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Abstract Suppose that the failure times of the units placed on a life-testing experiment
are independent but nonidentically distributed random variables. Under progressively
type II censoring scheme, distributional properties of the proposed random variables
are presented and some inferences are made. Assuming that the random variables
come from a proportional hazard rate model, the formulas are simplified and also the
amount of Fisher information about the common parameters of this family is calcu-
lated. The results are also extended to a fixed covariates model. The performance of the
proposed procedure is investigated via a real data set. Some numerical computations
are also presented to study the effect of the proportionality rates in view of the Fisher
information criterion. Finally, some concluding remarks are stated.

Keywords Fisher information · Maximum likelihood estimator · Cramer–Rao lower
bound · Proportional hazard rate family · Exponential family · Weibull distribution ·
Fixed covariates model

1 Introduction

Censored sampling arises in a life test whenever the experimenter does not observe
the lifetimes of all experimental units. The model of progressive type II censoring
is of importance in the field of reliability and life testing. In this censoring scheme,
n units are simultaneously placed on a lifetime test, and when the i th failure time
occurs, Ri surviving units are randomly censored from the experiment, 1 ≤ i ≤ m.
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Thus, if m failure times are observed, then R1 + · · · + Rm units are censored; here,
R = (R1, . . . , Rm) denotes the progressive censoring plan. In the special case of
R1 = · · · = Rm−1 = 0 and Rm = n − m, the progressive censoring scheme coin-
cides with the type II censoring scheme. Statistical inferences based on progressively
type II censored order statistics in the case of independent and identically distributed
(IID) random variables have been extensively investigated by several authors. Bal-
akrishnan et al. (2001) studied the point and interval estimation for both location and
scale parameters of the two-parameter exponential distribution based on progressively
type II censored samples. Burkschat et al. (2006) investigated the optimal plans in the
model of progressive type II censoring for a location-scale family of distributions.
In statistical inferences, the Fisher information (FI) plays an important role in the
estimation problem of unknown parameters through the Cramer–Rao inequality and
its association with the asymptotic properties of the maximum likelihood estimator
(MLE).Under certain regularity conditions, the FI about the real parameter θ contained
in a random variable X with probability density function (pdf) f (x; θ) is defined by
IX (θ) = −E

(
∂2

∂θ2
log f (X; θ)

)
; see, for example, Lehmann andCasella (1998, p. 116).

Zheng and Park (2004) expressed the FI contained in the progressively type II censored
order statistics as a summation of a single integral involving the hazard rate function.
They also obtained a closed form for the FI about the scale parameter of the exponen-
tial and Weibull distributions with equal removal at each stage. Then, Abo-Eleneen
(2008) proposed an indirect approach for computing the FI in these statistics that
simplified the calculations. Balakrishnan et al. (2008) determined optimal plans for a
variety of lifetime distributions by employing maximum FI as an optimality criterion.
For a detailed description of the IID case of progressively type II censored samples,
one may refer to the books by Balakrishnan and Aggarwala (2000) and Balakrishnan
and Cramer (2014). Furthermore, an overview of various developments that have been
considered about the properties of progressively type II censored order statistics and
inferential procedures based on them is provided by Balakrishnan (2007). The author
also suggested some potential problems of interest for further research.

The model of progressive type II censoring was generalized by Balakrishnan and
Cramer (2008) to the case of independent and nonidentical distributed (INID) ran-
dom variables. They developed the basic distribution theory for order statistics in this
case. Also, Fischer et al. (2008) studied a mixture representation for the joint distri-
bution function of progressively type II censored order statistics from heterogeneous
distributions and illustrated the applications of this representation to stochastic order-
ings and inequalities. Cramer and Lenz (2010) and Mao and Hu (2010) investigated
the positive association and the stochastic properties of these statistics, respectively.
Recently, Rezapour et al. (2013) investigated some more properties of progressively
type II censored order statistics in the INID case.

Although the joint density function of the INID progressively type II censored
order statistics was expressed by Balakrishnan and Cramer (2008), we are not aware
about any investigations about the problem of parameter estimation or computing the
information measures in this case. It seems that the main reason is the functional
form of the joint density function of these statistics which has been expressed as a
summation over all permutations of {1, . . . , n}, which cannot be used to make any
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inferences about the common parameters of various distributions. In this paper, we
first consider a vector of random variables including the INID progressively type II
censored order statistics and then derive an explicit expression for the corresponding
likelihood function which may be applied to make inference about the parameters of
interest.

The rest of this paper is as follows. In Sect. 2, the model of interest is described. In
order to identify the failed units and those that are removed from the experiment, two
indicator variables are defined and based on them the appropriate likelihood function
for the parameter of interest is derived. The probability functions of the INID progres-
sively type II censored order statistics are presented in Sect. 3. Section 4 focuses on
INID random variables coming from a proportional hazard rate family; the probability
functions are simplified and the amount of FI about the common parameters of inter-
est is derived. More details are presented when the exponential family and Weibull
distribution are the baseline distributions of this model. Some results are extended to
a fixed covariates model in Sect. 5. The performance of the proposed procedure in the
paper is investigated via a real data set in Sect. 6. In Sect. 7, the FI contained in the
INID progressively type II censored order statistics about the common parameter of a
proportional hazard rate family with the baseline Weibull distribution is numerically
computed. Some concluding remarks are presented in Sect. 8.

2 Model description

Let X1, . . . , Xn be the lifetimes of n units which are independently and simultaneously
placed on a test for which Xr comes from cumulative distribution function (cdf)
Fr (x; θ) with corresponding pdf fr (x; θ), 1 ≤ r ≤ n, where θ ′ = (θ1, . . . , θt ) is
the common vector of parameters of the various distributions. Moreover, let R =
(R1, . . . , Rm) be the progressive censoring plan with n = m +∑m

i=1 Ri . For brevity,

we denote by γ j = n − ∑ j−1
i=1 Ri − j + 1 the number of units remaining in the

experiment before the j th failure time.
To obtain the likelihood function of the parameters of interest θ on the basis of the

INID progressively type II censored order statistics, denoted by XR
1:m:n, . . . , XR

m:m:n ,
let us first define the following random variable to identify the failed units on a lifetime
test

Δ
( j)
i =

{
1, if the lifetime of the i th unit coincides with the j th failure time,
0, otherwise,

where for each j = 1, . . . ,m,
∑n

i=1 Δ
( j)
i = 1. Also, after the j th failure time, R j

of surviving units are removed from the experiment. Therefore, we use the following
random variable to specify the units removed from the test

H ( j)
i =

{
1, if the i th unit is removed from the test after the j th failure time,
0, otherwise,
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such that for each j = 1, . . . ,m,
∑n

i=1 H
( j)
i = R j . Notice that for a fixed j , say j0, if

Δ
( j0)
i = 1 or H ( j0)

i = 1, then for other values of j ( j �= j0), Δ
( j)
i = 0 and H ( j)

i = 0.
According to the above random variables, it is reasonable to use the following

random vector to make inferences about the parameters of interest

B =
{
XR

j :m:n,Δ
( j)
i , H ( j)

i , 1 ≤ j ≤ m, 1 ≤ i ≤ n
}

.

To determine the likelihood function, note that in progressive type II censoring
scheme, n units are simultaneously placed on test, and at the first failure time, R1
of n − 1 remaining units are randomly removed from the experiment, so there is an
integer s1 (1 ≤ s1 ≤ n) such that Δ(1)

s1 = 1, and also there are R1 integers i1, . . . , iR1 ,

not equal to s1, for which H (1)
i j

= 1 (1 ≤ j ≤ R1). At the first failure time of the
remaining n − R1 − 1 units, R2 units are randomly censored; hence, there is another
integer s2 (s2 ∈ {1, . . . , n}\{s1, i1, . . . , iR1}) such thatΔ(2)

s2 = 1, and also there are R2
integers, say iR1+1, . . . , iR1+R2 , which belong to {1, . . . , n}\{s1, i1, . . . , iR1 , s2} for
which H (2)

i j
= 1 (R1 + 1 ≤ j ≤ R1 + R2). This procedure continues to arrive at the

mth failure time in a sample of size n. It is clear that the lifetimes of the removed units
from the test after the j th failure time are greater than the j th failure time. Therefore,
by taking into account the above scenario, the likelihood function of θ on the basis of
the data set B can be presented as

L(θ) =
⎛

⎝
m∏

j=1

γ j

⎞

⎠
m∏

j=1

{
n∏

i=1

[ fi (x j ; θ)]δ( j)
i [F̄i (x j ; θ)]η( j)

i

}

, (1)

where x j , δ
( j)
i and η

( j)
i are the observed values of XR

j :m:n , Δ
( j)
i and H ( j)

i , respec-
tively. Notice that the constant γ j represents the number of ways in which the j th
progressively type II censored order statistic may occur.

Remark 1 The likelihood function of θ in (1) can be used for the following cases:

– Let X1, . . . , Xn be INID random variables with k (k < n) different distributions
such that n j of them come from the cdf Fj (x; θ), 1 ≤ j ≤ k, for which n =
∑k

j=1 n j ; then, the likelihood function of θ in (1) can also be applied to make
inference about θ .

– In the case of usual order statistics, we havem = n as well as R j = 0. In this case,

γ j = n − j + 1 and H ( j)
i = 0, for each 1 ≤ i ≤ n and 1 ≤ j ≤ n. Therefore,

using (1), the likelihood function of θ can be presented as

L(θ) = n!
n∏

j=1

n∏

i=1

[ fi (x j ; θ)]δ( j)
i .

– Since for each j = 1, . . . ,m,
∑n

i=1 Δ
( j)
i = 1 and

∑n
i=1 H

( j)
i = R j , the likelihood

function of θ in (1) converts to the joint density function of progressively type II
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censored order statistics in the case of IID random variables; see, for example,
Balakrishnan and Aggarwala (2000).

3 Joint probability functions

In this section, the probability of the events {XR
k:m:n > y,Δ(k)

i = 1} and {XR
k:m:n >

y, H (k)
i = 1} is presented in Theorems 1 and 2, respectively, which will be used in

the next sections and also are useful in the other statistical inferences. Accordingly,
the joint probability functions of (XR

k:m:n,Δ
(k)
i ) and (XR

k:m:n, H
(k)
i ), the marginal pdf

of XR
k:m:n and also the probability of the events {Δ(k)

i = 1} and {H (k)
i = 1} may be

derived.

Theorem 1 For each i = 1, . . . , n, k = 1, . . . ,m and every positive real value y, we
get

Pr
(
XR
k:m:n > y,Δ(k)

i = 1
)

=
⎧
⎨

⎩

k−1∏

j=1

(
γ j − 1

R j

)
⎫
⎬

⎭

−1

×
∑

E (k−1)
i

∫ ∞

y

∫ x

0

∫ xk−1

0
· · ·

∫ x2

0

k−1∏

j=1

⎛

⎝ fs j (x j ; θ)
∏

t∈C( j)

F̄t (x j ; θ)

⎞

⎠

× fi (x; θ)

⎛

⎜
⎝

∏

t∈Λ
(k−1)
i

F̄t (x; θ)

⎞

⎟
⎠ dx1 . . . dxk−2dxk−1dx, (2)

where the summation index E (k)
i extends over all permutations (s1, . . . , sk, i1, . . . ,

i∑k
r=1 Rr

) of the integers {1, . . . , n}\{i} for which for 1 ≤ j ≤ k, i∑ j−1
r=1 Rr+1

< · · · <

i∑ j
r=1 Rr

; further,

C ( j) =
{
i∑ j−1

r=1 Rr+1
, . . . , i∑ j

r=1 Rr

}
, (3)

Λ
(k)
i = {1, . . . , n}\{s1, . . . , sk, i1, . . . , i∑k

r=1 Rr
, i}. (4)

Proof Notice that before the kth failure time, the units Xs1 , . . . , Xsk−1 are failed and the
units Xi1 , . . . , Xi∑k−1

r=1 Rr
are removed randomly from the test. Indeed, at the j th (1 ≤

j ≤ k−1) failure time, R j units are randomly removed from (γ j−1) remainingunits on
test. Therefore, the probability of the event that units indexed by i∑ j−1

r=1 Rr
, . . . , i∑ j

r=1 Rr

are removed from the test at the j th failure time is equal to 1/
(γ j−1

R j

)
. Hence, by

summing up over all permutations of failures and random removals, we get
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Pr
(
XR
k:m:n > y,Δ(k)

i = 1
)

=
⎧
⎨

⎩

k−1∏

j=1

(
γ j − 1

R j

)
⎫
⎬

⎭

−1
∑

E (k−1)
i

Pr (Xi > y,

Xi < Z (k−1)
i , Xi > Xsk > Xsk−1 > · · · > Xs1 ,∩k−1

j=1{Y ( j) > Xs j }
)

, (5)

where ∩ stands for the intersection of the events; for k ≥ 1, we have

Z (k)
i = min {X1, . . . , Xn} \

{
Xs1 , . . . , Xsk , Xi1 , . . . , Xi∑k

r=1 Rr
, Xi

}
,

with Z (0)
i = min {X1, . . . , Xn} \ {Xi } and

Y ( j) = min

{
Xi∑ j−1

r=1 Rr+1
, . . . , Xi∑ j

r=1 Rr

}
.

Using the independence property of the random variables in (5) and performing some
algebraic calculations, we find

Pr
(
XR
k:m:n > y,Δ(k)

i = 1
)

=
⎧
⎨

⎩

k−1∏

j=1

(
γ j − 1

R j

)
⎫
⎬

⎭

−1

×
∑

E (k−1)
i

∫ ∞

y

∫ x

0

∫ xk−1

0

∫ xk−2

0
· · ·

∫ x2

0

⎛

⎝
k−1∏

j=1

fs j (x j ; θ)F̄Y ( j) (x j ; θ)

⎞

⎠

× fi (x; θ)F̄
Z (k−1)
i

(x; θ)dx1 . . . dxk−3dxk−2dxk−1dx .

Therefore, the result follows. 	


Corollary 1 Using Theorem 1, the following results may be deduced:

1. The probability for the event that the lifetime of the i th unit coincides with the kth
failure time may be obtained for each i = 1, . . . , n and k = 1, . . . ,m. That is,

Pr
(
Δ

(k)
i = 1

)
= Pr

(
XR
k:m:n > 0,Δ(k)

i = 1
)

. (6)

2. The joint probability function of (Xk:m:n,Δ(k)
i ) at point (y, 1) may be obtained as

f
XR
k:m:n ,Δ

(k)
i

(x, 1) = − d

dy
Pr

(
XR
k:m:n > y,Δ(k)

i = 1
)

.
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3. By summing up both sides of (2) over i from 1 up to n, the survival function of
Xk:m:n may be derived. That is,

Pr
(
XR
k:m:n > y

)
=

n∑

i=1

Pr
(
XR
k:m:n > y,Δ(k)

i = 1
)

.

Theorem 2 For each i = 1, . . . , n, k = 1, . . . ,m and every positive real value y, we
have

Pr
(
XR
k:m:n > y, H (k)

i = 1
)

= Rk

γk − 1

⎧
⎨

⎩

k−1∏

j=1

(
γ j − 1

R j

)
⎫
⎬

⎭

−1

×
∑

E (k−1)
i

∫ ∞

y

∫ z

0

∫ xk−1

0
· · ·

∫ x2

0

⎧
⎨

⎩

k−1∏

j=1

fs j (x j ; θ)
∏

t∈C( j)

F̄t (x j ; θ)

⎫
⎬

⎭
F̄i (z; θ)

×

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑

v∈Λ
(k−1)
i

fv(z; θ)
∏

t∈Λ
(k−1)
i

t �=v

F̄t (z; θ)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

dx1 · · · dxk−2dxk−1dz, (7)

where E (k)
i ,C ( j) and Λ

(k)
i are as defined in Theorem 1.

Proof As mentioned in the proof of Theorem 1, the units indexed by i∑ j−1
r=1 Rr

,

. . . , i∑ j
r=1 Rr

are removed from the test at the j th failure timewith probability 1/
(γ j−1

R j

)
,

1 ≤ j ≤ k−1. Then, after the kth failure time, (γk−1) units remain in the experiment.
Therefore, occurring the event {H (k)

i = 1} is equivalent to removing the i th unit from
the test as one of the Rk units which must be randomly censored. So, we get

Pr
(
XR
k:m:n > y, H (k)

i = 1
)

= Rk

γk − 1

⎧
⎨

⎩

k−1∏

j=1

(
γ j − 1

R j

)
⎫
⎬

⎭

−1
∑

E (k−1)
i

Pr
(
Z (k−1)
i > y,

Xi > Z (k−1)
i > Xsk−1 > Xsk−2 > · · · > Xs1 ,∩k−1

j=1{Y ( j) > Xs j }
)

= Rk

γk − 1

⎧
⎨

⎩

k−1∏

j=1

(
γ j − 1

R j

)
⎫
⎬

⎭

−1
∑

E (k−1)
i

∫ ∞

y

∫ z

0

∫ xk−1

0

∫ xk−2

0
· · ·

∫ x2

0

⎛

⎝
k−1∏

j=1

fs j (x j ; θ)F̄Y ( j) (x j ; θ)

⎞

⎠ F̄i (z; θ) f
Z (k−1)
i

(z; θ)

×dx1 . . . dxk−3dxk−2dxk−1dz,
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where

f
Z (k−1)
i

(z; θ) =
∑

v∈Λ
(k−1)
i

fv(z; θ)
∏

t∈Λ
(k−1)
i

t �=v

F̄t (z; θ).

Hence, the relation (7) is derived. 	

Corollary 2 By use of Theorem 2, the following results are deduced:

1. The probability of the event that the i th unit is censored from a lifetime test after
the kth failure time, for each i = 1, . . . , n and k = 1, . . . ,m, is given by

Pr
(
H (k)
i = 1

)
= Pr

(
XR
k:m:n > 0, H (k)

i = 1
)

. (8)

2. The joint probability of (Xk:m:n, H (k)
i ) at point (y, 1) may be derived as follows

f
XR
k:m:n ,H

(k)
i

(x, 1) = − d

dy
Pr

(
XR
k:m:n > y, H (k)

i = 1
)

.

Note. In the special case of k = 1, we get E (1)
i = ∅. Hence, the probabilities in (2)

and (7) are simplified as

Pr
(
XR
1:m:n > y,Δ(1)

i = 1
)

=
∫ ∞

y
fi (x; θ)

n∏

j=1
j �=i

F̄ j (x; θ) dx, (9)

and

Pr
(
XR
1:m:n > y, H (1)

i = 1
)

= R1

n − 1

∫ ∞

y

n∑

ν=1
ν �=i

fν(z; θ)

n∏

j=1
j �=ν

F̄j (z; θ) dz, (10)

respectively.

Remark 2 Based on the proposed procedure in this paper, the following expressions
deduce:

– Surely, one of the surviving units in the lifetime test is the kth failure, i.e.,

n∑

i=1

Pr
(
Δ

(k)
i = 1

)
= 1, k = 1, . . . ,m. (11)

Therefore, in the case of IID random variables, it is trivial that

Pr
(
Δ

(k)
1 = 1

)
= · · · = Pr

(
Δ(k)

n = 1
)

= 1

n
.
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– The i th unit on test is either one of the m failures or one of those that are removed
from the test. Hence,

m∑

k=1

{
Pr
(
Δ

(k)
i = 1

) + Pr
(
H (k)
i = 1

)} = 1, i = 1, . . . , n.

– Certainly, there are Rk units censored from the test at the kth (1 ≤ k ≤ m) failure
time, such that each of them with probability one is one of the working units on
the test. Therefore,

n∑

i=1

Pr
(
H (k)
i = 1

)
= Rk, k = 1, . . . ,m. (12)

Hence, in the case of IID random variables, it is obvious that

Pr
(
H (k)
1 = 1

)
= · · · = Pr

(
H (k)
n = 1

)
= Rk

n
.

4 Inference based on proportional hazard rate family

Let X1, . . . , Xn be a sample of independent randomvariables forwhich Xi , 1 ≤ i ≤ n,
has the survival function

F̄i (x; θ) = [Ḡ(x; θ)]λi , (13)

where θ ′ = (θ1, . . . , θt ) is a common vector of parameters; λ1, . . . , λn are known
positive constants and Ḡ = 1−G is the survival function of the baseline distribution.
This family is well known as proportional hazard rate family with proportionality
rates λ1, . . . , λn ; see, for example, Lawless (2003). This family includes several well-
known lifetime distributions such as exponential, Weibull, Pareto and Burr type-XII.
For example, suppose that n units which have been made by different companies
and the corresponding lifetimes come from different distributions are independently
placed on a life test. Also, suppose that there exists a hierarchical relation among
these distributions through relation (13). If one considers the first distribution as the
baseline distribution, that is, λ1 = 1, then λ2, . . . , λn represent the proportionality
rates of the other distributions with respect to the first (baseline) distribution. In this
section, we would like to make inference about the common parameters of the lifetime
distributions in the proportional hazard rate family.

First of all, to determine the joint probability functions of (XR
k:m:n,Δ

(k)
i ) and

(XR
k:m:n, H

(k)
i ), let us define Dj = C ( j) ∪{s j } and A j = Λ

( j)
i ∪{i}withC ( j) andΛ

( j)
i

(1 ≤ j ≤ k) being as defined in (3) and (4), respectively. In fact, A1 = {1, . . . , n}.
Moreover, for each set A, we define

ϕ(y; A) = 1
∑

j∈A λ j
[Ḡ(y; θ)]

∑
j∈A λ j , (14)
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with ϕ(y; ∅) = 0; further, we consider the set V (k) = {(v1, . . . , vk); v1 = +1, v j =
±1, 2 ≤ j ≤ k} with V (0) = ∅. Then, by using (2) and performing some algebraic
calculations, it can be shown that for the proportional hazard rate family (13), for
1 ≤ k ≤ m, we get

Pr
(
XR
k:m:n > y,Δ(k)

i = 1
)

= λi
∏k−1

j=1

(γ j−1
R j

)
∑

E (k−1)
i

⎧
⎨

⎩

⎛

⎝
k−1∏

j=1

λs j

⎞

⎠

×
∑

V (k−1)

∏k−1
j=1 v j

∏k−1
j=1

∑
r∈Wj

λr
(ϕ(y; Ak) − ϕ(y; Ak − Wk−1))

⎫
⎬

⎭

:= Ψ1 (k, i;ϕ(y; ·)) , (15)

where A−B stands for the difference of set B from A. Moreover,W0 = A1,W1 = D1
and for 2 ≤ j ≤ k,

Wj =
{
Dj , if v j = +1
Wj−1 ∪ Dj , if v j = −1.

Similarly, by use of the (7), for 1 ≤ k ≤ m, we obtain

Pr
(
XR
k:m:n > y, H (k)

i = 1
)

= Rk

(γk − 1)
∏k−1

j=1

(γ j−1
R j

)
∑

E (k−1)
i

⎧
⎨

⎩

⎛

⎝
k−1∏

j=1

λs j

⎞

⎠

×
⎛

⎜
⎝

∑

j∈Λ
(k−1)
i

λ j

⎞

⎟
⎠

∑

V (k−1)

∏k−1
j=1 v j

∏k−1
j=1

∑
r∈Wj

λr
(ϕ(y; Ak) − ϕ(y; Ak − Wk−1))

⎫
⎪⎬

⎪⎭

:= Ψ2 (k, i;ϕ(y; ·)) , (16)

where ϕ(y; ·) is as defined in (14).
Note. Using (9) and (10), the expressions in (15) and (16) may be simplified for the
special case of k = 1, as follows:

Ψ1 (1, i;ϕ(y; ·)) = λiϕ(y; A1)

and

Ψ2 (1, i;ϕ(y; ·)) = R1

n − 1

⎛

⎝
n∑

j=1

λ j − λi

⎞

⎠ϕ(y; A1),

respectively.
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Remark 3 Using (15), the probability functions f
XR
k:m:n ,Δ

(k)
i

(y, 1) and fXR
k:m:n

(y) and

from (16), the joint probability function f
XR
k:m:n ,H

(k)
i

(y, 1)may be obtained. Moreover,

the failed and censored probabilities in the proportional hazard rate family are derived
via (6) and (8), respectively, which are free of the baseline distribution and are only
depend on the proportionality rates, λ1, . . . , λn , and the progressive censoring plan,
R = (R1, . . . , Rm).

Using (1) and (13), the log-likelihood function of θ based on the data set B is

(θ) =
m∑

k=1

log γk +
m∑

k=1

n∑

i=1

δ
(k)
i log λi +

m∑

k=1

log h(xk; θ)

+
m∑

k=1

n∑

i=1

{
λi

(
δ
(k)
i + η

(k)
i

)
log Ḡ(xk; θ)

}
, (17)

where h = g/Ḡ is the hazard rate function of the baseline distribution with cdf G and
pdf g. Using (17), the FI contained in the data set B about θ ′ = (θ1, . . . , θt ) is given
by the matrix

IB(θ) = [Ir,s(θ)]; r, s = 1, . . . , t, (18)

where

Ir,s(θ) = −E

(
∂2(θ)

∂θr∂θs

)

= −
m∑

k=1

E

(
∂2

∂θr∂θs
log h(XR

k:m:n; θ)

)

−
m∑

k=1

n∑

i=1

λiE

[(
Δ

(k)
i + H (k)

i

)( ∂2

∂θr∂θs
log Ḡ(XR

k:m:n; θ)

)]

= −
m∑

k=1

∫ ∞

0

(
∂2 log h(y; θ)

∂θr∂θs

)
fXR

k:m:n
(y; θ)dy

−
m∑

k=1

n∑

i=1

λi

∫ ∞

0

(
f
XR
k:m:n ,Δ

(k)
i

(y, 1) + f
XR
k:m:n ,H

(k)
i

(y, 1)
)

×
(

∂2 log Ḡ(y; θ)

∂θr∂θs

)
dy. (19)

Remark 4 For the special case of λ1 = · · · = λn = 1 in the family (13), i.e., when
X1, . . . , Xn are IID random variables, for fixed k, the random variables Δ

(k)
i and

H (k)
i (1 ≤ i ≤ n) are independent of XR

k:m:n , while in the INID case this is not true.
Therefore, using (11), (12) and (19), the FI contained in the data set B about θ may
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be obtained from (18), such that Ir,s(θ) is simplified as follows

Ir,s(θ) = −
m∑

k=1

E

(
∂2

∂θr∂θs
log h(XR

k:m:n; θ)

)

−
m∑

k=1

n∑

i=1

λi

(
Pr
(
Δ

(k)
i = 1

)
+ Pr

(
H (k)
i = 1

))
E

(
∂2 log Ḡ(XR

k:m:n; θ)

∂θr∂θs

)

= −
m∑

k=1

{

E

(
∂2 log h(XR

k:m:n; θ)

∂θr∂θs

)

+ (Rk + 1)E

(
∂2 log Ḡ(XR

k:m:n; θ)

∂θr∂θs

)}

.

In the sequel, the exponential family andWeibull distributions are considered as the
baseline cdf for the proportional hazard rate family and some details are investigated.

4.1 Baseline exponential family

Let X1, . . . , Xn be independent random variables for which Xi (1 ≤ i ≤ n) comes
from the model (13) with the baseline one-parameter exponential family with the cdf

G(x; θ) = 1 − e−β(θ)D(x), (20)

where β(θ) and D(x) are positive and differentiable functions and θ is a real-valued
parameter. Notice that by the Cramer–Rao lower bound, the variance of any estimator
of ϑ(θ), any differentiable function of θ , is related to the inverse of the FI about θ .
Also, the FI plays a valuable role in the asymptotic properties of the MLE. Hence, in
spite of computing the FI about θ we would like to study the estimation problem of
β1(θ) = 1/β(θ), the hazard rate function of the baseline distribution at ν: β2(θ) =
h(ν; θ) = g(ν; θ)/Ḡ(ν; θ) = β(θ)d(ν), where d(ν) is the first derivation of D(ν),
and the survival function at ν: β3(θ) = Ḡ(ν; θ) = e−β(θ)D(ν) on the basis of the data
set B.

Theorem 3 Let X1, . . . , Xn be independent random variables for which Xi (1 ≤ i ≤
n) comes from a proportional hazard rate family with survival function in (13). Then,
the random variable

T (B) = 1

m

m∑

j=1

n∑

i=1

λi

(
Δ

( j)
i + H ( j)

i

)
D(XR

j :m:n) (21)

is a sufficient statistic for θ on the basis of the data set B if and only if the baseline
distribution in (13) belongs to the exponential family with cdf (20).

Proof (i) Sufficiency: If the baseline distribution in (13) belongs to the exponential
family with the cdf (20), then the joint density (1) is also in the one-parameter expo-
nential family; thus, the result deduces.
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(ii) Necessary: By sufficiency of T (B), it is deduced that the observed value of
T (B) must be appeared in the last term of the log-likelihood function of θ in (17);
moreover, from the third term in the right hand side of (17), we get

m∏

j=1

h(x j ; θ) = η(x1, . . . , xm)K (θ),

where (x1, . . . , xm) is the observed value of (XR
1:m:n, . . . , XR

m:m:n) and K (·) and η(·)
are some positive functions of θ . Therefore, there exist some positive functions,
say d(·) and β(·) for which h(x j ; θ) = d(x j )β(θ) or equivalently Ḡ(x j ; θ) =
exp{−β(θ)D(x j )}. 	

Remark 5 Let the baseline distribution in a proportional hazard rate model belong to
the exponential family with cdf (20); then, using the properties of the one-parameter
exponential family (see, for example, Lehmann and Casella 1998), we get

– The FI contained in the data set B about θ is

IB(θ) = m

(
β ′(θ)

β(θ)

)2

, (22)

where depends on neither the progressive censoring plan, R = (R1, . . . , Rn), nor
proportionality rates, λ1, . . . , λn .

– The statistic T (B) in (21) is complete, and also using its sufficiency in Theorem
3, it is the best (most efficient) unbiased estimator (BUE) for β1(θ) on the basis of
the data set B in the sense that its variance attains the Cramer–Rao lower bound.

– The statistic T (B) in (21) is also the consistent MLE of β1(θ), and using (22) it is

asymptotically distributed as N
(
β1(θ),

[β1(θ)]2
m

)
, where N (μ, σ 2) stands for the

normal distribution with mean μ and variance σ 2. Hence, an asymptotic 100(1−
α)% confidence interval for β1(θ) is as follows:

⎛

⎝ T (B)

1 + zα/2√
m

,
T (B)

1 − zα/2√
m

⎞

⎠ , (23)

where zα is the αth upper quantile of the standard normal distribution. Notice
that the confidence interval in (23) can be used for large values of m such that√
m > zα/2. It is obvious that larger values of m lead to more reliable confidence

interval.

Corollary 3 Using the invariance property of the MLE, the following results deduce:

– d(ν)
T (B)

is the MLE of β2(θ),

– e− D(ν)
T (B) is the MLE of β3(θ),

where T (B) is as defined in (21). Since β2(θ) and β3(θ) are monotone functions of
β1(θ), the asymptotic confidence intervals for these parameters can be obtained using
(23).
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596 M. Razmkhah, S. Simriz

4.2 Baseline Weibull distribution

In this section, we assume that the baseline cdf in model (13) is the two-parameter
Weibull distribution. The Weibull distribution appears very frequently in practical
problems as the most widely used lifetime distribution model. A random variable X is
said to have the two-parameter Weibull distribution, denoted by We(θ1, θ2), if its cdf
is

G(x; θ1, θ2) = 1 − e
−
(

x
θ2

)θ1

, x > 0,

where θ1 and θ2 are the shape and scale parameters, respectively.

4.2.1 θ2 unknown, θ1 known

Let the shape parameter be known and assume without loss of generality that θ1 = 1;
then, the We(1, θ2) distribution belongs to the exponential family in (20). Therefore,
using (22) we get

θ22 IB(θ2) = m,

which depends on neither the progressive censoring plan nor proportionality rates. On
the other hand, using Remark 5,

T ∗(B) = 1

m

m∑

j=1

n∑

i=1

λi

(
Δ

( j)
i + H ( j)

i

)
XR

j :m:n (24)

is a complete sufficient statistic, and also it is the BUE and the MLE of β1(θ2) = θ2.
Note that since T ∗(B) in (24) is a linear function of XR

j :m:ns, it is also the best linear
unbiased estimator (BLUE) of θ2. Moreover, using (23), an asymptotic 100(1− α)%
confidence interval for θ2 is

⎛

⎝ T ∗(B)

1 + zα/2√
m

,
T ∗(B)

1 − zα/2√
m

⎞

⎠ . (25)

Furthermore, by Corollary 3, we have

– 1
T ∗(B)

is the MLE of β2(θ2) = 1/θ2,

– e− ν
T∗(B) is the MLE of β3(θ2) = e

− ν
θ2 ,

where T ∗(B) is as defined in (24). Also, using (25), the asymptotic confidence intervals
for β2(θ2) and β3(θ2) can be derived.

4.2.2 θ1 unknown, θ2 known

When the scale parameter is known, without loss of generality we consider the
We(θ1, 1) distribution. Therefore, the i th population in a proportional hazard rate
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family has cdf

Fi (x; θ1) = 1 − e−λi xθ1
. (26)

Using (19) and (26), it can be shown that the FI contained in the data set B about θ1
is given by

θ21 IB(θ1) = m +
m∑

k=1

n∑

i=1

λi (Ψ1 (k, i;μ(·)) + Ψ2 (k, i;μ(·)))

:= ψ(m, n,λ), (27)

where λ = (λ1, . . . , λn) represents the proportionality rates; the functions Ψ1
(
k, i;

μ(·)) and Ψ2
(
k, i;μ(·)) are as defined in (15) and (16), respectively. Moreover, by

doing some algebraic calculations, for each set A, we get

μ(A) =
∫ ∞

0
ye

−y
(∑

j∈A λ j

)

(log y)2dy

= 1

(
∑

j∈A λ j )2

⎧
⎪⎨

⎪⎩

π2

6
− 2

⎛

⎝γ + log

⎛

⎝
∑

j∈A

λ j

⎞

⎠

⎞

⎠ +
⎛

⎝γ + log

⎛

⎝
∑

j∈A

λ j

⎞

⎠

⎞

⎠

2
⎫
⎪⎬

⎪⎭
,

where γ is the Euler’s constant and μ(∅) = 0 (see, for example, Balakrishnan et al.
(2008)).

Using (1), the MLE of θ1 based on the data set B, denoted by θ̂1B, is the solution
of the following equation

m

θ1
=

m∑

r=1

(
log XR

r :m:n
){(

XR
r :m:n

)θ1
n∑

i=1

λi

(
Δ

(r)
i + H (r)

i

)
− 1

}

. (28)

It is trivial that the left-hand side of (28) is a positive decreasing function with respect
to θ1. Also, it can be shown that the right-hand side of (28) is an increasing function of
θ1 for which it converges to a real positive constant as θ1 tends to infinity. Therefore,
the existence and uniqueness of the MLE of θ1 are confirmed.

Since θ̂1B is asymptotically distributed as N (θ1,
θ21

ψ(m,n,λ)
), an asymptotic 100(1−

α)% confidence interval for θ1 is

⎛

⎝ θ̂1B

1 + zα/2√
ψ(m,n,λ)

,
θ̂1B

1 − zα/2√
ψ(m,n,λ)

⎞

⎠ , (29)

whereψ(m, n,λ) is as defined in (27). Notice thatψ(m, n,λ) is an increasing function
in m; therefore, the confidence interval in (29) can be used for large values of m such
that

√
ψ(m, n,λ) > zα/2.
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4.2.3 Both of θ1 and θ2 unknown

When both of shape and scale parameters are unknown, the i th population in model
(13) has the cdf

Fi (x; θ1, θ2) = 1 − e
−λi

(
x
θ2

)θ1

, x > 0. (30)

It can be shown that the MLEs of θ1 and θ2 on the basis of the data set B are the
solutions of the following equations:

⎧
⎪⎪⎨

⎪⎪⎩

∑m
k=1

∑n
i=1 λi

(
Δ

(k)
i +H (k)

i

)(
XR
k:m:n
θ2

)θ1

log

(
XR
k:m:n
θ2

)
= m

θ1
+∑m

k=1 log

(
XR
k:m:n
θ2

)
,

∑m
k=1

∑n
i=1 λi

(
Δ

(k)
i + H (k)

i

)(
XR
k:m:n
θ2

)θ1

= m.

Moreover, using (19) and (30), the FI contained in the data set B about θ ′ = (θ1, θ2)

is given by

I (θ) =
(
I11 I12
I12 I22

)
,

where, by doing some algebraic calculations, it can be shown that

θ21 I11 = −θ21 E

(
∂2

∂θ21
(θ)

)

= ψ(m, n,λ),

where (θ) stands for the log-likelihood function of θ on the basis of the data set B
and ψ(m, n,λ) is as defined in (27). Moreover,

θ22 I22 = −θ22 E

(
∂2

∂θ22
(θ)

)

= −mθ1 + θ1(θ1 + 1)
m∑

k=1

n∑

i=1

λi (Ψ1 (k, i; ν(·)) + Ψ2 (k, i; ν(·))) ,

and

θ2 I12 = −θ2E

(
∂2

∂θ1∂θ2
(θ)

)

= m −
m∑

k=1

n∑

i=1

λi (Ψ1 (k, i;ω(·)) + Ψ2 (k, i;ω(·))) ,
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where Ψ1
(
k, i;ω(·)) and Ψ2

(
k, i;ω(·) are as defined in (15) and (16), respectively.

Further, for each set A, we have

ν(A) =
∫ ∞

0
ye−y(

∑
j∈A λ j )dy =

⎛

⎝
∑

j∈A

λ j

⎞

⎠

−2

and

ω(A) =
∫ ∞

0
y(log y + 1)e−y(

∑
j∈A λ j )dy =

2 − γ − log
(∑

j∈A λ j

)

(∑
j∈A λ j

)2 ,

where γ is the Euler’s constant.
Note that asymptotic confidence intervals for any function of θ ′ = (θ1, θ2), say

ξ : R2 → R, may be derived through

ξ(θ̂) − ξ(θ) → N

(
0,

(
∂ξ(θ)

∂θ

)′
I−1(θ)

(
∂ξ(θ)

∂θ

))
, (31)

where I−1(θ) is the inverse of the FI matrix I (θ). For example, when the reliability
of the baseline population at point x is of interest, we have ξ(θ) = exp{−(x/θ2)θ1}.
Hence,

(
∂ξ(θ)

∂θ

)′
=
(

−
(
x

θ2

)θ1

log

(
x

θ2

)
e
−
(

x
θ2

)θ1

,
θ1

θ2

(
x

θ2

)θ1

e
−
(

x
θ2

)θ1
)

.

Therefore, by determining the proportionality rates and doing some numerical com-
putations, the asymptotic confidence intervals may be obtained.

5 Fixed covariates model

Suppose that X1, . . . , Xn are independent random variables representing the lifetimes
of n units such that for i = 1, . . . , n, Xi has an exponential distribution with parameter
λi = exp{−y′

iβ}, where y′
i = (yi1, . . . , yip) is the observation of the covariates

associated with Xi and β ′ = (β1, . . . , βp) is the regression coefficient. Hence, the pdf
of Xi is given by

fi (x) = ey
′
iβ exp{−xey

′
iβ}, x > 0.

If the units are placed on a life-testing experiment under type II censoring scheme,
then using (1), the log-likelihood function of the vector β is

l(β) =
m∑

k=1

log(γk) +
m∑

k=1

n∑

i=1

{
δ
(k)
i y′

iβ − xke
y′
iβ
(
δ
(k)
i + η

(k)
i

)}
.
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Therefore, the MLE of β is the solution of the following equation

m∑

k=1

n∑

i=1

δ
(k)
i yi =

m∑

k=1

n∑

i=1

xk
(
δ
(k)
i + η

(k)
i

)
yiey

′
iβ .

Furthermore, the FI matrix of the β is I (β) = [Ir,s(β)], where for r, s = 1, . . . , p,

Ir,s(β) = −E

(
∂2(β)

∂βr∂βs

)

=
m∑

k=1

n∑

i=1

yir yise
y′
iβE

(
Xk:m:n

(
Δ

(k)
i + H (k)

i

))

=
m∑

k=1

n∑

i=1

yir yise
y′
iβ
(
ϕ∗
1 (k, i;m, n,β) − ϕ∗

2 (k, i;m, n,β)
)
, (32)

where by doing some algebraic calculations, it can be shown that

ϕ∗
1 (k, i;m, n,β) =

∫ ∞

0
x f

Xk:m:n ,Δ(k)
i

(x, 1)dx

= λi
∏k−1

j=1

(γ j−1
R j

)
∑

E (k−1)
i

{
e
−
(∑k−1

j=1 y
′
s j

)
β ∑

V (k−1)

∏k−1
j=1 v j

∏k−1
j=1

∑
r∈Wj

e−y′
rβ

×
⎡

⎢
⎣

⎛

⎝
∑

j∈Ak

e−y′
jβ

⎞

⎠

−2

−
⎛

⎝
∑

j∈Ak−Wk−1

e−e
−y′j β

⎞

⎠

−2
⎤

⎥
⎦

and

ϕ∗
2 (k, i;m, n,β) =

∫ ∞

0
x f

Xk:m:n ,H (k)
i

(x, 1)dx

= Rk

(γk − 1)
∏k−1

j=1

(γ j−1
R j

)
∑

E (k−1)
i

⎧
⎪⎨

⎪⎩
e
−
(∑k−1

j=1 y
′
s j

)
β

⎛

⎜
⎝

∑

j∈Λ
(k)
i

e−y′
jβ

⎞

⎟
⎠

×
∑

V (k−1)

∏k−1
j=1 v j

∏k−1
j=1

∑
r∈Wj

e−y′
rβ

⎡

⎢
⎣

⎛

⎝
∑

j∈Ak

e−y′
jβ

⎞

⎠

−2

−
⎛

⎝
∑

j∈Ak−Wk−1

e−y′
jβ

⎞

⎠

−2
⎤

⎥
⎦

⎫
⎪⎬

⎪⎭
,

where Ak and Wk are as used in (15). Using (31) and (32), the asymptotic confidence
interval for any function of β may be derived.
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Table 1 Summary descriptions of Boeing 720 jet aircraft data

i 1 2 3 4 5 6 7 8 9 10

X3i−2 194 413 90 74 55 23 97 50 359 50

X3i−1 15 14 10 57 320 261 51 44 9 254

X3i 41 58 60 48 56 87 11 102 12 5

λi 1 0.9017 0.9836 0.6803 0.6230 1.3770 1.0656 1.2787 0.4098 0.7705

Table 2 Progressively type II
censored order statistics
extracted from the data in
Table 1

i XR∗
i :m:n xi Censored units after the i th failure time

1 X30 5 X2 X10 X12 X23 X26

2 X8 10 X5 X6 X15 X18 X22

3 X21 11 X3 X9 X16 X27 X28

4 X20 51 X11 X13 X19 X25 X29

5 X7 90 X1 X4 X14 X17 X24

6 Application on a real data set

To illustrate the performance of the proposed procedure in this paper, we use a real
data set which consists of the time (in H) of successive failures of the air conditioning
system in tenBoeing 720 jet aircrafts; see, Proschan (1963) for a detailed description of
the data set. He tested and accepted the hypothesis that the successive failure times are
IID exponential for each aircraft, but with different failure rates. Therefore, we assume
that the corresponding failure times for the i th aircraft come from the cdf Fi (x; σ) =
1− e−λiσ

−1x , which coincides with a proportional hazard rate family in (13). Since in
the assumptions of our model, λi ’s are known parameters, we consider some arbitrary
values for λ1, . . . , λ10 as presented in Table 1. Moreover, three observations related to
the i th aircraft, denoted by X3i−2, X3i−1 and X3i (1 ≤ i ≤ 10), which have the same
distribution as Fi (x, σ ), are used to estimate the unknown common parameter σ . In
fact, we use a sample of size thirty of failure times forwhich the first three of themcome
from cdf F1(x; σ), the second three of them come from cdf F2(x; σ) and eventually
the last three of them come from cdf F10(x; σ). Notice that the common parameter in
these distributions is σ which is of interest; moreover, there exist ten known parameters
λ1, . . . , λ10 which construct the different distributions related together via relation in
(13). Summary descriptions are reported in Table 1.

Using the data in Table 1 and by using the progressive censoring plan R∗ =
(5, 5, 5, 5, 5), the first five progressively type II censored order statistics have been
extracted. The results are tabulated in Table 2. From the entries of this table, the values
of Δ

( j)
i and H ( j)

i in the data set B may also be specified.
Using (24) and the data in Table 2, the observed value of the BLUE and also the

MLE of σ on the basis of the data set B is given by

t∗B = 1

5
{x1 (λ2 + λ10 + λ12 + λ23 + λ26 + λ30)
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+ x2 (λ5 + λ6 + λ8 + λ15 + λ18 + λ22)

+ x3 (λ3 + λ9 + λ16 + λ21 + λ27 + λ28)

+ x4 (λ11 + λ13 + λ19 + λ20 + λ25 + λ29)

+ x5 (λ1 + λ4 + λ7 + λ14 + λ17 + λ24)}
= 187.3066. (33)

From (25) and (33), the observed values of asymptotic 90 and 95% confi-
dence intervals for σ based on the data in Table 2 are (108.0554, 702.6551) and
(99.8149, 1517.1270), respectively. Notice that in small samples, the asymptotic con-
fidence intervals lead to unreliable results. For this reason, the upper bounds of the
confidence intervals for σ are rather large compared to its estimate.

7 Numerical computations

Let X1, . . . , Xn be independent random variables from a proportional hazard rate
family for which Xi (1 ≤ i ≤ n) has the same distribution as presented in (26).
In this section, we determine the amount of FI about θ1 contained in the data set B
for given proportionality rates. Toward this end, we assume that n = 8, m = 4 and
consider five n-tuples of proportionality rates as λ1 = (1, 1, 1, 1, 1, 1, 1, 1) which
corresponds to the case of IID random variables from We(θ1, 1) distribution, λ2 =
(1, 0.8, 0.6, 0.4, 0.35, 0.3, 0.25, 0.2), λ3 = (1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3), λ4 =
(1, 2, 3, 4, 5, 6, 7, 8) and λ5 = (1, 3, 5, 7, 9, 11, 13, 15). Using (27), the numerical
values of θ21 IB(θ1) are presented in Table 3, for some choices of progressive censoring
plans, R.
From Table 3, it is deduced that:

1. For the cases in which all λ1, . . . , λ8 are less than or equal to 1 (such as in λ1,
λ2 and λ3), later removal of working units decreases the amount of FI about θ1.
Therefore, it is better to remove units at the first stage of the test.

2. If all λ1, . . . , λ8 are greater than or equal to 1 (such as in λ4 and λ5), later removal
of working units increases the FI of θ1. Therefore, it is preferred to remove units
at the last stage of the test.

8 Concluding remarks

In this paper, we assumed that X1, . . . , Xn are the lifetimes of n units where are
independently and simultaneously placed on a test for which Xr is distributed with
cdf Fr (x; θ), 1 ≤ r ≤ n, where θ is the common vector of parameters of these
distributions. The likelihood function of θ was derived based on INID progressively
type II censored order statistics and the indicator random variables that identify the
failed units and those that are removed from the experiment. Some major results were
obtained regarding the distribution theory of these statistics. To construct the noniden-
tical distributed random variables, a proportional hazard rate family was considered
and it was shown that in this family the probabilities for the events that the i th unit is
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Table 3 Values of θ21 IB(θ1) for proportionality rate λi (1 ≤ i ≤ 6) and some choices of R

R λ1 λ2 λ3 λ4 λ5

(4,0,0,0) 8.7609 13.7163 10.8837 16.5671 23.6522

(0,4,0,0) 8.4512 11.6792 9.6109 18.7637 26.9462

(0,0,4,0) 7.5424 9.0806 7.7709 19.9339 29.0779

(0,0,0,4) 6.2403 5.9955 5.4845 20.4534 30.4925

(3,1,0,0) 8.5275 12.7921 10.2666 17.2597 24.7602

(2,2,0,0) 8.4452 12.2530 9.9300 17.8450 25.6374

(1,3,0,0) 8.4312 11.9100 9.7319 18.3400 26.3511

(3,0,1,0) 8.0046 11.5344 9.3338 17.4715 25.3316

(2,0,2,0) 7.6902 10.3276 8.5278 18.3815 26.7911

(1,0,3,0) 7.5680 9.5784 8.0591 19.2035 28.0246

(3,0,0,1) 7.1959 9.8143 7.9880 17.2368 25.3935

(2,0,0,2) 6.5858 7.8898 6.6682 18.3675 27.3407

(1,0,0,3) 6.3284 6.7428 5.9314 19.4591 29.0324

(0,0,3,1) 6.7236 7.2611 6.3828 19.9365 29.4975

(0,0,2,2) 6.4447 6.5739 5.8864 20.1384 29.9375

(0,0,1,3) 6.3129 6.2147 5.6347 20.3129 30.2555

the kth failure or that it is censored after the kth failure time are free of the baseline
distribution. The results were derived in details for the baseline one-parameter expo-
nential and two-parameter Weibull family of distributions, and they also extended
to a fixed covariates model with multi-dimensional parameter. In the case of one-
parameter exponential family, a real data set was used to illustrate the performance of
the proposed procedure. Some numerical computations were also presented to study
the effect of the proportionality rates in view of the FI of the shape parameter of a
Weibull distribution contained in the data set B. The proposed procedure in this paper
can be extended to the following cases:

– Statistical inferences for the proportional hazard rate family have been obtained by
assuming that λ1, . . . , λn are known positive constants for which λ1 = 1. When
λi (2 ≤ i ≤ n) is unknown, one can estimate it nonparametrically. Suppose that
there exists a sample of size Ni from the i th (1 ≤ i ≤ n) distribution; then, the
nonparametric MLE for λi is

λ̂i = −Ni
∑ni

j=1 log
ˆ̄G(Xi, j ; θ)

, 2 ≤ i ≤ n,

where ˆ̄G(x; θ) is the empirical estimator of Ḡ(x; θ) obtained on the basis of the
sample comes from the first (baseline) distribution; see, Razmkhah et al. (2008).

– Let Y1, . . . ,Yn be independent random variables for which Yi (1 ≤ i ≤ n) is
distributed with the cdf Fi (x; θ) = [F0(x; θ)]βi , where F0(x; θ) is an absolutely
continuous cdf and βi is a known positive constant. The aforementioned identity
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is well known in the lifetime literature as proportional reversed hazard rate family
which includes several well-known distributions such as power function and Burr
type III, Fréchet; see, for example, Lawless (2003). In this case, the results of the
paper hold with obvious modifications.

– Using the results of Theorem 1 regarding the probability of the event that the
lifetime of the i th unit is the kth failure time, we can develop a general approach
to robust inference about the parameter of interest in the presence of one or more
outliers.
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