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Abstract High-frequency sampled multivariate continuous time autoregressive mov-
ing average processes are investigated.Weobtain asymptotic expansion for the spectral
density of the sampled MCARMA process (YnΔ)n∈Z as Δ ↓ 0, where (Yt )t∈R is an
MCARMA process. We show that the properly filtered process is a vector moving
average process, and determine the asymptotic moving average representation of it,
thus generalizing the univariate results to the multivariate model. The determination
of the moving average representation of the filtered process, important for the analy-
sis of high-frequency data, is difficult for any fixed positive Δ. However, the results
established here provide a useful and insightful approximation when Δ is very small.

Keywords Multivariate continuous time autoregressive moving average (CARMA)
process · Spectral density · High-frequency sampling · Discretely sampled process

1 Introduction

The main object of this paper is a multivariate continuous time autoregressive moving
average process (MCARMA) in d dimensions, which we define as follows. Let p > q
be nonnegative integers and let

This research was funded by a postdoctoral fellowship of the Alexander von Humboldt Foundation.

B Péter Kevei
peter.kevei@tum.de

1 Center for Mathematical Sciences, Technische Universität München, Boltzmannstraße 3,
85748 Garching, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10463-017-0601-5&domain=pdf


468 P. Kevei

P(z) = Id z
p + A1z

p−1 + · · · + Ap,

Q(z) = B0z
q + B1z

q−1 + · · · + Bq

be the autoregressive and moving average polynomials, respectively, Ai , Bj ∈ Md ,
and Id is the d-dimensional identity matrix. The set of m × n real matrices is denoted
by Mm,n , and Mn for m = n. The driving process is a two-sided d-dimensional Lévy
process (Lt )t∈R, that is,

Lt =
{
L1(t), t ≥ 0,

−L2(−t−), t < 0,

where L1(t), L2(t), t ≥ 0, are iid (one-sided) d-dimensional Lévy processes, such
that EL1(1) = 0 and E‖L1(1)‖2 < ∞, with ‖ ·‖ being the usual Euclidean norm. The
covariance matrix of L1(1) isΣL . For definition and properties of Lévy processes, we
refer to Bertoin (1996).

The continuous time analogue of a discrete time ARMA equation is the differential
equation

P(D)Yt = Q(D)DLt ,

with D being the differential operator with respect to t . Since Lévy processes are not
differentiable, this is understood as the following state space representation.

The d-dimensional stochastic process Y is an MCARMA process with autoregres-
sive and moving average polynomial P and Q, respectively, if

dG(t) = AG(t)dt + BdLt ,

Yt = CG(t), t ∈ R,
(1)

where

A =

⎛
⎜⎜⎜⎜⎜⎝

0 Id 0 . . . 0
0 0 Id . . . 0
...

...
... . . .

...

0 0 0 . . . Id
−Ap −Ap−1 −Ap−2 . . . −A1

⎞
⎟⎟⎟⎟⎟⎠ ∈ Mpd , C = (Id , 0, 0, . . . , 0) ∈ Md,pd ,

and

B =
(
β�
1 , β�

2 , . . . , β�
p

)� ∈ Mpd,d ,

βp− j =
{

−∑p− j−1
i=1 Aiβp− j−i + Bq− j , 0 ≤ j ≤ q,

0, j > q.

Letλ1, . . . , λpd denote the eigenvalues ofA, which is the same as the zeros of detP(z);
see Lemma 3.8 by Marquardt and Stelzer (2007). It is well known (Brockwell 2001a)
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High-frequency sampling of MCARMA processes 469

that in one dimension a stationary causal solution exists if and only if the zeros of
detP(z) have negative real parts. Under this condition a strictly stationary causal
solution of the MCARMA Eq. (1) exists; see Marquardt and Stelzer (2007, Theorem
3.12 and Definition 3.20). Therefore, throughout the paper we assume that

the zeros of detP(z) have negative real part.

Under this assumption, the process Y can be represented as a continuous time moving
average process (Marquardt and Stelzer 2007, (3.38)–(3.39))

Yt =
∫ t

−∞
g(t − s)dLs, t ∈ R, (2)

where

g(t) = 1

2π

∫ ∞

−∞
eit x P(ix)−1Q(ix)dx .

By Lemma 3.24 in Marquardt and Stelzer (2007), the assumptions on the eigenvalues
of A imply that g vanishes on the negative half-line; that is, our process is causal.
In this paper, we use representation (2). Since we are only interested in second-order
properties of the process Y , the integral in (2) is understood in the L2-sense. For
the same reason, our results remain valid in a more general setup, when the process
(Lt )t∈R has stationary orthogonal increments.

CARMA processes are natural continuous time analogues of discrete time ARMA
processes, both in one and in several dimension. Gaussian CARMA processes date
back to Doob (1944), while more general Lévy-driven CARMA models were intro-
duced byBrockwell (2001b). Themultivariate extensionwas introduced byMarquardt
and Stelzer (2007). However, second-order stationary (also called weakly, or covari-
ance stationary) continuous time processes have been long used in economicmodeling.
Already Phillips (1959) investigated a system of stochastic differential equations,
which has a second-order stationary solution with rational spectral density, a property
shared byMCARMAprocesses; see formula (3). Phillips also considered discrete time
sampling of the continuous process and, based on a moving average representation
of the sampled process, proposed an estimation method for the parameters. Robinson
(1977, 1993) considered maximum likelihood type estimator of such models from
discrete equidistant samples. The closest to our approach is Robinson (1993), where
the spectral density matrix of the MCARMA process was determined by evaluation
of contour integrals; see Propositions 2 and 3. Estimators and their asymptotics in the
frequency domain were treated by Robinson (1976). For a more complete account on
continuous time econometric models, we refer to Bergstrom (1988) and the references
therein.

These models are important tools for stochastic modeling and have a wide range of
applications, besides economics, in financial mathematics, electricity markets, and in
turbulence.Andresen et al. (2014) usedGaussianCARMAprocesses tomodel the short
and forward interest rate. It is worth mentioning that the Vasicek model corresponds
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470 P. Kevei

to the Ornstein–Uhlenbeck process, which is the CARMA(1,0) process. Todorov and
Tauchen (2006) applied Lévy-driven CARMA processes to model stochastic volatility
in finance. For a review on applications of Lévy-driven time series models in finance,
we refer to Brockwell and Lindner (2012). For spot prices in electricity markets,
Benth et al. (2014) proposed a model with seasonality, consisting of a deterministic
seasonality, a CARMA factor driven by a non-Gaussian stable Lévy process, and
a nonstationary long-term factor given by a Lévy process. Brockwell et al. (2013)
applied CARMA processes to model high-frequency sampled turbulence data.

Investigations of MCARMA models have become more active in the recent years.
The state space representation of these models together with the ergodic and mixing
properties of equidistantly sampled MCARMA processes were studied by Schlemm
and Stelzer (2012). Fasen (2014) investigated asymptotic properties of high-frequency
sampled models, and gave a parameter estimation, while Fasen and Kimmig (2017)
studied information criteria for MCARMA models. Recovery of the driving Lévy
process was treated by Brockwell and Schlemm (2013) and by Ferrazzano and Fuchs
(2013).

In the present paper, we consider high-frequency sampling of an MCARMA pro-
cess and investigate the characteristics of the resulting process YΔ

n = YnΔ. As Δ ↓ 0
we obtain the asymptotic moving average representation of the filtered process, thus
extending the results in Brockwell et al. (2012), and partly in Brockwell et al. (2013)
to the multivariate setup. The moving average representation of the sampled process
was already noted by Phillips (1959, pp. 72–73) and proved later also by Schlemm
and Stelzer (2012, Theorem 4.2). Phillips’ estimation method is based on this rep-
resentation; however, as Robinson (1977) noted, except in the simplest models, the
relationship between thematrices in themoving average representation and the param-
eters of the continuous time model is very complicated. The determination of the
moving average representation of the filtered process, important for the analysis
of high-frequency data, is extremely difficult for any fixed positive Δ even in the
one-dimensional case. Our main result Theorem 1 gives further information on the
decomposition as Δ ↓ 0 and provides a useful and insightful approximation when Δ

is very small.
In order to prove the asymptotic moving average representation, we determine the

first-order behavior of the spectral density matrix of the properly filtered process. The
technical tool of the spectral density analysis is computing residues, which was also
used by Robinson (1993) and by Brockwell et al. (2012, 2013). Therefore, in the
whole paper we consider the frequency domain approach.

In the next section,wegive two representations of the spectral density of the sampled
process. The first one in Proposition 1 is a Taylor expansion in Δ, which we use to
prove the asymptotic moving average representation in Theorem 1. The second one
in Propositions 2 and 3, which in a slightly different form was obtained by Robinson
(1993), allows us to show that the filtered process is a moving average process. Section
3 contains the main result, the moving average representation of the filtered process.
In Sect. 4, the simplest multivariate example is spelled out in detail, showing the
difficulties to obtain higher-order approximations as is possible in the one-dimensional
case. All the proofs are gathered in the last section.
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High-frequency sampling of MCARMA processes 471

2 Spectral density of the sampled process

It is well known that MCARMA processes have spectral density function, which is

fY (λ) = 1

2π
P(iλ)−1Q(iλ)ΣL Q(iλ)∗(P(iλ)−1)∗, λ ∈ R, (3)

where A∗ is the Hermite transpose of the complex matrix A (Marquardt and Stelzer
2007, (3.43)). Put

R(z) = P(z)−1Q(z)ΣL Q(−z)�(P(−z)−1)�, z ∈ C. (4)

Note that the components of thematrix P(z)−1Q(z) aremeromorphic functions,which
can have poles only at the zeros of detP(z). Due to our assumptions, the poles have
negative real part.

We frequently use the following simple facts about residues. If h(z) is a meromor-
phic function and ρ is a closed curve, which encircles the poles of h, then its residue
at infinity is defined as

Res(h(z),∞) = − 1

2π i

∫
ρ

h(z)dz;

moreover, it can be computed as

Res(h(z),∞) = −Res
(
z−2h

(
z−1

)
, 0
)

.

For a matrix M(z) with rational function entries, let degM(z)i, j denote the degree
of the numerator minus the degree of the denominator in the (i, j)th element of M
and put degM(z) = maxi, j M(z)i, j . Finally, for a square matrix A its adjugate is the
transpose of its cofactor matrix, that is, adjA = C�, where Ci, j = (−1)i+ j Ai, j , and
Ai, j is the determinant of the matrix that results from deleting row i and column j of
A. When A is nonsingular then A−1 = adjA/detA.

From now on, let us fix a closed curve ρ ⊂ (−∞, 0) × iR in the left half complex
plane, which contains the zeros of detP(z). For any nonnegative integer k introduce
the notation

∫
ρ∪−ρ

zk R(z)dz = −2π iRes
(
zk R(z),∞

)
=: 2π iΘk . (5)

Since P−1(z) = adjP(z)
detP(z) , we have

R(z) = 1

detP(z)detP(−z)
adjP(z)Q(z)ΣL(adjP(−z)Q(−z))�.
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472 P. Kevei

Note that deg (adjP(z)) ≤ (d − 1)p and deg Q(z) ≤ q; thus, we may write

(adjP(z))Q(z) =
(d−1)p+q∑

j=0

S j z
j , (6)

where S j ∈ Md , j = 0, 1, . . . , (d − 1)p + q. Since the polynomials on the main
diagonal of adjP(z) are of degree (d−1)p, otherwise the degrees are strictly less than
(d − 1)p, we obtain that S(d−1)p+q = B0. Thus,

S(z) = adjP(z)Q(z)ΣL(adjP(−z)Q(−z))� =
2[(d−1)p+q]∑

j=0

S̃ j z
j , (7)

where the first coefficients are

S̃2[(d−1)p+q] = (−1)(d−1)p+q B0ΣL B
�
0 ,

S̃2[(d−1)p+q]−1 = (−1)(d−1)p+q−1
(
B0ΣL S

�
(d−1)p+q−1 − S(d−1)p+q−1ΣL B

�
0

)
.

From (7), we see that S(z)� = S(−z); thus, for j = 0, 1, . . .

S̃�
2 j = S̃2 j and S̃�

2 j+1 = −S̃2 j+1.

In the latter matrices, the main diagonal is 0. In particular, they are 0 in the one-
dimensional case.

From (7), we see that each component of the matrix zk R(z) decreases at least as
z−2 for k ≤ 2(p − q) − 2; thus, from the definition of the residue at infinity follows
Θk = 0. For k = 2(p − q) − 1 it is easy to see from the definition of R(z) that
Θ2(p−q)−1 = (−1)p−q B0ΣL B�

0 . To determine further coefficients, note that

∞∑
k=0

Θk z
k = R(z−1)

z
. (8)

As detP(z) = ∏pd
j=1(z − λ j ) we obtain

z−1R(z−1) = (−1)pd z2pd−1∏pd
j=1

(
1 − λ2j z

2
) 2[(d−1)p+q]∑

j=0

S̃ j z
− j .

This formula implies a linear recursion for the coefficients Θk , which in a special case
is spelled out in Sect. 4.

Let us define the coefficients c̃k(ω) forω �= 0,ω ∈ (−π, π), via the series expansion

1

1 − ez+iω
=

∞∑
k=0

c̃k(ω)zk, |z| < |ω|. (9)
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High-frequency sampling of MCARMA processes 473

Let fΔ denote the spectral density matrix of the sampled process YΔ
n = Y (nΔ). In

the following, we obtain a Taylor expansion in Δ for the spectral density matrix.

Proposition 1 For any ω ∈ (−π, π)\{0} if Δ > 0 is small enough, then

fΔ(ω) = − 1

2π

∞∑
k=2(p−q)−1

(−Δ)kΘk c̃k(ω).

From the leading term, we obtain

Corollary 1 As Δ ↓ 0

fΔ(ω) = (−1)p−q Δ2(p−q)−1(1 + O(Δ))

2π
c̃2(p−q)−1(ω)B0ΣL B

�
0 .

By Lemma 1, c̃2(p−q)−1(ω) is real, which implies that the first-order approximation
is real.

We also give another representation of the spectral density, from which the moving
average representation (17) follows. In a slightly different form this representation was
given by Robinson (1993, (20) and (26)). For the sake of completeness, we provide a
short proof. First we state the result for different zeros.

Proposition 2 Assume that λ1, . . . , λpd are different zeros of detP(z); that is, each
has multiplicity one. Then

fΔ(ω) = 1

4π

pd∑

=1

e−iω(α(
) − α(
)�) − eΔλ
α(
) + e−Δλ
α(
)�

coshΔλ
 − cosω
, (10)

where the coefficientmatricesα(
) ∈ Md come from thepartial fractiondecomposition
of R(z), i.e.,

R(z) = S(z)

detP(z)detP(−z)
=

pd∑

=1

(
α(
)

z − λ


+ β(
)

−z − λ


)
. (11)

From R(z)� = R(−z) it follows that α(
)� = β(
).
The further assumption on the multiplicity of the zeros is not necessary but it

makes the formulas simpler. The following proposition gives the spectral density in
the general case. Note that, as an abuse of notation, now λ1, . . . , λm are the different
zeros of detP(z).

Proposition 3 Let λ1, . . . , λm be the different zeros of detP(z) with multiplicity ν1,
. . ., νm. Then
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474 P. Kevei

fΔ(ω) = 1

4π

m∑

=1

e−iω(α(
, 1) − α(
, 1)�) − eΔλ
α(
, 1) + e−Δλ
α(
, 1)�

coshΔλ
 − cosω

+
m∑


=1

ν
∑
j=2

sΔ
j (ω, λ
)α(
, j) + sΔ

j (−ω, λ
)α(
, j)�

(coshΔλ
 − cosω) j
, (12)

where sΔ
j (ω, λ
) are trigonometric polynomials ofω of degree j−1, whose coefficients

depend on Δ and λ
, and the coefficient matrices α(
, j) ∈ Md come from the partial
fraction decomposition of R(z), i.e.,

R(z) = S(z)

detP(z)detP(−z)
=

m∑

=1

ν
∑
j=1

(
α(
, j)

(z − λ
) j
+ β(
, j)

(−z − λ
) j

)
. (13)

3 Moving average representation

Recall that λ1, . . . , λpd denote the zeros of detP(z). Define the polynomial

ΦΔ(z) =
pd∏
i=1

(
1 − eΔλi z

)
,

and consider the filtered process

XΔ
n = ΦΔ(B)YΔ

n , (14)

where B is the backshift operator. This filter was already applied by Phillips (1959),
who showed that the resulting process is amoving average process.Note that,whenever
λi is complex, its complex conjugate is also a root of detP(z); thus, the polynomial
ΦΔ has real coefficients. The power transfer function (Brockwell and Davis 1987,
Theorem 4.4.1) of the filter ΦΔ is

φΔ(ω) =
∣∣∣∣∣∣
pd∏
i=1

(
1 − eΔλi+iω

)∣∣∣∣∣∣
2

= 2pdeΔ
∑pd

j=1 λ j

pd∏
j=1

(coshΔλ j − cosω). (15)

When the zeros of detP(z) have multiplicity one, from (10) and (15) we see that the
spectral density of the filtered process XΔ is

f Δ
MA(ω) = fΔ(ω) φΔ(ω)

= 2pdeΔ
∑pd

j=1 λ j

4π

pd∏
j=1

(coshΔλ j − cosω)

×
pd∑


=1

e−iω(α(
) − α(
)�) − eΔλ
α(
) + e−Δλ
α(
)�

coshΔλ
 − cosω
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High-frequency sampling of MCARMA processes 475

= 2pdeΔ
∑pd

j=1 λ j

4π

pd∑

=1

∏
j �=


(coshΔλ j − cosω)

×
[
e−iω(α(
) − α(
)�) − eΔλ
α(
) + e−Δλ
α(
)�

]
. (16)

This is clearly a trigonometric polynomial of degree less than or equal to pd. However,
the coefficient of (cosω)pd and of (cosω)pd−1 sinω is a multiple of

pd∑

=1

(α(
) − α(
)�).

Since in the partial fraction decomposition in (11) deg S(z) ≤ 2((d−1)p+q), the sum
above is necessarily 0. Therefore, f Δ

MA(ω) is a trigonometric polynomial of degree
strictly less than pd. In the general case, when the zeros are not necessarily different,
by (12) we obtain a similar representation. Thus, we have shown the following [see
also Schlemm and Stelzer (2012, Theorem 4.2) and Phillips (1959, pp. 72–73)].

Corollary 2 For any Δ > 0 the filtered process XΔ is a d-dimensional moving
average process of order less than pd; i.e., there exist a matrix polynomial Ψ Δ with
degree less than pd and a white noise sequence ZΔ, such that

XΔ
n = ΦΔ(B)YΔ

n = Ψ Δ(B)ZΔ
n . (17)

The interesting feature of this long-known corollary is that apart from the simplest
cases (d = 1, p = 1, 2) no explicit expression exists for the moving average polyno-
mial Ψ Δ. In Theorem 1, we determine the first-order asymptotic behavior of Ψ Δ as
Δ ↓ 0.

In order to state the asymptotic result for the moving average process we need a
lemma about the coefficients c̃k(ω).

Lemma 1 There exist polynomials qk−1, rk−1 of degree k − 1 with real coefficients
such that

(2k − 1)! [2(1 − cosω)]k c̃2k−1(ω) = (−1)k qk−1(cosω),

(2k)! [2(1 − cosω)]k+1 c̃2k(ω) = (−1)k i sinω · rk−1(cosω).
(18)

Moreover,

qk−1(x) = (−1)k−12k−1
k−1∏
j=1

(1 − x − ξ2k−1, j ),

k−1∏
j=1

ξ2k−1, j = (2k − 1)!2−(k−1),

and

rk−1(x) = (−1)k−12k
k−1∏
j=1

(1 − x − ξ2k, j ),

k−1∏
j=1

ξ2k, j = (2k)!2−k .
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476 P. Kevei

Furthermore, ξ2k−1, j , ξ2k, j /∈ (0, 2), j = 1, 2, . . . , k − 1.

The first few polynomials and the numerical values of the corresponding roots are

q0(x) = 1,

q1(x) = 2(x + 2), {−2},
q2(x) = 4(x2 + 13x + 16), {−11.623,−1.377},
q3(x) = 8(x3 + 60x2 + 297x + 272), {−54.657,−4.141,−1.202},
q4(x) = 16(x4 + 251x3 + 3651x2 + 10841x + 7936),

{−235.705,−11.59,−2.579,−1.126},
q5(x) = 32(x5 + 1018x4 + 38158x3 + 274418x2 + 580013x + 353792),

{−979.322,−30.003,−5.615,−1.973,−1.087},
r0(x) = 2,

r1(x) = 4(x + 5), {−5},
r2(x) = 8(x2 + 28x + 61), {−25.619,−2.381},
r3(x) = 16(x3 + 123x2 + 1011x + 1385), {−114.258,−7.014,−1.728},
r4(x) = 32(x4 + 506x3 + 11706x2 + 50666x + 50521),

{−481.928,−18.784,−3.832,−1.457},
r5(x) = 64(x5 + 2041x4 + 118546x3 + 1212146x2 + 3448901x + 2702765),

{−1981.48,−47.391,−8.116,−2.697,−1.315}.

One sees that the polynomials have real roots; moreover, the roots have the interlacing
property. However, we cannot prove this. Since the zeros of an orthogonal polynomial
sequence have this property (Chihara 1978, Theorem I.5.3), it is tempting to think that
the polynomial sequences above are orthogonal. However, it is easy to check that the
recursion in Favard’s Theorem (Chihara 1978, Theorem I.4.4) does not hold even for
the first terms; therefore, neither of the two sequences of polynomials is orthogonal
with any weight function.

For ξ ∈ C, let us define η(ξ) = 1− ξ ±√ξ2 − 2ξ , where the sign is chosen so that
|η(ξ)| < 1. In the following, (Zn) ∼ WN(0,Σ) means that (Zn)n∈N is a sequence of
uncorrelated random vectors, with mean zero, and covariance matrix Σ .

Now we can state the main result of the paper.

Theorem 1 The moving average process XΔ
n = Ψ Δ(B)ZΔ

n has the asymptotic form

XΔ
n ∼ (Id − Id B)p(d−1)+q

p−q−1∏
j=1

(1 − η(ξ2(p−q)−1, j )B)ZΔ
n as Δ ↓ 0,

123



High-frequency sampling of MCARMA processes 477

where (ZΔ
n ) ∼ WN(0,ΣΔ

Z ) with

ΣΔ
Z = Δ2(p−q)−1

(2(p − q) − 1)!∏p−q−1
j=1 |η(ξ2(p−q)−1, j )|

B0ΣL B
�
0 .

We note that η(ξ2(p−q)−1, j ) might be nonreal (although we conjecture that they
are all real valued), in which case η(ξ2(p−q)−1, j ) also appears in the product, which
means that the coefficients in the moving average expansion are real.

It is interesting to observe that up to the first-order asymptotic the matrix moving
average polynomial is in fact a scalar polynomial, and the covariance structure only
appears in the covariance matrix ΣΔ

Z of the white noise. Thus, Theorem 1 has the
same form as the first-order version of Theorem 1 in Brockwell et al. (2013); see also
Theorem 1 in Brockwell et al. (2012). Finally, we mention that the corresponding
higher-order version of Theorem 1, the analogue of Theorem 1 in Brockwell et al.
(2012), seems hopeless to prove. The proof breaks down on the factorization of the
spectral density of the moving average process, since for matrix spectral density no
factorization holds in general; compare Theorem 10 and 10’ in Hannan (1970, Chapter
II).

4 An example

Let us consider the simplest possible multivariate case. That is, p = 1, q = 0, d = 2.
Then

P(z) = I2z + A1, Q(z) = B0, A1, B0 ∈ M2.

Moreover,

adjP(z)Q(z) = zB0 + adjA1B0,

that is in formula (6) S1 = B0, S0 = adjA1B0. Furthermore, in (7) we have

R(z) = 1

detP(z)detP(−z)
(zS1 + S0)ΣL(−zS�

1 + S�
0 )

= 1

detP(z)detP(−z)

(
z2 S̃2 + z S̃1 + S̃0

)
,

(19)

with
S̃2 = −B0ΣL B

�
0 , S̃1 = B0ΣL B

�
0 (adjA1)

� − adjA1B0ΣL B
�
0 ,

S̃0 = adjA1B0ΣL B
�
0 (adjA1)

�.
(20)

Assume that the zeros of detP(z) are different. From (19),we can compute thematrices
in the partial fraction decomposition. Standard calculation gives that the matrices in

123
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Proposition 2 are

α(1) = 1

2λ1
(
λ21 − λ22

) (S̃2λ21 + S̃1λ1 + S̃0
)

,

α(2) = −1

2λ2
(
λ21 − λ22

) (S̃2λ22 + S̃1λ2 + S̃0
)

.

Then using formula (16), lengthy but straightforward calculation gives

f Δ
MA(ω) = 2eΔ(λ1+λ2)

2π(λ21 − λ22)

[
cosω

(
S̃0

(
sinh λ1Δ

λ1
− sinh λ2Δ

λ2

)

+ S̃2(λ1 sinh λ1Δ − λ2 sinh λ2Δ)

)
+ i sinω · S̃1(cosh λ1Δ − cosh λ2Δ)

+ S̃0

(
cosh λ1Δ · sinh λ2Δ

λ2
− cosh λ2Δ · sinh λ1Δ

λ1

)

+ S̃2(λ2 cosh λ1Δ · sinh λ2Δ − λ1 cosh λ2Δ · sinh λ1Δ)

]
.

The corresponding process isMA(1), and according to Theorem 10’ byHannan (1970)
there is a positive symmetric real matrix Ψ0 and a real matrix Ψ1, such that

f Δ
MA(ω) = 1

2π
(Ψ0 + Ψ1e

iω)(Ψ0 + Ψ �
1 e−iω).

Short calculation gives that the first-order expansion is XΔ
n ∼ (I − B)ZΔ

n , with
covariance matrix ΣΔ

Z = ΔB0ΣL B�
0 , as we have shown in Theorem 1. However, in

general determining exactly the matrices Ψ0, Ψ1 is difficult.
We can also use Proposition 1. Combining (19) and (8), the Θk matrices can be

calculated via the formula

∞∑
k=1

Θk z
k = z3(

1 − λ21z
2
) (
1 − λ22z

2
) (z−2 S̃2 + z−1 S̃1 + S̃0

)
.

Multiplying by (1 − λ21z
2)(1 − λ22z

2) and equating the coefficients, we obtain

S̃2 = Θ1

S̃1 = Θ2

S̃0 = Θ3 − (λ21 + λ22)Θ1

0 = Θ4 − (λ21 + λ22)Θ2

0 = Θk − (λ21 + λ22)Θk−2 + λ21λ
2
2Θk−4, k ≥ 5.

(21)
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We note that also in the general case there exists a (more complicated) linear recursion
for the Θk matrices. Since f Δ

MA(ω) = fΔ(ω)φΔ(ω), expanding coshΔλi in Taylor
series and combining with Proposition 1, we obtain

f Δ
MA(ω) = −4eΔ(λ1+λ2)

2π

∞∑
k=1

ΔkCk(ω),

where Ck(ω) are trigonometric polynomials. Using the first few values of the coeffi-
cient functions c̃k(ω) and (21)

C1(ω) = (1 − cosω)
Θ1

2

C2(ω) = −i sinω
Θ2

4

C3(ω) = 1

4

(
Θ1

(
λ21 + λ22

)
− Θ3

2 + cosω

3

)

C4(ω) = − i sinω

48
Θ2

(
λ21 + λ22

)
.

Thus, we may obtain a higher-order expansion of the spectral density, e.g.,

f Δ
MA(ω) = Δ

2π

(
− 2S̃2(1 − cosω) + Δ

[−2(λ1 + λ2)S̃2(1 − cosω) + i sinω S̃1
]

− Δ2
(

(1 − cosω)

[
S̃0 + S̃2(λ21 + λ22)

3
+ S̃2(λ1 + λ2)

2
]

− S̃0 − i sinω S̃1(λ1 + λ2)

)
+ O(Δ3)

)
,

from which the statement of Theorem 1 again follows. However, it is not clear how to
obtain higher-order expansions for the process itself.

5 Proofs

Proof of Proposition 1 Let Γ (t) denote the covariance matrix, i.e., Γ (t) = EY0Y�
t .

Then

Γ (t) =
∫
R

eitλ fY (λ)dλ, t ∈ R,

and applying Cauchy’s theorem componentwise we have for t > 0

Γ (t) = 1

2π i

∫
ρ

etz R(z)dz,
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where ρ ⊂ (−∞, 0) × iR is a closed curve, which encircles the zeros of detP(z).
Since Γ is a covariance matrix, Γ (−t) = Γ (t)�. It is clear that the autocovariance
function of the discrete process (YnΔ)n∈N is Γ (Δn), so by the inversion formula for
discrete processes the spectral density can be calculated as

fΔ(ω) = 1

2π

∞∑
k=−∞

e−ikωΓ (Δk)

= 1

2π

[
0∑

k=−∞
e−ikωΓ (−Δk)� +

∞∑
k=1

e−ikωΓ (Δk)

]

= 1

4π2i

[∫
ρ

∞∑
k=0

ek(Δz+iω)R(z)�dz +
∫

ρ

∞∑
k=1

ek(Δz−iω)R(z)dz

]

= 1

4π2i

[∫
ρ

1

1 − eΔz+iω
R(z)�dz +

∫
ρ

eΔz−iω

1 − eΔz−iω
R(z)dz

]
, (22)

where ω ∈ (−π, π); the change of the sum and integration is justified, since �z < 0
on the curve ρ.

For any ω ∈ (−π, π)\{0}, consider the Taylor series expansions

1

1 − ez+iω
=

∞∑
k=0

c̃k(ω)zk, and
ez−iω

1 − ez−iω
=

∞∑
k=0

d̃k(ω)zk,

which converge in the open disk |z| < |ω|. Note that both functions have a simple
pole at 0 if ω = 0. Adding the two expressions

1

1 − ez+iω
+ ez−iω

1 − ez−iω
= − ez − e−z

ez + e−z − 2 cosω
= − sinh z

cosh z − cosω
,

which is an odd function of z; therefore, in the series expansion

c̃2k(ω) + d̃2k(ω) = 0.

On the other hand,

ez−iω

1 − ez−iω
− 1

1 − ez+iω
= − ez + e−z − 2e−iω

ez + e−z − 2 cosω
= −1 − i

sinω

cosh z − cosω

is an even function of z; therefore,

d̃2k+1(ω) − c̃2k+1(ω) = 0.

Summarizing, we obtain
d̃k(ω) = (−1)k+1c̃k(ω). (23)
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For the coefficient c̃k(ω) we have

− 1

2

sinh z

cosh z − cosω
=

∞∑
k=0

c̃2k+1(ω)z2k+1, (24)

and

1

2
+ i

2

sinω

cosh z − cosω
=

∞∑
k=0

c̃2k(ω)z2k,

so for k ≥ 1 the coefficient c̃2k(ω) is purely imaginary. From (24), using the notation
of Brockwell et al. (2012) formula (18) we see that c̃2k+1(ω) = −ck(ω)/2.

Inserting the series expansion into (22) (here we use that ω �= 0 is fixed, and Δ is
small enough to make |Δz| < |ω| for each z ∈ ρ) and using that R(z)� = R(−z), we
obtain

fΔ(ω) = 1

4π2i

∞∑
k=0

Δk
(
c̃k(ω)

∫
ρ

zk R(−z)dz + d̃k(ω)

∫
ρ

zk R(z)dz

)
. (25)

Then, changing the variables and using (23) and (5) we have

c̃k(ω)

∫
ρ

zk R(−z)dz + d̃k(ω)

∫
ρ

zk R(z)dz

= (−1)k+1c̃k(ω)

∫
−ρ

zk R(z)dz + (−1)k+1c̃k(ω)

∫
ρ

zk R(z)dz

= (−1)k+1c̃k(ω)

∫
ρ∪−ρ

zk R(z)dz

= (−1)k+1c̃k(ω)2π iΘk .

(26)

Substituting into (25)

fΔ(ω) = −1

2π

∞∑
k=0

(−Δ)kΘk c̃k(ω).

Taking into account that Θk = 0 for k ≤ 2(p − q) − 2, the proof is ready. ��
Proof of Proposition 2 We have

R(z) = adjP(z)Q(z)ΣL(adjP(−z)Q(−z))�

detP(z)detP(−z)
= S(z)

detP(z)detP(−z)
.

Since the degree of the numerator is less than that of the denominator, the partial
fraction decomposition (11) holds for some matrices α(
), β(
) ∈ Md . Note that
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S(−z)� = S(z) implies β(
)� = α(
). By simple properties of the residue, the
second summand in (22) is

1

2π i

∫
ρ

eΔz−iω

1 − eΔz−iω
R(z)dz =

pd∑

=1

1

2π i

∫
ρ

eΔz−iω

1 − eΔz−iω

(
α(
)

z − λ


+ β(
)

−z − λ


)
dz

=
pd∑


=1

eΔλ
−iω

1 − eΔλ
−iω
α(
).

In the same way,

1

2π i

∫
ρ

R(z)�

1 − eΔz+iω
dz =

pd∑

=1

1

1 − eΔλ
+iω
α(
)�.

Therefore, by (22)

fΔ(ω) = 1

2π

pd∑

=1

(
eΔλ
−iω

1 − eΔλ
−iω
α(
) + 1

1 − eΔλ
+iω
α(
)�

)
,

from which simple manipulation gives (10). ��
Proof of Proposition 3 In the general case, the partial fraction decomposition of R(z)
reads as (13), with some matrices α(
, j), β(
, j) ∈ Md . Similarly, as in the previous
case we obtain

1

2π i

∫
ρ

eΔz−iω

1 − eΔz−iω
R(z)dz =

m∑

=1

ν
∑
j=1

(
D( j−1) eΔz−iω

1 − eΔz−iω

)
z=λ


α(
, j)

( j − 1)! ,

where D stands for differentiation. Noting that

eΔz−iω

1 − eΔz−iω
= −1 + 1

1 − eΔz−iω
,

one can show that for j ≥ 2

1

( j − 1)!
(
D( j−1) 1

1 − eΔz−iω

)
z=λ


= sΔ
j (ω, λ
)

(coshΔλ
 − cosω) j
,

with sΔ
j (ω, λ
) being a trigonometric polynomial in ω of degree j − 1, whose coeffi-

cients depend on Δ and λ
. Similarly, for j ≥ 2

1

( j − 1)!
(
D( j−1) 1

1 − eΔz+iω

)
z=λ


= sΔ
j (−ω, λ
)

(coshΔλ
 − cosω) j
.

Substituting back into (22), we obtain (12). ��
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Proof of Lemma 1 Recall definition c̃k from (9). To ease the notation put h(z) =
1/(1 − ez+iω), and y = ez+iω. Then, for the first few derivatives (all the derivatives
are meant with respect to z)

h′(z) = y

(1 − y)2
, h′′(z) = y2 + y

(1 − y)3
, h′′′(z) = y3 + 4y2 + y

(1 − y)4
.

In general, using induction it is easy to see that

h(n)(z) = yAn(y)

(1 − y)n+1 , n = 1, 2, . . . ,

where An is a polynomial of degree n − 1, for which the recursion

An+1(y) = (y − y2)A′
n(y) + An(y)(ny + 1) (27)

holds. These polynomials are the Eulerian polynomials (do not confuse with Euler
polynomials and Euler numbers), and the coefficients are the Eulerian numbers,
i.e., An(y) = A(n, n−1)yn−1 +A(n, n−2)yn−2 +· · ·+ A(n, 0). The combinatorial
interpretation of the Eulerian numbers is that A(n, k) is the number of permutations of
{1, 2, . . . , n} in which exactly k elements are greater than the previous element. From
(27), we obtain

A(n + 1, k) = (k + 1)A(n, k) + (n + 1 − k)A(n, k − 1).

Induction gives that A(n, n − 1) = A(n, 0) = 1, and

A(n, k) = A(n, n − 1 − k), k = 0, 1, . . . , n − 1, (28)

that is An is a symmetric polynomial.
Since (1 − eiω)(1 − e−iω) = 2(1 − cosω), from (9) we have

n! c̃n(ω) = h(n)(0) = eiωAn(eiω)

(1 − eiω)n+1
= eiωAn(eiω)(1 − e−iω)n+1

[2(1 − cosω)]n+1 .

For odd indices, n = 2k − 1, k = 1, 2, . . ., using (28)

A2k−1(e
iω) = A(2k − 1, 0)e(2k−2)iω + A(2k − 1, 1)e(2k−3)iω + · · ·

+ A(2k − 1, 1)eiω + A(2k − 1, 0)

= 2e(k−1)iω[A(2k − 1, 0) cos(k − 1)ω + A(2k − 1, 1) cos(k − 2)ω

+ · · · + 2−1A(2k − 1, k − 1)
]
.
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The second factor above is a polynomial of cosω of degree k − 1, while for the first
factor eiω(1 − e−iω)2 = −2(1 − cosω); therefore,

(2k − 1)! c̃2k−1(ω) = eiωA2k−1(eiω)(1 − e−iω)2k

[2(1 − cosω)]2k

= 2(−1)k

[2(1 − cosω)]k
[
A(2k − 1, 0) cos(k − 1)ω

+ A(2k − 1, 1) cos(k − 2)ω + · · · + 2−1A(2k − 1, k − 1)
]
.

(29)

For n = 2k, k = 1, 2, . . ., (28) implies A2k(−1) = 0, so (1 + y) divides A2k(y),
i.e., A2k(y) = (1 + y) Ã2k−1(y), where

Ã2k−1(y)= Ã(2k − 1, 0)y2k−2 + Ã(2k − 1, 1)y2k−3 + · · · + Ã(2k − 1, 1)y

+ Ã(2k − 1, 0)

is again a symmetric polynomial of degree 2k − 2. Thus, using the calculation above,
and that (1 + eiω)(1 − e−iω) = 2i sinω we obtain

(2k)! c̃2k(ω) = eiωA2k(eiω)(1 − e−iω)2k+1

[2(1 − cosω)]2k+1

= 4(−1)k i sinω

[2(1 − cosω)]k+1

[
Ã(2k − 1, 0) cos(k − 1)ω

+ Ã(2k − 1, 1) cos(k − 2)ω + . . . + 2−1 Ã(2k − 1, k − 1)
]
.

(30)

Apart from the constant factors, the statement is proved.
Expressing cos nω as a polynomial of cosω serves as a definition of the Chebishev

polynomials Tn , i.e.,

cos nω = Tn(cosω) = n

2

[n/2]∑
k=0

(−1)k
(n − k − 1)!
k!(n − 2k)! (2 cosω)n−2k .

From this, we see that the coefficient of (cosω)n equals 2n−1. Thus, the coefficient
of (cosω)k−1 on the right-hand side of (29) is (−1)k2k−1, from which we obtain the
value of the leading coefficient. After noting that Ã(2k − 1, 0) = A(2k, 0) = 1, the
value of the leading coefficients follows similarly in the even case. Finally, from (27)
we see that An(1) = n!, from which the formula for the product of the roots follows.

Thus, we have shown that the polynomials qk−1, rk−1 defined via

qk−1(cosω) = (−1)k(2k − 1)![2(1 − cosω)]k c̃2k−1(ω),

i sinω rk−1(cosω) = (−1)k(2k)![2(1 − cosω)]k+1c̃2k(ω),
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have the stated properties. From (29),we see thatqk−1 and rk−1 are linear combinations
of Chebishev polynomials

qk−1(x) = 2
[
A(2k − 1, 0)Tk−1(x) + A(2k − 1, 1)Tk−2(x)

+ · · · + 2−1A(2k − 1, k − 1)
]
,

rk−1(x) = 4
[
Ã(2k − 1, 0)Tk−1(x) + Ã(2k − 1, 1)Tk−2(x)

+ · · · + 2−1 Ã(2k − 1, k − 1)
]
.

Now we turn to the statement about the roots. Indirectly assume that qk−1 has
a real root in (−1, 1), say cosω0. Then from (29), we see that A2k−1(eiω0) = 0.
This is a contradiction, since Frobenius showed in 1910 that the roots of the Eulerian
polynomials are real [for a recent work on roots of generalized Eulerian polynomials
see Savage and Visontai (2015)]. Similar reasoning shows that rk−1(x) has no real
root in (−1, 1). ��
Proof of Theorem 1 The proof relies on analyzing the spectral density f Δ

MA(ω) of the
process XΔ

n .
As

coshΔλ j − cosω = 1 − cosω +
∞∑


=1

(Δλ j )
2


(2
)! ,

using Corollary 1 and (15) the asymptotics of the spectral density of the moving
average process ΦΔ(B)YΔ

n is

f Δ
MA(ω) = −1

2π
2pdeΔ

∑pd
j=1 λ j

pd∏
j=1

(coshΔλ j − cosω)

∞∑
k=0

(−Δ)kΘk c̃k(ω)

∼ Δ2(p−q)−1

2π
2pd(1 − cosω)pd c̃2(p−q)−1(ω)Θ2(p−q)−1 (31)

as Δ ↓ 0. Write

f Δ
MA(ω) ∼ Δ2(p−q)−1

2π
[2(1 − cosω)]pd−(p−q) ×

×[2(1 − cosω)]p−q c̃2(p−q)−1(ω)Θ2(p−q)−1. (32)

In (32), the factor [2(1 − cosω)]p(d−1)+q corresponds to (Id − Id B)p(d−1)+q in
the moving average representation.

For the factorization of the remaining terms, we need that

(1 − ηeiω)(1 − ηe−iω) = 2η

(
1 − cosω + (1 − η)2

2η

)
;
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thus, solving the equation −ξ = (1 − η)2/(2η) we have for the solution

η(ξ) := 1 − ξ ±
√

ξ2 − 2ξ,

where the sign is chosen so that |η(ξ)| < 1. This is possible, since the product of the
two roots is 1. That is,

1 − cosω − ξ = 1

2η(ξ)
(1 − η(ξ)eiω)(1 − η(ξ)e−iω).

Therefore, combining the above with Lemma 1 we obtain

[2(1 − cosω)]p−q c̃2(p−q)−1(ω) = −2p−q−1

∏p−q−1
j=1 (1 − cosω − ξ2(p−q)−1, j )

(2(p − q) − 1)!

= −
∏p−q−1

j=1 (1 − η(ξ2(p−q)−1, j )eiω)(1 − η(ξ2(p−q)−1, j )e−iω)

(2(p − q) − 1)!∏p−q−1
j=1 η(ξ2(p−q)−1, j )

.

We conjecture that the zeros ξ2k−1, j are all real and greater than 2. This is true for
k = 1, 2, . . . , 8; however, we cannot prove it in general. For real zeros, the η’s are
also real (we did prove that ξ2k−1, j /∈ (0, 2)); thus, in the factorization everything is
real. When there is a nonreal root ξ then necessarily its conjugate ξ is also a root, and
one can check easily that η(ξ) = η(ξ); therefore, in the factorization the coefficients
are real. ��
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