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Abstract In this paper, the conditional distance correlation (CDC) is used as a mea-
sure of correlation to develop a conditional feature screening procedure given some
significant variables for ultrahigh-dimensional data. The proposed procedure is model
free and is called conditional distance correlation-sure independence screening (CDC-
SIS for short). That is, we do not specify anymodel structure between the response and
the predictors, which is appealing in some practical problems of ultrahigh-dimensional
data analysis. The sure screening property of the CDC-SIS is proved and a simulation
study was conducted to evaluate the finite sample performances. Real data analysis is
used to illustrate the proposed method. The results indicate that CDC-SIS performs
well.
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1 Introduction

With the development of modern technology, the collection and storage of ultrahigh-
dimensional data become easier in various scientific areas, such as genomics,
proteomics, and high-frequency finance, where the number of variables p may grow
exponentially with the sample size n. One way to deal with large p is to use variable
selection which assumes that only a small number of predictors are rescaled to the
response, that is, the sparsity principle. However, the regulation methods may not
perform well for ultrahigh-dimensional data, due to simultaneous challenges of com-
putational expediency, statistical accuracy, and algorithm stability (Fan et al. 2009).

To tackle these difficulties, Fan and Lv (2008) proposed a two-stage procedure.
First, a fast screening procedure is applied to reduce the ultrahigh dimensionality to
a moderate scale that is smaller than or equal to the sample size n; then, regulation
method can be used to obtain the final model. Several screening methods have been
developed in the recent history. Fan and Lv (2008) introduced a marginal Pearson
correlation measure in the linear model. Fan and Song (2010) extended the method
to generalized linear model by ranking the maximum marginal likelihood estimates.
Furthermore, Fan et al. (2011) explored the feature screening technique for ultrahigh-
dimensional additive models. Zhu et al. (2011) proposed a robust correlation measure
under themulti-indexmodel. Themethodsmentioned above are based onmodel struc-
tures, which may cause incorrect results when the models are misspecified. Recently,
Li et al. (2012) proposed a model-free feature screening technique based on the dis-
tance correlation (DC) studied in Szekely et al. (2007). Thismeasure is robust tomodel
misspecification and can be used for feature screening without specifying a regres-
sion model. Zhong et al. (2016) generalized the DC method to a robust one through
the distance correlation between the predictors and the marginal distribution of the
response.

In some practical problems, however, some predictors are known to be significant to
response. A problem is that how tomake feature screening for the remaining predictors
given the significant predictors. An analogous problem is considered by Liu et al.
(2014), where the conditional Pearson correlation coefficient is used as a measure to
develop a conditional feature screening for the linear varying coefficient model. That
is, given the exposure variables, the conditional Pearson correlation-based feature
screening is developed for the predictors in the linear part. Fan et al. (2014) also
proposed a screening method in linear varying coefficient models, that cannot adapt
to the nonlinear situations yet.

How to construct amodel-free conditional measure to screen the predictors is a very
important task.This paper uses the conditional distance correlation (CDC)measure due
to Wang et al. (2015) to develop conditional feature screening given some significant
variables without assuming anymodel structure. The proposed procedure is referred to
as conditional distance correlation sure independence screening (CDC-SIS for short).
Wang et al. (2015) showed that the CDC equals zero if and only if two random vectors
are independent conditional on some other variables. We systematically study the
theoretical properties of the CDC-SIS and prove that with probability tending to one,
all active predictors are selected, i.e., the sure screening property proposed in Fan and
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Lv (2008) is proved. The finite sample performances of the proposed procedure via
numerical simulation are studied.

The rest of this paper is organized as follows. In Sect. 2, we propose a new con-
ditional feature screening procedure for ultrahigh-dimensional data and study its sure
screening property. In Sect. 3, a simulation study is conducted to assess the finite
sample performances. In Sect. 4, we illustrate the method through a real data example.
The regularity conditions and technical proofs are given in Appendix.

2 Independence screening using CDC

2.1 The methodology

Let Y ∈ R denote the response, W some significant predictor vector of Y , and X =
(X1, . . . , X p) ∈ Rp the remaining p-dimensional predictors. To highlight ourmethod,
we consider univariateW next without loss of generality. We consider the conditional
distribution function ofY givenX andW , denoted by F(y|X, W ) = P(Y ≤ y|X, W ).
Let

M∗ = { j : F(y|X, W ) functionally depends on X j },

be the index set of active predictors and it is natural to assume the sparsity, that is, only
a small number of predictors in X are relevant to Y given W . Throughout the paper,
we assume the cardinality ofM∗, sn = |M∗| is smaller than the sample size n. Next,
let us introduce the conditional distance correlation suggested by Wang et al. (2015).

For t ∈ R and s ∈ R, the conditional joint characteristic function of X j and Y
given W is defined as

�X j ,Y |W (t, s) = E(eit X j+isY |W ), j = 1, . . . , p, (1)

where i is the imaginary unit. In addition, the conditional marginal characteristic
functions of X j and Y given W are defined as

�X j |W (t) = �X j ,Y |W (t, 0), and �Y |W (s) = �X j ,Y |W (0, s), j = 1, . . . , p.

Wang et al. (2015) proposed conditional distance correlation for measuring the depen-
dence between two random vectors given another random vector. Specifically, given
W , the conditional distance of Y and X j , j = 1, . . . , p is defined as

D2(X j ,Y |W ) =
∫

|�X j ,Y |W (t, s) − �X j |W (t)�Y |W (s)|2w(t, s)dtds, (2)

where w(t, s) = 1/(c21‖t‖2‖s‖2), and cd = π(1+d)/2/�((1 + d)/2). Throughout the
article, ‖ · ‖ stands for the Euclidean norm.

The conditional distance variance of X j and Y given W are, respectively,

D2(X j |W ) = D2(X j , X j |W ), D2(Y |W ) = D2(Y,Y |W ). (3)
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Then the conditional distance correlation between X j and Y given W is defined as

ρ2(X j ,Y |W ) = D2(X j ,Y |W )√
D2(X j |W )D2(Y |W )

. (4)

Define the marginal utility for feature screening as

ρ∗
j0 = E(ρ2(X j ,Y |W )), j = 1, . . . , p.

A remarkable property of the marginal utility ρ∗
j0 is that ρ

∗
j0 = 0 if and only if X j and

Y are independent, conditional on W . This measure allows our method to detect any
nonlinear relationship between the response and predictors. This implies that when
there is a nonlinear relationship between X j and Y , ρ∗

j0 is far away from zero, while
the conditional Pearson correlation proposed by Liu et al. (2014) may be very small
and even close to zero because that Pearson correlation can only detect the linear
relationship between X j and Y .

Suppose that {(Xi ,Yi ,Wi ), i = 1, . . . , n} are independent and identically dis-

tributed copies of (X,Y,W ), and Xi = (X1i , X2i , . . . , X pi ). Denote d
X j
kl =

d(X jk, X jl) as the Euclidean distance of X jk and X jl and, similarly, dYkl for Y . Wang
et al. (2015) establishes the following expression:

D2(X j ,Y |W = w) = S1(w) + S2(w) − 2S3(w), (5)

where S j (w), j = 1, 2, 3 are defined as

S1(w) = E(d
X j
kl d

Y
kl |Wk = w,Wl = w),

S2(w) = E(d
X j
kl |Wk = w,Wl = w)E(dYkl |Wk = w,Wl = w),

S3(w) = E(d
X j
kl d

Y
km |Wk = w,Wl = w,Wm = w).

To estimate D2(X j ,Y |W = w), we only need derive the sample estimators of
S j (w), j = 1, 2, 3. Clearly, these conditional expectations can be estimated by the
kernel smoothing method (Fan and Gijbels 1996). Let K (·) be a given kernel function,
h a bandwidth,ak(w) = Kh(w−Wk) = K ((w−Wk)/h)/h anda(w) = ∑n

k=1 ak(w),
then the kernel regression estimates are given by

Ŝ1(w) =
n∑

k,l=1

d
X j
kl d

Y
klak(w)al(w)/a2(w),

Ŝ2(w) =
n∑

k,l=1

d
X j
kl ak(w)al(w)

n∑
k,l=1

dYklak(w)al(w)/a4(w),

Ŝ3(w) =
n∑

k,l,m=1

d
X j
kl d

Y
kmak(w)al(w)am(w)/a3(w).
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Substituting these estimates into (5), we obtain a nature estimator of D2(X j ,Y |W =
w), denoted by D̂2(X j ,Y |W = w) = Ŝ1(w) + Ŝ2(w) − 2Ŝ3(w). Similarly, we can
define the sample conditional distance variances D̂2(X j |W = w) and D̂2(Y |W = w).
Accordingly, the sample conditional distance correlation is given by

ρ̂2(X j ,Y |W = w) = D̂2(X j ,Y |W = w)√
D̂2(X j |W = w)D̂2(Y |W = w)

, (6)

which can be seen as a function of w, denoted by ρ̂2
j (w). We now define an estimate

of the marginal utility ρ∗
j0 as

ρ̂∗
j = 1

n

n∑
i=1

ρ̂2
j (Wi ), j = 1, . . . , p.

Based on ρ̂∗
j , we select a set of important predictors with large ρ̂∗

j ,

M̂ = { j : 1 ≤ j ≤ p, ρ̂∗
j > cn−κ },

where c and κ are prespecified threshold values. However, in practice, we often select
the first d largest ρ̂∗

j with d taken to be smaller than the sample size n. Thus, we can
reduce the dimensionality of the predictors from p to a moderate scale d. Liu et al.
(2014) suggested setting d = [n4/5/ log(n4/5)] for ultrahigh-dimensional varying
coefficient model, where [a] refers to the integer part of a.

2.2 Sure screening property

We next study the theoretical properties of the proposed screening procedure CDC-
SIS.

Theorem 1 Under regularity conditions given in Appendix, suppose the bandwidth
h = O(n−γ ), where 0 < γ < 1/2, 0 ≤ κ < γ , and ξ is a positive constant, then we
have

P( max
1≤ j≤p

|ρ̂∗
j − ρ∗

j0| ≥ cn−κ) ≤ O(np exp(−nγ−κ/ξ)),

P(M∗ ⊂ M̂) ≥ 1 − O(nsn exp(−nγ−κ/ξ)).

Theorem 1 indicates that we can handle the nonpolynomial (NP) dimensionality of
order log p = o(nγ−κ). In other words, the tail probability in Theorem 1 is exponen-
tially small. Hence,M̂ can retain all important predictorswith probability tending to 1.
The following corollary gives the sure screening property of the CDC-SIS screening.
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Corollary 1 Under the conditions of Theorem 1, when log p = o(nγ−κ), we have
that

P( max
1≤ j≤p

|ρ̂∗
j − ρ∗

j0| ≥ cn−κ ) → 0, as n → ∞,

P(M∗ ⊂ M̂) → 1, as n → ∞.

CDC-SIS also provides an alternative to the varying coefficient models, although
it is suggested in a general case that we do not require specifying the relationship
between Y and X given W .

Remark 1 This proposed method is a nonparametric one and hence depends on the
selection of the bandwidth. However, in practice, the bandwidth selection is not so
critical since we use ρ̂∗

j , which is the average of ρ̂2
j (Wi ) for i = 1, 2, . . . , n and hence

is a global quantity. That is, the method is not sensible to the selection of bandwidth as
long as the bandwidth satisfies the condition given for the feature screening property.
The explanation is similar to Wang and Rao (2002).

3 Numerical studies

In this section, we conducted some numerical studies to evaluate the proposed method
CDC-SIS, and compared it with the conditional Pearson correlation coefficient pro-
posed by Liu et al. (2014) (CC-SIS), the nonparametric independence screening (NIS)
method proposed by Fan et al. (2014), the SISmethod proposed by Fan and Lv (2008),
the DC-SIS method proposed by Li et al. (2012) and DC-RoSIS method proposed by
Zhong et al. (2016). The last three methods are developed for unconditional fea-
ture screening. We compare our method with them to display the benefit of using
prior knowledge of some significant predictor. The kernel function is taken to be
K (w) = 0.75(1 − w2)+ and the bandwidth is taken to be h = n−1/5 throughout this
paper.

Similar to Liu et al. (2014), the variables (W ∗,X
)
 are generated from N (0, 	),
where 	 is a (p + 1) × (p + 1) covariance matrix with element σi j = ρ|i− j |,
i, j = 1, . . . , p + 1. We consider ρ = 0.4 and 0.8, respectively. Then we take
W = �(W ∗), where �(·) is the cumulative distribution function of the standard nor-
mal distribution. Thus, W follows a uniform distribution U (0, 1) and is correlated
withX. We take p to be 1000, and the sample size n is 200; the model size d is chosen
to be di = i[n4/5/ log(n4/5)], i = 1, 2, 3, where [a] denotes the integer part of a. All
the simulations are based on 500 replications.

Following Li et al. (2012), we employ S, Pj and PAll to assess the performance of
the CDC-SIS, where S, Pj and PAll are defined as follows:

• S: The minimal model size to include all active predictors. We report the 5, 25,
50, 75, and 95% quantiles of S out of 500 replications.

• Pj : The proportion of the j-th active predictor selected by the submodel M̂ with
size d among 500 replications.

• PAll: The proportion of all active predictors selected by the submodel M̂with size
d among 500 replications.
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Example 1 In this example, we consider the following linear varying coefficient
model:

(1.1) : Y = β2(W )X2 + β100(W )X100 + β400(W )X400 + β600(W )X600

+β1000(W )X1000 + ε,

where the nonzero coefficient functions are defined by

β2(W ) = 2I (W > 0.4), β100(W ) = 1 + W, β400(W ) = (2 − 3W )2,

β600(W ) = 2 sin(2πW ), β1000(W ) = exp(W/(W + 1)).

We consider two error distributions, a standard norm N (0, 1) and a standard Cauchy
distribution which has a heavy tail.

Table 1 reports the quantile of S. It is seen that, when the model is indeed linear
with a norm error, CDC-SIS has a comparable performance to CC-SIS and both out-
perform the unconditional methods SIS, DC-SIS and DC-RoSIS significantly. The
NIS method performs a little bit worse. On the other hand, when the error distribution
is heavily tailed, our method clearly outperforms the other methods. It is reasonable
because the proposed method is model free, while CC-SIS and NIS are developed for
linear varying coefficient model and are not robust to models with heavy tail error
distribution. The unconditional methods are intuitively inefficient because they do not
use the information of the significant(conditional) predictor. Table 2 reports the pro-
portion Pj and PAll. All Pj and PAll of CDC-SIS are close to 1 as d increases,
while the low value of P600 and PAll of the SIS, DC-SIS and DC-RoSIS imply
that they rank X600 behind and regard it as an unimportant variable. This may be
because that β600(W ) = 2 sin(2πW ) has mean 0 if W follows a U (0, 1) distri-
bution. Thus, the screening methods SIS, DC-SIS and DC-RoSIS are not suitable
for varying the coefficient model, especially when the coefficient oscillates about
zero.

Example 2 Similar to Example 1, we set

β1(W ) = 2I (W > 0.4), β2(W ) = 1 + W,

β3(W ) = (2 − 3W )2, β4(W ) = 2 sin(2πW ),

and the error ε follows a standard normal distribution. The response is generated from
the following three models.

(2.1) : Y = β1(W )X1 + β2(W )X2 + β3(W )I (X12 < 0) + β4(W )X22 + ε,

(2.2) : Y = β1(W )X1X2 + β3(W )I (X12 < 0) + β4(W )X22 + ε,

(2.3) : Y = β1(W )X1 + β2(W )X2 + β3(W )I (X12 < 0) + exp(|X22|)ε,
where I (X12 < 0) is an indicator function.

Models (2.1)–(2.3) are all nonlinear in X12, and model (2.2) contains an interac-
tion term X1X2, and model (2.3) is heteroscedastic. However, the CC-SIS and NIS
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methods which perform well in linear varying coefficient model are not suitable in
these nonlinear cases. The quantile of S is reported in Table 3. We can see that CDC-
SIS performs better than the other five screening methods, in particular when models
deviate far from the linear model. Pj and PAll are reported in Table 4. The perfor-
mance of CC-SIS is not too bad in model (2.1). P1, P2 and P22 are all equal to 1,
and P12 is a little lower, that is because X1, X2, X22 are the linear parts, and X12
is the nonlinear part of the response. However, CC-SIS has little chance to iden-
tify the important predictors X1, X2 in model (2.2) and X12, X22 in model (2.3).
NIS has a poor performance, mainly because the predictor X12 presents in an index
function, and NIS cannot find it out. The other three unconditional methods clearly
cannot select all important predictors with the nonlinear and varying coefficient inter-
action.

In this paper, we only consider univariate W , however, W can be extended to
multivariate very directly. In this subsection, we study the applicability of the proposed
method in the case of multivariate W .

Example 3 Y = β1(W
γ )X1X2+β2(W
γ )I (X3 < 0)+ε,withW = (W1,W2)

 is

a two-dimensional index vector, γ = [1, 1]
 is the index coefficient, and (W
,X
)

are generated as described before with ρ = 0.4. Set

β1(u) = exp(5u)/(1 + exp(5u)), β2(u) = sin(πu),

and the error ε follows a standard normal distribution.

We compare the performances of different methods in Tables 5 and 6. Similar to
Example 2, in terms of the quantile of S, the size of CDC-SIS is much smaller than the
others; on the other hand, the proportion Pj and PAll are much closer to 1. In summary,
CDC-SIS outperforms the other methods in the case of multivariate W setup under
consideration.

Based on the referees’ suggestions, we further consider a simulation setup which
satisfies the assumptions for the NIS. The results are listed in the supplement with the
same setting as in Example 3 in Fan et al. (2014). The results show that CDC-SIS,
CC-SIS and NIS perform well and behave better than the unconditional screening
methods SIS, DC-SIS and DC-RoSIS. NIS behaves comparably to CDC-SIS and
CC-SIS according to the top 50% quantiles of S. However, in terms of the 75 and
95% quantiles of S, the NIS method needs a larger model size to include all active
predictors than the CDC-SIS and CC-SIS methods. Moreover, PAll of NIS is a little
lower than those of CDC-SIS and CC-SIS, but all these three methods outperform
the unconditional screening methods significantly. For more details, please see the
supplemental material.

4 Real data analysis

In this section, we illustrate the performance of ourmethod through a real data analysis
on Boston Housing Data (Harrison and Rubinfeld 1978). The sample size n = 506 in
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Table 5 The quantile of S

Method ρ = 0.4

5% 25% 50% 75% 95%

CDC-SIS 3.0000 4.0000 8.0000 29.0000 143.0000

CC-SIS 3.0000 8.0000 28.0000 107.0000 525.0000

SIS 216.5000 605.5000 840.0000 971.0000 1000.0000

DC-SIS 27.5000 135.5000 277.0000 536.0000 876.0000

DC-RoSIS 43.0000 179.5000 337.5000 599.5000 883.0000

this dataset.We treatMEDV (themedian value of owner-occupied homes) as response,
and log(DIS) (theweighted distances to five Boston employment centres) as the signif-
icant variable. It is reasonable because the geographical accessibility to employment
is an important factor to consider when buying houses. The other 13 predictors are
included, such as CRIM (per capita crime rate by town), NOX (nitric oxides concen-
tration), LSTAT (lower status of the population) and so on.

Inspired by Fan et al. (2014), to evaluate our method in a high-dimensional setting,
we expand the dataset by adding the artificial predictors:

X j = Z j + tU

1 + t
, j = 14, 15, . . . , p,

where p = 1000, t = 2, and Z j , j = 14, 15, . . . , p are i.i.d. standard normal
variables and U follows the standard uniform distribution. In this artificial example,
we repeat the experiment 500 times. The results given in Table 7 are very appealing
because our method can rank the 13 active variables before the artificial predictors.
This implies that our method is very useful in high-dimensional data analysis.

Acknowledgements Wang’s research was supported by the National Natural Science Foundation of China
(General Program 11171331 and Key Program 11331011) and the National Natural Science Foundation for
Creative Research Groups in China (61621003), a Grant from the Key Lab of Random Complex Structure
and Data Science, CAS and Natural Science Fund of SZU.

Appendix

We first establish the following regularity conditions:

(C1) Denote the density function of W by f (·), and assume that it has continuous
second derivatives. The support ofW is assumed to be bounded and is denoted
byW = [a, b] with finite constants a and b.

(C2) K (·) is a symmetric density function with bounded support and bounded over
its support.
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Table 6 The proportion of Pj
and PAll

Method Size ρ = 0.4

Pj PAll

X1 X2 X3 All

CDC-SIS d1 0.8180 0.9600 0.8160 0.6540

d2 0.8900 0.9780 0.8840 0.7780

d3 0.9140 0.9900 0.9100 0.8320

CC-SIS d1 0.5120 0.9100 0.7540 0.3880

d2 0.6200 0.9440 0.8360 0.5180

d3 0.6740 0.9600 0.8620 0.5840

SIS d1 0.0300 0.0720 0.0140 0.0000

d2 0.0440 0.1040 0.0320 0.0060

d3 0.0520 0.1380 0.0480 0.0100

DC-SIS d1 0.7380 0.6880 0.0360 0.0240

d2 0.8480 0.8280 0.0700 0.0620

d3 0.8980 0.8740 0.1000 0.0920

DC-RoSIS d1 0.5140 0.4820 0.0280 0.0100

d2 0.6480 0.6380 0.0540 0.0320

d3 0.7540 0.7280 0.0820 0.0600

Table 7 The quantile of S

Method 5% 25% 50% 75% 95%

CDC-SIS 13.0000 13.0000 13.0000 13.0000 13.0000

(C3) The random variables X and Y satisfy the sub-exponential tail probability uni-
formly in p. That is, there exists a positive constant s0, such that for 0 ≤ s < s0,

sup
W∈W

max
1≤ j≤p

E(exp(sX2
j |W )) < ∞,

sup
W∈W

E(exp(sY 2|W )) < ∞,

(C4) min j∈M∗ ρ∗
j0 ≥ 2cn−κ for some constant c > 0 and 0 ≤ κ < 1/2.

Proof of Theorem 1 The proof consists of three steps.We denote the positive constants
c and C as generic constants depending on the context, which can vary from line to
line.

Step 1. For some 0 ≤ κ < 1/2, we first prove

max1≤ j≤p supw∈[a,b] P(|ρ̂2(X j ,Y |W = w) − ρ2(X j ,Y |W = w)|
≥ cn−κ ) ≤ C exp

(
− n−κ

Ch

)
. (7)
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Refer to the Supplemental material for the proof of Step 1.
Step 2. We prove P(max1≤ j≤p |ρ̂∗

j − ρ∗
j0| ≥ cn−k) ≤ O(np exp(−nγ−κ/ξ)).

Note that

P(|ρ̂∗
j − ρ∗

j0| ≥ cn−κ) ≤ P(|ρ̂∗
j − ρ∗

j | + |ρ∗
j − ρ∗

j0| ≥ cn−κ )

≤ P(|ρ̂∗
j − ρ∗

j | ≥ cn−κ/2) + P(|ρ∗
j − ρ∗

j0| ≥ cn−κ/2).

By the definitions of ρ̂∗
j , ρ

∗
j = 1

n

∑n
i=1 ρ2

j (Wi )with ρ2
j (w) = ρ2(X j ,Y |W =

w) and the result of Step 1, we have, for j = 1, 2, . . . , p

P(|ρ̂∗
j − ρ∗

j | ≥ cn−κ/2) = P

(
|1
n

n∑
i=1

ρ̂2
j (Wi ) − 1

n

n∑
i=1

ρ2
j (Wi )| ≥ cn−κ/2

)

≤
n∑

i=1

P(|ρ̂2
j (Wi ) − ρ2

j (Wi )| ≥ cn−κ/2)

≤ Cn exp

(
−n−κ

Ch

)

= O(n exp(−nγ−κ/ξ)), (8)

where ξ is a positive constant, and 0 ≤ κ < γ . By Hoeffding’s inequality, for
j = 1, 2, . . . , p, it follows that

P(|ρ∗
j − ρ∗

j0| ≥ cn−κ/2) = P

(
|1
n

n∑
i=1

ρ2
j (Wi ) − Eρ2

j (Wi )| ≥ cn−κ/2

)

≤ 2 exp(−nc2n−2κ/2)) = O(exp(−n1−2κ/ξ)).

(9)

Eq. (8) dominates Eq. (9). Hence, for j = 1, 2, . . . , p, we get

P(|ρ̂∗
j − ρ∗

j0| ≥ cn−κ ) ≤ O(n exp(−nγ−κ/ξ)).

We thus have

P

(
max
1≤ j≤p

|ρ̂∗
j − ρ∗

j0| ≥ cn−k
)

≤ O(np exp(−nγ−κ/ξ)).

Step 3. We prove P(M∗ ⊂ M̂) ≥ 1 − O(nsn exp(−nγ−κ/ξ)).
If M∗ �⊂ M̂, then there exist some j ∈ M∗ such that ρ̂∗

j < cn−κ , due to
min j∈M∗ ρ∗

j0 ≥ 2cn−κ , |ρ̂∗
j − ρ∗

j0| ≥ cn−κ for some j ∈ M∗, indicating
that

{M∗ �⊂ M̂} ⊂ {|ρ̂∗
j − ρ∗

j0| ≥ cn−κ for some j ∈ M∗}.
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Consequently,

P{M∗ ⊂ M̂} ≥ P{ max
j∈M∗ |ρ̂∗

j − ρ∗
j0| < cn−κ }

= 1 − P{ max
j∈M∗ |ρ̂∗

j − ρ∗
j0| ≥ cn−κ }

≥ 1 − sn P{|ρ̂∗
j − ρ∗

j0| ≥ cn−κ }
≥ 1 − O(nsn exp(−nγ−κ/ξ)).

�
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