]

−E[

2∏
s=1

K{(Zis − z)/h}σis(Xis , Zis)(Zis − z)rsXis`s ]

×E[

4∏
s=3

K{(Zis − z)/h}σis(Xis , Zis)(Zis − z)rsXis`s ]
]
.

There could be the following cases: (1) i1 = i2 = i3 = i4, (2) i1 = i2 = i3 6= i4,
(3) i1 = i2 6= i3 6= i4, (4) i1 = i3 6= i2 6= i4, (5) i1 = i3 6= i2 = i4, (6)
i1 = i2 6= i3 = i4 and (7) i1 6= i2 6= i3 6= i4.

To prove this lemma we will follow the same approach as in Robinson
(2011) and we will bound each of this seven terms separately. Let us first
consider the first case where all is are different, i.e., i1 6= i2 6= i3 6= i4. In this
case it can be shown that for some constant C the term is bounded by

Cn−4
n∑

is=1

s=1,··· ,4

|βi1i2βi3i4 |ρ̃i1i2i3i4(z, z, z, z, ε)

for some ε > 0. According to the assumption in (7) this term is op(t
2
n).

Next consider the case i1 = i2 6= i3 6= i4. In this case for some constant C
the term is bounded by

Cn−3h−1
n∑

is=1

s=1,2,3

|βi2i3 |ρ̃i1i2i3(z, z, z, ε).

This is op(sntn) using (6), which is op(s
2
n) if tn = Op(sn) and op(t

2
n) if sn =

op(tn).
For the case i1 = i2 6= i3 = i4, the term is bounded by the term

Cn−2h−2ρ̃i1i2(z, z, ε) = op(s
2
n).

Next we consider the case when i1 = i3 6= i2 6= i4. The first term of the
sum can be bounded by,

Cn−4h−1
n∑

is=1

s=1,2,3

|βi1i2 ||βi1i3 | sup
|uis |<ε
s=1,2,3

|ρi21i12i13(ui1 + z, ui2 + z, ui3 + z)|

× sup
|uis |<ε
s=1,2,3

fi1i2i3(ui1 + z, ui2 + z, ui3 + z).
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The second term is bounded by

Cn−4
n∑

is=1

s=1,2,3

|βi1i2 ||βi1i3 | sup
|uis |<ε
s=1,2

|ρi11i12(ui1 + z, ui2 + z)| sup
|uis |<ε
s=1,2

fi1i2(ui1 + z, ui2 + z)

sup
|uis |<ε
s=1,3

|ρi11i13(ui1 + z, ui3 + z)| sup
|uis |<ε
s=1,3

fi1i3(ui1 + z, ui3 + z).

According to our assumptions in (D1), (D6) and (W3), each of these terms
are op(sntn). Now consider the case when i1 = i3 6= i2 = i4. In this case the
first term is bounded by

Cn−4h−2
n∑

is=1

s=1,2

|β2
i1i2 | sup

|uis |<ε
s=1,2

|ρi21i22(ui1 + z, ui2 + z)| sup
|uis |<ε
s=1,2

fi1i2(ui1 + z, ui2 + z).

The second term is bounded by

Cn−4
n∑

is=1

s=1,2

|β2
i1i2 | sup

|uis |<ε
s=1,2

|ρ2i11i12(ui1 + z, ui2 + z)| sup
|uis |<ε
s=1,2

f2i1i2(ui1 + z, ui2 + z).

Again, according to our assumptions in (D1), (D6) and (W3), the first term
is Op(s

2
ntn) and the second term is op(s

2
ntn).

For the case i1 = i2 = i3 6= i4 it can be shown that the first term is
bounded by

Cn−4h−2
n∑

is=1

s=1,2

|βi1i2 | sup
|uis |<ε
s=1,2

|ρi31i12(ui1 + z, ui2 + z)| sup
|uis |<ε
s=1,2

fi1i2(ui1 + z, ui2 + z),

and the second term is bounded by

Cn−4h−1
n∑

is=1

s=1,2

|βi1i2 | sup
|ui1 |<ε

|ρi21(ui1 + z)| sup
|ui1 |<ε

fi1(ui1 + z)

× sup
|uis |<ε
s=1,2

|ρi11i12(ui1 + z, ui2 + z)| sup
|uis |<ε
s=1,2

fi1i2(ui1 + z, ui2 + z).

Then according to (D1), (D6) and (W3), both of the above terms are Op(s
2
ntn)

and op(s
2
ntn) respectively.

Lastly, let us consider the case when all is are equal. In this case, it can be
shown that the first and the second term are bounded by

Cn−4h−3
n∑

i1=1

sup
|ui1 |<ε

|ρi41(ui1 + z)| sup
|ui1 |<ε

fi1(ui1 + z), and

Cn−4h−2
n∑

i1=1

sup
|ui1 |<ε

|ρ2i21(ui1 + z)| sup
|ui1 |<ε

f2i1(ui1 + z),
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respectively. Again, according to our assumptions as in (D1) and (D6) these
terms are Op(s

3
n) and op(s

3
n) respectively. ut

Lemma 3 Under assumptions (K), (H1), (D1) - (D6), and (W3),

cnE(T )→p Σ.

Proof We start the proof by first observing that there can be four types of
terms in E(T ). A typical element of E(T ) is, up to a term of op(c

−1
n ), for

r1 6= r2 and s1 6= s2,

D = (nh)−2(r1!r2!)−1
n∑
i=1

n∑
k=1

βikE
[
K{(Zi − z)/h}K{(Zk − z)/h}(Zi − z)r1(Zk − z)r2

×m∗ik,s1s2(Zi, Zk)/hr1+r2
]

= n−2(r1!r2!)−1
n∑

i 6=k=1

βik

∫
K(w1)K(w2)wr11 w

r2
2 m

∗
ik,s1s2(w1h+ z, w2h+ z)dw1dw2

+n−2h−1(r1!r2!)−1
n∑
i=1

∫
K2(w)wr1+r2m∗i,s1s2(wh+ z)dw

= κr1κr2(r1!r2!)−1n−2
n∑

i 6=k=1

βikm
∗
ik,s1s2(z, z) + νr1+r2(nh)−1

[
n−1

n∑
i=1

m∗i,s1s2(z)
]

= tnψs1s2(z) + snλs1s2(z).

Now we observe that

D ∼

 snλs1s2(z) when tn/sn → 0;
sn(cψs1s2(z) + λs1s2(z)) when tn/sn → c ∈ (0,∞);
tnψs1s2(z) when tn/sn →∞.

The result now follows by definition of Λ, Ψ and Σ as defined in Section A. ut

Lemma 4 Under assumptions (K), (H1), (D1), (D7), and (W1),

E[

N∑
j=1

w4
j ] = o(1).

Proof Proceeding in the similar way as in Lemma 2, we can prove this result.
To maintain brevity we omit the details. ut

Lemma 5 Let T =
∑N
j=1WjW

′
j where Wj is as defined in Eqn. (11). Define

the matrix P such that PP ′ = T . Then under assumptions (K), (H1), (D1),
(D7), (W1) and conditional on Z,

P−1
N∑
j=1

Wjεj →d N(0, I). (11)

9



Proof To prove (11), we need to show that for any unit vector v, conditional
on Z,

v′P−1
N∑
j=1

Wjεj =

N∑
j=1

wjεj →d N(0, 1),

where wj = v′P−1Wj . Let Fn,j = σ(X1n, · · · , Xjn, Z1n, · · · , Zjn), j = 1, · · · , N
be the filtration generated by the process (X,Z), for positive integer N =
Nn, increasing with n. Then wjεj is a martingale with respect to Fn,j with∑N
j=1 wjεj being a martingale with respect to Fn,N .

Then for any η > 0,

N∑
j=1

E[w2
j ε

2
j1(|wjεj | > η)|X1, · · · , Xn, Z1, . . . , Zn]

≤
N∑
j=1

w2
jE[ε2j1(ε2j > η/δ)|X1, · · · , Xn, Z1, . . . , Zn] +

N∑
j=1

w2
j1(w2

j > ηδ)

≤ max
j
E[ε2j1(ε2j > η/δ)] + (ηδ)−1

N∑
j=1

w4
j .

This implies

N∑
j=1

E[w2
j ε

2
j1(|wjεj | > η)] ≤ max

j
E[ε2j1(ε2j > η/δ)] + (ηδ)−1

N∑
j=1

E(w4
j ).

(12)

In (12), the inequality is still valid since we have positive random variables at
both sides. Hence using Lemma 4 and the fact that the first term in (12) can

be made arbitrarily small, the asymptotic normality of
∑N
j=1 wjεj is confirmed

(e.g., see Scott (1973)). Therefore, using Cramer-Wold device, the convergence

of P−1
∑N
j=1Wjεj is obtained. ut
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