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Abstract In this paper, we propose methods for inference of the geometric features of
a multivariate density. Our approach uses multiscale tests for the monotonicity of the
density at arbitrary points in arbitrary directions. In particular, a significance test for
a mode at a specific point is constructed. Moreover, we develop multiscale methods
for identifying regions of monotonicity and a general procedure for detecting the
modes of a multivariate density. It is shown that the latter method localizes the modes
with an effectively optimal rate. The theoretical results are illustrated by means of a
simulation study and a data example. The new method is applied to and motivated by
the determination and verification of the position of high-energy sources from X-ray
observations by the Swift satellite which is important for a multiwavelength analysis
of objects such as Active Galactic Nuclei.
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1 Introduction

Thiswork is concernedwith the development of a statistical toolboxwhich is useful for
data analysis inmany problems of applied sciences. As a specific example, we consider
a problem fromX-ray astronomy, namely the determination of the positions of objects
of BLLacertae typewith statistical significance. Those objects form a specific subclass
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of blazars and hence active Galactic Nuclei (AGN), where high-energy relativistic jets
arise perpendicular to the accretion disk and (in this case) point in the general direction
of the Earth. They are among the brightest extragalactic sources in X-rays and gamma
rays in the sky. Determination and verification of the position of such objects from
an observed distribution of origin positions of X-ray photons from the object is of
paramount importance for a multiwavelength analysis of the object to understand and
compare the appearance of photons of different energies in the object.

From a statistical point-of-view, problems of this type are fundamental and refer to
a proper understanding of the shape of a density f based on a sample of multivariate
observations. Numerous authors have worked on the detection of qualitative features,
such as modes and regions of monotonicity of a density, in particular on tests for the
existence and the localization of modes. For example, it was pointed out by Chan
and Tong (2004) that the presence of modes can yield to a less precise forecasting.
Similarly, a precise localization ofmodes can be used for nonparametric clustering [see
for example Fukunaga and Hostetler (1975) and Hartigan (1975) for early references
and Li et al. (2007), Chacón and Duong (2013) and Chaudhuri et al. (2014) for more
recent work].

As pointed out by Romano (1988) and Grund and Hall (1995), estimation of modes
of a density is a very complex problem, even more difficult than the estimation of the
density itself. In fact, the problem is closely related to the estimation of the first deriva-
tive of the density. There exists a large amount of literature about statistical inference
on modes of a density in the univariate setting, which can be roughly divided into
four different categories: tests on the number of modes, the localization of modes,
significance testing of candidate modes and tests that allow for inference about mono-
tonicity. Donoho and Liu (1991) provide theminimax rate for estimating the derivative
of a density which is closely related to the problem of mode estimation. The prob-
lem of estimating the number of modes is considered in Silverman (1981) and Hall
and York (2001). These authors investigate a test that uses bootstrap methods based
on the so-called critical bandwidth of a kernel density estimator [see also Mammen
et al. (1991) and Chan and Tong (2004) for an asymptotic analysis and an extension
to the dependent case]. In Hartigan and Hartigan (1985), the distance of the empiri-
cal distribution function to the best-fitting unimodal density is used as test statistic.
Hartigan (1987) and Müller and Sawitzki (1991) propose the excess mass approach
for statistical inference of (multi-) modality, which is also used by Polonik (1995),
Minnotte (1997) and Fisher and Marron (2001) to construct nonparametric tests for
the existence of modes. Chaudhuri and Marron (1999) introduce the SiZer map as a
graphical tool for the analysis of the local monotonicity properties of a density. In this
paper, the derivative of a kernel density estimator is tested locally for a significant
deviation from zero. A particular characteristic of the SiZer map is that these tests
are performed simultaneously over a fixed range of bandwidths. A multiscale test for
the monotonicity of a univariate density, which allows simultaneous confidence state-
ments about regions of increase and decrease, can be found in Dümbgen and Walther
(2008). In the univariate deconvolution model, Schmidt-Hieber et al. (2013) propose
a multiscale test for qualitative features of a density such as regions of monotonicity.

On the other hand, for multivariate densities there are just a few results on modality
and even less on monotonicity. Tsybakov (1990) proves that the optimal minimax
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rate for mode detection over a β-Hölder class is n−(β−1)/(2β+d)(β ≥ 2). The excess
mass approach can also be used in the multivariate case, but most authors concentrate
on one dimension because—as pointed out by Burman and Polonik (2009)—there is
usually a trade-off between practical feasibility and theoretical justification. Abraham
et al. (2004) use kernel smoothing to construct consistent estimators of the single
mode of a multivariate density, while Klemelä (2005) suggests an adaptive estimate
which achieves the optimal rate. Burman and Polonik (2009) do not pre-specify the
total number of modes and propose a method for locating modal regions by means
of formal testing for the presence of anti-modes. A rate-optimal algorithm for the
localization of the modes of a multivariate density based on a k-nearest neighbor
estimator of the density can be found in a recent paper of Dasgupta and Kpotufe
(2014).

A test about local monotonicity properties of a bivariate density can be found in
Godtliebsen et al. (2002) generalizing the SiZer map. Duong et al. (2008) test locally
whether the normof the gradient of the density vanishes using a kernel density estimate
with a fixed bandwidth. More recently, Chen et al. (2015) study the estimation of the
Morse–Smale complex of a multivariate density. The Morse–Smale complex consists
of cells which are the intersections of basins of attraction of the local maxima and
minima and therefore provides information about the monotonicity behavior of the
function. The authors prove the stability of the Morse–Smale complex and thereby
show that the Morse–Smale complex of a density estimate is a consistent estimate
of the Morse–Smale complex of the density. These results can be used, among other
things, for mode clustering. In a further paper, Genovese et al. (2016) suggest an
algorithm for mode estimation of a d-dimensional density. These authors construct
nonparametric confidence intervals for the eigenvalues of the Hessian at modes of a
density estimate, which can be used for the construction of a significance test. The
method is based on a sample splitting, where the first half of the data is used to localize
the modes by means of the mean-shift algorithm and the second half of the data is
used for the significance test. Genovese et al. (2016) also point out that the multiscale
approach of Dümbgen and Walther (2008) for constructing confidence intervals for
modes is only applicable to one-dimensional densities.

The goal of the present paper is to fill this gap by providing a multiscale method
to identify regions of monotonicity of a multivariate density. In Sect. 2, we briefly
review the approach of Dümbgen and Walther (2008). We also define a concept of
monotonicity in themultivariate case and introduce amultiscale test for this property at
a pre-specified point x0 ∈ R

d . The main idea is to investigate monotonicity properties
of the density in “various” directions e ∈ R

d by projecting observations from a wedge
centered at x0 onto the line {x0 + te | t ≥ 0}. A multiscale test is provided that allows
for a simultaneous inference of the monotonicity properties at a given confidence level
α. Section 3 extends the approach to the situationwhere no prior information regarding
the location and the number of the modes is available. The theoretical results of this
paper establish the consistency of this approach and show that modes can be detected
with the optimal rate (up to a logarithmic factor). Note that the approach proposed
here does not require any prior knowledge about the support of the density. However,
it requires two tuning parameters which determine the shape of the wedges. To achieve
the optimal rate for the detection of the modes, these parameters have to be bounded
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from below by constants depending on the unknown density f . Consequently their
choice is a difficult problem. Although the power of the test may be affected by the
tuning parameters, the test keeps its nominal level independently of the choice. The
finite sample properties of the multiscale test are investigated in Sect. 4, where we
also study the impact of the choice of the tuning parameters. In Sect. 5, we apply the
proposed method to the determination and verification of the positions of the blazars
Markarian 501 and S3 0218+35. Finally, all technical details and proofs are deferred
to Proofs in “Appendix”.

2 Local testing for a mode

In this section, we present a test for the presence of a mode of the density f at a pre-
specified candidate point x0 ∈ R

d based on a sample of independent random variables
X1, . . . , Xn with density f . We begin with a brief review of the work of Dümbgen
and Walther (2008), who investigate regions of monotonicity of a univariate density
(that is d = 1).

2.1 Multiscale inference about a univariate density revisited

For one-dimensional independent identically distributed randomvariables X1, . . . , Xn

with density f let X(1) ≤ · · · ≤ X(n) denote the corresponding order statistics and
consider the associated local spacings

X(i; j,k) = X(i) − X( j)

X(k) − X( j)
, j ≤ i ≤ k.

Dümbgen and Walther (2008) propose to use the local spacings

Tjk(X) =
k−1∑

i= j+1

β(X(i; j,k))

to construct a test statistic for (local) monotonicity of the density f on the interval
(X( j), X(k)), where the function β is defined by β(x) := (2x − 1)1(0,1)(x). Note that
Tjk(X) has mean zero if f is constant on (X( j), X(k)). Let X denote a random variable
with density f independent of X1, . . . , Xn , and denote by

F̃(x) = P
(
X ≤ x | X ∈ [X(1), X(n)]

)

the conditional distribution function of X given X ∈ [X(1), X(n)]. Define U(i) =
F̃(X(i)), then U(2), . . . ,U(n−1) correspond in distribution to the order statistics of a
sample of (n − 2) independent uniformly distributed random variables on the interval
[0, 1] (note that U(1) = 0 and U(n) = 1). It can be shown that the statistic
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Tjk(U) =
k−1∑

i= j+1

β(U(i; j,k)) for 1 ≤ j < k ≤ n, k − j > 1, (1)

satisfies

Tjk(X)

{
≥ Tjk(U), if f is increasing on (X( j), X(k)),

≤ Tjk(U), if f is decreasing on (X( j), X(k)).

Define �(δ) :=
√
2 log( exp(1)

δ
),

Tn(U) = max
1≤ j<k≤n,k− j>1

(√
3

k − j − 1
|Tjk(U)| − �

(
k − j

n − 1

))
, (2)

and denote by κn(α) the (1 − α)-quantile of the statistic Tn(U). The multiscale test
for monotonicity proposed by Dümbgen and Walther (2008) now concludes that the
density f is not increasing on every interval (X( j), X(k)) with

Tjk(X) < −c jk(α) :=
√
k − j − 1

3

(
�
(k − j

n − 1

)
+ κn(α)

)
, 1 ≤ j < k ≤ n, k − j > 1

and that f is not decreasing on every interval (X( j), X(k))with Tjk(X) > c jk(α). The
overall risk of at least one false-positive decision within the simultaneous tests on all
scales (i.e., for 1 ≤ j < k ≤ n, k − j > 1) is at most α.

2.2 Assumptions and geometrical preparations

Throughout this paper, ‖x‖ denotes the Euclidean norm of a vector x ∈ R
d . The

function f : Rd → R has a mode at the point x0, if for every vector e ∈ R
d with

‖e‖ = 1 the function fe : t �→ f (x0 + te), t ≥ 0, is strictly decreasing in a
neighborhood of t = 0. The aim of the test for the presence of a mode defined below
is to investigate the monotonicity of functions of this type in different directions e. The
number of directions is determined by the sample size n. As the set {x0 + te | t ≥ 0}
has Lebesgue measure 0, we also have to consider observations in a neighborhood
of this line for inference about monotonicity of the function fe. For this purpose,
we introduce a signed distance of the projection of a point x ∈ R

d onto the line
{x0 + te | t ∈ R} and introduce the so-called wedges. For the following discussion,
we denote by {e1, . . . , ed−1} an arbitrary but fixed orthonormal basis of (span{e})⊥,
〈x, y〉 is the standard inner product of the vectors x, y ∈ R

d and “
d=” denotes equality

in distribution.

Definition 1 Let x0 ∈ R
d and e ∈ R

d with ‖e‖ = 1.

(1) The projected signed distance of a point x ∈ R
d from x0 in direction e on the line

{x0 + te | t ∈ R} is defined as

Pex := 〈x − x0, e〉.
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Fig. 1 The wedges K and KN
for d = 2

K

KN

el

X(N)×

PeX(N)
×x0

ϕ

(2) The wedge with vertex x0, direction e, length l > 0 and angle ϕ ∈ (0, π
2 ) is

defined as

K ≡ K (x0, e, ϕ) :=
{
x ∈ R

d
∣∣ 0 < Pex ≤ l and 〈x − x0, ei 〉

∈ [− tan(ϕ)Pex, tan(ϕ)Pex] for i = 1, . . . , d − 1
}
.

(3) For a wedge K ⊂ R
d let X(1), . . . , X(N ) be those random variables among

X1, . . . , Xn which are located in K , arranged in ascending order with respect
to their signed projected distances from x0, i.e., X( j) ∈ K for j = 1, . . . , N and
PeX(1) ≤ · · · ≤ PeX(N ). The wedge KN is defined as KN := {

x ∈ K : 0 <

Pex ≤ PeX(N )

}
.

A typical wedge is displayed in Fig. 1 in the case d = 2. We are now able to define
monotonicity properties of the function f on the wedge K that will play a crucial role
in following discussion.

Definition 2 (i) The function f is called increasing on thewedge K , if f (x0+t̃2e0) ≥
f (x0+t̃1e0) for all e0 ∈ R

d with ‖e0‖ = 1 and t̃2 > t̃1 ≥ 0 such that x0+t̃2e0 ∈ K .
(ii) The function f is called decreasing on thewedge K , if f (x0+t̃2e0) ≤ f (x0+t̃1e0)

for all e0 ∈ R
d with ‖e0‖ = 1 and t̃2 > t̃1 ≥ 0 such that x0 + t̃2e0 ∈ K .

Remark 3 (i) Definition 2 (i) refers to the notion of “monotonically increasing”. In
particular, its negation “not monotonically increasing” differs from the notion
of “nonincreasing” (i.e., monotonically decreasing) and includes in particular
functions that ’wiggle’ up and down. Moreover, if the density f is continu-
ously differentiable the notion of “not monotonically increasing” implies “strictly
decreasing” on a sufficiently small scale, that is a wedge size converging to zero.
A similar comment applies to Definition 2 (ii).

(ii) The main idea of the test for the presence of a mode at the point x0 ∈ R
d defined

below is to investigate the monotonicity properties of f at x0 in “various” direc-
tions e ∈ R

d . Hence, there should not be any favored direction. If one is, however,
interested in the monotonicity properties of f at x0 for a pre-specified set of
directions E ⊆ {e ∈ R

d | ‖e‖ = 1}, only wedges with directions e ∈ E can
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be considered. A particular example is the notion of monotonicity that is usu-
ally employed in the regression context. In this case, f is called increasing at x0
whenever f (x) ≥ f (x0) for all x in a neighborhood of x0 with x ≥ x0, where the
vector inequality is understood as componentwise inequality; see Barlow et al.
(1972). Here, the set E = {e ∈ R

d | ‖e‖ = 1, e ≥ 0} should be used.

2.3 A local test for modality

Let x0 ∈ R
d denote a candidate position for amode. The construction of a local test for

the hypothesis that f has a mode at x0 is based on an investigation of the monotonicity
properties of f on pairwise disjoint wedges Ki (i = 1, . . . , Mn) with common vertex
x0. We begin with the case Mn = 1 and use the notation K := K 1 for the sake of
simplicity. Throughout this paper, 1A denotes the indicator function of a set A.

Theorem 4 Let X be a d-dimensional random variable with density f independent
of X1, . . . , Xn and denote by

F̃(z) = P(PeX ≤ z|N , X ∈ KN , X(N )) (0 < z ≤ PeX(N ))

the distribution function of PeX conditional on N = ∑n
i=1 1K (Xi ), {X ∈ KN } and

X(N ). Then, conditionally on N, F̃(PeX(1)), . . . , F̃(PeX(N−1)) are distributed as the
order statistics of N − 1 independent uniformly distributed random variables on the
interval [0, 1].

The first step in the construction of a test for a mode at the point x0 is to investigate
monotonicity in the sense of Definition 2. For this purpose, we use a comparison of the
projected distances PeX(1), . . . , PeX(N−1) with the distribution of projected distances
of random variablesU1, . . . ,UN−1 which are uniformly distributed on the wedge KN .
For a random variable U which is uniformly distributed on K and independent of
X1, . . . , Xn,U1, . . . ,UN−1, we have

F̃U (z) = P(PeU ≤ z|N ,U ∈ KN , X(N )) = zd

(PeX(N ))d
(0 < z ≤ PeX(N )),

and by Theorem 4, the random variable F̃U (PeU j ) = ( PeU j
Pe X(N )

)d
, j = 1, . . . , N − 1,

has a uniform distribution on the interval [0, 1], conditionally on N and the event
{Uj ∈ KN }. Consequently, we propose the test statistic

TK =
N−1∑

j=1

β

(
(PeX( j))

d

(PeX(N ))d

)
(3)
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for testing monotonicity properties of the density f on the wedge K , where
β(z) = (2z − 1)1(0,1)(z). If f is constant on K , we have E[TK ] = 0 as
(PeX(1))

d

(PeX(N ))
d , . . . ,

(PeX(N−1))
d

(PeX(N ))
d have the same distribution as an order statistic of uniformly

distributed random variables on the interval [0, 1]. On the other hand, if f is increasing
on the wedge K , the observations in KN tend to have large projected distances from
x0, which results in positive values of the test statistic TK . Similarly, if f is decreasing
on K , it is more likely that the test statistic is negative.

Theorem 5 Let F̃ denote the conditional distribution function defined in Theorem 4,
TK be defined in (3) and TU

K := ∑N−1
j=1 β(F̃(PeX( j))).

(i) If f is increasing on K , then TU
K ≤ TK (a.s.) conditionally on N.

(ii) If f is decreasing on K , then TU
K ≥ TK (a.s.) conditionally on N.

By Theorem 4, conditionally on N , the statistic TU
K has the same distribution as

the random variable
∑N−1

j=1 β(U( j)), whereU1, . . . ,UN−1 are independent uniformly
distributed random variables on the interval [0, 1]. Therefore, Theorem 5 is the key
result to obtain critical values for a multiscale test.

In the second step, we combine test statistics of the form TK for different wedges
to construct a test for a mode at the point x0. For this purpose, define

ln :=
(
log(n)

n

) 1
d+4

(4)

and construct a familyKn ofMn pairwise disjoint wedges K 1, . . . , KMn with common

vertex x0, length C1 log(n)
d−1
d+4 ln and angle ϕn := C2

2 log(n)−1 (for some constants

C1,C2 > 0) and by specifying the central directions {e1n, . . . , eMn
n } as follows

(1) Choose a direction e1n with ‖e1n‖ = 1
(2) If e1n, . . . , e

i−1
n have been specified, then—whenever possible—choose a vector

ein with ‖ein‖ = 1 such that for some ε > 0

|angle(ein, e jn)| ≥ (2 + ε) arctan
(√

d − 1 tan(ϕn)
)
for all j < i.

Note that this procedure does not defineKn in a unique way. However, ifKn has been
fixed for the central directions e1n, . . . , e

Mn
n , then the following property holds. For any

normalized vector e ∈ R
d , there exists a direction ein such that

|angle(e, ein)| < (2 + ε) arctan
(√

d − 1 tan(ϕn)
) = O

(
log(n)−1).

This can be seen easily by deriving a contradiction from the opposite assertion using
the expansion tan(z) = z(1 + o(1)) = arctan(z) for z → 0.

Now define for each Ki ∈ Kn

N i :=
n∑

j=1

1Ki (X j )
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as the number of observations in thewedge Ki and consider the corresponding statistics
TKi and TU

Ki defined in (3) and Theorem 5, respectively. An application of Theorem 4

on each wedge Ki shows that, conditionally on N 1, . . . , NMn ,

TU
Ki

d=
Ni−1∑

j=1

β
(
Ui

( j)

)
(i = 1, . . . , Mn), (5)

where {Ui
j | j = 1, . . . , Ni −1, i = 1, . . . , Mn} are independent uniformly distributed

random variables on the interval [0, 1]. In particular, the statistics TU
K 1 , . . . , T

U
KMn are

conditionally independent.
By means of the representation (5), the quantile κ̃n(α) defined by the condition

P

(
max

i=1,...,Mn

(√
3

Ni − 1

∣∣∣TU
Ki

∣∣∣ − �

(
Ni

n − 1

))
≤ κ̃n(α)

∣∣∣N 1, . . . , NMn

)
= 1 − α

(6)
can be obtained by numerical simulation, as soon as the numbers of observations
N 1, . . . , NMn in the wedges K 1, . . . , KMn have been specified. We note that a cali-

bration by the term �( Ni

n−1 ) for various scales (i.e., different values of N
i ) is necessary

to show that the quantile κ̃n(α) is asymptotically bounded [see Proofs in “Appendix”
for details].

In a third step, we consider on each of the wedges K 1, . . . , KMn two hypotheses,
that is

H incr
0,i : f is increasing on Ki versus H incr

1,i : f is not increasing on Ki (7)

(i = 1, . . . , Mn), and

Hdecr
0,i : f is decreasing on Ki versus Hdecr

1,i : f is not decreasing on Ki (8)

(i = 1, . . . , Mn), where the notation of an increasing (decreasing) function on the
wedge Ki is introduced in Definition 2. The i th hypothesis in (7) is rejected, whenever

TKi < −c̃K i (α) (9)

(i = 1, . . . , Mn), where the quantile c̃K i (α) is defined by c̃K i (α) =
√

Ni−1
3

(
κ̃n(α) +

�( Ni

n−1 )
)
(i = 1, . . . , Mn). Similarly, the i th hypothesis in (8) is rejected, whenever

TKi > c̃K i (α) (10)

(i = 1, . . . , Mn). The final result of this section specifies the error of at least one false
decision among these 2Mn local level α-tests on monotonicity.
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Theorem 6 Assume that all tests (9) and (10) for the hypotheses (7) and (8) are
performed (i = 1, . . . , Mn). The probability of at least one false rejection of any of
the tests is at most α.

We conclude this section by showing that the results presented so far can be used to
obtain a consistent multiscale test for the hypothesis that the density f has a mode at a
given point x0 ∈ R

d . The test decides for the presence of a mode at x0 if every test (9)
for the null hypothesis that f is increasing on thewedge Ki , i = 1, . . . , Mn, rejects the

null. Note that in this case we use the one-sided quantiles c̃′
Ki (α) =

√
Ni−1
3

(
κ̃ ′
n(α) +

�( Ni

n−1 )
)
in (9), where κ̃ ′

n(α) is defined by the condition

P

(
max

i=1,...,Mn

(
−
√

3

Ni − 1
TU
Ki − �

(
Ni

n − 1

))
≤ κ̃ ′

n(α)

∣∣∣N 1, . . . , NMn

)
= 1 − α.

(11)

Theorem 7 Assume that the density f is twice continuously differentiable in a neigh-
borhood of x0 with f (x0) �= 0, gradient∇ f (x0) = 0 and a Hessian H f (x0) satisfying
e�
0 H f (x0)e0 ≤ −c < 0 for all e0 ∈ R

d with ‖e0‖ = 1. Consider the family of wedges
Kn defined in Sect. 2.3 with constants C1,C2 satisfying

Cd+4
1 Cd−1

2 >
4D2

c2
f (x0)

d + 4
, (12)

where

D =
√
2(2d + 2)(d + 2)

(
1 − d

d+2

)(d+2)/d [
1 − d2

2(2d+2)2

(
−1 + {

1 + 4( 2d+2
d )2

}1/2)]1/2 . (13)

Then, all Mn tests defined in (9) (using the quantiles c̃′
Ki (α) instead of c̃K i (α)(i =

1, . . . , Mn)) reject the null hypothesis with asymptotic probability one as n → ∞.

Note that the constant D in (13) depends only on the dimension d. Hence, the
lower bound on the constants C1 and C2 is determined by the shape of the modal
region (more precisely the largest eigenvalue of the Hessian H f (x0) at x0) as well as
by the value of the density at the point x0.

3 Global inference on monotonicity

In this section, we extend the local inference onmodality at a fixed point to the situation
where no specific candidate position for the mode can be defined in advance. This is
particularly important since there exist several applications where atmost approximate
information about the position of the modes is available. As in the previous section,
let X1, . . . , Xn denote independent d-dimensional random variables with density f .
The proposed test for the detection of modes proceeds in several steps.
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Fig. 2 Example of a global map for monotonicity of a density

The first step consists in a selection of the candidate modes. Here, we choose these
as the vertices of an equidistant grid inRd . Secondly, we introduce a generalization of
the multiscale test on monotonicity presented in Sect. 2, where we divide the wedges
in subsections that are determined by the data. The latter approach can be very useful
in settings without a priori knowledge about the modes, as a true mode obviously has
not to be located at the vertex of a wedge. Figure 2 provides a graphical representation
of the results of the global test on modality in the bivariate case where the multiscale
generalization has been omitted. Here, on every dotted wedge K , the test has rejected
that f is decreasing on K . Accordingly, the cross-hatches refer to a rejection that f
is increasing on K . Non-marked wedges indicate that no significant result has been
found. For a detailed description of the settings used to provide Fig. 2 and an analysis
of the results, we refer to the end of this section.

Note that the graphical representation in Fig. 2 is related to the estimate of the
Morse–Smale complex of the density as proposed in Chen et al. (2015), which is
defined as follows. For each critical point, the so-called descending manifold consists
of all points x ∈ R

d for which the gradient ascent flow with starting point x converges
to the critical point. Similarly, the ascending manifold consists of all points for which
the gradient descent flow converges to the critical point. The Morse–Smale complex
consists of cells which are given by the intersections of descending and ascending
manifolds for every critical point. For a direct comparison, Fig. 3 displays the estimated
Morse–Smale complex for the same data that were used to construct Fig. 2. Note that
the figure cannot directly be used for a localization of the modes of the density as it
just investigates basins of attraction of local extrema. To the best of our knowledge, no
methods for statistical testing for monotonicity based on the Morse–Smale complex
have been developed so far.
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Fig. 3 The estimate of the
Morse–Smale complex of the
density displayed in Fig. 5.
Every area of a particular shade
illustrates an intersection of
basins of attraction of a local
maximum and a local minimum
of the density in
[−3.5, 3.5] × [−1.5, 3.5]. This
figure has been produced using
the msr package for R (see
Gerber and Potter 2012)

3.1 Geometrical preparations

Throughout this section, let b j denote the j th unit vector in R
d( j = 1, . . . , d) and

define �x� := inf{z ∈ Z| z ≥ x}. Recall the definition of ln in (4) and denote (for
given constants C1, ε > 0) by Gn the grid consisting of the vertices

d∑

j=1

(i j (2 + ε)C1 log(n)ln − n)b j

(
i1 . . . id ∈ {

0, . . . , � 2n
(2+ε)C1 log(n)ln

�}). Note that the grid Gn covers the cube [−n, n]d
and that the sequence log(n)ln (which determines the order of the mesh size) is chosen
such that the test of modality defined below is consistent.

We now define by Kn a family of wedges (cf. Definition 1) with length l =
C1 log(n)ln , an angle ϕ = ϕn = C2

2 log(n)−1 for a given constant C2 > 0, vertex in

Gn , and a direction contained in the set of given directions {e1n, . . . , eMn
n } (cf. Sect. 2.3).

For an arbitrary but fixed element K of Kn let X(1), . . . , X(N ) denote those random
variables among {X1, . . . , Xn} which are located in K and ordered with respect to
their signed projected distances from the vertex x0 of K . For 0 ≤ j < k ≤ N with
k − j > 1, we define

K ( j, k) := {x ∈ R
d
∣∣ x ∈ K and PeX( j) < Pex ≤ PeX(k)}

as a subsection of the wedge K , where X0 := x0 and x0 denotes the vertex of K . A
typical set is depicted in Fig. 4. We conclude this section with a definition of a concept
of monotonicity on subsections of a wedge.

Definition 8 Let K be a wedge with vertex x0 and K ( j, k) ⊆ K be a subsection. The
function f : Rd → R is

123



Multiscale inference for a multivariate density 659

Fig. 4 The subsection K ( j, k)
for d = 2

K(j, k)

K

elx0

X(k)×

X(j)×
PeX(k)
×

PeX(j)
×

(i) increasing on K ( j, k), if f (x0 + t̃2e0) ≥ f (x0 + t̃1e0) for all e0 ∈ R
d with

‖e0‖ = 1 and all t̃2 > t̃1 ≥ 0 such that x0 + t̃
e0 ∈ K ( j, k)(
 = 1, 2).
(ii) decreasing on K ( j, k), if f (x0 + t̃2e0) ≤ f (x0 + t̃1e0) for all e0 ∈ R

d with
‖e0‖ = 1 and all t̃2 > t̃1 ≥ 0 such that x0 + t̃
e0 ∈ K ( j, k)(
 = 1, 2).

3.2 Regions of monotonicity and mode detection

The approach proposed here consists of simultaneous tests for monotonicity of the
density f on every subsection of every wedge in Kn . For the definition of these tests,
we will proceed similarly as in Sect. 2.3. We begin by introducing a multiscale test
statistic on the subsection K ( j, k) of a wedge K ∈ Kn which is defined by

TK ( j,k) :=
k−1∑

l= j+1

β

(
(PeX(l))

d − (PeX( j))
d

(PeX(k))d − (PeX( j))d

)
, (14)

where 0 ≤ j < k ≤ N , k − j > 1. Note that TK (0,N ) = TK , where TK is the test
statistic defined in (3).

Now, let Kn = {Ki | i = 1, . . . , Ln} denote the family of wedges defined in
Sect. 3.1. For the multiscale approach, we use for each subsection Ki ( ji , ki ) of the
wedge Ki the test statistic TKi ( ji ,ki ) defined by (14) (0 ≤ ji < ki ≤ Ni , ki − ji >

1, i = 1, . . . , Ln) and consider

TU
Ki ( ji ,ki )

=
ki−1∑

l= ji+1

β

(
F̃ i

(
Pi
e X(l)

) − F̃ i
(
Pi
e X( ji )

)

F̃ i
(
Pi
e X(ki )

) − F̃ i
(
Pi
e X( ji )

)
)

,

where Pi
e denotes the signed projected distance and F̃ i denotes the conditional distri-

bution function with respect to Ki (0 ≤ ji < ki ≤ Ni , ki − ji > 1, i = 1, . . . , Ln).
Using similar arguments as in Sect. 2.3, it follows that (conditionally on Ni )

TU
Ki ( ji ,ki )

≤ TKi ( ji ,ki ) (a.s.) if f is increasing on K ( ji , ki ),
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TU
Ki ( ji ,ki )

≥ TKi ( ji ,ki ) (a.s.) if f is decreasing on K ( ji , ki )

(0 ≤ ji < ki ≤ Ni , ki − ji > 1, i = 1, . . . , Ln). Moreover,

TU
Ki ( ji ,ki )

d=
ki−1∑

l= ji+1

β

(
Ui

(l) −Ui
( ji )

Ui
(ki )

−Ui
( ji )

)
conditional on N 1, . . . , NLn ,

where {Ui
ji

| ji = 1, . . . , Ni − 1, i = 1, . . . , Ln} are independent random variables

which are uniformly distributed on the interval [0, 1], and Ui
(1) ≤ . . . ≤ Ui

(Ni−1)
is

the order statistics of Ui
1, . . . ,U

i
Ni−1

(i = 1, . . . , Ln). Finally, let κn(α) denote the
(1 − α)-quantile of the conditional distribution of the random variable

max
i=1,...,Ln

max
0≤ ji<ki≤Ni , ki− ji>1

(√
3

ki − ji − 1

∣∣∣TU
Ki ( ji ,ki )

∣∣∣ − �

(
ki − ji
n − 1

))
(15)

given N 1, . . . , NLn . We consider on each subsection Ki ( ji , ki ) of the wedge Ki the
hypotheses

H incr
0,i, ji ,ki : f is increasing on K i ( ji , ki ) versus H incr

1,i, ji ,ki : f is not increasing on K i ( ji , ki ),

Hdecr
0,i, ji ,ki : f is decreasing on K i ( ji , ki ) versus Hdecr

1,i, ji ,ki : f is not decreasing on K i ( ji , ki )

(16)

(0 ≤ ji < ki ≤ Ni , ki − ji > 1, i = 1, . . . , Ln). The hypothesis Hincr
0,i, ji ,ki

is rejected
if

TKi ( ji ,ki ) < −cK i ( ji ,ki )(α) (17)

(0 ≤ ji < ki ≤ Ni , ki − ji > 1, i = 1, . . . , Ln), where cK i ( ji ,ki )(α) :=√
ki− ji−1

3

(
κn(α) + �(

ki− ji
n−1 )

)
. Similarly, Hdecr

0,i, ji ,ki
is rejected if

TKi ( ji ,ki ) > cK i ( ji ,ki )(α) (18)

(0 ≤ ji < ki ≤ Ni , ki − ji > 1i = 1, . . . , Ln). Following the line of arguments in
the proof of Theorem 6, we obtain the following result.

Theorem 9 If all tests (17) and (18) are performed simultaneously (0 ≤ ji < ki ≤
Ni , ki − ji > 1, i = 1, . . . , Ln), then the probability of at least one false rejection is
at most α.
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3.3 Mode detection

We consider the following asymptotic regime. For n ∈ N let Kn denote the family
of wedges defined in Sect. 3.1 and define In as the set of indices i corresponding
to the wedges Ki

n ∈ Kn whose vertices x0,n fulfill C1 log(n)ln ≤ ‖xn0 − x0‖ ≤
mnC1 log(n)ln for a mode x0 of f andmn = (log(n))

5
2 and whose direction en fulfills

angle(xn0 − x0, en0) = O(log(n)−1). Then, every test (17) for the hypothesis Hincr
0,i,0,Ni

defined (16) (i.e., f is increasing on Ki
n) with i ∈ In ⊆ {1, . . . , Ln}, rejects the null

with asymptotic probability one.

Theorem 10 Let

D = 2
√
2(2d + 1)(d + 1)

(
1 − d

d+1

)(d+1)/d [
1 − d2

2(2d+1)2

(
−1 + {

1 + 4
( 2d+1

d

)2 } 1
2

)] 1
2

.

Assume that for any mode x0 ∈ R
d the density f satisfies c1 ≥ f (x0) > 0 and that

there exist functions gx0 : R
d → R, f̃x0 : R → R such that the density f has a

representation of the form

f (x) ≡ (1 + gx0(x)) f̃x0(‖x − x0‖) (19)

(in a neighborhood of x0). Furthermore, let gx0 be differentiable in a neighborhood
of x0 with gx0(x) = o(1) and 〈∇gx0(x), e0〉 = o(‖x − x0‖1+γ ) (for some γ > 0) if
x → x0 and all e0 ∈ R

d with ‖e0‖ = 1. In addition, let f̃x0 be differentiable in a
neighborhood of 0 with f̃ ′

x0(h) ≤ −ch(1 + o(1)) for h → 0. If Kn is the family of
wedges defined in Sect. 3.1 with

Cd+4
1 Cd−1

2 >
D2

c2
c1

d + 4
, (20)

then every mode x0 of f will be detected with asymptotic probability one as n → ∞.

Theorem 10 shows that the proposed procedure can find all modes of the density f
without assuming any prior knowledge about the support of f . Note that we proceed in
two steps: firstly the verification of the presence of amode and secondly its localization.
With probability one, the presence of every mode will be detected asymptotically (by
means of the asymptotic regime introduced at the beginning of this section). The rate
for the localization of a mode is given by the mesh size of the grid Gn , which is
determined by the length of the wedges and proportional to

log(n)ln = log(n)(d+5)/(d+4)n−1/(d+4).

The main assumption for the derivation of this rate is the condition f̃ ′
x0(h) ≤ −ch(1+

o(1)) for h → 0 which only requires that f is differentiable in a neighborhood of
the mode x0. In the special case that f belongs to a 2-Hölder class with f̃ ′′

x0 bounded
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Table 1 Simulated quantiles
κ̃ ′
n(0.05) in the situation
considered in Table 2

Observations κ̃ ′
n(0.05)

100 0.126

500 −0.319

5000 −0.854

away from zero in a neighborhood of 0, this condition is fulfilled and the rate proven
in Theorem 10 corresponds (up to a logarithmic factor) to the optimal rate for the
problem of mode detection for a 2-Hölder class proven in Tsybakov (1990).

4 Finite sample properties

In this section, we illustrate the finite sample properties of the proposed multiscale
inference. In particular, we study the power of the local test for a mode at a given point
x0 ∈ R

d . We also present an example illustrating how the results of Sect. 3 can be
used to obtain a graphical representation of the local monotonicity properties of the
density.

4.1 Local test for modality

Here, we investigate the finite sample properties of the local test for a two-dimensional
density, where the level is given by α = 0.05. The corresponding quantiles κ̃ ′

n(0.05)
defined in (11) are determined from 1000 simulation runs based on independent and
uniformly distributed random variables on the interval [0, 1] and are listed in Table 1
for the sample sizes n = 100, 500, 5000 in the situation considered in Table 2 (note
that κ̃ ′

n(0.05) depends on the number of observations in every wedge and hence both
on the number and on the size of the wedges).

Recall that the quantiles κ̃ ′
n(α) are constructed in such a way that the probability of

at least one false rejection of any of the tests in (9) for the hypotheses (7) is at most
α. This choice has been made to be consistent with the theory presented in Sect. 3,
where such a construction is necessary for the construction of a global level α-test.
However, a rejection of the local test is based on simultaneous rejections of all Mn

tests in (9) for the hypotheses (7). Thus, the local test is conservative, and therefore, we
also investigate a calibrated version of the new test. The quantiles of the calibrated test
are chosen such that the level of the test coincides with α = 0.05 for the data obtained
from a uniform distribution on the set [−2.5, 2.5]2. Note that this calibration does not
require any knowledge about the unknown density f . However, the procedure requires
the choice of the length and the angle of the wedges and according to Theorem 7 we
used

ln = C1

(
log(n)

n

) 1
d+4

log(n)
d−1
d+4 , ϕn = C2

2
log(n)−1,
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Table 2 Simulated level and power of the local test for a mode at x0 = (0, 0)� of a 2-dimensional density

Observations ln Mn Level Power Level (cal.) Power (cal.)

100 1.54 3 0.0 36.8 4.8 97.6

500 1.31 4 0.0 50.0 4.5 98.4

5000 0.99 5 0.0 72.7 5.0 100

Table 3 Influence of the shape of the modal region on the power of the local test

Observations ln Mn �1 �2

Power Power (cal.) Power Power (cal.)

100 1.54 3 65.4 98.7 38.8 94.3

500 1.31 4 95.6 100 80.1 99.6

5000 0.99 5 97.8 100 92.1 99.7

The matrices �1 and �2 are given in (21)

where C1,C2 > 0 are constants. In the following, the power and level of the test with
respect to different choices of C1 and C2 is investigated. We also consider different
numbers Mn of wedges in our study. Recall from the discussion in Sect. 2.3 that the
constants C1 and C2 have to satisfy (12) in order to guarantee consistency of the test.
All results presented below are based on 1000 simulation runs.

We begin with a comparison of the test introduced in Sect. 2 (based on the critical
values κ̃ ′

n(0.05)) and a calibrated version of this test. In Table 2, we present the simu-
lated level and power of the local test for a mode at the point x0 = (0, 0)� for different
sample sizes. The constants in the definition of the length and the angle are chosen
as C1 = 2 and C2 = 9.65. For the investigation of the level, we consider a uniform
distribution on the square [−2.5, 2.5]2, since it represents a “worst” case scenario. For
the calculation of the power, we sample from the standard normal distribution. We
observe that the test proposed in Sect. 2 is conservative but it has reasonable power
with increasing sample size. On the other hand, the calibrated version of the multiscale
test keeps its nominal level and rejects the null hypothesis of no mode at x0 in nearly
all cases.

Next, we investigate the influence of the shape of the modal region on the power
of the local test. To this end, we sample from normal distributions with expectation
(0, 0)� and covariance matrix � �= I2. The results for

�1 =
(

0.7 −0.7
−0.7 1.4

)
and �2 =

(
1.4 −1.5

−1.5 2.2

)
(21)

are presented in Table 3.
We conclude that the shape of the modal region (determined by the absolute values

of the eigenvalues of the covariance matrix) has a strong influence on the power of
the test. In the case �1, the eigenvalues are approximately 1.8 and 0.3) For �2, the
eigenvalues are approximately 3.4 and 0.3. Hence, we observe a (slight) decrease in

123



664 K. Eckle et al.

Table 4 Influence of a misspecification of the mode on the power of the local test

Observations ln Mn x0 = (0.2, 0.2)� x0 = (0.7, 0.7)�

Power Power (cal.) Power Power (cal.)

100 1.54 3 32.4 96.6 2.8 75.6

500 1.31 4 43.1 97.8 1.2 57.1

5000 0.99 5 47.2 98.3 0.1 10.8

power in comparisonwith the first case. However, due to the existence of an eigenvalue
with absolute value smaller than one, the test still performs better as in the case of a
standard normal distribution.

As the local test requires the specification of the point x0, we next investigate the
influence of its incorrect specification on the power of the test. For this purpose, we
consider the same data (two-dimensional standard normal distribution) and perform
the tests under the assumption that the modes are given by x0 = (0.2, 0.2)� and
x0 = (0.7, 0.7)�, respectively (which has to be compared to the true position of the
mode at (0, 0)�). The corresponding results are shown in Table 4, and we conclude
that a “small” deviation of the candidate mode from the true mode has a very small
effect on the power of the tests. In the case x0 = (0.7, 0.7)�, the distance between the
candidate and the true mode is very large in comparison with the length of the wedges.
For n = 100 observations, the length of the wedges is still substantially larger than the
distance between the candidate and the true mode. Hence, the test detects the presence
of amode, but we observe a decrease in its power. However, for n = 5000 observations
the distance between the candidate position and the true mode is approximately equal
to the length of the wedges. As a consequence, the multiscale test is performed with
a finer triangulation and (correctly) does not indicate the existence of a mode at the
point x0 = (0.7, 0.7)�.

In the remaining part of this section, we investigate the influence of the choice of
the parameters C1 and C2 on the power of the test. Note that the volume of every
wedge is proportional to ldn , where ln is the length of the wedge. This means that
dividing the length in half yields a wedge with a volume which is 2−d times smaller
than the volume of the original wedge. Thus, the number of observations in the smaller
wedge is substantially smaller than the number of observations in the larger wedge.
Therefore, we expect that the constantC1 has an impact on the power of the test. These
theoretical considerations are reflected by the numerical results in Table 5, which show
the power for a fixed sample size n = 500, different choices of C1 (represented by the
different lengths) and fixed parameter C2. We observe a loss of power of both tests
with decreasing length of the wedge.

On the other hand, decreasing the constant C2 such that the number of wedges
doubles has the effect that the number of observations in every wedge decreases
approximately by 50%. In Table 6, we show the power for a fixed sample size n = 500,
a fixed constantC1 = 2 and varying values ofC2 (represented by the different number
of wedges). Here, the picture is not so clear. While we observe a loss in power of the
non-calibrated tests with an increasing number of wedges, the power of the calibrated
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Table 5 Influence of the length of the wedges on the power

Observations ln Mn Level Power Level (cal.) Power (cal.)

500 1.31 4 0.0 50.0 4.5 98.4

500 0.98 4 0.0 1.5 4.9 74.4

500 0.65 4 0.0 0.0 5.4 37.2

Table 6 Influence of the number of directions tested on the power

Observations ln Mn Level Power Level (cal.) Power (cal.)

500 1.31 4 0.0 50.0 4.5 98.4

500 1.31 6 0.0 0.7 5.3 92.7

500 1.31 8 0.0 0.0 4.9 89.8

test changes only slightly. In both cases, the calibrated version still performs rather
well opposite to its uncalibrated version.

4.2 Identifying local monotonicity of a multivariate density

In this section, we demonstrate how the results of Sect. 3 can be used to obtain a
graphical representation of the local monotonicity behavior of the density (in the case
d = 2). We conduct the procedure to detect regions of monotonicity as proposed
in Sect. 3.2. For the sake of convenience, we use only the largest scales in the test
statistic (14) (i.e., we test on the entire wedges and not on the subsections introduced
in Sect. 3.1). The significance level is α = 0.05.We chose an equidistant grid covering
[−3, 3] × [−1, 3] with points (i, j)�, i = −3, . . . , 3, j = −1, . . . , 3, the length of
any wedge is l = 1

2 and all angles are given by ϕ = π
4 . Figure 2 presents the map of the

local monotonicity properties on the basis of n = 100000 observations from amixture
of three normal distributions (i.e., f has three modes of different shape) [see Fig. 5].
Here, a cross-hatchedwedge indicates that the local test rejected the hypothesis that the
density is increasing on the respective wedge. Similarly, a dotted wedge implies that
the test rejected the hypothesis that the density is decreasing. Nonsignificant wedges
are not marked.

The map indicates the existence of modes close to the grid points (−2, 0)� and
(2, 0)� and in a weaker sense indicates a mode close to the grid point at (0, 2)�.
The marked geometrical objects around these grid points are shown in Fig. 6. In the
grid point at (0, 2)�, we obtain not so many significant rejections as in the wedges
with vertex (2, 0)�. Still, the dotted wedges show that there is a significant increase
toward the mode which gives an indication for the presence of a mode as well. An
improved procedurewith a direct focus on themodeswill be discussed in the following
section.
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Fig. 5 The density of a (uniform) mixture of a N ((−0.05, 2.1)�, 0.5I ),N ((−1.9,−0.07)�, 0.2I ) and
N ((2, −0.1)�, 0.25I ) distribution

Fig. 6 Indications for the
presence of a mode. Left panel
grid points (−2, 0)� and
(2, 0)�. Right panel grid point
(0, 2)�

4.3 Mode detection

In this section, we demonstrate how themultiscale test can be successfully used for the
localization ofmodes if the inference on the local monotonicity behavior of the density
is not included in the test statistic. More precisely, we consider the grid introduced
in Sect. 4.2. Similar to the local test on modality, we conclude that the density has
a mode close to a grid point if every test on every wedge whose vertex is given by
the grid point rejects that the density is increasing on the respective wedge. We again
recommend a calibrated version of the global test, where the quantiles are chosen such
that the probability of the discovery of a non-existing mode is approximately 5% if
the data come from a two-dimensional uniform distribution. The following results are
based on n = 2500 observations and 1000 simulation runs.

We have investigated two densities, a constant density on the square [−3.5, 3.5] ×
[−1.5, 3.5] and the density with three modes presented in Fig. 5. For the uniform
distribution, the test found a mode in 4.6% of the simulation runs. For the tri-modal
density, the test detected in 78.9% cases a mode in the point (−2, 0)�, in 53.8% cases
a mode in (2, 0)� and in 7.4% cases a mode in the point (0, 2)�.
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5 Real data example

Active Galactic Nuclei (AGN) consist of a supermassive black hole at their center
surrounded by an accretion disk. For some AGN classes, high-energy relativistic jets
perpendicular to the disk are produced. In case this jet is pointing in the general
direction of the Earth, the object is referred to as a blazar. The BL Lacertae-type
object Markarian (Mrk) 501 is such a blazar and one of the closest (in a distance of
4.7×108 light years) and brightest extragalactic sources inX-rays and gamma rays. It is
known as one of the most extreme blazars and features very strong and fast variability,
making Mrk 501 a perfect candidate for probing AGN. Due to the strong emission
over the entire electromagnetic spectrum, correlation studies between different energy
bands (parts of the electromagnetic spectrum) are particularly interesting and will give
insights into the processes inside an AGN, e.g., the emission models or the particle
populations, since different spatial regions of the object may emit radiation of diverse
energies. Therefore, the determination of the position of the radiation in a certain
energy regime is of paramount importance.

Here, 19 individual observations of Mrk 501 in the year 2015, performed in photon
counting (PC) mode by the Swift-XRT on board the Swift satellite, are analyzed.1 The
Swift satellite was launched in 2004 and is a multiwavelength space observatory with
three instruments on board, the X-ray Telescope (XRT) being one of them, which is
capable to observeX-rays in the 0.3–10keV energy regime. For each considered obser-
vation, theHighEnergyAstrophysics ScienceArchiveResearchCenter (HEASARC2)
provides an image, based on Level 2 event files that have been calibrated and screened
by a standard pipeline. These images with a size of 1000 × 1000 pixels contain the
information how many photons (i.e., which X-ray flux) have been recorded in each
pixel during the exposure time. The exposure times of the analyzed images range from
about 100 to 1000s. Due to different positions of the satellite in space and different
alignments of its main axis, each image shows a slightly different region of the sky.
Figure 7 provides an illustration of the data obtained from one observation.

By a combination of the 19 individual observations, we have at our disposal 49,248
observations of X-ray photons with known positions of origin on the sky. Our aim
is the precise localization of the mode of the distribution. To this end, we con-
duct the test presented in Sect. 4.3 for a significance level of 0.01. We chose an
equidistant grid covering [253.446◦, 253.586◦] × [39.64◦, 39.88◦] (corresponding to
[16 h 53min 47.04 s, 16 h 54min 20.64 s] × [39◦ 38′ 24′′, 39◦ 52′ 48′′]) consisting
of 961 grid points with mesh size 0.008◦. The length of any wedge is l = 0.004◦
and all angles are given by ϕ = π

4 . Again, we used a calibrated version of the test
where the quantiles are chosen such that a non-existingmode for a uniform distribution
on [253◦, 253.8◦] × [39.5◦, 40.1◦] has been found in less than 1% of the simulation
runs (based on 1000 simulation runs). Our test detected the mode of the distribution
in (253.466◦, 39.760◦) (corresponding to (16 h 53min 51.84 s, 39◦ 45′ 36′′)). The
precision regarding the location of this mode is given by the mesh size 0.008◦.

1 The data are available at http://heasarc.gsfc.nasa.gov/cgi-bin/W3Browse/w3browse.pl.
2 NASA/Goddard Space Flight Center, https://heasarc.gsfc.nasa.gov/.
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Fig. 7 Observation of Mrk 501 from Sept. 4, 2015. (This picture has been created using HEAsoft, http://
heasarc.nasa.gov/docs/software/lheasoft/)

In contrast to the high confidence detection possible within short exposure times
for the brightest extragalactic sources, such as Mrk 501, the detection of fainter point
sources is more challenging. Often only few photons reach the detector due to, e.g.,
the large distance to the source and the absorption of photons. Within the sky region
of one Swift-XRT image, there might be multiple point sources in X-rays, but even
background fluctuations can look like faint point sources. The study of the population
of these point sources, the correlation to other energy bands, and variability studies
contribute enormously to the understanding of the X-ray sky. This requires reliable
methods for the detection and the determination of the position, including the con-
fidence of a given calculation. In the following, the capability to determine multiple
modes of faint point sources in Swift-XRT images is demonstrated. Eighteen images
provided by HEASARC of individual observations of the sky region around the blazar
S3 0218+35 in the years 2005, 2012, 2014 and 2016 performed in PC mode by the
Swift-XRT are analyzed. The exposure times of the images provided by HEASARC
range from 3000 to 5000s. Figure 8 shows one of these images. The two point sources
are marked with a square. Figure 9 provides detailed images of the two point sources.

For the detection and the localization of the two point sources, we con-
duct the test presented in Sect. 4.3 at a significance level of 0.01. Here, we
have at our disposal 18,061 observations. For this application, we chose an
equidistant grid covering [35.2◦, 35.32◦] × [35.825◦, 35.945◦] (corresponding to
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Fig. 8 Observation of the sky region around the blazar S3 0218+35 from Sept. 8, 2012. (This picture has
been created using HEAsoft, http://heasarc.nasa.gov/docs/software/lheasoft/)

Fig. 9 Observations of the two points sources around S3 0218+35 fromSeptember 8, 2012. (These pictures
have been created using HEAsoft, http://heasarc.nasa.gov/docs/software/lheasoft/)

[2 h 20min 48 s, 2 h 21min 16.8 s] × [35◦ 49′ 30′′, 35◦ 56′ 42′′]) consisting of 961
grid pointswithmesh size 0.004◦. The length of anywedge is l = 0.002◦ and all angles
are given by ϕ = π

4 . The quantiles are chosen such that a non-existing mode for a
uniform distribution on [35◦, 35.5◦] × [35.7◦, 36.1◦] has been found in less than 1%
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of the simulation runs (based on 1000 simulation runs). Our test detected the two point
sources at (35.212◦, 35.829◦) (corresponding to (2 h 20min 50.88 s, 35◦ 49′ 44.4′′))
and at (35.272◦, 35.937◦) (corresponding to (2 h 21min 5.28 s, 35◦ 56′ 13.2′′)) at a
precision of 0.004◦.
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Appendix: Proofs

The assertions of most of our results are split up in two parts, one for densities that
are increasing and one for decreasing densities. Often, the proof for one case can be
transferred in a straightforward way to the other one. In this situation, we only prove
one case as the other case follows immediately by similar arguments. Only if this
transfer is not obvious, we give details for both situations.

Proofs of the results of Sect. 2.3

Proof of Theorem 4 It is well known that, given X(N ) and N , the random variables

F̃(PeX(1)), . . . , F̃(PeX(N−1))

have the same distribution as the order statistics of N − 1 uniformly distributed and
independent random variables on the interval [0, 1]. By an application of the law of
iterated expectations, the assertion follows. ��

Proof of Theorem 5 We only consider the case where the density f is increasing on
K . As F̃(PeX( j)) �= 0 almost surely for j = 1, . . . , N − 1 (cf. Theorem 4) and
PeX( j) = PeX(N ) implies F̃(PeX( j)) = 1, it is sufficient to prove

F̃(z) ≤ F̃U (z) = zd

(PeX(N ))d
(22)

for all z ∈ (0, PeX(N )]. For this purpose, notice that the distribution function F̃ in
Theorem 4 is given by

F̃(z) = P(PeX ≤ z, X ∈ KN |N , X(N ))

P(X ∈ KN |N , X(N ))
= G(z)

G(PeX(N ))
,
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where the function G is defined by

G(z) =
∫ z

0

∫ t tan(ϕ)

−t tan(ϕ)

. . .

∫ t tan(ϕ)

−t tan(ϕ)

f (x0+te+s1e1+· · ·+sd−1ed−1) ds1 . . . dsd−1 dt .

We now prove (22) by contradiction and assume that there exits z∗ ∈ (0, PeX(N )]
such that

∫ z∗

0
f̃ (t) dt = G(z∗)

G(PeX(N ))
>

(z∗)d

(PeX(N ))d
= d

(PeX(N ))d

∫ z∗

0
td−1 dt, (23)

where f̃ (t) := G ′(t)
G(PeX(N ))

is the density of F̃ . From (23) and the monotonicity of the

integral it follows that there exists a point t0 ∈ (0, z∗] with

f̃ (t0) >
dtd−1

0(
PeX(N )

)d . (24)

For the following discussion, we introduce an alternative parametrization of the
wedge K . As {e, e1, . . . , ed−1} is an orthonormal basis of Rd , every x ∈ K can
be represented as x = x0 + t1e + s1e1 + · · · + sd−1ed−1 for some t1 ∈ (0, l] and
si ∈ [−t1 tan(ϕ), t1 tan(ϕ)] for i = 1, . . . , d − 1. With the notation

e0 := t1e + s1e1 + · · · + sd−1ed−1

‖t1e + s1e1 + · · · + sd−1ed−1‖ and t̃1 := ‖t1e + s1e1 + · · · + sd−1ed−1‖,
(25)

we have x = x0 + t̃1e0, and the mapping of (t1, s1, . . . , sd−1) to (t̃1, e0) defines a
bijection. Hence, any x ∈ K can also be uniquely represented by the vector e0 and the
scalar t̃1 (see Fig. 10).

Let t1 ∈ [t0, PeX(N )] and consider a point

x = x0 + t1e + s1e1 + · · · + sd−1ed−1 = x0 + t̃1e0 ∈ KN ,

Fig. 10 Representation of
x ∈ K for d = 2

K

e

e0

t1

x×
t̃1

s1
x0
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where e0 and t̃1 are defined in (25). Let t̃0 = t0
t1

‖t1e + s1e1 + · · · + sd−1ed−1‖ ≤ t̃1
and define

y := x0 + t̃0e0 = x0 + t̃0
t1e + s1e1 + · · · + sd−1ed−1

‖t1e + s1e1 + · · · + sd−1ed−1‖ .

A straightforward calculation shows that y = x0+ t0e+ s̃1e1+· · ·+ s̃d−1ed−1,where
s̃i = t0

t1
si , (i = 1, . . . , d − 1). Note that Pey = t0 and that f (y) ≤ f (x), as f is

increasing on the wedge K . We therefore obtain

f̃ (t1) =
∫ t1 tan(ϕ)

−t1 tan(ϕ)

. . .

∫ t1 tan(ϕ)

−t1 tan(ϕ)

f (x0 + t1e + s1e1 + · · · + sd−1ed−1)

G(PeX(N ))
ds1 . . . dsd−1

≥
∫ t1 tan(ϕ)

−t1 tan(ϕ)

. . .

∫ t1 tan(ϕ)

−t1 tan(ϕ)

f (x0 + t0e + t0
t1
s1e1 + · · · + t0

t1
sd−1ed−1)

G(PeX(N ))
ds1 . . . dsd−1.

=
(
t1
t0

)d−1 ∫ t0 tan(ϕ)

−t0 tan(ϕ)

. . .

∫ t0 tan(ϕ)

−t0 tan(ϕ)

f (x0 + t0e + s̃1e1 + · · · + s̃d−1ed−1)

G(PeX(N ))
ds̃1 . . . ds̃d−1

=
(
t1
t0

)d−1

f̃ (t0).

Using (24), we have f̃ (t1) >
( t1
t0

)d−1 dtd−1
0

(PeX(N ))
d = dtd−1

1
(PeX(N ))

d for any point t1 ∈
[t0, PeX(N )], and from (23) we conclude

1 =
∫ PeX(N )

0
f̃ (t) dt >

∫ z∗

0

dtd−1

(PeX(N ))d
dt +

∫ PeX(N )

z∗
dtd−1

(PeX(N ))d
dt

=
∫ PeX(N )

0

dtd−1

(PeX(N ))d
dt = 1,

which is a contradiction and proves the first assertion of Theorem 5. ��

Proof of the representation (5) It follows from Theorem 4 that for fixed i , the random
variables F̃ i (Pein X

i
1), . . . , F̃

i (Pein X
i
Ni−1

) are independent and uniformly distributed

on the interval [0, 1], given {Xi
j ∈ Ki

Ni } ( j = 1, . . . , Ni−1) and Ni . Here, F̃ i denotes

the conditional distribution function of Pein X on Ki . Recall that the wedges Ki
Ni

, i =
1, . . . , Mn, are disjoint. Standard arguments and the law of iterated expectations yield
stochastic independence of observations lying in different wedges. ��

Proof of Theorem 6 Let a ∈ {−1, 1, 0}Mn be the vector determined by

ai =

⎧
⎪⎨

⎪⎩

1, if f is increasing on Ki ,

−1, if f is decreasing on Ki ,

0, else.
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The probability of at least one false rejection among all tests in (9) and (10) can be
estimated by Theorem 5, that is

p := P f

(
∃i ∈ {i | ai �= 0} : ai TK i < −c̃K i (α)

∣∣N 1, . . . , NMn
)

≤ P f

(
∃i ∈ {i | ai �= 0} : ai TU

Ki < −c̃K i (α)
∣∣N 1, . . . , NMn

)

≤ 1 − P

(
|TU

Ki | ≤ c̃K i (α) for all i = 1, . . . , Mn
∣∣N 1, . . . , NMn

)
.

Using (6), we further deduce

p ≤1 − P

((√
3

Ni − 1

∣∣∣TU
Ki

∣∣∣ − �

(
Ni

n − 1

))
≤ κ̃n(α) for all i = 1, . . . , Mn

∣∣N1, . . . , NMn

)

=1 − P

(
max

i=1,...,Mn

(√
3

Ni − 1

∣∣∣TU
Ki

∣∣∣ − �

(
Ni

n − 1

))
≤ κ̃n(α)

∣∣N1, . . . , NMn

)
= α.

��

Further results

This section provides a general consistency result which is the main ingredient for the
proof of Theorems 7 and 10. The consistency result stated in Theorem 13 is a more
general result. The following notation is used throughout this section for the precise
statement of the assumptions on the density f .

Definition 11 Let K be a wedge with vertex x0 and j ∈ {1, 2}. We define

inf
K

f ( j) := inf
x0+t̃ e0∈K ,0≤s̃<t̃

f (x0 + t̃ e0) − f (x0 + s̃e0)

t̃ j − s̃ j
,

sup
K

f ( j) := sup
x0+t̃ e0∈K ,0≤s̃<t̃

f (x0 + t̃ e0) − f (x0 + s̃e0)

t̃ j − s̃ j
. (26)

For a better interpretation ofDefinition 11, let f be twice continuously differentiable
in a neighborhood of x0. A straightforward application of the mean value theorem
shows

inf
K

f (1) = inf
x0+t̃ e0∈K

〈∇ f (x0 + t̃ e0), e0
〉
, sup

K
f (1) = sup

x0+t̃ e0∈K

〈∇ f (x0 + t̃ e0), e0
〉
.

If we have a mode in x0, the gradient∇ f (x0) vanishes and supK f (1) vanishes as well.
Similarly, a Taylor expansion of order 2 yields

inf
K

f (2) = 1

2
inf

{〈e0, H f (x0)e0〉
∣∣{x0 + t̃ e0, t̃ ≥ 0} ∩ K �= ∅}∣∣} + o(1)

sup
K

f (2) = 1

2
sup

{〈e0, H f (x0)e0〉
∣∣{x0 + t̃ e0, t̃ ≥ 0} ∩ K �= ∅}∣∣} + o(1)
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for l → 0, where H f (x0) denotes the Hessian of f in x0. In the situation of Theorem 7,
the condition e�

0 H f (x0)e0 ≤ −c < 0 holds for all e0 ∈ R
d with ‖e0‖ = 1. Thus, only

the case j = 2 is relevant for its proof. However, if the assumption is violated and the
Hessian is indefinite, the results can be generalized in a straightforward manner by
considering orders j ≥ 3 as well. For the proof of Theorem 10, the case j = 1 will
be used.

To simplify notation, let

ϕ̃ = tan(ϕ) for ϕ ∈
(
0,

π

2

)
and F(K ) =

∫

K
f (x) dx.

The quantities

H j
+( f, K ) := (2ϕ̃)d−1ld+ j infK f ( j)

√
F(K )

,

H j
−( f, K ) := (2ϕ̃)d−1ld+ j supK f ( j)

√
F(K )

( j = 1, 2)

depend on the size of the wedge K through its length l and angle ϕ and on the
monotonicity of f on K and are the key objects in the following discussion. We begin
by showing that the quantiles κ̃n(α) and κn(α) defined in (6) and (15) are bounded from
above by a constant independent of Mn, Ni , i = 1, . . . , Mn, and n. As a consequence,
the same holds for the quantiles κ̃ ′

n(α) defined in (11).

Theorem 12 There exists a constant A > 0, such that max{κ̃n(α), κn(α)} ≤ A.

Proof We only consider κ̃n as the result for κn can be shown similarly. From the
discussion in Sect. 2.3, it follows that

TU
Ki

d=
Ni−1∑

j=1

β
(
Ui

j

)
for i = 1, . . . , Mn

(conditionally on N 1, . . . , NMn ), where Ui
j , j = 1, . . . , Ni − 1, i = 1, . . . , Mn, are

independent uniformly distributed random variables on the interval [0, 1]. Recall the
definition of Tjk(U) in (1), then we will show a the end of the proof that, conditionally
on N 1, . . . , NMn ,

T∑i−1
k=1 N

k ,
∑i

k=1 N
k (U) =

∑i
k=1 N

k−1∑


=∑i−1
k=1 N

k+1

β

(
U(


;∑i−1
k=1 N

k ,
∑i

k=1 N
k
)
)

d=
Ni−1∑

j=1

β
(
Ui

j

)

(27)
(i = 1, . . . , Mn). As the statistic Tn(U) defined in (2) calculates the maximum over
more scales than the statistic defined in (6), we obtain κ̃n ≤ κn , where κn is the
(1 − α)-quantile of the statistic Tn(U) defined in (2). By Theorem 3.1 in Dümbgen
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and Walther (2008), there exists an upper bound A > 0 for κn , which is independent
of n. This completes the proof.

For a proof of (27), we finally note that for a sample of independent uniformly
distributed randomvariablesU1, . . . ,Un on the interval [0, 1] andfixed1 ≤ j < k ≤ n
with k − j > 1, the random variables U(l; j,k) = (U(l) −U( j))/(U(k) −U( j))(l =
j+1, . . . , k−1)have the samedistribution as the order statistic of k− j−1 independent
uniformly distributed random variables on the interval [0, 1]. ��

Following the notation fromSect. 2.3 (recall that�(δ) =
√
2 log( exp(1)

δ
)), we define

the quantiles

cK i
n
(α) =

√
Ni − 1

3

(
A + �

(
Ni

n − 1

))

(i = 1, . . . , Mn) and provide a general consistency result for locally increasing and
decreasing densities.

Theorem 13 Let j ∈ {1, 2} and Kn = {K 1
n , . . . , K

Mn
n } be a family of Mn pairwise

disjoint wedges with length ln > 0 and angle ϕn ∈ (0, π
2 ).

(i) If (for all i = 1, . . . , Mn) the condition H j
+( f, Ki

n) ≥ D
(

�(F(Ki
n))√

2
+ bn

)
1√
n

holds for some constant

D >
j (d + j)2

√
2

(2d + j)

(
−1 +

{
1 + 2 j2

(2d+ j)2

} 1
2
)(

1 − j2

2(2d+ j)2

{
−1 + [

1 + 4 (2d+ j)2

j2
] 1
2

}) 1
2

(28)
and a positive sequence bn satisfying bn → ∞ and bn = o(

√
log(n)) as n → ∞,

then

P
(
TKi

n
> cK i

n
(α) for all i = 1, . . . , Mn

) → 1.

(ii) If (for all i = 1 . . . , Mn) the condition H j
−( f, Ki

n) ≤ −D
(

�(F(Ki
n))√

2
+ bn

)
1√
n

holds for some constant

D >
2
√
2(2d + j)(d + j)

j
(
1 − d

d+ j

)(d+ j)/d [
1 − d2

2(2d+ j)2

(
−1 +

{
1 + 4( 2d+ j

d )2
}1/2)]1/2

and a positive sequence bn satisfying bn → ∞ and bn = o(
√
log(n)) as n → ∞,

then

P
(
TKn < −cKn (α) for all i = 1, . . . , Mn

) → 1.
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Remark 14 It follows from the proof of Theorem 13 that the bounds on H j
+( f, Kn)

resp. H j
−( f, Kn) imply in particular that Mn = o(n) as n → ∞.

The proof of Theorem 13 is divided into eight parts: seven technical lemmas
(Lemma 15 - Lemma 21) and the main part of the proof. We first state and prove
the technical lemmas and finally combine the results in order to complete the proof of
Theorem 13. For each of the lemmas, we assume that the conditions of Theorem 13
hold. At first, we consider only one fixed wedge K with length ln = l and angle
ϕn = ϕ. To simplify notation, let

F
j
±(z) := z + c±

(
2d−1

d + j
z
d+ j
d − 2d−1

d + j
z

)

for j ∈ {1, 2} and z ∈ [0, 1] with

c j+ := (tan(ϕ))d−1(PeX(N ))
d+ j infK f ( j)

F(KN )
and c j− := (tan(ϕ))d−1(PeX(N ))

d+ j supK f ( j)

F(KN )
.

Lemma 15

(i) If infK f ( j) > 0, then F̃(z) ≤ F
j
+
( zd

(PeX(N ))
d

)
for z ∈ (0, PeX(N )].

(ii) If supK f ( j) < 0, then F̃(z) ≥ F
j
−
( zd

(PeX(N ))
d

)
for z ∈ (0, PeX(N )].

Proof We only prove the first part and define the auxiliary function

f
j
+(s1, . . . , sd−1, t) :=1KN (x0 + te + s1e1 + · · · + sd−1ed−1)

·
(

1

|KN | +
(
infK f ( j)

F(KN )

)(
t j − d

d + j
(PeX(N ))

j
))

,

where |KN | := ∫
KN

1 dx denotes the volume of KN . Note that

∫ z

0

∫ t tan(ϕ)

−t tan(ϕ)

. . .

∫ t tan(ϕ)

−t tan(ϕ)

f
j
+(s1, . . . , sd−1, t) ds1 . . . dsd−1 dt

= zd

(PeX(N ))d
+

∫ z

0
(2 tan(ϕ)t)d−1

(
infK f ( j)

F(KN )

)(
t j − d

d + j
(PeX(N ))

j
)

dt

= zd

(PeX(N ))d
+ c+

(
2d−1

d + j

zd+ j

(PeX(N ))d+ j
− 2d−1

d + j

zd

(PeX(N ))d

)
= F

j
+

(
zd

(PeX(N ))d

)
.

(29)

In particular, as F
j
+(1) = 1, the function f

j
+ defines a density on KN . We now prove

assertion (i) by contradiction and assume that there exists z∗ ∈ (0, PeX(N )], such that

F̃(z∗) =
∫ z∗

0
f̃ (t)dt = G(z∗)

G(PeX(N ))
> F

j
+

(
(z∗)d

(PeX(N ))d

)
=

∫ z∗

0
h j

+(t)dt, (30)
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where f̃ and

h j
+(t) :=

∫ t tan(ϕ)

−t tan(ϕ)

. . .

∫ t tan(ϕ)

−t tan(ϕ)

f
j
+(s1, . . . , sd−1, t) ds1 . . . dsd−1

denote the density of F̃ and F
j
+, respectively. Due to the monotonicity of the integral,

there exists a point t0 ∈ (0, z∗] with

f̃ (t0) > h j
+(t0), (31)

which implies

f̃ (t1) > h j
+(t1) for all t1 ∈ [t0, PeX(N )]. (32)

For a proof of (32), let t1 > t0 and x = x0 + t1e + s1e1 + · · · + sd−1ed−1 ∈ KN . As
in the proof of Theorem 5, we use the representation x = x0 + t̃1e0, where t̃1 and e0
are defined in (25). For t̃0 := t0

t1
t̃1 < t̃1, let

y := x0 + t̃0e0 = x0 + t0e0 + t0
t1
s1e1 + · · · + t0

t1
sd−1ed−1 ∈ KN .

Using infK f ( j) > 0, we find

f (x) − f (y) = f (x0 + t̃1e0) − f (x0 + t̃0e0) = (t̃ j1 − t̃ j0 )
f (x0 + t̃1e0) − f (x0 + t̃0e0)

t̃ j1 − t̃ j0

≥
(
t̃ j1 − t̃ j0

)
inf
K

f ( j) = t̃ j1

(
1 − t j0

t j1

)
inf
K

f ( j) ≥
(
t j1 − t j0

)
inf
K

f ( j), (33)

where the last estimate follows since t̃1 ≥ t1. Recall that G(PeX(N )) = F(KN ), then
we obtain

f̃ (t1) =
∫ t1 tan(ϕ)

−t1 tan(ϕ)

. . .

∫ t1 tan(ϕ)

−t1 tan(ϕ)

f (x0 + t1e + s1e1 + · · · + sd−1ed−1)

G(PeX(N ))
ds1

. . . dsd−1

≥
∫ t1 tan(ϕ)

−t1 tan(ϕ)

. . .

∫ t1 tan(ϕ)

−t1 tan(ϕ)

1

F(KN )

(
f (x0 + t0e + t0

t1
s1e1 + · · · + t0

t1
sd−1ed−1)

+ (t j1 − t j0 ) inf
K

f ( j)
)
ds1 . . . dsd−1.

A change of variables yields

f̃ (t1) ≥
(
t1
t0

)d−1 ∫ t0 tan(ϕ)

−t0 tan(ϕ)

. . .

∫ t0 tan(ϕ)

−t0 tan(ϕ)

f (x0 + t0e + s̃1e1 + · · · + s̃d−1ed−1)

F(KN )
ds̃1
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. . . ds̃d−1

+ (2 tan(ϕ)t1)
d−1

(
t j1 − t j0

) infK f ( j)

F(KN )

=
(
t1
t0

)d−1

f̃ (t0) + (2 tan(ϕ)t1)
d−1

(
t j1 − t j0

) infK f ( j)

F(KN )
,

and straightforward calculations show that

h j
+(t1) =

(
t1
t0

)d−1

h j
+(t0) + (2 tan(ϕ)t1)

d−1
(
t j1 − t j0

) infK f ( j)

F(KN )

<

(
t1
t0

)d−1

f̃ (t0) + (2 tan(ϕ)t1)
d−1

(
t j1 − t j0

) infK f ( j)

F(KN )
≤ f̃ (t1),

where we used (31) to obtain the strict inequality. From (30) and (32), we also get

∫ PeX(N )

0
f̃ (t) dt >

∫ z∗

0
h j

+(t) dt +
∫ PeX(N )

z∗
h j

+(t) dt = F
j
+(1) = 1,

which contradicts the condition 1 = F̃(PeX(N )) = ∫ PeX(N )

0 f̃ (t) dt . This completes
the proof of Lemma 15. ��
Lemma 16 (i) If infK f ( j) > 0, we have

∑N−1
i=1 β

(
(F

j
+)−1(F̃(PeX(i)))

) ≤ TK .

(ii) If supK f ( j) < 0, we have
∑N−1

i=1 β
(
(F

j
−)−1(F̃(PeX(i)))

) ≥ TK .

Proof We only prove the first part and begin showing that the function z �→ F
j
+(z) is

strictly increasing for z ∈ [0, 1]. Recalling the representation (29), it is sufficient to
prove that the inequality

f
j
+(s1, . . . , sd−1, t) > 0 for t ∈ (0, PeX(N )]

holds for all (s1, . . . , sd−1) ∈ [−t tanϕ, t tanϕ]. For the sake of simplicity, we suppress

the dependence of f
j
+ on (s1, . . . , sd−1) and note that the function t �→ f

j
+(t) =

f
j
+(t, s1, . . . , sd−1) is strictly increasing. Therefore, it remains to show f

j
+(0) ≥ 0.

We prove this inequality by contradiction and assume that f
j
+(0) < 0. For x =

x0 + te + s1e1 + · · · + sd−1ed−1 ∈ KN , it follows (using t̃0 = 0 in (33))

f (x)

F(KN )
≥ f (x) − f (x0)

F(KN )
≥ t j

infK f ( j)

F(KN )
= f

j
+(t) − f

j
+(0) > f

j
+(t). (34)

Integrating both sides of (34) leads to a contradiction. Consequently, the map
z �→ F̄ j

+(z) is strictly increasing on [0, 1], which implies (using Lemma 15 and the

monotonicity of the function β) that β((F
j
+)−1(F̃(PeX( j)))) ≤ β

( (PeX( j))
d

Pe X(N ))
d

)
, when-

ever F̃(PeX( j)) �= 0 and PeX( j) �= PeX(N ). However, it is easy to see that these cases
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Multiscale inference for a multivariate density 679

correspond to PeX( j) = 0 and F̃(PeX( j)) = 1, where there is in fact equality. Thus,
the proof of the first part is completed. ��

The conditional expectation considered in the following lemma is used to derive
a bound on the corresponding conditional probability via the Hoeffding inequality in
Lemma 21.

Lemma 17 (i)

E

(
N−1∑

i=1

β
(
(F

j
+)−1(F̃(PeX(i)))

)
|N , X(N )

)
= 2d−1 j (N − 1)

(2d + j)(d + j)
c j+.

(ii)

E

(
N−1∑

i=1

β
(
(F

j
−)−1(F̃(PeX(i)))

)
|N , X(N )

)
= 2d−1 j (N − 1)

(2d + j)(d + j)
c̃ j−.

Proof We only prove the first part. Let U1, . . . ,UN−1 be independent uniformly dis-
tributed random variables on the interval [0, 1]. Theorem 4 yields

N−1∑

i=1

β
(
(F

j
+)−1(F̃(PeX(i)))

)
d=

N−1∑

i=1

β
(
(F

j
+)−1(Ui )

)
,

given N and X(N ). The assertion now follows from

E

(
β((F

j
+)−1(U1))|N , X(N )

)
=

∫ 1

0
β(x)g j

+(x) dx = 2d−1 j

(2d + j)(d + j)
c j+,

where g j
+(x) := d

dx F
j
+(x) = 1 + c j+

(
2d−1

d x
d+ j
d −1 − 2d−1

d+ j

)
. ��

In the following, we consider a sequence of wedges (Kn)n∈N given by vertices
xn0 , directions e

n , lengths ln > 0 and angles ϕn ∈ (0, π
2 ). Furthermore, we denote

by en1 , . . . , e
n
d−1 the orthonormal basis of (span{en})⊥ and let δn = F(Kn), δNn =

F(KNn ). Lemma 18 and Lemma 19 ensure the feasibility of our procedure in an
asymptotic sense. They show that the random wedge KNn is of similar size than the
deterministic, predefined wedge Kn , i.e., that its complement Kn\KNn is small. Note
that the test procedure can only be consistent if the wedge Kn contains a sufficiently
large number of observations. Therefore, we introduce for γ ∈ (0, 1

2 ] and 0 < ε < 1
the conditional probability PNn given the event

Nn =
{
Nn ≥ (1 − γ )nδn,

|KNn |
|Kn| ≥ 1 − ε

}
. (35)

The results of Lemma 21 are only shown for PNn . However, the following Lemmas 18
and 19 demonstrate that these conditions are asymptotically negligible. For example,
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Fig. 11 The section Irn

Irn

Kn

en
ln

ln(1− ε)
1
d

xn
0

Lemma 18 shows that, with increasing n, the wedge KNn ⊆ Kn approximates Kn in
probability at an exponential rate.

Lemma 18 Let j ∈ {1, 2} and 0 < ε < 1.

(i) If the assumptions of Theorem 13 (i) are satisfied, then

P

(
Nn = 0 or

|KNn |
|Kn | < 1 − ε

)
≤ exp

(
− D

d + j

√
nδn

2
�(δn)

(
1 − (1 − ε)

d+ j
d

))
.

(ii) If the assumptions of Theorem 13 (ii) are satisfied, then

P

(
Nn = 0 or

|KNn |
|Kn| < 1 − ε

)

≤ exp

(
− D

d + j

√
nδn

2
�(δn)

(
(1 − ε)

d+ j
d + d + j

d
ε − 1

))
.

Proof We only prove the first part. Since |KNn |
|Kn | = (Pen X(Nn ))

d

ldn
< 1 − ε if and only if

Pen X(Nn) < ln(1 − ε)
1
d , we obtain

{
Nn = 0 or

|KNn |
|Kn| < 1 − ε

}
=

{
Nn = 0 or Pen X(Nn) < ln(1 − ε)

1
d

}
.

Define

Irn := Kn ∩
{
x ∈ R

d : Pen x ≥ ln(1 − ε)
1
d

}

(see Fig. 11), then {Nn = 0 or |KNn |
|Kn | < 1− ε

} ⊆ { no observation in Irn }. Now, recall
for a proof of part (i) from (33) that (with t0 = 0 and t1 = t) f (xn0 + ten + s1en1 +
· · · + sd−1end−1) ≥ t j infKn f ( j). Thus,

123



Multiscale inference for a multivariate density 681

p f,Irn :=
∫

Irn

f (x) dx

=
∫ ln

ln (1−ε)
1
d

∫ t ϕ̃n

−t ϕ̃n
. . .

∫ t ϕ̃n

−t ϕ̃n
f
(
xn0 + ten + s1e

n
1 + · · · + sd−1e

n
d−1

)
ds1 . . . dsd−1 dt

≥
∫ ln

ln (1−ε)
1
d

∫ t ϕ̃n

−t ϕ̃n
. . .

∫ t ϕ̃n

−t ϕ̃n
t j inf

Kn
f ( j) ds1 . . . dsd−1 dt

= (2ϕ̃n)
d−1

d + j
ld+ j
n

(
1 − (1 − ε)

d+ j
d

)
inf
Kn

f ( j).

The assumptions of Theorem 13 (i) imply that H j
+( f, Kn) ≥ D �(δn)√

2n
and therefore

p f,Irn ≥ D
d+ j

√
δn
2n�(δn)(1−(1−ε)

d+ j
d ).As the variables Zi = 1Irn (Xi ) are Bernoulli

distributed with parameters p f,Irn , we have

P( no observation in Irn ) ≤ exp

(
− D

d+ j

√
nδn
2 �(δn)

(
1 − (1 − ε)

d+ j
d

))
.

��
As the number Nn of observations in Kn is Bin(n, δn)-distributed, we obtain the

following result from Chernoff’s Inequality.

Lemma 19 P (Nn ≤ (1 − γ )nδn) ≤ exp
( − nδn

γ 2

2

)
for any γ ∈ (0, 1

2 ].
Lemma 20 Let j ∈ {1, 2}.
(i) If the assumptions of Theorem 13 (i) are satisfied, then

(a) nδn ≥ D2

(d + j)2
�(δn)

2

2
=: c̃ j+

�(δn)
2

2
,

(b) nδn ≥ Lnc̃
j
+ log(exp(1)n), where Ln ≥ 1 − o(1) for n → ∞.

(ii) If the assumptions of Theorem 13 (ii) are satisfied, then

(a′) nδn ≥ j2D2

(d(d + j))2
�(δn)

2

2
=: c̃ j−

�(δn)
2

2
.

(b′) nδn ≥ Lnc̃
j
− log(exp(1)n), where Ln ≥ 1 − o(1) for n → ∞.

Proof We only prove the first part. As in the proof of Lemma 18, we obtain

δn =
∫

Kn

f (x) dx ≥ (2ϕ̃n)
d−1

d + j
ld+ j
n inf

Kn
f ( j).

Hence,

H j
+( f, Kn) = (2ϕ̃n)d−1ld+ j

n infKn f ( j)
√

δn
≤ (2ϕ̃n)d−1ld+ j

n infKn f ( j)

(2ϕ̃n )d−1

d+ j ld+ j
n infKn f ( j)

√
δn = (d + j)

√
δn .

Therefore, it follows from the assumption H j
+( f, Kn) that nδn ≥ D2

(d+ j)2
�(δn)

2

2 . Part
(b) is a consequence of Lemma 7.5 in Dümbgen and Walther (2008). ��
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The following Lemma provides the key to prove consistency. Note that for the
construction of the test statistic TKn , it is necessary that at least two observations are
contained in the wedge Kn . Given the event Nn , we have that Nn ≥ 2 if nδn ≥ 4. If
the assumptions of Theorem 13 (i) hold, it follows from (a) that nδn ≥ 4 is fulfilled
for D ≥ 2(d + j). Similarly, if the assumptions of Theorem 13 (ii) hold, then (a’)
yields the condition D ≥ 2d(d+ j)

j .

Lemma 21 Let j ∈ {1, 2} and PNn denote the probability conditional on the event
Nn defined in (35) and define for γ ∈ (0, 1

2 ], 0 < ε < 1 and η > 0 the constant

D j (η, δn)

:=
(2d+ j)(d+ j)

j
√
3

(1 − ε)
d+ j
d

√
(1 − γ ) − 1

nδn

⎛

⎝√
2 + √

2
κn(α) + η

�(δn)
−

2
√
2 log

(
(1 − γ ) − 1

nδn

)

�(δn)2

⎞

⎠ . (36)

(i) If H j
+( f, Kn) ≥ D �(δn)√

2n
for some constant D ≥ D j (n, δn) ∨ 2(d + j), then

PNn

(
TKn ≤ cKn (α)

∣∣Nn
) ≤ exp

(
−η2

6

)
.

(ii) If H j
−( f, Kn) ≤ −D �(δn)√

2n
for some constant D ≥ D j (n, δn) ∨ 2d(d+ j)

j , then

PNn

(
TKn ≥ −cKn (α)

∣∣Nn
) ≤ exp

(
−η2

6

)
.

Proof We only prove the first part and define

c jn,+ := ϕ̃d−1
n (Pen X(Nn))

d+ j infKn f ( j)

δNn

.

Then a tedious but straightforward calculation shows that the inequality

2d−1 jc jn,+(Nn − 1)

(2d + j)(d + j)
− η

√
Nn − 1

3
≥ cKn (α)

holds for |KNn |
|Kn | ≥ 1 − ε and Nn ≥ (1 − γ )nδn . This implies

PNn

(
TKn ≤ cKn (α)

∣∣Nn
) = E

[
PNn

(
TKn ≤ cKn (α)|Nn, X(Nn)

)]

≤ E

[
PNn

(
TKn ≤ 2d−1 jc jn,+(Nn − 1)

(2d + j)(d + j)
− η

√
Nn − 1

3

∣∣∣ Nn, X(Nn)

)]

≤ E

[
PNn

(
RKn ≤ 2d−1 jc jn,+(Nn − 1)

(2d + j)(d + j)
− η

√
Nn − 1

3

∣∣∣ Nn, X(Nn)

)]
,
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where we used Lemma 16 and the notation RKn = ∑Nn−1
i=1 β((F

j
+)−1(F̃n(Pen X(i)))).

Therefore, the assertion follows from Lemma 17 and Hoeffding’s inequality. ��
Proof of Theorem 13 For a proof of the first part, we proceed in two steps: Firstly, we
will find an upper bound for the probability that the test will not reject for one single
wedge. Secondly, we will consider the probability for simultaneous rejection on every
wedge in Kn . For a fixed wedge Kn ∈ Kn , 0 < ε < 1 and γ ∈ (0, 1

2 ], we have

P
(
TKn ≤ cKn (α) for any single Kn ∈ Kn

)

≤ PNn

(
TKn ≤ cKn (α) for any single Kn ∈ Kn

) + P(N c
n ),

where the event Nn is defined in (35). Notice that the assumptions of Theorem 13
imply those of Lemma 21 and recall that F(Kn) = δn . We have from the assumption
in Theorem 13 (i) with Kn = Ki

n

H j
+( f, Kn) ≥ D

(
1 + bn

√
2

�(δn)

)
�(δn)√

2n
,

which relaxes the assumption on the constant D in Lemma21 as follows. Letηn,Kn > 0
and

D
(
1 + bn

√
2

�(δn)

) ≥ max
{
D j (ηn,Kn , δn), 2(d + j)

}
, (37)

where D j is defined in (36). Therefore, it follows from Lemma 21, Lemma 18 and
Lemma 19 that the probability under consideration can be bounded by

exp
( − η2n,Kn

6

) + exp
(

− D
d+ j

√
nδn
2 �(δn)(1 − (1 − ε)

d+ j
d )

) + exp
( − nδn

γ 2

2

)
,

(38)

which concludes the proof for any single wedge.
We now consider the union of all wedges ofKn and define δ̃n := infKn∈Kn F(Kn).

As the wedges in Kn are pairwise disjoint, it follows from Lemma 20 that

Mn = (
#{Kn : Kn ∈ Kn}

) ≤ 1

δ̃n
= o(n). (39)

Therefore,Kn consists of a finite number of wedges. From (38) and the monotonicity
of the function δ �→ δ log

( exp(1)
δ

)
, we obtain the estimate

P
(
TKn ≤ cKn (α) for at least one Kn ∈ Kn

)

≤
∑

Kn∈Kn

exp

(
− η2n,Kn

6

)

+ Mn

(
exp

(
− D

d+ j

√
nδ̃n
2 �(δ̃n)

(
1 − (1 − ε)

d+ j
d

))
+ exp

(
− nδ̃nγ

2

2

))
, (40)
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if condition (37) is fulfilled for every Kn ∈ Kn . We now show that the right-hand
side of (40) vanishes as n → ∞ by investigating the asymptotic behavior of every

summand. For the first summand, let ηn,Kn := (
6 log

( 1
δn

) + bn
) 1
2 , then

∑

Kn∈Kn

exp

(
− η2n,Kn

6

)
=

∑

Kn∈Kn

δn exp
( − bn

6

) = o(1),

because
∑

Kn∈Kn
δn ≤ 1 and bn → ∞ as n → ∞. Next, we consider the second

summand in (40). An application of Lemma 20 (b) gives

√
nδ̃n
2 �(δ̃n) ≥

√
c̃ j+ log(exp(1)n)(1 − o(1)).

Hence, by (39), if

D
d+ j

√
D2

(d+ j)2
(
1 − (1 − ε)

d+ j
d

)
> 1,

Mn exp

(
− D

d+ j

√
c̃ j+ log(exp(1)n)

(
1 − (1 − ε)

d+ j
d

)
(1 − o(1))

)
= o(1). (41)

Finally, by (39) and Lemma 20 (b), we have

o(1) exp

(
−nδ̃n

γ 2

2
+ log(n)

)
≤ o(1) exp

(
−(1 − o(1))c̃ j+ log(exp(1)n)

γ 2

2
+ log(n)

)

≤ o(1) exp

(
− log(n)

(
c̃ j+

γ 2

2
− (

1 + o(1)
)))

= o(1),

if
D2

(d + j)2
γ 2

2
> 1. (42)

In this case, the third term vanishes as well as n → ∞.

It remains to show that condition (37) is fulfilled for every Kn ∈ Kn . With κn(α) ≤
A, we have to prove that

D
(
1 + bn

√
2

�(δn )

)

≥ (2d + j)(d + j)
√
3 j(1 − ε)

d+ j
d

√
(1 − γ ) − 1

nδn

(√
2 + √

2
A + ηn,Kn

�(δn)
− 2

√
2 log

(
1 − γ − 1

nδn

)

�(δn)2

)
.

(43)

From Lemma 20 (b), it follows that nδn → ∞ for n → ∞ for all Kn ∈ Kn . Thus,

using ηn,Kn := (
6 log

( 1
δn

)+bn
) 1
2 , we find that for sufficiently large n an upper bound

for the right-hand side of (43) is given by
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(2d + j)(d + j)
√
3 j(1 − ε)

d+ j
d

√
(1 − γ ) − o(1)

⎛

⎝√
2 + A + ({6 log ( 1

δn

)}1/2 + √
bn

)

{
log

( 1
δn

)}1/2

⎞

⎠

≤ (
√
2 + √

6)(2d + j)(d + j)
√
3 j(1 − ε)

d+ j
d

√
1 − γ − o(1)

+ (2d + j)(d + j)(A + √
bn)√

3 j(1 − ε)
d+ j
d

{
log

( 1
δn

)}1/2√1 − γ − o(1)

≤
(
1 + o(bn)

{log ( 1
δn

)}1/2
)

2
√
2(2d + j)(d + j)

j (1 − ε)
d+ j
d

√
1 − γ − o(1)

. (44)

Combining (41), (42) and (44), we obtain the following condition

D

d + j
> max

{(
1 − (1 − ε)

d+ j
d

)−1/2
,

√
2

γ
,

2
√
2(2d+ j)

j (1−ε)
d+ j
d

√
1−γ

}
. (45)

In order to minimize the restrictions imposed by condition (45), we now determine
0 < ε < 1 and γ ∈ (0, 1

2 ], such that the lower bound on D is as small as possible.
Balancing the second and third terms in (45), we obtain

γ = − j2 + √
j4 + 4 j2(2d + j)2

2(2d + j)2
<

j

2d + j
≤ 1

2
,

where we used (2d+ j)2 ≥ 9 (note that d ≥ 1) for the first inequality. For the choice of

ε, we introduce the notation a := (1−ε)
d+ j
d and balance the first and third expression

in (45) and obtain

a = (2d+ j)2

j2

(
−1 +

√
1 + 2 j2

(2d+ j)2

)
.

Finally, inserting our choice of ε and γ in (45), we find the condition (28) since our
calculations also show that D is larger than all three terms of (45) simultaneously in
this case. ��

Proof of Theorems 7 and 10

For the sake of simplicity, we prove both results for the case C2 = 1 and C := C1.
The general case follows by exactly the same arguments with an additional amount of
notation.

Proof of Theorem 7 We note that it follows from Theorem 12 that cK i (α) ≥ c̃K i (α)

for i = 1, . . . , Mn . Hence, it remains to show that the assumptions for Theorem 13 (ii)
are satisfied. By assumption on f , we have supKi f (2) ≤ − c

2 + o(1) for n → ∞(i =
1, . . . , Mn). Moreover, from the approximation tan(x) = x(1 − o(1)) for x → 0, we
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have

F(Ki ) = f (x0)
1

d
Cd log(n)−d+1+d d−1

d+4

(
log(n)

n

) d
d+4

(1 + o(1)) (i = 1, . . . , Mn).

(46)
Hence,

− H2−( f, Ki ) ≥ log(n)−d+1+(d+2) d−1
d+4Cd+2

( log(n)
n

) d+2
d+4 (c/2 − o(1))

√
f (x0)

1
d C

d
2 log(n)

−d+1
2 +d d−1

2(d+4)
( log(n)

n

) d
2(d+4) (1 + o(1))

= C
d
2 +2( log(n)

n

) 1
2
c/2 − o(1)√

f (x0)
1
d

(i = 1, . . . , Mn). Furthermore, we obtain from (46) and the assumption bn =
o(

√
log(n)) that

D
(

�(F(Ki ))√
2n

+ bn√
n

)
= D

√
d

d+4
log n
n (1 + o(1)).

Therefore, the assumptions of Theorem 13 (ii) (for j = 2) are fulfilled as the constant

C satisfies C >
(
2D
c

√
f (x0)
d+4

) 2
d+4

by (12) and hence the assertion follows by an

application of Theorem 13. ��
Proof of Theorem 10 Note that it is sufficient to prove consistency for the largest scale.
By Theorem 12, we have to prove that the assumptions for Theorem 13 (ii) are satisfied
for the family of wedges {Ki

n | i ∈ In} introduced in Sect. 3.3. Let Kn ∈ {Ki
n | i ∈ In}.

We begin with the determination of an upper bound for the quantity supKn
f (1) defined

in (26). For this purpose, consider a point xn0 + t̃ e0 ∈ Kn with e0 ∈ R
d(‖e0‖ = 1)

and t̃ > 0. Now, the representation (19) and an application of the mean value theorem
yields for 0 ≤ s̃ < t̃

�n = f (xn0 + t̃ e0) − f (xn0 + s̃e0)

t̃ − s̃
(47)

= f̃x0(‖xn0 + s̃e0 − x0‖)〈∇gx0(ξ2), e0〉 + (1 + gx0(x
n
0 + t̃ e0)) f̃

′
x0(ξ1)Rn

for some ‖xn0 + s̃e0 − x0‖ ≤ ξ1 ≤ ‖xn0 + t̃ e0 − x0‖ and ξ2 ∈ [xn0 + s̃e0, xn0 + t̃ e0],
where

Rn = ‖xn0 + t̃ e0 − x0‖ − ‖xn0 + s̃e0 − x0‖
t̃ − s̃

.

A further application of the mean value theorem gives

Rn =
∑d

j=1

(
xn0, j + t̃ e0, j − x0, j

)2 − ∑d
j=1

(
xn0, j + s̃e0, j − x0, j

)2

2
√

ξ(t̃ − s̃)
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=
∑d

j=1 2
(
xn0, j − x0, j

)
e0, j (t̃ − s̃) + t̃2 − s̃2

2
√

ξ(t̃ − s̃)
≥

∑d
j=1

(
xn0, j − x0, j

)
e0, j√

ξ

= cos(angle(xn0 − x0, e0))‖xn0 − x0‖√
ξ

≥ C log(n)ln(1 − o(1))
1√
ξ

for some ‖xn0 + s̃e0 − x0‖2 ≤ ξ ≤ ‖xn0 + t̃ e0 − x0‖2. Moreover, we have

ξ ≤ ‖xn0 + t̃ e0 − x0‖2 ≤ (‖xn0 − x0‖ + t̃
)2 ≤ l2n(mnC log(n))2(1 + o(1)).

Hence, Rn ≥ 1−o(1)
mn

. With the same arguments as used before, one shows that ξ1 ≥
C log(n)ln and ‖ξ2 − x0‖ ≤ Cmn log(n)ln(1 + o(1)). Finally, by assumption on gx0
and f̃x0 and (47), this yields

�n ≤ (1 + o(1))(−c)C log(n)ln Rn + f (x0)o((mn log(n)ln)
1+γ )

≤ (1 − o(1))(−c)C log(n)
ln
mn

+ o((mn log(n)ln)
1+γ ) = − cC

mn
log(n)ln(1 − o(1)),

as mn
ln
o((mnln)1+γ ) = o(m2+γ

n lγn ) = o(1) as n → ∞ by the choice of mn and ln .

Consequently, supKn
f ′ ≤ − cC

mn
log(n)ln(1−o(1)).As tan(x) = x(1−o(1))(x → 0),

we have

F(Kn) = f (xn0 )
1

d
Cd(log(n))−d+1+d

(
log(n)

n

) d
d+4

(1 + o(1))

= f (x0)
1

d
Cd log(n)

(
log(n)

n

) d
d+4

(1 + o(1)).

It follows from the conditions c1 ≥ f (x0) ≥ 0

H1−( f, Kn) ≤ −
Cd+1(log(n))3

(
log(n)

n

) d+2
d+4 cC

mn
(1 − o(1))

√
f (x0)

1
d C

d
2 (log(n))

1
2

(
log(n)

n

) d
2(d+4)

(1 + o(1))

≤ −cC
d
2 +2

(
d
log(n)

n

) 1
2 1 − o(1)√

c1

(log(n))
5
2

mn

= −cC
d
2 +2

(
d
log(n)

n

) 1
2 1 − o(1)√

c1
.

If bn = o(
√
log n), we have

D
(

�(F(Kn))√
2n

+ bn√
n

)
= D

√
d

d+4
log n
n (1 + o(1)),
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and the assumptions of Theorem 13 (ii) are fulfilled if the constant C satisfies C >
(
D
c

√
c1
d+4

) 2
d+4

, which is a direct consequence of (20). ��
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