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Abstract Finite mixture regression (FMR) models are frequently used in statisti-
cal modeling, often with many covariates with low significance. Variable selection
techniques can be employed to identify the covariates with little influence on the
response. The problem of variable selection in FMRmodels is studied here. Penalized
likelihood-based approaches are sensitive to data contamination, and their efficiency
may be significantly reduced when the model is slightly misspecified. We propose a
new robust variable selection procedure for FMR models. The proposed method is
based on minimum-distance techniques, which seem to have some automatic robust-
ness to model misspecification. We show that the proposed estimator has the variable
selection consistency and oracle property. The finite-sample breakdown point of the
estimator is established to demonstrate its robustness. We examine small-sample and
robustness properties of the estimator using a Monte Carlo study. We also analyze a
real data set.
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490 Q. Tang, R. J. Karunamuni

1 Introduction

We consider the problem of simultaneous estimation and variable selection in finite
mixture regression models. Let Y be a univariate response variable and let X ∈ R

p

be a vector of covariates that affect the outcome Y. Then, (Y, X) is said to have a
finite mixture regression (FMR) model of order J if the conditional density of Y given
X = x is of the form

fθ (y|x) =
J∑

j=1

α j g(y;�
(
xTβ j

)
, γ j ), (1)

where g is a density function with respect to a σ -finite measure ν,� is a link function,
and θ = (α1, . . . , αJ−1, βT

1 , . . . ,βT
J , γ1, . . . , γJ )

T is the parameter vector with
β j = (β j1, . . . , β j p)

T and α j > 0, j = 1, . . . , J ,
∑J

j=1 α j = 1. See Titterington
et al. (1985), Hennig (2000), Khalili and Chen (2007), Städler et al. (2010), Khalili
and Lin (2013) and the references therein for more details on FMRmodels. Model (1)
can be generalized to allow the α j values to be functions of x . The density function
g can take many parametric forms, including negative-binomial, normal and Poisson.
In some FMR models, the dispersion parameters, γ j , are assumed to be equal.

For a given design matrix (x1, x2, . . . , xn)T , model (1) is said to be identifiable if
for any two parameters θ and θ∗,

J∑

j=1

α j g(y,�
(
xTi β j

)
, γ j ) =

J∗∑

j=1

α∗
j g(y,�(xTi β∗

j ), γ
∗
j )

for each i = 1, . . . , n and all possible values of y, implies that J = J ∗ and θ = θ∗; see,
e.g., Titterington et al. (1985),Hennig (2000) andKhalili andChen (2007). In the above
definition, one interprets θ = θ∗ upto a permutation. The identifiability is potentially
a serious problem when dealing with FMR models. The identifiability of an FMR
model depends on several factors, such as component densities g(y,�(xTβ j ), γ j ),

the maximum possible order J and the design matrix (x1, x2, . . . , xn)T . Many finite
mixturemodels, includingfinitemixture of binomial,multinomial, normal andPoisson
distributions, are identifiable. For more details on this issue, see Hennig (2000).

It is well known that finite mixture models provide a mathematical basis for the
statistical modeling of a wide variety of random situations. Because of their flexi-
bility, these models have received increasing interest over the years from both the
practical and theoretical points of view. They have been applied in many fields includ-
ing economics (Khalili and Chen 2007), neural networks (Bishop 1995) and machine
learning (Jiang and Tanner 1999). A comprehensive account of the literature, theory,
and applications of modeling via finite mixture models is given in the monographs of
Titterington et al. (1985) and McLachlan and Peel (2000). For software implementa-
tions in FMR models, see Leisch (2004).

A penalty (or regularization) function generally facilitates variable selection in
regression models. Various penalty functions have been used in the literature: the
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Robust variable selection 491

bridge regression (Frank and Friedman 1993), LASSO (Tibshirani 1996), SCAD (Fan
and Li 2001), adaptive LASSO (Zou 2006), the elastic net (Zou and Hastie 2005), the
adaptive elastic net (Zou and Zhang 2009), andMCP (Zhang 2010) are well known. In
particular, Khalili and Chen (2007), Khalili (2010), Khalili et al. (2011), Khalili and
Lin (2013), and Städler et al. (2010) have investigated the variable selection problem
for FMR models with versions of the above penalty functions. Generally speaking,
in these articles the estimation of θ is carried out by maximizing the penalized log-
likelihood function

ln(θ) − Pn(θ),

where ln(θ) is the (conditional) log-likelihood function based on a sample of size
n from model (1), and Pn(θ) is a penalty function. The resulting estimators have
been shown to have nice properties in most cases, including the variable selection
consistency and oracle property of Fan and Li (2001). However, these estimators can
be highly unstable if the model is not completely correct, and they are not robust
if the data are slightly contaminated. In general, a minor instability in the model
can have severe consequences for finite mixture models (Karlis and Xekalaki 2001;
Markatou 2000; Lu et al. 2003; Tang and Karunamuni 2013). For example, in the
case of parametric univariate finite normal mixtures with all parameters unknown, the
likelihood can grow without bound if one of the means coincides with a data point
and the corresponding variance is allowed to go to zero; see e.g., McLachlan and Peel
(2000).

In this paper, we propose a different approach: we replace the log-likelihood func-
tion ln(θ)with a distance measure in order to develop a robust estimator. The rationale
for this idea is that minimum-distance methods have a degree of automatic robust-
ness to model misspecification (Donoho and Liu 1988). We examine the problem of
simultaneous estimation and variable selection in a FMR model of the form (1) with
the squared Hellinger distance as the measure of adequacy. Specifically, the proposed
estimator of θ is constructed by minimizing

∥∥∥ f 1/2θ ,n − f̂ 1/2n

∥∥∥
2 + Pn(θ), (2)

where Pn(θ) is a penalty function, fθ ,n(y) and f̂n(y) denote a consistent estimator
and a nonparametric density estimator, respectively, of the semiparametric mixture
density of Y and ‖.‖ denotes the L2-norm. We show that the proposed estimator
has the variable selection consistency and oracle property of Fan and Li (2001). We
also develop a feasible and effective algorithm for variable selection and parameter
estimation. Further, we establish the global robustness properties of the proposed
estimator by finding its finite-sample breakdown point. Recall that the breakdown
point of an estimator is the proportion of incorrect observations (i.e., arbitrary values)
it can handle before giving an arbitrarily large result (Donoho 1982; Donoho and
Huber 1983).

Other distance measures such as the L1-norm, L2-norm, and the Chi-squared dis-
tance can be used instead of the Hellinger distance in (2). However, the Hellinger
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distance has some practical and theoretical advantages in nonpenalized estimation
problems. Specifically, minimum Hellinger distance (MHD) estimators for paramet-
ric models achieve efficiency at the model, and they simultaneously have excellent
robustness properties in the presence of outliers and/or model misspecification (Beran
1977, 1978). Furthermore, Lindsay (1994) has shown that the maximum likelihood
andMHD estimators are members of a larger class of efficient estimators with various
second-order efficiency properties. MHD estimators have been developed in the litera-
ture for various setups and models, including for some parametric mixture models and
semiparametric models. The literature is too extensive to give a complete listing here.
A discussion of recent developments and some important references can be found in
the articles of Cutler and Cordero-Braña (1996); Karunamuni andWu (2011), Wu and
Karunamuni (2012, 2015), Wu et al. (2010), and Tang and Karunamuni (2013).

This paper is organized as follows. Section 2 develops the proposed variable selec-
tion and estimation procedure and studies its asymptotic properties. Section 3 studies
the robustness properties of the proposed penalized procedures, and Sect. 4 presents
a computational algorithm. Monte Carlo studies, real-data examples, and concluding
remarks are given in Sects. 5, 6, and 7, respectively.

2 Robust variable selection

We consider a FMR model in which Y ∈ R is a univariate continuous response
variable,X ∈ R

p is a continuous random covariate vector, and the conditional density
of Y given X = x as

fθ (y|x) =
J∑

j=1

α j g(y, xTβ j , γ j ), (3)

where α j > 0, j = 1, . . . , J ,
∑J

j=1 α j = 1, x = (x1, . . . , xp)T , β j =
(β j1, . . . , β j p)

T are p × 1 parameter vectors, the γ j are parameters, θ =
(α1, . . . , αJ−1, βT

1 , . . . , βT
J , γ1, . . . , γJ )

T , and the function g(y, z, u) satisfies
g(y, z, u) ≥ 0 and

∫
g(y, z, u)dy = 1. We also assume that θ ∈ � and � is a

compact subset of RJ (p+2)−1. We shall assume throughout that the FMR model (3) is
identifiable. Also assume that J is fixed and that θ is the parameter of interest.

Let fθ ,η(y) denote the marginal mixture density function of Y given by

fθ ,η(y) =
∫

fθ (y|x)dη(x) =
J∑

j=1

α j

∫
g(y, xTβ j , γ j )dη(x), (4)

where η(x) denotes an unknown mixing distribution of X. Model (4) is a semipara-
metric mixture model. Under fairly general conditions, including the identifiability of
fθ (y|x), the semiparametric mixture model fθ ,η(y) is identifiable, and the maximum
likelihood estimators of (θ , η) are well established; see, e.g., Vaart (1996) and the ref-
erences therein. In what follows, we assume that the model fθ ,η(y) identifiable in the

sense that ‖ f 1/2θ1,η1
− f 1/2θ2,η2

‖2 = 0 implies θ1 = θ2 and η1 = η2. For semiparametric
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estimation of θ , a natural approach is to replace η by a consistent estimator, e.g., the
empirical distribution function of the Xi ’s, and then deals with the resulting marginal
density of Y

fθ ,n(y) = 1

n

n∑

i=1

fθ (y|Xi ) =
J∑

j=1

n∑

i=1

α j

n
g(y,XT

i β j , γ j ), (5)

where X1, . . . ,Xn is a random sample from η(x). This is the approach taken in this
paper to obtain a robust estimator of θ . For a given n design points {x1, x2, . . . , xn},
the identifiability of model (5) follows from that of model (3).

Assume that we have a random sample (Y1, X1), . . . , (Yn, Xn) with the condi-
tional density of Yi given Xi = xi and the marginal distribution of Xi are fθ (y|x)
given by (3) and η(x), respectively, i = 1, . . . , n. Let f̂n(y) denote a kernel-type
density estimator based on Y1, . . . ,Yn :

f̂n(y) = 1

nhn

n∑

i=1

K

(
y − Yi
hn

)
, (6)

where K (·) is a given kernel function and hn is a bandwidth such that hn → 0 as
n → ∞. Let θ0 denote the true parameter value of θ . Then, an MHD estimator of θ0

can be defined by argminθ∈� ‖ f 1/2θ ,n − f̂ 1/2n ‖2.
In the variable selection problem, it is assumed that some components of β j , j =

1, . . . , J, are equal to zero. The goal is to identify and estimate the subset model. It
has been argued that folded concave penalties are preferable to convex penalties such
as the L1-penalty in terms of both model-estimation accuracy and variable selection
consistency (Lv and Fan 2009; Fan andLv 2011). Let pλnj (|t |) = pa,λnj (|t |) be general
folded concave penalty functions defined on t ∈ (−∞,+∞) satisfying

(a) pλnj (t) are increasing and concave in t ∈ [0,+∞);
(b) pλnj (t) are differentiable in t ∈ (0,+∞) with p′

λnj
(0) := p′

λnj
(0+) ≥ a1λnj ,

p′
λnj

(t) ≥ a1λnj for t ∈ (0, a2λnj ], p′
λnj

(t) ≤ a3λnj for t ∈ [0,+∞), and

p′
λnj

(t) = 0 for t ∈ [aλnj ,+∞) with a prespecified constant a > a2, where a1,
a2 and a3 are fixed positive constants.

The above family of general folded concave penalties contains several popular
penalties, including the SCAD penalty (Fan and Li 2001) and theMCP penalty (Zhang
2010).

Let F be the set of all densities with respect to the Lebesgue measure on the real
line. We define a penalized MHD functional T : F → R

J (p+2)−1 by

T (φ) = argmin
θ∈�

⎧
⎨

⎩

∥∥∥ f 1/2θ ,η
− φ1/2

∥∥∥
2 + 2

J∑

j=1

α
1/2
j

p∑

k=1

p′
λnj

(|β0 jk |)|β jk |
⎫
⎬

⎭ , (7)

where β0 j = (β0 j1, . . . , β0 j p)
T , j = 1, . . . , J , denote vectors of true parameter

values and fθ ,η(y) is given by (4). Since η(x) is unknown, fθ ,η(y) is unknown. Thus,
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494 Q. Tang, R. J. Karunamuni

by replacing fθ ,η(y) with a consistent estimator (5), we define an estimated penalized
MHD functional T̂ : F → R

J (p+2)−1 by

T̂ (φ) = argmin
θ∈�

⎧
⎨

⎩

∥∥∥ f 1/2θ ,n − φ1/2
∥∥∥
2 + 2

J∑

j=1

α
1/2
j

p∑

k=1

p′
λnj

(
|β(0)

jk |
)

|β jk |
⎫
⎬

⎭ , (8)

where β
(0)
j = (β

(0)
j1 , . . . , β

(0)
j p )T , j = 1, . . . , J, is obtained from θ (0) =

argminθ∈� ‖ f 1/2θ ,n − f̂ 1/2n ‖2, an initial robust estimator of θ .Then, the proposed penal-
ized MHD estimator of θ0 (the true parameter value of θ) is defined by

θ̂ = T̂ ( f̂n) = argmin
θ∈�

⎧
⎨

⎩

∥∥∥ f 1/2θ ,n − f̂ 1/2n

∥∥∥
2 + 2

J∑

j=1

α
1/2
j

p∑

k=1

p′
λnj

(
|β(0)

jk |
)

|β jk |
⎫
⎬

⎭ .

(9)
Since ‖ f 1/2θ ,n − f̂ 1/2n ‖2 = 2 − 2

∫
f 1/2θ ,n (y) f̂ 1/2n (y)dy, from (9) we have

θ̂ = argmax
θ∈�

⎧
⎨

⎩

∫
f 1/2θ ,n (y) f̂ 1/2n (y)dy −

J∑

j=1

α
1/2
j

p∑

k=1

p′
λnj

(
|β(0)

jk |
)

|β jk |
⎫
⎬

⎭ . (10)

The functional T (.) defined by (7) is said to be essentially unique if fθ ,η(y) is
nondegenerate for any θ ∈ T (φ), and any other element of T (φ) can be obtained
from θ ∈ T (φ) by permuting the labels of the components. The next theorem gives
continuity of the functional T̂ with respect to Hausdorff metric (Pollard 1981). The
Hausdorff metric, say δ̌, is defined for compact subsets A, B by δ̌(A, B) < ε if and
only if every point of A is within a Euclidean distance ε of at least one point of B, and
vice versa.

Theorem 1 For each η, assume that the class { fθ ,η(y) : θ ∈ �} is identifiable, where
fθ ,η(y) is given by (4). Further assume that the function g(y, z, u) in (4) is continuous
in (z, u) for almost every y. Then, we have

(i) For every φ ∈ F , there exists θ ∈ � such that θ minimizes the function inside
(7). For every φ ∈ F , there exists θ ∈ � such that θ minimizes the function
inside (8).

(ii) If T (φ) and T̂ (φ) are essentially unique, then T̂ (φn) → T (φ) in the Hausdorff
metric for any sequences {φn}n≥1 and { fθ ,n}n≥1 such that ‖φ1/2

n − φ1/2‖ → 0
and supθ∈� ‖ f 1/2θ ,n − f 1/2θ ,η

‖ → 0 as n → ∞.
(iii) θ0 ∈ T ( fθ0,η) and T ( fθ0,η) is essentially unique.

Theproofs of (i) and (ii) of Theorem1are similar to those of (1) and (2), respectively,
of Theorem 2.1 in Tang and Karunamuni (2013). Let D0(θ, η) = ‖ f 1/2θ ,η

− f 1/2θ0,η
‖2 +

2
∑J

j=1 α
1/2
j

∑p
k=1 p

′
λnj

(|β0 jk |)|β jk |. Part (iii) in Theorem 1 follows from the fact
that D0(θ0, η) = 0 and that fθ ,η is nondegenerate and the class { fθ ,η(y) : θ ∈ �} is
identifiable.
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Theorem 3.1 of Tang and Karunamuni (2013) shows that ‖ f̂ 1/2n − f 1/2θ0,η
‖ →P 0,

supθ∈� ‖ f 1/2θ ,n − f 1/2θ ,η
‖ →P 0. Then, by (ii) of Theorem 1, we have the next theorem.

Theorem 2 Under the assumptions of Theorem 1, suppose that condition (C3) defined
in “Appendix” holds and

∫
supt∈
 | ∂ ft (y)

∂t |dy < +∞ in (C1) and

∫

|y|>L

∫

‖x‖≤L̃
|xr |ğz(y, x)dη(x)dy → 0,

∫

|y|>L

∫

‖x‖≤L̃
ğu(y, x)dη(x)dy → 0

in (C2). If hn → 0 and nhn → ∞, then θ̂ →P θ0 as n → ∞.

Next we show that the penalized MHD estimator defined by (9) has the oracle
property. Without loss of generality, let β j = (βT

j1,β
T
j2)

T , where β j1 ∈ R
d j and

β j2 ∈ R
p−d j . The vector of true parameters is denoted byβ0 j = (β0 j1, . . . , β0 j p)

T =
(βT

0 j1,β
T
0 j2)

T with each element of β0 j1 being nonzero and β0 j2 = 0. Generally, we

split the vector of true parameters θ0 = (θT01, θ
T
02)

T such that θ02 = 0; that is, θ02
consists of all β0 j2, j = 1, . . . , J . Let θ = (θT1 , θT2 )T . For convenience of notation,
we write fθ (y) for fθ ,η(y) defined by (4) in what follows.

Theorem 3 Let V1, . . . , Vn be a random sample from the joint distribution of (Y,X)

that satisfies the regularity conditions (C1)–(C6) in “Appendix”. Let pλnj (·) be general
folded concave penalty functions satisfying assumptions (a) and (b) defined above.
If λnj → 0 and

√
nλnj → ∞ as n → ∞, then the penalized MHD estimator

θ̂ = (θ̂
T
1 , θ̂

T
2 )T defined by (9) satisfies

(1) Sparsity: P(θ̂2 = 0) → 1.
(2) Asymptotic normality:

n1/2[H1(θ01)(θ̂1 − θ01) − An1(θ01)] →d N (0, �1(θ01)), (11)

where H1(θ01) = − ∫
S̈θ01(y) f

1/2
θ0

(y)dy, S̈
θ01

(y) = ∂2Sθ (y)
∂θ1∂θT1

|θ=θ0 , Sθ (y) =
f 1/2θ (y),

�1(θ01) =
∫

ψθ01(y)ψ
T
θ01

(y)dy

−
∫ [∫

ψθ01(y) fθ0(y|x)dy
] [∫

ψθ01(y) fθ0(y|x)dy
]T

dη(x),

An1(θ01) = 1
2μ2h2n

∫
ψθ01(y) f

′′
θ0

(y)dy with μ2 = ∫
v2K (v)dv,

ψθ01(y) = Ṡθ01(y)/[2 f 1/2θ0
(y)],
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496 Q. Tang, R. J. Karunamuni

Ṡθ1(y) = ∂Sθ (y)
∂θ1

|θ=θ0 , f ′′
θ (y) = ∂2 fθ (y)/∂y2. Further, if hn = b0n−γ for some

γ ∈ (1/4, 1/2) and some positive constant b0, then we have

n1/2(θ̂1 − θ01) →d N (0, H−1
1 (θ01)�1(θ01)H

−1
1 (θ01)).

The maximization of (10) involves a nonlinear weighted L1 regularization. To
simplify computations, denote M(θ) = ∫

f 1/2θ ,n (y) f̂ 1/2n (y)dy. Then, M(θ) can be
locally approximated by

M(θ) ≈ M(θ (0)) + ∇M(θ (0))T (θ − θ (0)) + 1

2
(θ − θ (0))T∇2M(θ (0))(θ − θ (0)).

Using ∇M(θ (0)) = 0, we then solve the penalized minimization problem

θ̃ = argmin
θ∈�

{
1

2
(θ − θ (0))T [−∇2M(θ (0))](θ − θ (0))

+
J∑

j=1

α
1/2
j

p∑

k=1

p′
λnj

(|β(0)
jk |)|β jk |

⎫
⎬

⎭ . (12)

Let H(θ0) = − ∫
S̈θ0(y) f

1/2
θ0

(y)dy, where S̈
θ
(y) = ∂2Sθ (y)

∂θ∂θT
. By arguments similar to

those used in the proof of (22) in “Appendix”, it follows that−∇2M(θ (0)) →P H(θ0).
Following an argument similar to the proof of Theorem 5 of Zou and Li (2008) and
using Theorem 3.3 of Tang and Karunamuni (2013), we have the next theorem.

Theorem 4 Under the assumptions of Theorem 3, the estimator θ̃ = (θ̃
T
1 , θ̃

T
2 )T

defined by (12) satisfies the conclusions of Theorem 3.

Remark 1 Under the assumptions of Theorem 1, suppose that condition (C3)
defined in “Appendix” holds. If

∑∞
n=1 exp(−�nh2n) < ∞ for any � > 0 and∫ ∫

ğu(y, x)dη(x)dy < +∞,
∫ ∫ |xr |ğz(y, x)dη(x)dy < +∞, then the weak con-

sistency result given in Theorem 2 can be strengthened to the strong consistency of
θ̂ . Moreover, we have that supθ∈� ‖ f 1/2θ ,n − f 1/2θ ,η

‖2 a.s.−−→ 0 and β
(0)
j

a.s.−−→ β0 j for

j = 1, . . . , J . By Devroye and Wagner (1979), it follows that ‖ f̂n − fθ0,η‖1 a.s.−−→ 0.

Since ‖ f̂ 1/2n − f 1/2θ0,η
‖2 ≤ ‖ f̂n − fθ0,η‖1, we have ‖ f̂ 1/2n − f 1/2θ0,η

‖2 a.s.−−→ 0. Hence,

from (7) and (9) we see that θ̂ is Fisher consistent.

Remark 2 In (9), when α
1/2
j is replaced by α j in the penalty terms, the conclusions of

Theorems 1–4 still hold. For computational convenience, we have chosen α
1/2
j instead

of α j in the penalty terms; see computational algorithm in Sect. 4 for more details.

Remark 3 If X is a discrete random covariate vector with possible values x̃k, k ∈
N

p for N = {1, 2, . . .} and the probability function of X is η(x), then the marginal
density function of Y is fθ (y) = ∑

k fθ (y|x̃k)η(x̃k). Under some conditions similar
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to (C1)–(C6) in “Appendix”, the conclusions of Theorems 1–4 then still hold. For
example, in condition (C2),

∫
|y|>L

∫
‖x‖≤L̃ ğu(y, x)dη(x)dy → 0 can be replaced by∫

|y|>L

∑
‖x̃k‖≤L̃ ğu(y, x̃k)η(x̃k)dy → 0.

Remark 4 For fixed design x, we regard X as a discrete uniform random vector with
probability function η(xi ) = P{X = xi } = 1/n for i = 1, . . . , n. In this case,
the marginal density function of Y becomes fθ ,n(y) = 1

n

∑n
i=1 fθ (y|xi ), and the

parameter θ can be still estimated by (9).

Remark 5 It is important to note here that the robust penalized MHD estimator θ̂

defined by (9) is a semiparametric estimator, obtained by replacing the infinite-
dimensional nuisance parameter η by a consistent estimator, the empirical distribution
function of the Xi ’s in this case. The price one pays for this procedure may be a slight
reduction in efficiency of some components of θ . To further examine this point on
efficiency of θ̂1, we consider the following example.

Set J = 1 in (3) and suppose β01 
= 0, β02 
= 0, β03 = . . . = β0p = 0.
Let X = (X1, . . . , X p)

T and θ01 = (β01, β02)
T . Assume that X1 ≡ 1 and

X2 ∼ N (0, σ 2), where σ > 0 is a known constant. We further assume that

fθ01(y|x) = 1√
2πγ

exp{−[y−(β01+β02x2)]2
2γ 2 }, where γ is a known parameter. Then,

the marginal density function of Y is fθ01(y) = 1√
2π(σ 2β2

02+γ 2)
exp{− (y−β01)

2

2(σ 2β2
02+γ 2)

}.
Under the reduced model when all zero effects are removed, the Fisher information is
I1(θ01) = diag(1/γ 2, σ 2/γ 2) and I−1

1 (θ01) = γ 2diag(1, 1/σ 2). It is easy to prove
that H1(θ01) = 1

4(σ 2β2
02+γ 2)2

diag(σ 2β2
02 + γ 2, 2σ 4β2

02) and

�1(θ01) = γ 2

16(σ 2β2
02 + γ 2)2

diag(1, 2σ 4β2
02(2σ

2β2
02 + γ 2)/(σ 2β2

02 + γ 2)2).

Hence

H−1
1 (θ01)�1(θ01)H

−1
1 (θ01) = γ 2diag

(
1,

1

σ 2 [1 + γ 2/(2σ 2β2
02)]

)
.

FromWang et al. (2007), the asymptotic covariance matrix of least-absolute deviation
(LAD) lasso estimator of θ01 is π

2n I
−1
1 (θ01). Let ε = Y − (β01 + β02X2). If ε is

independent of X2, then byTheorem1ofWang et al. (2013), the asymptotic covariance
matrix of exponential squared loss (ESL) estimator of θ01 is L(γ0)I

−1
1 (θ01)/n with

L(γ0) =
[

γ0
2γ 2+γ0

(2 − γ0
2γ 2+γ0

)
]−3/2

. Note that L(γ0) decreases as γ0 increases and

tends 1 as γ0 → +∞. By comparing, we find that the asymptotic variance of the
penalized MHD estimator of β01 is equal to that of the maximum penalized likelihood
estimator of β01, but it is less than that of the LAD-lasso and ESL estimators of
β01. On the other hand, the asymptotic variance of the penalized MHD estimator of
β02 is larger than that of the maximum penalized likelihood estimator of β02. When
γ 2/σ 2β2

02 < (π − 2), that is Var(ε) < (π − 2)Var(β02X2), the asymptotic variance
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498 Q. Tang, R. J. Karunamuni

of the penalized MHD estimator of β02 is less than that of the LAD-lasso estimator
of β02. For the ESL method, larger γ0 can improve the efficiency of the estimator;
however, it reduces the breakdown point of the estimator.

An alternative approach that may be used here is to first assume the density of X
exists, call it η, and then replace the unknown density ηwith a suitable estimator in the
joint density fθ (y, x) = fθ (y|x)η(x) of (Y,X), and finally minimize the Hellinger
distance between the corresponding expression and a nonparametric density estima-
tor f̂n(y, x) of the density of (Y,X). This method compares well with the likelihood
method of Khalili and Chen (2007) while retaining good robustness properties. How-
ever, since the vector (Y,X) is Rp+1-valued, the above approach may face difficult
issues related to high-dimensional construction of a nonparametric density estimator
f̂n(y, x), as the curse of dimensionality affects the rates of convergence of f̂n(y, x),
and which, in turn, may restrict its application. Thus, we have implemented a semi-
parametric approach in this paper for the construction of our estimator. The proposed
estimator is easy to implement in practice where the asymptotic efficiency issues are
less important, but the robustness is more desirable.

3 Robustness properties

In this section, we establish some robustness properties of the proposed penalized
MHD estimator by finding its finite sample breakdown point. Roughly speaking, this
is the proportion of incorrect observations an estimator can handle before giving an
arbitrarily large result (Donoho 1982; Donoho and Huber 1983). This is a global mea-
surement of robustness in terms of resistance to outliers. Following Donoho (1982),
we define a measure of discrepancy between parameter vectors θ1 and θ2 as

d(θ1, θ2) =
J∑

j=1

(∥∥β j1 − β j2

∥∥2 + γ j1

γ j2
+ γ j2

γ j1

)
.

Suppose V n = (V1, . . . , Vn) is a data set of size n from the distribution of (Y,X), and
suppose V n1 = (Vn+1, . . . , Vn+n1) denotes any (contaminated) data set of size n1. An
estimator θ̂ is said to break down if d(θ̂(V n ∪ V n1), θ̂(V n)) = ∞ for an appropriate
choice of Vn+1, . . . , Vn+n1 . Let n

∗
1 denote the smallest number of contaminating points

for which θ̂ breaks down. Then, the finite-sample breakdown point b∗(θ̂ , V n) of θ̂ at
V n is defined as n∗

1/(n + n∗
1). Define

δ∗ = lim inf
θ1,θ2

∥∥∥ f 1/2θ1
− f 1/2θ2

∥∥∥
2
,

where the limit is taken as d(θ1, θ2) → ∞. Let f̂n(hn) be a kernel density estimator
of fθ0 with bandwidth hn and given some i.i.d. data (Y1, . . . ,Yn). Let θ̂(hn) be the
estimator of θ0 defined by (9) based on f̂n(hn). Let fn(θ̂(hn)) = f

θ̂(hn),n
. Then, we

have the following result on the breakdown point of θ̂ .
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Theorem 5 Assume that the parameter space is bounded. Then, the breakdown point
of θ̂(hn) satisfies

b∗(θ̂(hn), V n) ≥ (δ∗/4 − an,n1 − εn,n1/4)/(2 − an,n1), (13)

where an,n1 =
∥∥∥ f 1/2(θ̂(hn)) − f̂ 1/2n (hn+n1)

∥∥∥
2
,

εn,n1 =
∥∥∥ f 1/2n+n1(θ̂(hn+n1)) − f 1/2(θ̂(hn+n1))

∥∥∥
2 + 2

∥∥∥ f 1/2n+n1(θ̂(hn)) − f 1/2(θ̂(hn))
∥∥∥
2

+3
∥∥∥ f 1/2n (θ̂(hn)) − f 1/2(θ̂(hn))

∥∥∥
2 + 4P∗

n,n1

and

P∗
n,n1 =

J∑

j=1

α̂
1/2
j,n

p∑

k=1

p′
λ(n+n1) j

(|β(0)
jk,n+n1

|)|β̂ jk,n|

−
J∑

j=1

α̂
1/2
j,n+n1

p∑

k=1

p′
λ(n+n1) j

(|β(0)
jk,n+n1

|)|β̂ jk,n+n1 |.

Since
∥∥∥ f̂ 1/2n (hn+n1) − f 1/2θ0

∥∥∥
2 ≤

∥∥∥ f̂n(hn+n1) − fθ0

∥∥∥
1
and by Devroye and Wag-

ner (1979), ‖ f̂n(hn+n1) − fθ0‖1 →P 0 as hn+n1 → 0 and nhn+n1 → ∞.

Hence,
∥∥∥ f̂ 1/2n (hn+n1) − f 1/2θ0

∥∥∥
2 →P 0. By Theorem 2, θ̂(hn) →P θ0, and then

by the dominated convergence theorem, it follows that
∥∥∥ f 1/2(θ̂(hn)) − f 1/2θ0

∥∥∥
2 ≤

‖ f (θ̂(hn)) − fθ0‖1 →P 0. Hence, an,n1 →P 0 as hn+n1 → 0 and nhn+n1 → ∞.
Further, we have

∥∥∥ f 1/2n+n1(θ̂(hn+n1)) − f̂ 1/2n+n1(hn+n1)

∥∥∥
2

+ 2
J∑

j=1

α̂
1/2
j,n+n1

p∑

k=1

p′
λ(n+n1) j

(|β(0)
jk,n+n1

|)|β̂ jk,n+n1 |

≤
∥∥∥ f 1/2n+n1(θ

(0)(hn+n1)) − f̂ 1/2n+n1(hn+n1)

∥∥∥
2

+ 2
J∑

j=1

α
(0)
j,n+n1

1/2
p∑

k=1

p′
λ(n+n1) j

(|β(0)
jk,n+n1

|)|β(0)
jk,n+n1

|

and
∥∥∥ f 1/2n+n1(θ

(0)(hn+n1)) − f̂ 1/2n+n1(hn+n1)

∥∥∥
2 ≤

∥∥∥ f 1/2n+n1(θ̂(hn+n1)) − f̂ 1/2n+n1(hn+n1)

∥∥∥
2
.

Hence, it follows that
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500 Q. Tang, R. J. Karunamuni

J∑

j=1

α̂
1/2
j,n+n1

p∑

k=1

p′
λ(n+n1) j

(|β(0)
jk,n+n1

|)|β̂ jk,n+n1 |

≤
J∑

j=1

α
(0)
j,n+n1

1/2
p∑

k=1

p′
λ(n+n1) j

(|β(0)
jk,n+n1

|)|β(0)
jk,n+n1

| ≤ C0 max
1≤ j≤J

λ(n+n1) j ,

where C0 is a positive constant. Therefore, |P∗
n,n1 | ≤ C1 max1≤ j≤J λ(n+n1) j , where

C1 is a positive constant. Using Theorem 3.1 of Tang and Karunamuni (2013), we

have supθ∈�

∥∥∥ f 1/2n (θ) − f 1/2(θ)

∥∥∥
2 →P 0. Thus, εn,n1 →P 0 as n → ∞. Therefore,

with probability tending to 1,

b∗(θ̂(hn), V n) ≥ δ∗/8. (14)

Now assume that the conditional densities g(y, xTβ j , γ j ) belong to a normal fam-
ily. If d(θ1, θ2) → ∞, then there exists some integer l, 1 ≤ l ≤ J, such that∥∥βl1 − βl2

∥∥2 + γl1
γl2

+ γl2
γl1

→ ∞. Hence
∥∥βl1

∥∥ + γ −1
l1 → ∞ or

∥∥βl2

∥∥ + γ −1
l2 → ∞.

Suppose
∥∥βl1

∥∥ + γ −1
l1 → ∞. Then

lim
‖βl1‖+γ −1

l1 →∞
fθ1(y) =

∑

j 
=l

α j

∫
g(y, xTβ j , γ j )dη(x) =: f−l,θ1(y).

It follows that

lim
‖βl1‖+γ −1

l1 →∞

∫
f 1/2θ1

(y) f 1/2θ2
(y)dy =

∫
f 1/2−l,θ1

(y) f 1/2θ2
(y)dy

≤
(∫

f−l,θ1(y)dy
∫

fθ2(y)dy

)1/2

= (1 − αl)
1/2.

Therefore,

δ∗ ≥ 2min
j

[1 − (1 − α j )
1/2]. (15)

When J = 1 in model (3), i.e., α1 = 1 and α j = 0 for j ≥ 2, we have δ∗ = 2.
We note from (14) and (15) that if α j is small for some j , then the breakdown

point of the estimator θ̂(hn) is small. This can be interpreted as follows: when J >

1 and α j is small, then data from the j-th component are about [α j n] among the
data set V n = (V1, . . . , Vn), where [α j n] denotes the integer part of α j n. Further,
V n1 = (Vn+1, . . . , Vn+n1) is also the contaminated data of the estimators β̂ j and γ̂ j

of j-th component. Note that small n1/(n + n1) can make n1/([nα j ] + n1) large, and
large n1/([nα j ] + n1) can result in breakdown of the estimators β̂ j and γ̂ j . When the

estimators β̂ j and γ̂ j break down, the estimator θ̂(hn) also breaks down.
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Remark 6 A positive value for the breakdown point indicates that the estimator is
robust against data contamination. Assume that the density estimates f̂ 1/2n (hn+n1)

and f̂ 1/2n1 (hn+n1) based on V n and V n1 , respectively, have disjoint supports. Then,
the lower bound (δ∗/4 − an,n1 − εn,n1/4)/(2 − an,n1) of (13) can be replaced by
1− [(2− (δ∗ − εn,n1)/4)/(2− an,n1)]2. Since an,n1 →P 0 and εn,n1 →P 0, we have

b∗(θ̂(hn), V n) ≥ 1 − (1 − δ∗/8)2 ≥ 1 − [3/4 + max
j

(1 − α j )
1/2]2,

with probability tending to one.When J = 1 inmodel (3), we obtain b∗(θ̂(hn), V n) ≥
7/16 = 0.4375, which is close to the maximum breakdown point value 0.5.

Remark 7 When J = 1 in model (3), Maronna (1976) indicated that the nonpenalized
M-estimator of θ0 has a breakdown point with an upper bound of 1/(p+1). According
to Devlin et al. (1981), the empirical breakdown point of M-estimators might in fact
be much lower than the upper bound. By (14) and (15), we see that theMHD estimator
of θ0 has an asymptotic breakdown at least 1/4, and it is at least 7/16 under some
cases, as indicated in Remark 6. Hence, for large p, the MHD estimator has better
robustness properties than the M-estimator.

Remark 8 Donoho (1982) andDonoho andHuber (1983) introduced another notion of
finite-sample robustness, namely the replacement breakdownpoint, based on replacing
some with new data. For example, n1 of the n values of Vn are changed arbitrarily,
replacing them with new values and producing a new data set V ∗

n of size n. Then, the
breakdown point is defined as the smallest fraction of contaminating points for which
the estimator breaks down. Toma (2008) studied the replacement breakdown point for
some multivariate distributions. We believe similar results can be obtained here when
using the replacement breakdown point as the measure of robustness.

Remark 9 The influence function approach is another useful method for evaluating
the robustness properties of estimators; it describes the local stability of an estimator
in the presence of an outlier. See Hampel et al. (1986) for the theory behind influence
functions of estimators and for a characterization of robustness based on influence
functions. For a fixed point z ∈ R, let δz denote the uniform density on the interval
(z − γ, z + γ ), where γ > 0 is very small, and let fθ ,η,z,ε = (1 − ε) fθ ,η + εδz for
θ ∈ � and ε ∈ [0, 1), where fθ ,η is given by (4). The density function fθ ,η,z mod-
els an experiment where independent observations distributed according to fθ ,η are
mixed with approximately 100ε%gross errors located near z.We then define the influ-
ence function of estimators of type (9) as IFη(z) = limε↓0 1

ε
{T ( fθ ,η,z,ε) − T ( fθ ,η)},

assuming that the limit exists. This definition is consistent with the one defined in Shen
(1995) for semiparametric models. It is clear that IFη(z) mostly depends on the first
term on right-hand side of (7) and appears to be of the form IFη(z) = c1mη(z) + c2,
where c1 and c2 are constants depending on the penalty functions p′

λnj
, and mη(z) =

limε↓0 1
ε
{T1( fθ ,η,z,ε) − T1( fθ ,η)} with functional T1 : F → R

J (p+2)−1 given by

T1(φ) = argminθ∈� ‖ f 1/2θ ,η
− φ1/2‖2. As observed in Beran (1977), mη(z) can be

an unbounded function for many families, such as the normal location-scale family.
Thus, the influence function IFη(z) can be an unbounded function in some cases.
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4 Computational algorithm

In this section, we discuss the computational issues and propose an algorithm to
compute the penalized MHD estimator defined by (9). First, we write

∫
f 1/2θ ,n (y) f̂ 1/2n (y)dy −

J∑

j=1

α
1/2
j

p∑

k=1

p′
λnj

(|β(0)
jk |)|β jk |

=
J∑

j=1

√
α j

[∫ √
α j (y)gnj (y,β j , γ j ) f̂n(y)dy −

p∑

k=1

p′
λnj

(|β(0)
jk |)|β jk |

]

=:
J∑

j=1

√
α j Hnj (β j , γ j ) =: Gn(θ , α(y)),

where gnj (y,β j , γ j ) = 1
n

∑n
i=1 g(y,X

T
i β j , γ j ), α(y) = (α1(y), . . . , αJ (y))T and

α j (y) = α j gnj (y,β j , γ j )/

(
J∑

l=1

αl gnl(y,βl , γl)

)
.

Treating α(y) as fixed and maximizing Gn(θ, α(y)) with respect to θ subject to the
constraint

∑J
j=1 α j = 1, we obtain

(β̂ j , γ̂ j ) = argmax(β j ,γ j )
Hnj (β j , γ j ), α̂ j = H2

nj (β̂ j ,γ̂ j )
∑J

l=1 H
2
nl (β̂l ,γ̂l )

.

Treating θ as fixed and maximizing Gn(θ , α(y)) with respect to α j (y) subject to
the constraint

∑J
j=1 α j (y) = 1, we have

α∗
j (y) = α j gnj (y,β j , γ j )

∑J
l=1 αl gnl(y,βl , γl)

.

Then, the proposed algorithm can be summarized as follows:
Let θ (0) = (α

(0)
1 , . . . , α

(0)
J ,β

(0)
1 , . . . ,β

(0)
J , γ

(0)
1 , . . . , γ

(0)
J ) be an initial estimator of

θ .
Step 1. For m = 1, 2, . . . , compute

α
(m−1)
j (y) = α

(m−1)
j gnj (y,β

(m−1)
j , γ

(m−1)
j )

∑J
l=1 α

(m−1)
l gnl(y,β

(m−1)
l , γ

(m−1)
l )

.
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Step 2. Solve the following optimization problem to obtain β
(m)
j , γ (m)

j , and α
(m)
j ,

j = 1, . . . , J :

(β
(m)
j , γ

(m)
j ) = argmax(β j ,γ j )

H (m)
nj (β j , γ j ), α

(m)
j = [H (m)

nj (β
(m)
j ,γ

(m)
j )]2

∑J
l=1[H (m)

nl (β
(m)
l ,γ

(m)
l )]2 ,

where H (m)
nj (β j , γ j ) = ∫ √

α
(m−1)
j (y)gnj (y,β j , γ j ) f̂n(y)dy − ∑p

k=1 p
′
λnj

(|β(0)
jk |)

|β jk |.
Step 3. If ‖θ (m) − θ (m−1)‖ < ε for a small prespecified threshold value ε, stop;

otherwise, set m = m + 1 and return to step 1.
Since H (m)

nj (β
(m)
j , γ

(m)
j ) ≥ H (m)

nj (β
(m−1)
j , γ

(m−1)
j ), it is easy to show that

Gn(θ
(m), α(m)(y)) ≥ Gn(θ

(m−1), α(m−1)(y)). Hence,Gn(θ
(m), α(m)(y)) is increasing

as a function ofm. The algorithm consists of a sequence ofweighted single-component
MHDvariable selection problems. The algorithm is similar to the EM algorithmwhich
consists of a sequence of weighted maximum likelihood problems. However, it is dif-
ficult to find argmax(β j ,γ j )

H (m)
nj (β j , γ j ). Thus, we make following adjustments. Set

Rnj (β j , γ j ) =
∫ √

α j (y)gnj (y,β j , γ j ) f̂n(y)dy.

Let (β(0)
j , γ

(0)
j ) be the maximizer of Rnj (β j , γ j ). Set

w
(0)
nj (y) =

√
α j (y) f̂n(y)/gnj (y,β

(0)
j , γ

(0)
j ).

For (β j , γ j ) near (β
(0)
j , γ

(0)
j ), we have

Rnj (β j , γ j )

≈
∫

w
(0)
nj (y)gnj (y,β j , γ

(0)
j )dy

≈ Rnj (β
(0)
j , γ

(0)
j ) + (β j − β

(0)
j )T

∫
w

(0)
nj (y)

∂gnj (y,β j , γ
(0)
j )

∂β j

∣∣∣∣β j=β
(0)
j
dy

+ (β j − β
(0)
j )T

∫
w

(0)
nj (y)

∂g2nj (y,β j , γ
(0)
j )

∂β j∂βT
j

∣∣∣∣β j=β
(0)
j
dy(β j − β

(0)
j ) .

Since
∫

w
(0)
nj (y)

∂gnj (y,β j ,γ
(0)
j )

∂β j
|
β j=β

(0)
j
dy = 0 and

∂g2nj (y,β j , γ
(0)
j )

∂β j∂βT
j

∣∣∣∣∣β j=β
(0)
j

= 1

n

n∑

i=1

d2g(y, z, γ (0)
j )

dz2

∣∣∣∣∣
z=XT

i β
(0)
j

Xi X
T
i ,
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we set Y (0)
i j = XT

i β
(0)
j and �i i j = − ∫

w
(0)
nj (y)

d2g(y,z,γ (0)
j )

dz2
|
z=XT

i β
(0)
j
dy and then solve

the penalized minimization problem

β̂ j = argminβ j

{
1

n

n∑

i=1

�i i j (Y
(0)
i j − XT

i β j )
2 +

p∑

k=1

p′
λnj

(|β(0)
jk |)|β jk |

}
.

Now β̂ j can be obtained using the procedure given in Zou and Li (2008). In this paper,

we compute β̂ j using the pathwise coordinate optimization technique introduced in

Friedman et al. (2007). After computing β̂ j , j = 1, . . . , J , we solve the maximiza-

tion problem γ̂ j = argmaxγ j

∫ √
α j (y)gnj (y, β̂ j , γ j ) f̂n(y)dy to obtain γ̂ j . Using the

above results, we now propose the following revised algorithm for variable selection
and parameter estimation.

Algorithm:
Let θ (0) = (α

(0)
1 , . . . , α

(0)
J ,β

(0)
1 , . . . ,β

(0)
J , γ

(0)
1 , . . . , γ

(0)
J ) be an initial estimator of

θ .
Step 1. For m = 1, 2, . . . , compute

α
(m−1)
j (y) = α

(m−1)
j gnj (y,β

(m−1)
j , γ

(m−1)
j )

∑J
l=1 α

(m−1)
l gnl(y,β

(m−1)
l , γ

(m−1)
l )

.

Step 2. Solve the following optimization problem to obtain β
(m)
j , γ (m)

j , and α
(m)
j ,

j = 1, . . . , J :

β
(m)
j = argminβ j

{
1

n

n∑

i=1

�
(m)
i i j (Y (m)

i j − XT
i β j )

2 +
p∑

k=1

p′
λnj

(|β(m−1)
jk |)|β jk |

}
(16)

and

γ
(m)
j = argmaxγ j

∫ √
α

(m−1)
j (y)gnj (y,β

(m)
j , γ j ) f̂n(y)dy,

α
(m)
j = [H (m)

nj (β
(m)
j , γ

(m)
j )]2

∑J
l=1[H (m)

nl (β
(m)
l , γ

(m)
l )]2

,

where Y (m)
i j = XT

i β
(m−1)
j , �(m)

i i j = − ∫
w

(m−1)
nj (y)

d2g(y,z,γ (m−1)
j )

dz2
|
z=XT

i β
(m−1)
j

dy, and

w
(m−1)
nj (y) =

√
α

(m−1)
j (y) f̂n(y)/gnj (y,β

(m−1)
j , γ

(m−1)
j ).

Step 3. If ‖θ (m) − θ (m−1)‖ < ε for a small prespecified threshold value ε, stop;
otherwise, set m = m + 1 and return to Step 1.
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To implement our algorithm, we need to select a bandwidth hn and tuning parame-
ters λnj . The bandwidth hn can be selected using a general bandwidth-choice method
for kernel density estimation such as the cross-validation method or the plug-in
bandwidth-selection method. If we use the plug-in bandwidth-selection method, then
the ideal optimal bandwidth is hopt = b0n−1/5 for some constant b0, which satisfies
condition (C5) in “Appendix”. Since 1/5 ∈ (1/4, 1/2), according to Theorem 3 the
estimators may be biased. Hence, the ideal bandwidth is not the optimal choice for
such problems. For simulations in Sect. 5, we choose hn = n−2/5, which gives good
empirical results. The tuning parameters λnj in (16) can be chosen using methods such
as cross-validation, GCV, AIC or BIC.

One can use the MHD estimator (see circa (6)) or the least-absolute-deviation
estimator of θ0 as the initial estimator in the above algorithm. In our simulations,
these two initial estimators gave comparable results.

5 Monte Carlo studies

In this section, we study the finite-sample performance and robustness properties of
the proposed penalized MHD estimator defined by (9) using simulation studies. We
compare themwith those of the likelihood-basedmethod proposed byKhalili andChen
(2007). We examine the finite-sample properties under the following two-component
normal mixture regression model:

fθ (y|X) = α1g(y,XTβ1, γ1) + (1 − α1)g(y, X
Tβ2, γ2), (17)

where g(y, μ, γ ) = 1√
2πγ

exp(−(y − μ)2/2γ 2), X = (X1, . . . , X5)
T , and β j =

(β j1, . . . , β j5)
T for j = 1, 2. We considered two distributions for the vector X:

X1, . . . , X5 mutually independent: X j ∼ U [0, 2] distribution and X ∼ N (0,�) for
j = 1, . . . , 5, with � = (ρ jk)5×5 and ρ jk = cor(X j , Xk) = (0.5)| j−k|. We also con-
sidered two cases for the regression parametersβ1 andβ2: (i)β1 = (1.2, 0, 0, 0.8, 0)T

and β2 = (2.5, 1, 0, 0, 2)T (this is a case of components being well separated), and
(ii) β1 = (1.6, 0, 0.8, 0, 0)T and β2 = (1.5, 0, 1, 0, 0)T (this is a case of components
being not well separated). The mixing probabilities were α1 = 0.25, 0.5, 0.75 and
γ1 = 1, γ2 = 1.2. In all the simulated designs, we used the SCAD penalty function
with a = 3.7. We set the sample size n to be 200 and based the simulated results on
500 replications. We also examined the MCP penalty function with a = 2, but the
results were similar to those for the SCAD penalty, so they were omitted here to save
space.

For each simulated data set, we compared the performance of two variable selec-
tion methods: the proposed MHD method and the likelihood-based method of Khalili
and Chen (2007). The SCAD penalty was used in both methods. We computed the
penalized MHD estimator using the algorithm given in Sect. 4 with the MHD estima-
tor (defined circa (6)) and the least-absolute-deviation estimator as initial estimators
and the Epanechnikov kernel function, K (t) = .75(1 − t2) for |t | ≤ 1, as the kernel
function in (6). The bandwidth was chosen as hn = n−2/5; this selection satisfies the
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Table 1 Comparison of MHD and ML for model (17) with X from a uniform distribution

α1 FP1 FN1 FP2 FN2 l1(α1) l1(β1) l1(β2) l1(γ1) l1(γ2)

0.25 MHDM 0.928 0.414 0.074 0.036 0.165 1.829 0.761 0.327 0.153

MHDL 0.904 0.436 0.076 0.032 0.167 1.720 0.764 0.328 0.149

ML 0.330 0.312 0.025 0.012 0.059 0.965 0.439 0.214 0.117

0.5 MHDM 0.102 0.100 0.148 0.060 0.105 0.594 0.986 0.148 0.161

MHDL 0.106 0.088 0.164 0.089 0.107 0.580 0.968 0.154 0.150

ML 0.070 0.066 0.058 0.022 0.038 0.377 0.546 0.116 0.124

0.75 MHDM 0.002 0.082 0.348 0.164 0.092 0.336 1.687 0.124 0.208

MHDL 0.006 0.076 0.324 0.168 0.086 0.350 1.545 0.112 0.215

ML 0.028 0.030 0.392 0.084 0.049 0.290 1.108 0.149 0.282

bandwidth assumptions in the theorems of Sect. 2. To select the tuning parameters
λnj for j = 1, 2 in (16), we generated an independent validation set of sample size
n = 200, following Fan et al. (2014). The validation error of the estimator β̂ j is defined

by
∑

i∈validation �
(m)
i i j (Ỹ (m)

i j − XT
i β̂ j )

2 with Ỹ (m)
i j = XT

i β
(m−1)
j and f̂n(y) in �

(m)
i i j

replaced by f̃n(y) = 1
nhn

∑n
i∈validation K (

y−Yi
hn

). We chose the penalization param-
eters λnj by minimizing the validation error. We computed the penalized maximum
likelihood estimator (MLE) using the method proposed in Khalili and Chen (2007).

For each model, we measured the estimation accuracy by the average l1-losses:
|α̂1 − α1|, ‖β̂ j − β j‖1, and |γ̂ j − γ j | for j = 1, 2 over 500 replications. These
are labeled as l1(α1), l1(β j ) and l1(γ j ), j = 1, 2, in all tables. We also evaluated
the selection accuracy by the average counts of false positive (FP) and false negative
(FN) over the 500 replications; that is, the number of noise covariates included in the
model and the number of signal covariates not included. These are labeled as FP1,
FP2, FN1 and FN2 in all tables. Table 1 displays the simulation results for the normal
model (17) with X having the uniform [0, 2] distribution, β1 = (1.2, 0, 0, 0.8, 0)T

and β2 = (2.5, 1, 0, 0, 2)T . In Table 1, MHDM denotes the MHD variable selection
method with the MHD estimator as the initial estimator, MHDL denotes the MHD
variable selection method with the least-absolute-deviation estimator as the initial
estimator, and ML denotes the maximum likelihood method (Khalili and Chen 2007).

Table 1 shows that, when the two components of the mixture model are well sepa-
rated, the maximum likelihood method outperforms the minimum Hellinger distance
method. Table 1 also shows that MHDL and MHDM give similar results. Thus, in
other simulations we employed the least-absolute-deviation estimator as the initial
estimator, as it was much easier to compute.

Table 2 presents the simulation results for X having the multivariate normal dis-
tribution N (0,�), with β1 = (1.2, 0, 0, 0.8, 0)T and β2 = (2.5, 1, 0, 0, 2)T . By
comparing the values in Tables 1 and 2, we note that the two procedures give poor
estimation and variable selection results. This is in part because the means of the two
components of the mixture model are all zero, so the two components are not well
separated.
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Table 2 Comparison of MHD and ML for model (17) with X from a normal distribution

α1 FP1 FN1 FP2 FN2 l1(α1) l1(β1) l1(β2) l1(γ1) l1(γ2)

0.25 MHD 1.800 0.976 0.036 0.158 0.257 4.450 0.995 1.218 0.905

ML 1.760 0.862 0.240 0.400 0.298 3.907 1.484 0.451 0.420

0.5 MHD 1.152 0.770 0.312 0.802 0.126 2.859 2.519 1.103 0.727

ML 1.424 0.702 0.456 0.940 0.168 3.253 2.718 0.394 0.364

0.75 MHD 0.420 0.378 0.674 1.582 0.238 1.222 4.131 0.712 0.391

ML 0.922 0.380 0.804 1.290 0.294 2.262 3.683 0.340 0.409

Table 3 Comparison of MHD and ML for model (17) with X from a uniform distribution, β1 =
(1.6, 0, 0.8, 0, 0)T , and β2 = (1.5, 0, 1, 0, 0)T

α1 FP1 FN1 FP2 FN2 l1(α1) l1(β1) l1(β2) l1(γ1) l1(γ2)

0.25 MHD 0.110 0.262 0.100 0.070 0.203 1.060 0.614 0.136 0.259

ML 0.206 0.434 0.192 0.098 0.256 0.888 0.654 0.271 0.257

0.5 MHD 0.074 0.206 0.082 0.074 0.134 0.973 0.567 0.136 0.257

ML 0.254 0.384 0.176 0.102 0.278 0.846 0.678 0.283 0.275

0.75 MHD 0.092 0.244 0.070 0.132 0.291 0.971 0.614 0.119 0.297

ML 0.234 0.526 0.152 0.104 0.398 0.929 0.635 0.234 0.299

From Table 2, we also observe that FP2 and l1(α1) for the MHD are less than those
for theML.Moreover, FP1, FN2, l1(β1) and l1(β2) for theMHDare less than those for
theML inmost cases. On the other hand, l1(γ1) and l1(γ2) for theMHD are larger than
those for the ML, and FN1 for the MHD is larger than that for the ML in most cases.
When the two components of the mixture model are not well separated, a proportion
of the data from one component are used for the variable selection and estimation of
the regression coefficients of the other component. Furthermore, Table 2 shows that
ML is sensitive to outlying distributions, whereas the proposed MHDmethod is more
robust.

Next, we considered another case in which the regression coefficients are not well
separated:β1 = (1.6, 0, 0.8, 0, 0)T andβ2 = (1.5, 0, 1, 0, 0)T . Tables 3 and 4 display
the simulation results with X having the uniform[0, 2] distribution and themultivariate
normal distribution N (0,�), respectively. It is clear from Tables 3 and 4 that MHD
outperforms ML in both cases. The estimates in Table 4 in fact are much better than
those in Table 2. This may be interpreted as follows: when the regression coefficients
of the two components of a mixture model are close, computing the estimators of the
regression coefficients of one component using the data from the other component
introduces a relatively small error.

To investigate the effect of data contamination on the two estimators, we added a
third component, w, to model (17) with a contamination rate α, i.e.,

fαθ (y|X) = (1−α)[α1g(y,XTβ1, γ1)+(1−α1)g(y,XTβ2, γ2)]+αw(y|X). (18)
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Table 4 Comparison of MHD and ML for model (17) with X from a normal distribution, β1 =
(1.6, 0, 0.8, 0, 0)T , and β2 = (1.5, 0, 1, 0, 0)T

α1 FP1 FN1 FP2 FN2 l1(α1) l1(β1) l1(β2) l1(γ1) l1(γ2)

0.25 MHD 0.038 0.008 0.010 0.020 0.256 0.363 0.329 0.422 0.226

ML 0.538 0.104 0.626 0.090 0.345 0.532 0.572 0.370 0.413

0.5 MHD 0.032 0.010 0.010 0.050 0.137 0.332 0.379 0.397 0.225

ML 0.524 0.060 0.690 0.088 0.304 0.456 0.601 0.347 0.441

0.75 MHD 0.018 0.012 0.002 0.170 0.252 0.289 0.472 0.384 0.202

ML 0.336 0.198 0.460 0.238 0.331 0.550 0.765 0.322 0.440

Table 5 Comparison of MHD and ML for model (18) with μ = 0 and σ = 8

n α1 FP1 FN1 FP2 FN2 l1(α1) l1(β1) l1(β2) l1(γ1) l1(γ2)

100 0.25 MHD 0.888 0.726 0.266 0.126 0.214 2.181 1.269 1.532 0.817

ML 0.960 0.954 0.334 0.152 0.187 2.801 1.275 2.510 0.587

0.5 MHD 0.268 0.390 0.364 0.226 0.166 1.140 1.767 1.260 0.961

ML 0.604 0.636 0.682 0.262 0.209 1.818 2.023 1.643 0.985

0.75 MHD 0.040 0.266 0.608 0.450 0.122 0.662 3.040 0.871 1.436

ML 0.260 0.404 1.178 0.464 0.138 1.105 3.968 1.121 1.423

200 0.25 MHD 0.798 0.542 0.100 0.038 0.189 1.903 0.815 1.484 0.714

ML 0.712 0.874 0.110 0.090 0.165 2.333 0.704 2.369 0.499

0.5 MHD 0.096 0.150 0.200 0.084 0.146 0.659 1.108 1.016 0.924

ML 0.318 0.398 0.304 0.138 0.184 1.277 1.136 1.532 0.740

0.75 MHD 0.003 0.086 0.422 0.234 0.111 0.353 2.024 0.745 1.326

ML 0.054 0.252 0.802 0.452 0.134 0.746 2.778 1.059 1.356

In the simulation, we set the contamination rate to be α = 0.05 and w is taken
as w(y|x) = 1√

2πσ
exp(−(y − μ)2/(2σ 2)). In each simulation, we computed the

MHD and ML estimators based on samples of sizes 100 and 200 from model (17),
but we replaced 100α% of the observations by random samples from the N (μ, σ 2)

distribution, which can be interpreted as an outlier distribution. For X having the
uniform[0, 2] distribution, with β1 = (1.2, 0, 0, 0.8, 0)T and β2 = (2.5, 1, 0, 0, 2)T

being well separated, Tables 5 and 6 give the simulation results under model (18) with
μ = 0, σ = 8 and μ = −5, σ = 0.5, respectively, which correspond to adding
outliers on both ends and on the left end, respectively. It is clear from the FP, FN,
and l1-loss values in Tables 5 and 6 that the MHD has a better performance than the
ML for these cases. Simulation results for adding outliers on the right end also gave
a similar conclusion, but these results are omitted here to save space.

By comparing Table 1 with Tables 5 and 6, we note that a small proportion of
contamination in the data can greatly affect the efficiency of the variable selection and
parameter estimation of theMLmethod, whereas it has little influence on the proposed
MHD method.
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Table 6 Comparison of MHD and ML for model (18) with μ = −5 and σ = 0.5

n α1 FP1 FN1 FP2 FN2 l1(α1) l1(β1) l1(β2) l1(γ1) l1(γ2)

100 0.25 MHD 0.962 1.300 0.198 0.074 0.204 3.958 1.061 2.825 1.154

ML 1.138 1.424 0.280 0.176 0.172 6.298 1.221 1.537 0.681

0.5 MHD 0.522 0.306 0.440 0.222 0.187 1.197 1.762 1.513 0.653

ML 0.612 0.872 0.792 0.244 0.241 2.670 1.792 1.644 0.697

0.75 MHD 0.448 0.842 0.638 0.818 0.324 2.088 3.276 1.992 0.879

ML 0.820 0.972 0.914 0.840 0.329 3.709 3.436 1.216 0.964

200 0.25 MHD 0.768 1.446 0.028 0.072 0.218 3.049 0.780 2.248 1.039

ML 1.094 1.066 0.094 0.140 0.182 4.522 0.912 1.376 0.589

0.5 MHD 0.304 0.206 0.162 0.140 0.156 0.762 1.109 1.417 0.639

ML 0.476 0.636 0.246 0.234 0.225 2.039 1.145 1.567 0.539

0.75 MHD 0.276 0.758 0.624 0.780 0.333 1.427 2.801 1.618 0.723

ML 0.652 0.874 0.890 0.810 0.389 3.532 2.835 1.224 0.854

In (18), let X = (X1, . . . , X35)
T , where X1, . . . , X35 are mutually independent

and X j ∼ U [0, 2] for j = 1, . . . , 35, β1 = (1.2, 0, 0, 0.8, 0, β(1)
6 , . . . , β

(1)
35 )T and

β2 = (2.5, 1, 0, 0, 2, β(2)
6 , . . . , β

(2)
35 )T with β

(1)
6 = · · · = β

(1)
35 = 0 and β

(2)
6 = . . . =

β
(2)
35 = 0. Table 7 displays the simulation results with μ = 0 and σ = 8 for n = 200

and n = 300.We see from Table 7 that theMHD performs better than theML, overall.
In summary, our simulation study shows that theMLmethod outperforms theMHD

method when the components of the mixture model are well separated, whereas the
MHDmethod performs better than the MLmethod when the components are not well
separated. Furthermore, the MHD method is more robust than the ML method to data
contamination.

6 Real-data examples

In this section, we analyze a real data set using the proposedmethodology and compare
the results with those of the penalized likelihood-based method (Khalili and Chen
2007).We analyzed the plasmabeta-carotene level data set froma cross-sectional study
(http://lib.stat.cmu.edu/datasets/PlasmaRetinol). It has observations for 315 patients,
273 females and 42 males.

Observational studies have suggested that a low dietary intake or low plasma con-
centrations of retinol, beta-carotene, or other carotenoids might be associated with an
increased risk of developing certain types of cancer. We are interested in the relation-
ship between the plasma beta-carotene level (betaplasma) and 11 covariates given as
age (x1), gender (x2), smoking status (x3), quetelet (x4), vitamin use (x5), number of
calories consumedper day (x6), grams of fat consumedper day (x7), grams of fiber con-
sumed per day (x8), number of alcoholic drinks consumed per week (x9), cholesterol
consumed (x10), and dietary beta-carotene consumed (x11). Since the observational
values of some predictors such as fiber and alcohol are small, other predictors such as
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Fig. 1 Histogram of the response Y

Table 8 Parameter estimates for plasma beta-carotene level data set

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

MHD C1 1.232 0 1.879 0 0 0 0 0 3.340 0 0 0

C2 3.868 0 8.798 5.258 0 0 0 0 3.293 0 0 0

ML C1 1.382 0 1.718 0 0 0 0 0 4.576 0 0 0

C2 4.806 0 4.111 0 0 0 0 0 16.050 71.375 0 0

calories and dietary beta-carotene are large. We set Y = betaplasma/100, and all the
predictors are first scaled to have a mean of zero and unit variance.

Figure 1 shows a histogram of Y . It indicates that there are some unusual points in
the response and suggests a mixture of two normal linear models:

Y ∼ αN (xTβ1, σ
2
1 ) + (1 − α)N (xTβ2, σ

2
2 ), (19)

with x being a 12×1 vector containing all the 11 potential covariates plus an intercept.
Table 8 presents the parameter estimates for the mixture model (19) calculated using
the proposed penalized MHD method and the penalized ML method, with the SCAD
penalty for both methods. For the MHD method, we have α̂ = 0.8555, σ̂1 = 0.4985,
and σ̂2 = 2.6623; and for the ML method, we obtain α̂ = 0.8310, σ̂1 = 0.5434,
and σ̂2 = 2.2519. By comparing Table 8 with Table 6 of Wang et al. (2013), we find
that all three methods, i.e., MHD, ML, and ESL-LASSO, select fiber. Table 8 shows
that MHD and ML both select gender. As indicated by the coefficients of the second
component of the model in Table 8, the ML method is more sensitive than the MHD
method to the outliers.

To evaluate the prediction performance of the selected models and the three meth-
ods, we applied a combination of the bootstrap and a cross-validation method to the
data set. For each bootstrap sample, we randomly divided the data into five partitions.
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Fig. 2 Boxplots for MSPE. 1 MHD method based on two components; 2 ML method based on two
components; 3 MHD method based on one component; 4ML method based on one component

We used four folds of the data to estimate the model and the remaining fold for the
testing data set. We classified each element of the testing data set into one of the two
components based on their estimated posterior probabilities (i.e., to component 1 (2)
if the estimated posterior probability for component 1 (2) is greater than 0.5). We cal-
culated the mean squared prediction error (MSPE) for the testing data set. TheMSPEs
for the MHD and ML methods over the 200 replications are reported as boxplots in
Fig. 2. For comparison, Fig. 2 also displays the boxplots of the MSPEs for the MHD
andML over the 200 replications based on a one-component linear model. This figure
shows that a finite mixture of two regressions fits the data better than the ordinary
linear model does. It also shows that the MHD has better predicting power than the
ML for this data set, which has some unusual data points.

7 Concluding remarks

We have proposed a robust variable selection procedure for FMR models using a
minimum-distance technique. We have investigated the asymptotic properties of the
proposed estimator. We have established some global robustness properties of our
estimator by finding its finite-sample breakdown point. Our breakdown-point results
appear to be new; to the best of our knowledge, there is no existingwork on breakdown-
point analysis for FMR models.

Variable selection is fundamentally important for knowledge discovery with high-
dimensional data (Fan and Li 2006). In spite of considerable progress on variable
selection in various models for high-dimensional data, there has been little work
on FMR models in this context. In fact, it appears that only the excellent work
of Städler et al. (2010) and Khalili and Lin (2013) addresses variable selection for
high-dimensional FMRmodels. From our simulations, we observed that the proposed
method does not perform quite well for high-dimensional cases such as p > n. Thus,
it would be interesting and useful to develop results similar to those in the present
paper for high-dimensional settings.
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Compared to likelihood-based approaches, inferences for FMR models with a dis-
tance measure, especially with the Hellinger distance, are generally more involved
from a computational point of view. Our algorithm reduces the computational burden
somewhat. Indeed, all the computations reported in Sects. 5 and 6 were carried out on
a personal computer. Although we have discussed only the continuous case in detail,
similar results can be easily established for the discrete case.

It is well known now that the minimum Hellinger distance approach leads to good
robust estimation results for various models. This approach, however, requires a non-
parametric density estimator and generally involves with some complications such
as the bandwidth-selection problem. To avoid density estimation, some alternative
approaches have been proposed; see, for example, the density power divergence tech-
nique defined in Basu et al. (1988) and the decomposable pseudo-distances method
proposed inBroniatowski et al. (2012), amongothers. Itwould be interesting to develop
results for robust variable selection and estimation in FMR models based on these
methods.
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Appendix

In this “Appendix”, we list the conditions used in the theorems and outline the proofs
of main results. For convenience of notation, we write fθ (y) for fθ ,η(y) defined by
(4). The following technical conditions are imposed:

(C1) E‖X‖2 < +∞ and max1≤i≤n ‖Xi‖ = Op(1).
∫
supt∈
 | ∂ ft (y)

∂t |dy < +∞,

where |b| = max1≤i≤k |bi | for a vector b = (b1, . . . , bk)T . S̈
(l,m)
θ (y) ∈ L2 for

1 ≤ l,m ≤ J (p + 2) − 1 and H(θ0) = − ∫
S̈θ0(y) f

1/2
θ0

(y)dy is a positive definite

matrix, where S̈(l,m)
θ (y) denotes the (l,m)th component of S̈θ (y), S̈θ

(y) = ∂2Sθ (y)
∂θ∂θT

,

and Sθ (y) = f 1/2θ (y).
(C2) The second and third continuous partial derivatives of g(y, z, u) exist w.r.t. y

and z, u, respectively. For a given L̃ > 0 and some ε-neighborhood of θ, B(θ, ε),

define g̃(y) = inf‖x‖≤L̃,t∈B(θ,ε)
min1≤ j≤k g(y, xT t j , u j ). Suppose that 1/g̃(y) is

bounded on any compact subset of R and that, as L → ∞,

∫
|y|>L

∫
‖x‖≤L̃ |xr |ğz(y, x)dη(x)dy → 0,

∫
|y|>L

∫
‖x‖≤L̃ ğu(y, x)dη(x)dy → 0,

∫
|y|>L

∫
‖x‖≤L̃ g

∗(y, x)dη(x)dy → 0,
∫
|y|>L

∫
‖x‖≤L̃ x2r (ġ∗

z (y,x))
2dη(x)

g̃(y) dy → 0,
∫
|y|>L

∫
‖x‖≤L̃ (ġ∗

u (y,x))2dη(x)
g̃(y) dy → 0,

∫
|y|>L

∫
‖x‖≤L̃ x4r (ġ∗

z (y,x))
4dη(x)

g̃3(y)
dy → 0,

∫
|y|>L

∫
‖x‖≤L̃ (ġ∗

u (y,x))4dη(x)

g̃3(y)
dy → 0,

∫
|y|>L

∫
‖x‖≤L̃ x2r x

2
q (g̈∗

zz(y,x))
2dη(x)

g̃(y) dy → 0,
∫
|y|>L

∫
‖x‖≤L̃ (g̈∗

uu(y,x))
2dη(x)

g̃(y) dy → 0,
∫
|y|>L

∫
‖x‖≤L̃ x2r (g̈∗

zu(y,x))
2dη(x)

g̃(y) dy → 0
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514 Q. Tang, R. J. Karunamuni

for r, q = 0, . . . , p, where x0 = 1, ğz(y, x) = supt∈
 max1≤ j≤k |ġz(y, xT t j , u j )|,
ğu(y, x) = supt∈
 max1≤ j≤k |ġu(y, xT t j , u j )|,

g∗(y, x) = sup
t∈B(θ,ε)

max
1≤ j≤k

g(y, xT t j , u j ), ġ∗
z (y, x) = sup

t∈B(θ,ε)

max
1≤ j≤k

|ġz(y, xT t j , u j )|,

g̈∗
zz(y, x) = supt∈B(θ,ε) max1≤ j≤k |g̈zz(y, xT t j , u j )|, ġ∗

u(y, x), g̈
∗
zu(y, x), and g̈

∗
uu(y, x)

are defined in a similar fashion, ġz(y, z, u) = ∂g(y,z,u)
∂z , ġu(y, z, u) = ∂g(y,z,u)

∂u ,

g̈zz(y, z, u) = ∂2g(y,z,u)

∂z2
, and g̈zu(y, z, u) = ∂2g(y,z,u)

∂z∂u .
(C3) The kernel function K (·) is a bounded symmetric density with compact

support [−M, M].
(C4) supy∈R sup|v|≤M

fθ0 (y+v)

f 1/2
θ0

(y)
= O(1), supy∈R sup|v|≤M

[ f ′′
θ0

(y+v)]2
f 7/4
θ0

(y)
= O(1), and

as L → ∞ ∫
|y|>L

Ṡ2
θ0q

(y)

f 1/2
θ0

(y)
dy → 0 for q = 1, . . . , J (p+2)−1,where f ′′

θ (y) = ∂2 fθ (y)
∂y2

and Ṡθq(y) is the qth entry of the vector Ṡθ (y).
(C5) The bandwidth hn = b0n−γ for some γ ∈ (1/8, 1/2) and constant b0 > 0.

E |Y |s < +∞ for s > 6/(1 − 2γ ). There exists some l, 1/s < l < (1 − 2γ )/6,

satisfying sup|y|≤nl sup|v|≤M
fθ0 (y+v)

fθ0 (y) = O(1), and as n → ∞

(n1/2hn)
−1

∫

|y|≤nl

|ġ jq(y)|
g j (y)

dy → 0, (n1/2hn)
−1

∫

|y|≤nl

|ġ jγ (y)|
g j (y)

dy → 0,

where g j (y) = g j (y, β j , γ j ) = ∫
g(y, xTβ j , γ j )dη(x); ġ jq(y) = ∂g j (y)

∂β jq
for j =

1, . . . , J , q = 1, . . . , p; and ġ jγ (y) = ∂g j (y)
∂γ j

.

(C6)
∫ ∫

g4(y,xT β j ,γ j )dη(x)

g3j (y)
dy < +∞;

∫ ∫
x2r ġ

2
z (y,x

T β j ,γ j )dη(x)
g j (y)

dy < +∞ for j =
1, . . . , J , r = 1, . . . , p; and

∫ ∫
ġ2u(y,x

T β j ,γ j )dη(x)
g j (y)

dy < +∞.

Conditions (C1) and (C2) guarantee that (2.5) and (2.6) of Beran (1977) hold
about an expansion of the first and second partial derivatives in some neighborhood
of θ0. Condition (C3) is also a typical assumption on kernels, including the family
of symmetric beta kernel functions (Chen 1999). Conditions (C4)–(C6) are used to
derive the asymptotic normality of the MHD estimators. When X is bounded and
g(y, xTβ j , γ j ) = exp{−(y − xTβ j )

2/(2γ 2
j )}/(

√
2πγ j ), or X is a normal random

variable and g(y, x, β j1, β j2, γ j ) = exp{−[y− (β j1 +β j2x)]2/(2γ 2
j )}/(

√
2πγ j ) for

j = 1, . . . , J , the above conditions are satisfied, see Remarks 3.4 and 3.4 of Tang and
Karunamuni (2013) for details.

Lemma 1 Under the assumptions of Theorem 3, there exists a local minimizer θ̂ of

(9) such that
∥∥∥θ̂ − θ0

∥∥∥ = Op(n−1/2).
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Proof Let

Pn(θ) =
J∑

j=1

α
1/2
j

p∑

k=1

p′
λnj

(|β(0)
jk |)|β jk |, Pn1(θ) =

J∑

j=1

α
1/2
j

d j∑

k=1

p′
λnj

(|β(0)
jk |)|β jk |

and Dn(θ) = ∫
Sθ ,n(y) f̂

1/2
n (y)dy − Pn(θ). It suffices to prove that for any given

ε > 0, there exists a constant C such that

P

{
sup

‖v‖=C
Dn(θ0 + n−1/2v) < Dn(θ0)

}
≥ 1 − ε. (20)

Note that

Dn(θ0 + n−1/2v) − Dn(θ0) ≤
∫

[Sθ0+n−1/2v,n(y) − Sθ0,n(y)] f̂ 1/2n (y)dy

−[Pn1(θ01 + n−1/2v1) − Pn1(θ01)]. (21)

By a Taylor expansion,

∫
[Sθ0+n−1/2v,n(y) − Sθ0,n(y)] f̂ 1/2n (y)dy

= n−1/2v

∫
Ṡθ0,n(y) f̂

1/2
n (y)dy + 1

2n
vT

∫
S̈θ∗,n(y) f̂

1/2
n (y)dyv,

where θ∗ is between θ0 and θ0 + n−1/2v. As in the proof of Lemma 3.1 of Tang and
Karunamuni (2013), we have
∫

[S̈θ∗,n(y) − S̈θ0,n(y)] f̂ 1/2n (y)dy ≤
(∫

[S̈θ∗,n(y) − S̈θ0,n(y)]2dy
)1/2 (∫

f̂n(y)dy

)1/2
= op(1).

Similar to the proof of Theorem 3.2 of Tang and Karunamuni (2013), we obtain

∫
S̈θ0,n(y) f̂

1/2
n (y)dy = −H(θ0) + op(1),

where H(θ0) = − ∫
S̈θ0(y) f

1/2
θ0

(y)dy. Hence

∫
[Sθ0+n−1/2v,n(y) − Sθ0,n(y)] f̂ 1/2n (y)dy

= n−1/2v

∫
Ṡθ0,n(y) f̂

1/2
n (y)dy − 1

2n
vT H(θ0)v[1 + op(1)]. (22)

By (A.26) of Tang and Karunamuni (2013), it follows that
∫
Ṡθ0,n(y) f̂

1/2
n (y)dy =

Op(n−1/2). Since θ (0) →P θ0, we have P{Pn1(θ01+n−1/2v1)− Pn1(θ01) = 0} → 1
as n → ∞. Hence, for sufficiently large C , (20) follows from (21) and (22) and the
fact that H(θ0) is positive definite. The proof of Lemma 1 is complete. ��
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Lemma 2 Under the assumptions of Theorem 3, for any θ = (θT1 , θT2 )T such that
‖θ − θ0‖ = O(n−1/2) and θ2 
= 0, with probability tending to 1, we have

Dn((θ1, θ2)) < Dn((θ1, 0)).

Proof By a Taylor expansion, we obtain

S(θ1,θ2),n(y) = S(θ1,0),n(y) + θT2
∂Sθ ,n(y)

∂θ2

∣∣∣∣∣θ=(θ1,0) + 1

2
θT2

∂2Sθ ,n(y)

∂θ2∂θT2

∣∣∣∣∣
θ=(θ1,θ

∗
2)

θ2,

where θ∗
2 is between 0 and θ2. As in the proof of (22), it follows that

∫
∂2Sθ ,n(y)

∂θ2∂θT2

∣∣∣∣∣θ=(θ1,θ
∗
2)
f̂ 1/2n (y)dy=

∫
∂2Sθ (y)

∂θ2∂θT2

∣∣∣∣∣
θ=θ0

f 1/2θ0
(y)dy[1 + op(1)]=Op(1).

By (A.26) of Tang and Karunamuni (2013), we have

∫
∂Sθ ,n(y)

∂θ2

∣∣∣θ=(θ1,0) f̂
1/2
n (y)dy = Op(n

−1/2) .

Using the fact that ‖θ2‖ = O(n−1/2) and n1/2λnj → +∞, we deduce that with
probability tending to 1, it holds that

Dn((θ1, θ2)) − Dn((θ1, 0))

=
∫

[S(θ1,θ2),n(y) − S(θ1,0),n(y)] f̂ 1/2n (y)dy −
J∑

j=1

α
1/2
j

p∑

k=d j

p′
λnj

(|β(0)
jk |)|β jk |

= Op(n
−1/2)

J∑

j=1

p∑

k=d j

|β jk | −
J∑

j=1

α
1/2
j

p∑

k=d j

p′
λnj

(|β(0)
jk |)|β jk |

=
J∑

j=1

λnj

p∑

k=d j

[
Op((n

1/2λnj )
−1) − α

1/2
j λ−1

nj p
′
λnj

(|β(0)
jk |)

]
|β jk | < 0.

This completes the proof of Lemma 2. ��
Proof of Theorem 3. By Lemmas 1 and 2, there exists a

√
n-consistent local maxi-

mizer θ̌ = (θ̌1, 0T )T of (9). By a Taylor expansion, with probability tending 1, we
have

Dn((θ̂1, θ̂2))

= Dn((θ̌1, 0)) + (θ̂ − θ̌)T
∫

∂Sθ ,n(y)

∂θ

∣∣∣
θ=(θ̌1,0)

f̂ 1/2n (y)dy

+ 1

2
(θ̂ − θ̌)T

∫
∂2Sθ ,n(y)

∂θ∂θT

∣∣∣∣∣∣θ=θ∗ f̂ 1/2n (y)dy(θ̂ − θ̌) −
J∑

j=1

α
1/2
j

p∑

k=dk+1

p′
λnj

(
|β(0)

jk |
)

|β̂ jk |,
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where θ∗ is between θ̂ and θ̌ . By Theorem 2, it follows that θ̂ →P θ0.
Using an argument similar to the one used in the proof of (22), we obtain
∫ ∂2Sθ ,n(y)

∂θ∂θT θ=θ∗ f̂
1/2
n (y)dy = −H(θ0)[1+op(1)]. Noting that with probability tending

to 1,
∫ ∂Sθ ,n(y)

∂θ1 θ=(θ̌1,0)
f̂ 1/2n (y)dy = 0, we have

Dn((θ̂1, θ̂2))

= Dn((θ̌1, 0)) + θ̂
T
2

∫
∂Sθ ,n(y)

∂θ2

∣∣∣θ=(θ̌1,0)
f̂ 1/2n (y)dy

− 1

2
(θ̂ − θ̌)T H(θ0)(θ̂ − θ̌)[1 + op(1)] −

J∑

j=1

α
1/2
j

p∑

k=dk+1

p′
λnj

(|β(0)
jk |)|β̂ jk |,

(23)

Using a Taylor expansion, we have

∫
∂Sθ ,n(y)

∂θ2

∣∣∣∣θ=(θ̌1,0)
f̂ 1/2n (y)dy =

∫
∂Sθ ,n(y)

∂θ2

∣∣∣∣
θ=θ0

f̂ 1/2n (y)dy + H21(θ0)θ̌1[1 + op(1)],

where H21(θ0) = ∫ ∂2Sθ (y)
∂θ2∂θT1 θ=θ0

f 1/2θ0
(y)dy. By (A.26) of Tang and Karunamuni

(2013), we have
∫ ∂Sθ ,n(y)

∂θ2

∣∣∣θ=θ0 f̂
1/2
n (y)dy = Op(n−1/2) . Then θ̌1 = Op(n−1/2)

implies that
∫ ∂Sθ ,n(y)

∂θ2 θ=(θ̌1,0)
f̂ 1/2n (y)dy = Op(n−1/2). If θ̂ 
= θ̌ , then by (23), we

have Dn((θ̂1, θ̂2)) < Dn((θ̌1, 0)). This is a contradiction to the fact that θ̂ is a maxi-
mizer of (10). So θ̂2 = 0 and θ̂1 = θ̌1.

We now prove the asymptotic normality part. Consider Dn((θ1, 0)) as a function
of θ1. Noting that with probability tending 1, θ̂1 is the

√
n-consistent maximizer of

Dn((θ1, 0)) and satisfies

∂Dn((θ1, 0))
∂θ1

∣∣∣∣θ1=θ̂1
=

∫
∂Sθ ,n(y)

∂θ1

∣∣∣∣
θ=(θ̂1,0)

f̂ 1/2n (y)dy = 0.

By an argument similar to the one used in the proof of (22), we obtain

∫
∂Sθ ,n(y)

∂θ1

∣∣∣∣θ=(θ̂1,0)
f̂ 1/2n (y)dy =

∫
∂Sθ ,n(y)

∂θ1

∣∣∣∣
θ=θ0

f̂ 1/2n (y)dy − H1(θ01)(θ̂1 − θ01)[1 + op(1)].

Hence

H1(θ01)(θ̂1 − θ01)[1 + op(1)] =
∫

∂Sθ ,n(y)

∂θ1

∣∣∣θ=θ0 f̂
1/2
n (y)dy . (24)
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Using an argument similar to the one used in the proof of Theorem 3.3 of Tang and
Karunamuni (2013), we obtain

n1/2
(∫

∂Sθ ,n(y)

∂θ1

∣∣∣θ=θ0 f̂
1/2
n (y)dy − An1(θ01)

)
→d N (0, �1(θ01)) .

Now (11) follows from the preceding expression and (24). This completes the proof
of Theorem 3. ��

Proof of Theorem 5 Note that

2
∥∥∥ f 1/2n+n1(θ̂(hn+n1)) − f̂ 1/2n+n1(hn+n1)

∥∥∥
2

≥ 2
∥∥∥ f 1/2n+n1(θ̂(hn+n1)) − f 1/2n (θ̂(hn))

∥∥∥
2 − 2

∥∥∥ f 1/2n (θ̂(hn)) − f̂ 1/2n+n1(hn+n1)

∥∥∥
2
.

(25)

Since

∥∥∥ f 1/2n+n1(θ̂(hn+n1)) − f̂ 1/2n+n1(hn+n1)

∥∥∥
2

+ 2
J∑

j=1

α̂
1/2
j,n+n1

p∑

k=1

p′
λ(n+n1) j

(|β(0)
jk,n+n1

|)|β̂ jk,n+n1 |

≤
∥∥∥ f 1/2n+n1(θ̂(hn)) − f̂ 1/2n+n1(hn+n1)

∥∥∥
2 + 2

J∑

j=1

α̂
1/2
j,n

p∑

k=1

p′
λ(n+n1) j

(|β(0)
jk,n+n1

|)|β̂ jk,n|,

we have

∥∥∥ f 1/2n+n1(θ̂(hn+n1)) − f̂ 1/2n+n1(hn+n1)

∥∥∥
2

≤
∥∥∥ f 1/2(θ̂(hn)) − f̂ 1/2n+n1(hn+n1)

∥∥∥
2 +

∥∥∥ f 1/2n+n1(θ̂(hn)) − f 1/2(θ̂(hn))
∥∥∥
2 + 2P∗

n,n1 .

(26)

Clearly

∥∥∥ f 1/2n (θ̂(hn)) − f̂ 1/2n+n1(hn+n1)

∥∥∥
2

≤
∥∥∥ f 1/2(θ̂(hn)) − f̂ 1/2n+n1(hn+n1)

∥∥∥
2 +

∥∥∥ f 1/2n (θ̂(hn)) − f 1/2(θ̂(hn))
∥∥∥
2

(27)
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and

∥∥∥ f 1/2n+n1(θ̂(hn+n1)) − f 1/2n (θ̂(hn))
∥∥∥
2

≥
∥∥∥ f 1/2(θ̂(hn+n1)) − f 1/2(θ̂(hn))

∥∥∥
2 −

∥∥∥ f 1/2n+n1(θ̂(hn+n1))

− f 1/2(θ̂(hn+n1))

∥∥∥
2 −

∥∥∥ f 1/2n (θ̂(hn)) − f 1/2(θ̂(hn))
∥∥∥
2
. (28)

Combining (25)–(28), we conclude that

4
∥∥∥ f 1/2(θ̂(hn)) − f̂ 1/2n+n1(hn+n1)

∥∥∥
2 ≥

∥∥∥ f 1/2(θ̂(hn+n1)) − f 1/2(θ̂(hn))
∥∥∥
2 − εn,n1

If θ̂(hn) breaks down, then sup#V n1=n1 d(θ̂(hn), θ̂(hn+n1)) = ∞. So by the def-

inition of δ∗,
∥∥∥ f 1/2(θ̂(hn+n1)) − f 1/2(θ̂(hn))

∥∥∥
2 ≥ δ∗. Hence,

∥∥∥ f 1/2(θ̂(hn))−
f̂ 1/2n+n1(hn+n1)

∥∥∥
2 ≥ (δ∗ − εn,n1)/4. The rest of the proof is similar to that of Tamura

and Boos (1986) and is therefore omitted to save space. This completes the proof of
Theorem 5. ��
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