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Abstract Nonparametric estimation of a quantile of a random variable m(X) is con-
sidered, where m : R

d → R is a function which is costly to compute and X is a
R
d -valued random variable with a given density. An importance sampling quantile

estimate of m(X), which is based on a suitable estimate mn of m, is defined, and it
is shown that this estimate achieves a rate of convergence of order log1.5(n)/n. The
finite sample size behavior of the estimate is illustrated by simulated data.
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440 M. Kohler et al.

1 Introduction

In this paper, we consider a simulation model of a complex technical system described
by

Y = m(X),

where X is anRd -valued random variable with density f : Rd → R andm : Rd → R

is a black-box functionwith the possibility of expensive evaluation at arbitrarily chosen
design points. Let

G(y) = P{Y ≤ y} = P{m(X) ≤ y}

be the cumulative distribution function (cdf) of Y . For α ∈ (0, 1), we are interested in
estimating quantiles of the form

qα = inf{y ∈ R : G(y) ≥ α}

using at most n evaluations of function m. Here, we assume that the density f of X is
known.

A simple idea is to estimate qα using an i.i.d. sample X1, . . . , Xn of X and to
compute the empirical cdf

Gm(X),n(y) = 1

n

n∑

i=1

I{m(Xi )≤y} (1)

and to use the corresponding plug-in estimate

qα,n = inf{y ∈ R : Gm(X),n(y) ≥ α}. (2)

Set Yi = m(Xi ) (i = 1, . . . , n) and let Y1:n, . . . ,Yn:n be the order statistics of
Y1, . . . ,Yn , i.e., Y1:n, . . . ,Yn:n is a permutation of Y1, . . . ,Yn , such that

Y1:n ≤ · · · ≤ Yn:n .

Since

qα,n = Y�nα�:n

is in fact an order statistic, the properties of this estimate can be studied using the results
from order statistics. In particular, Theorem 8.5.1 in Arnold et al. (1992) implies that
in case that m(X) has a density g which is continuous and positive at qα , we have

√
n · g(qα) · Y�nα�:n − qα√

α · (1 − α)
→ N (0, 1) in distribution.
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Nonparametric quantile estimation using importance sampling 441

This implies

P
{
|q̄α,n − qα| >

cn√
n

}
→ 0 (n → ∞) (3)

whenever cn → ∞ (n → ∞).
In this paper, we apply importance sampling (IS) to obtain a better estimate of

qα . Importance sampling is a technique to improve estimation of the expectation of
a function φ : Rd → R by sample averages. Instead of using an independent and
identically distributed sequence X, X1, X2, . . . and estimating Eφ(X) by

1

n

n∑

i=1

φ(Xi ),

one can use importance sampling, where a new random variable Z with a density h
satisfying for all x ∈ R

d

φ(x) · f (x) 
= 0 ⇒ h(x) 
= 0

is chosen and for Z , Z1, Z2, . . . independent and identically distributed

E{φ(X)} = E
{
φ(Z) · f (Z)

h(Z)

}

is estimated by
1

n

n∑

i=1

φ(Zi ) · f (Zi )

h(Zi )
, (4)

whereas we assume that 0
0 = 0. Here, the aim is to choose h, such that the variance

of (4) is small (see for instance, Chapter 4.6 in Glasserman (2004) and Neddermeyer
(2009) and the literature cited therein).

Quantile estimation using importance sampling has been considered by Cannamela
et al. (2008), Egloff and Leippold (2010), and Morio (2012). For quantile estimation,
the choice of the optimal importance sampling density is even more subtle than in the
case of estimation of means. One idea which is mentioned several times in the articles
cited above is to try to choose the optimal importance sampling estimate, such that
the variance of the estimate

1 − 1

n

n∑

i=1

I{Zi>y} · f (Zi )

h(Zi )

of G(y) at the point y = qα is minimal. In this case, hopt minimizes

Var

(
1

n

n∑

i=1

I{Zi>qα} · f (Zi )

h(Zi )

)
.
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442 M. Kohler et al.

This leads to the optimal density

hopt(x) = I{x>qα} · f (x)

1 − α
,

in which case the above variance is zero. The corresponding order statistics estimate
of qα is the minimal value of Z1, . . . , Zn , which usually converges rather fast towards
qα . However, of course, this nice estimate cannot be used in practice, since it relies on
the knowledge of the quantity qα .

All three papers above proposed new estimates in various models; however, only
Egloff and Leippold (2010) investigated theoretical properties (consistency) of their
method. None of the papers contains any results on the rates of convergence. A recur-
sive method was proposed by Kohler et al. (2014).

As pointed out by a referee, the Approximate Bayesian Computation (ABC) is
another promising approach towards quantile estimation (cf., e.g., Dunson and Taylor
2005 or Lancaster and Jun 2010). The main advantage of ABC is that it also leads to
confidence intervals for the quantile. How to apply this efficiently in the simulation
model considered in this paper is an open problem.

An IS approach leads to replacement ofm by a surrogate functionmn which can be
evaluated cheaply at arbitrary points. To construct the surrogate mn , any kind of non-
parametric regression estimate can be used. For instance, we can use kernel regression
estimate (cf., e.g., Nadaraya 1964, 1970; Watson 1964; Devroye and Wagner 1980;
Stone 1977, 1982 orDevroye andKrzyżak 1989), partitioning regression estimate (cf.,
e.g., Györfi 1981 or Beirlant and Györfi 1998), nearest neighbor regression estimate
(cf., e.g., Devroye 1982 or Devroye et al. 1994), orthogonal series regression estimate
(cf., e.g., Rafajłowicz 1987 or Greblicki and Pawlak 1985), least squares estimates
(cf., e.g., Lugosi and Zeger 1995 or Kohler 2000), or smoothing spline estimates (cf.,
e.g., Wahba 1990 or Kohler and Krzyżak 2001).

In a parametric context, the Kriging approximation method was used by Oakley
(2004) for quantile estimation without IS and by Dubourg et al. (2013) for the related,
but simpler problem of estimating the distribution value function of m(X) at zero
employing importance sampling.

In this paper, we propose a new importance sampling quantile estimate and analyze
its rates of convergence. We do this in a completely nonparametric context, using a
mild smoothness assumption on m (not knowing the structure of m) in view of a good
approximation by a surrogate function. The basic idea is to use an initial estimate of
the quantile based on the order statistics of samples of m(X) to determine an interval
[an, bn] containing the quantile. Then, we construct an estimate mn of m and restrict
f to the inverse image m−1

n ([an, bn]) of [an, bn] to construct a new random variable
Z , so we sample only from an area, where the values are especially important for the
computation of the quantile. Our final estimate of the quantile is then defined as an
order statistic of m(Z), where the level of the order statistic takes into account that
we sample only from a part of the original density f . Under suitable assumptions
on the smoothness of m and on the tails of f , we are able to show that this estimate

achieves the rate of convergence of order log1.5 n
n . Approximation is done by quasi-
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spline interpolation. In Sect. 4 dealing with simulations, also Kriging approximations
are used.

Throughout this paper, we use the following notations:N,N0, Z, andR are the sets
of positive integers, nonnegative integers, integers, and real numbers, respectively.
For a real number z, we denote by �z and �z� the floor and ceiling of z, i.e., the
largest integer less than or equal to z and the smallest integer larger than or equal to
z, respectively. ‖x‖ is the Euclidean norm of x ∈ R

d . For f : Rd → R and A ⊆ R
d ,

we set

‖ f ‖∞,A = sup
x∈A

| f (x)|.

Let p = k+s for some k ∈ N0 and 0 < s ≤ 1, and letC > 0. A functionm : Rd → R

is called (p,C) smooth, if for every α = (α1, . . . , αd) ∈ N
d
0 with

∑d
j=1 α j = k, the

partial derivative ∂km
∂x

α1
1 ...∂x

αd
d

exists and satisfies

∣∣∣∣
∂km

∂xα1
1 . . . ∂xαd

d

(x) − ∂km

∂xα1
1 . . . ∂xαd

d

(z)

∣∣∣∣ ≤ C · ‖x − z‖s

for all x, z ∈ R
d .

For nonnegative random variables Xn and Yn , we say that Xn = OP(Yn) if

lim sup
n→∞

P(Xn > c1 · Yn) = 0

for some finite constant c1 > 0.
The estimate of the quantile is defined in Sect. 2. The main result is formulated in

Sect. 3, and proofs are provided in Sect. 5. In Sect. 4, we illustrate the finite sample
size performance of the estimate using simulated data.

2 Definition of the estimate

Let n = n1 + n2 + n3 where n1 = n1(n) = �n/3 = n2 = n2(n) and n3 =
n3(n) = n − n1 − n2. We use n1 evaluations of m to generate an initial estimate of
qα , n2 evaluations of m to construct an approximation of m, and we use n3 further
evaluations of m to improve our initial estimate of qα .

Let qα,n1 be the quantile estimate based on order statistics introduced in
Sect. 1. To improve it by importance sampling, we use additional observations
(x1,m(x1)), . . . , (xn2 ,m(xn2)) of m at points x1, . . . , xn2 ∈ R

d and use an estimate

mn(·) = mn(·, (x1,m(x1)), . . . , (xn2 ,m(xn2))) : Rd → R

of m : Rd → R. Both will be specified later. Let Kn = [−ln, ln]d for some ln > 0,
such that ln → ∞ as n → ∞ and assume that the supremum norm error of mn on Kn

is bounded by βn > 0, that is
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444 M. Kohler et al.

‖mn − m‖∞,Kn := sup
x∈Kn

|mn(x) − m(x)| ≤ βn . (5)

Set

an = qα,n1 − 2 · log n√
n

− 2 · βn and bn = qα,n1 + 2 · log n√
n

+ βn,

where both quantities depend (via qα,n1 ) on the data:

Dn1 = {
(X1,m(X1)), . . . , (Xn1 ,m(Xn1))

}
.

We then replace X by a random variable Z which has the density

h(x) = c2 · (I{x∈Kn : an≤mn(x)≤bn} + I{x /∈Kn}
) · f (x)

where

c2 =
(∫

Rd

(
I{x∈Kn : an≤mn(x)≤bn} + I{x /∈Kn}

)
f (x)dx

)−1

= 1

1 − γ1 − γ2
.

Here

γ1 = P{X ∈ Kn,mn(X) < an|Dn1} =
∫

Rd
1Kn (x) · 1{x :mn(x)<an} · f (x)dx

and

γ2 = P{X ∈ Kn,mn(X) > bn|Dn1} =
∫

Rd
1Kn (x) · 1{x :mn(x)>bn} · f (x)dx

can be computed exactly for given f andmn . In our application below,we approximate
thembyMonteCarlo. Observe that an and bn depend onDn1 , and therefore, the density
h and the distribution of Z are random quantities. Furthermore, on the event

{
|qα,n1 − qα| ≤ log n√

n

}
,

we have
∫

Rd

(
I{x∈Kn : an≤mn(x)≤bn} + I{x /∈Kn}

)
f (x)dx

≥ P
{
qα − log n√

n
≤ m(X) ≤ qα + log n√

n

}
> 0, (6)

provided that, e.g., the density ofm(X) is positive and continuous at qα . Hence, outside
of an event whose probability tends to zero for n → ∞, the constant c2 and the density

123



Nonparametric quantile estimation using importance sampling 445

h are in this case well defined. The main trick in the sequel is that we can relate the
quantile qα to a quantile of m(Z), as shown in Lemma 1.

Lemma 1 Assume that (5) holds, m(X) has a density which is continuous and positive
at qα and let Z be a random variable defined as above. Furthermore, set

ᾱ = α − γ1

1 − γ1 − γ2

and

qm(Z),ᾱ = inf{y ∈ R : P{m(Z) ≤ y|Dn1} ≥ ᾱ}

where Dn1 = {(X1,m(X1)), . . . , (Xn1 ,m(Xn1))}. Then, we have with probability
tending to one for n → ∞:

qα = qm(Z),ᾱ .

Let Z , Z1, Z2, …be independent and identically distributed and set:

Gm(Z),n3(y) = 1

n3

n3∑

i=1

I{m(Zi )≤y}.

We estimate qα = qm(Z),ᾱ (which, according to Lemma 1, is equal to qm(Z),ᾱ outside
of an event, whose probability tends to zero for n → ∞) by

q̄m(Z),ᾱ,n3 = inf
{
y ∈ R : Gm(Z),n3(y) ≥ ᾱ

}

= inf

{
y ∈ R : Gm(Z),n3(y) ≥ α − γ1

1 − γ1 − γ2

}
.

As before, we have that q̄m(Z),ᾱ,n3 is an order statistic of m(Z1), . . . ,m(Zn3):

q̄m(Z),ᾱ,n3 = m(Z)�ᾱ·n3�:n3 .

One possible choice for an estimate mn of m is a spline approximation of m, which
we introduce next. We will use well-known results from spline theory to show that
if we choose the design points z1, . . . , zn equidistantly in Kn = [−ln, ln]d , then a
properly defined spline approximation of a (p,C)-smooth function achieves the rate
of convergence l pn /n p/d .

To define the spline approximation, we introduce polynomial splines, i.e., sets of
piecewise polynomials satisfying a global smoothness condition, and a corresponding
B-spline basis consisting of basis functions with compact support as follows:

Choose K ∈ N and M ∈ N0, and set uk = k · ln/K (k ∈ Z). For k ∈ Z, let
Bk,M : R → R be the univariate B-spline of degree M with knot sequence (uk)k∈Z
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and support supp(Bk,M ) = [uk, uk+M+1]. For M = 0, B-spline Bk,0 is the indicator
function of the interval [uk, uk+1), and for M = 1, we have

Bk,1(x) =

⎧
⎪⎨

⎪⎩

x−uk
uk+1−uk

, uk ≤ x ≤ uk+1,
uk+2−x

uk+2−uk+1
, uk+1 < x ≤ uk+2,

0, elsewhere,

(so-called hat-function). The general recursive definition of Bk,M can be found, e.g.,
in de Boor (1978), or in Sect. 14.1 of Györfi et al. (2002). These B-splines are basis
functions of sets of univariate piecewise polynomials of degreeM , where the piecewise
polynomials are globally (M−1) times continuously differentiable andwhere theM th
derivatives of the functions have jump points only at the knots ul (l ∈ Z).

For k = (k1, . . . , kd) ∈ Z
d , we define the tensor product B-spline Bk,M : Rd → R

by

Bk,M (x (1), . . . , x (d)) = Bk1,M (x (1)) · . . . · Bkd ,M (x (d)) (x (1), . . . , x (d) ∈ R).

With these functions, we define SK ,M as the set of all linear combinations of all
those tensor product B-splines above, whose support has nonempty intersection with
Kn = [−ln, ln]d , i.e., we set

SK ,M =
⎧
⎨

⎩
∑

k∈{−K−M,−K−M+1,...,K−1}d
ak · Bk,M : ak ∈ R

⎫
⎬

⎭ .

It can be shown using the standard arguments from spline theory that the functions in
SK ,M are in each component (M − 1) times continuously differentiable and that they
are equal to a (multivariate) polynomial of degree less than or equal to M (in each
component) on each rectangle

[uk1 , uk1+1) × · · · × [ukd , ukd+1) (k = (k1, . . . , kd) ∈ Z
d), (7)

and that they vanish outside the set

[
−ln − M · ln

K
, ln + M · ln

K

]d
.

Next, we define spline approximations using the so-called quasi-interpolants: For a
continuous function m : Rd → R, we define an approximating spline by

Qm(x) =
∑

k∈{−K−M,−K−M+1,...,K−1}d
Qkm · Bk,M
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where

Qkm =
∑

j∈{0,1,...,M}d
ak,j · m(tk1, j1 , . . . , tkd , jd )

for someak,j ∈ R and some suitably chosen points tk, j ∈ supp(Bk,M ) = [k ·ln/K , (k+
M + 1) · ln/K ]. It can be shown that if we set

tk, j = k · ln
K

+ j

M
· ln
K

( j ∈ {0, . . . , M}, k ∈ {−K ,−K + 1, . . . , K − 1})

and

tk, j= − ln + j

M
· ln
K

( j ∈ {0, . . . , M}, k ∈ {−K−M,−K−M + 1, . . . ,−K − 1}),

then there exist coefficients ak,j (which can be computed by solving a system of linear
equations), such that

|Qk f | ≤ c3 · ‖ f ‖∞,[uk1 ,uk1+M+1]×···×[ukd ,ukd+M+1] (8)

for any k ∈ Z
d , any continuous f : Rd → R and some universal constant c1, and

such that Q reproduces polynomials of degree M or less (in each component) on
Kn = [−ln, ln]d , i.e., for any multivariate polynomial p : Rd → R of degree M or
less in each component, we have

(Qp)(x) = p(x) (x ∈ Kn) (9)

(cf., e.g., Theorem 14.4 and Theorem 15.2 in Györfi et al. 2002).
Next, we define our estimate mn as a quasi-interpolant. We fix the degree M ∈ N

and set

K =
⌊

�n1/d2  − 1

2M

⌋
,

where we assume that n2 ≥ (2M + 1)d . Furthermore, we choose x1, . . . , xn2 , such
that all the (2M · K + 1)d points of the form

(
j1

M · K · ln, . . . , jd
M · K · ln

)
( j1, . . . , jd ∈ {−M · K ,−M · K + 1, . . . , M · K })

are contained in {x1, . . . , xn2}, which are possible, since (2M · K + 1)d ≤ n2. Then,
we define

mn(x) = (Qm)(x),
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448 M. Kohler et al.

where Qm is the above-defined quasi-interpolant satisfying Eqs. (8) and (9). The
computation of Qm requires only function values of m at the points x1, . . . , xn2 , and
hence, mn is well defined.

It follows from spline theory (cf., e.g., proof of Theorem 1 in Kohler 2014) that if
m is (p,C) smooth for some 0 < p ≤ M + 1, then the above quasi-interpolant mn

satisfies for some constant c4 > 0

‖mn − m‖∞,Kn := sup
x∈Kn

|mn(x) − m(x)| ≤ c4 · l pn

n p/d
2

, (10)

i.e., Eq. (5) is satisfied with βn = c4 · l pn /n p/d
2 .

3 Main results

First, we present the rate of convergence result for the quantile estimate using a general
estimate of m.

Theorem 1 Assume that X is anRd-valued random variable which has a density with
respect to the Lebesgue measure. Let m : Rd → R be a measurable function. Assume
that m(X) has a density g with respect to the Lebesgue measure. Let α ∈ (0, 1) and
let qα be the α quantile of m(X). Assume that the density g of m(X) is positive at qα

and continuous on R.
Let the estimate q̄m(Z),ᾱ,n3 of qα be defined as in Sect. 2with βn = log n√

n
and assume

that the regression estimate mn satisfies (Eq. 5). Furthermore, assume that

P{X /∈ Kn} = O

(√
log(n)√

n

)
. (11)

Then

|q̄m(Z),ᾱ,n3 − qα| = OP

(
log1.5(n)

n

)
.

When the spline estimate of Sect. 2 is used to estimate m, then we get the following
result.

Corollary 1 Assume that X is an R
d-valued random variable which has a density

with respect to the Lebesgue measure. Let m : Rd → R be a (p,C)-smooth function
for some p > d/2. Assume that m(X) has a density g with respect to the Lebesgue
measure. Let α ∈ (0, 1) and let qα be the α quantile of m(X). Assume that the density
g of m(X) is positive at qα and continuous on R.

Let mn be the spline estimate from Sect. 2 with M ≥ p − 1 and define the estimate
q̄m(Z),ᾱ,n3 of qα as in Sect. 2 with βn = log n√

n
and ln = log n. Furthermore, assume

that
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P{||X || ≥ log n} = O

(√
log(n)√

n

)
. (12)

Then

|q̄m(Z),ᾱ,n3 − qα| = OP

(
log1.5(n)

n

)
.

Proof The assertion follows directly fromTheorem 1 and inequality (10) upon observ-
ing that p > d/2 implies

c4 ·
(

l pn

n p/d
2

)
≤ log n√

n

for n sufficiently large. ��

Remark 1 It follows from Markov inequality that (12) is satisfied whenever

E
{
exp

(
1

2
· ‖X‖

)}
< ∞.

If (12) does not hold, it is possible to change the definition of ln in Corollary 1 to get
an assertion (maybe modified) under a weaker tail condition.

Remark 2 It is possible to improve the factor log1.5(n) in Corollary 1, provided one
changes the definition of an and bn . More precisely, let (γn)n be a monotonically
increasing sequence of positive real values which tends to infinity and assume

P{||X || ≥ log n} = O

(√
γn√
n

)
.

Set

an = qα,n1 −
√

γn√
n

and bn = qα,n1 +
√

γn√
n

.

By applying (3) in the proof of Theorem 1, it is possible to show that under the
assumptions of Corollary 1, the estimate based on the above-modified values of an
and bn satisfies

|q̄m(Z),ᾱ,n − qα| = OP

(γn

n

)
.
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4 Application to simulated data

In this section, we apply the method described above (cf., Algorithm 1) to simulated
data and estimate the corresponding 90-, 95-, 99-, and 99.9%-quantile. For this pur-
pose, the number n of observations is set to 200, 500, 1000, 2000, 5000, and 10,000,
respectively. As suggested in Sect. 2, we choose n1 = n1(n) = �n/3 = n2 = n2(n)

and n3 = n3(n) = n − n1 − n2. The value of βn set to log(n)√
n
, and our estimate

of m is the quasi-interpolant introduced in Sect. 2 with M = 3, ln = log(n) and
K = K (n) = ⌊

(�n1/d2  − 1)/2M
⌋
or, as the case may be, a thin plate spline as imple-

mented in the routine Tps() of the package fields of R, a free software environment for
statistical computing. Since the value ᾱ which is needed for our importance sampling
estimate is not known in reality, we estimate it by Monte Carlo estimation. To this
end, we use N additional evaluations of mn . The value of N will be set to 20,000 and
50,000, respectively.

For comparison,we, furthermore, estimate the samequantiles using three alternative
estimation methods which rely on the same number n of observed data. The first of
these methods is the plug-in or order statistics estimate (OS) as defined by (2). The
second quantile estimate uses the non-adaptive surrogate as a control variate (CV), as
explained in Sect. 2 in Cannamela et al. (2008). This method relies on a simplified
version of the functionm. For this purpose, we use in our simulations the same estimate
mn which is used in our importance sampling estimation simulations. Since mn relies
on n1 evaluations of m, for the remaining procedure of the CS algorithm n − n1
evaluations of m remain. In addition, the CS method requires knowledge about the
α quantile of mn(X). In the simulations, an order statistics estimate of this quantile
will be used, which relies on N = 20,000, or N = 50,000 additional evaluations
of mn , respectively. The third estimation method uses the non-adaptive surrogate for
controlled stratification (CS), as explained in Sect. 3.2 in Cannamela et al. (2008).
Since again this method relies on simplification of function m, the estimate mn will
be used. The remaining n−n1 evaluations are split approximately equally in the three
different strata. Again, knowledge of the quantiles of mn(X) is needed and they will
be approximated by order statistics relying on N = 20,000, or N = 50,000 additional
evaluations of mn , respectively. For the strata, we partition the interval [0, 1] at the
points 0.8 and 0.9 for α = 0.9, at the points 0.85 and 0.95 for α = 0.95, at the points
0.9 and 0.99 for α = 0.99, and, finally, at the points 0.95 and 0.999 for α = 0.999.

In practice, it might occur that the value of ᾱ defined in Lemma 1 is not in (0, 1).
This is due to the fact that ᾱ depends on an estimate of the quantile qα , based on the first
�n/3 samples. Now, if the difference between this first estimate and the true quantile
is quite large, the true quantile may lie outside of the set the random variable Z (as
defined in Sect. 2) is concentrated on. There are several ways to tackle this problem.
In the following, we use a very simple strategy that uses a somewhat loose definition
of the quantile. More precisely, if ᾱ ≤ 0, then we just take the smallest value of our
new sample, and if ᾱ > 1, we take the largest one.

In our first example, X is random variable having the standard normal distribution
and function m : R → R is defined by m(x) = exp(x). In this case, m(X) is log-
normally distributed. We generate a set of simulated data to which we apply our
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set n1 = �n/3, n2 = �n/3 and n3 = n − n1 − n2;
compute a first sample of n1 values drawn from m(X), named y1;
set quantile as the �n1 · α�-th smallest value of y1;
set lb_quantile = quantile − 4 · log(n)/

√
n;

set ub_quantile = quantile + 3 · log(n)/
√
n;

choose at most n2 proper design points and compute an estimate m_n of m;
use numerical integration to compute

1. gamma1 = ∫
[− log(n),log(n)]d 1{x :m_n(x)<lb_quantile} · f (x)dx

2. gamma2 = ∫
[− log(n),log(n)]d 1{x :m_n(x)>ub_quantile} · f (x)dx ;

set alpha_bar = (α − gamma1)/(1 − gamma1 − gamma2);
/* generate IS sample from new distribution */
generate an array and set i = 1;
while i ≤ n3 do

generate a d-dimensional vector z, drawn from the distribution of X ;

if z /∈ [− log(n), log(n)]d or m_n(z) ∈ [lb_quantile,ub_quantile] then
store z as i-th element of the array and increase i by 1;

end
end
compute function values of m at the stored vectors and set result as the �n3 · α�-th biggest of
these values;
return result;

Algorithm 1: Proposed IS quantile estimate using at most n evaluations of the
function m

estimate with a quasi interpolant of degree M = 3. As mentioned before, to compute
γ1 and γ2, we use Monte Carlo estimation with N = 20,000 additional evaluations of
mn . The whole procedure is repeated 100 times for different values of n. In Table 1, the
average squared error of our estimated quantile values (ASE IS) can be found with a
precision of two significant digits. Here, the ASE IS is defined as 1

100 ·∑100
i=1(q− q̄i )2,

where q is the true quantile (which is known) and q̄i denotes the i th of our estimates.
As mentioned before, we estimate the quantiles using three additional estimates. The
average squared errors of these can be found in Table 1 as well.

As can be seen from Table 1, the error of our newly proposed estimate is in this
example much smaller than the error of the order statistics and about the size of the
errors of the two additional estimates. In this example, we also computed the errors of
the optimal IS density mentioned in the introduction (OPT IS in Table 1). These errors
are much smaller than the errors of our IS quantile estimate; however, its definition
depends on the quantile to be estimated and can, therefore, never be applied in practice.

In our second example, we set X = (X1, X2), where random variables X1
and X2 are independent standard normally distributed random variables and choose
m(x1, x2) = 2 · x1 + x2 + 2. In this case, m(X) is normal with expectation 2 and
variance 22 + 12 = 5. As before, we generate a set of simulated data which we apply
in our estimate. As in our first example, we use Monte Carlo estimation relying on
N = 20,000 additional evaluations of mn to compute γ1 and γ2. As before, we repeat
this procedure 100 times for different values of n and compare the results with those
of the three additional estimates described at the beginning of this section. The results
can be found in Table 2. As before, the error of our newly proposed estimate is in this
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Table 1 Simulation results for m(x) = exp(x)

size of n 90%-quantile 95%-quantile
q0.9 ≈ 3.6022 q0.95 ≈ 5.1803

200 500 1000 2000 200 500 1000 2000

ASE OS 0.18 0.068 0.053 0.021 0.57 0.23 0.12 0.052

ASE CV 0.035 0.017 0.004 0.0027 0.32 0.078 0.017 0.011

ASE CS 0.0062 0.0021 0.0023 0.0023 0.012 0.0073 0.008 0.0063

ASE IS 0.05 0.0091 0.0048 0.0024 0.38 0.1 0.055 0.021

ASE OPT IS 0.00016 0.000026 0.0000051 0.0000017 0.0004 0.000064 0.000016 0.0000036

Table 2 Simulation results for m(x, y) = 2x + y + 2

size of n 90%-quantile 95%-quantile
q0.9 ≈ 4.8656 q0.95 ≈ 5.678

200 500 1000 2000 200 500 1000 2000

ASE OS 0.072 0.029 0.012 0.0072 0.083 0.046 0.023 0.014

ASE CV 0.019 0.0034 0.0015 0.00082 0.054 0.013 0.0035 0.002

ASE CS 0.0018 0.001 0.00067 0.00076 0.0023 0.00093 0.0013 0.0013

ASE IS 0.021 0.0073 0.0022 0.00097 0.024 0.0056 0.0022 0.0015

Table 3 Simulation results for m(x, y) = x2 + y2

size of n 90%-quantile 95%-quantile
q0.9 ≈ 4.6052 q0.95 ≈ 5.9915

200 500 1000 2000 200 500 1000 2000

ASE OS 0.2 0.091 0.033 0.02 0.36 0.12 0.076 0.032

ASE CV 0.033 0.008 0.0034 0.0024 0.19 0.033 0.011 0.0068

ASE CS 0.0063 0.0023 0.0019 0.0019 0.01 0.0041 0.0025 0.0043

ASE IS 0.081 0.0065 0.0029 0.0023 0.15 0.027 0.011 0.0096

example much smaller than the error of the order statistics and about the order of the
errors of the additional estimates.

In our third example, we set X = (X1, X2) for independent random variables
X1 and X2 with the standard normal distribution and choose m(x1, x2) = x21 + x22 .
Consequently,m(X) is Chi-square random variable with two degrees of freedom. The
results for our estimate are presented in Table 3. Once again, the error of our newly
proposed estimate is much smaller than the error of the order statistics and about the
order of the errors of the additional estimates.

In the following two examples, we increase the dimensionality and set X =
(X1, X1, X3, X4, X5) for independent standard normally distributed random variables
X1, . . . , X5. Here, in contrast to the previous approach, we cannot use quasi-
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Table 4 Simulation results for max{x1, x2, x3, x4, x5} and exp(−x21 − x22 − x23 − x24 − x25 )

m max{x1, x2, x3, x4, x5} exp(−x21 − x22 − x23 − x24 − x25 )

90%-quantile 95%-quantile 90%-quantile 95%-quantile

q0.9 ≈ 2.0365 q0.95 ≈ 2.3187 q0.9 ≈ 0.1998 q0.95 ≈ 0.3181

size of n 5000 10,000 5000 10,000 5000 100,000 5000 10,000

ASE OS 0.00037 0.00017 0.00062 0.00038 0.000045 0.000028 0.00012 0.000071

ASE CV 0.000092 0.000044 0.00046 0.00014 0.000026 0.000011 0.00002 0.000013

ASE CS 0.000057 0.00004 0.0001 0.000069 0.000005 0.0000045 0.000012 0.000013

ASE IS 0.000098 0.000059 0.00013 0.000054 0.00011 0.000043 0.00032 0.00015

interpolants, based on B-splines to approximate m, since in five dimensions, this
method requires too many design points. Therefore, instead, we utilize the procedure
T ps() of the statistics packageR. One advantage over quasi-interpolantswhich depend
on B-splines is that the design points do not have to be equidistant.

In our fourth example, function m is given by m(x1, x2, x3, x4, x5) = max
{x1, x2, x3, x4, x5}. Naturally, since we are in a higher dimensional case as before,
the usage of a small sample size will not be sufficient. Therefore, we increase the
sample size to n = 5000 and n = 10,000, respectively, and the number of additional
evaluations of N to 50,000. Likewise before, the results for this higher dimensional
example can be found in Table 4. Here, again, the error of our newly proposed estimate
is much smaller than the error of the order statistics and comparable to the errors of
the two additional estimates.

Our fifth example is again a function with five-dimensional input, and so, again,
the thin plate splines are the interpolation method of choice. Here, m is given by
m(x1, x2, x3, x4, x5) = exp(−x21−x22−x23−x24−x25 ) and X = (X1, X1, X3, X4, X5),
whereas X1, . . . , X5 are independent standard normal random variables. The simu-
lation results are presented in Table 4. Even though the average squared error of
our proposed method is larger than the error of the order statistic, it seems that the
error of the importance sampling estimate decreases a little faster than the error of
the order statistic. Yet, the results for the order statistic are still better in case of
m(x1, x2, x3, x4, x5) = exp(−x21 − x22 − x23 − x24 − x25 ), though all measured errors
are fairly low. This is because the quantile we try to estimate is moderately high,
but the findings will change when we increase the parameter α. Setting α to 99 and
99.9%, respectively, yields significant changes in the results as can be seen in Table 5.
Especially in case of the 99.9% quantile, our proposed method performs significantly
better than the order statistics and does even outperform the additional estimates for
n = 10,000.

In our sixth example, X is a one-dimensional standard normally distributed random
variable again and we choose m(x) = sin(x). Thus, m(X) has several modes. To
identify the true quantiles of m(X), numerical approximation is used. Since in this
example, the resulting ASE are very small in Table 6 and we present the summed
squared error (SSE) instead which is

∑100
i=1(q − q̄i )2. As one can see in this scenario,
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Table 5 Simulation results for max{x1, x2, x3, x4, x5} and exp(−x21 − x22 − x23 − x24 − x25 ) with larger
quantiles

m max{x1, x2, x3, x4, x5} exp(−x21 − x22 − x23 − x24 − x25 )

99%-quantile 99.9%-quantile 99%-quantile 99.9%-quantile

q0.99 ≈ 2, 8769 q0.999 ≈ 3.5400 q0.99 ≈ 0.5745 q0.999 ≈ 0.8104

size of n 5000 10,000 5000 10,000 5000 10,000 5000 10,000

ASE OS 0.0026 0.001 0.011 0.0083 0.00038 0.00016 0.00068 0.00046

ASE CV 0.0047 0.002 0.021 0.016 0.00067 0.00015 0.0027 0.00085

ASE CS 0.00024 0.00022 0.0019 0.00089 0.000044 0.000037 0.000074 0.000096

ASE IS 0.00022 0.00016 0.017 0.00082 0.0004 0.000058 0.00026 0.000045

Table 6 Simulation results for m(x) = sin(x)

size of n 90%-quantile 95%-quantile
q0.9 ≈ 0.91568 q0.95 ≈ 0.97744

200 500 1000 2000 200 500 1000 2000

SSE OS 0.084 0.054 0.024 0.011 0.015 0.0096 0.0044 0.0015

SSE CV 0.034 0.006 0.0016 0.0013 0.015 0.0021 0.00043 0.00026

SSE CS 0.0037 0.0013 0.00096 0.0011 0.00077 0.00021 0.00022 0.00022

SSE IS 0.4 0.089 0.035 0.011 0.051 0.013 0.0063 0.0021

SSE IS∗ 0.47 0.0089 0.0027 0.0013 0.24 0.0055 0.00075 0.0004

the quality of our proposed importance sampling estimate is about as good as the order
statistic, even if the function in the simulation model has several modes, which makes
the estimation of our importance sampling estimate especially difficult. However, here,
both additional estimates feature significantly smaller errors.

Let us recall that in the definition of the proposed quantile estimate, someparameters
were chosen based on asymptotic behavior. While modifications by a constant factor
do not change the asymptotic behaviour, they might change the finite sample size
behaviour of the estimate. As a test, we altered the values of an and bn to

an = qα,n1 − log n

3 · √
n

and bn = qα,n1 + log n

3 · √
n
,

and repeated the simulations of the previous example. The results can be found in
Table 6 as SSE IS∗ and are significantly better. This shows that for practical use, a
careful choice of the parameters used may improve the estimation results. How such
a choice can be made is a topic for further research.

In our last example, function m is motivated by experiments of the Collabora-
tive Research Centre 805 at the Technische Universität Darmstadt, which investigates
uncertainty in load-bearing systems. Here, we use a physical model of the so-called
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Fig. 1 Spring-mass-damper
with active velocity feedback

spring-mass-damper with active velocity feedback, which returns the maximal mag-
nification of the vibration amplitude, according to four chosen parameters. To put it
briefly, one can think of a mass (m) that is placed on a suspension leg, resulting in
some oscillations which are reduced by the system’s stiffness (k) and damping (b) (cf.
schematic drawing in Fig. 1). Now, in the simulation, the oscillation frequency is set to
100 times per second, and according to an accurate dynamic system model, which is
described in detail in Platz and Enss (2015), the maximal occurring magnitude is sim-
ulated using the Matlab procedure bode. The corresponding Matlab code was kindly
provided by G. Enss.

The previously mentioned four input parameters are named the system’s mass
(m), the spring’s rigidity (k), the damping of the mass’s oscillation (b), and the active
velocity feedback (g). The active velocity feedback controls the extent of an additional
counter force, depending on the velocity of the oscillations. In case g equals zero, no
active dampingmechanism is applied,which is called passive damping.One evaluation
of function m takes approximately 0.2 s, so computation of 2000 function evaluations
can be easily completed in approximately 7 min. In contrast, the computation of
100,000 values requires about 5.5 h.

In the following, we distinguish between two cases: first, the passive case, where
as mentioned before the active velocity feedback g equals zero, and second, the active
case, where the value of g is given by the normally distributed random variable with
mean 45 and a standard deviation of 2.25. In both cases, in our simulation, the remain-
ing variables are also normally distributed, but their means and standard deviations
are different. In line with Platz and Enss (2015), the means of m, k, and b are 1, 1000,
and 0.095, respectively, and their standard deviations are 0.017, 33.334, and 0.009,
respectively. In the active case, we simulate the value of x = (m, k, b, g) with inde-
pendent random variables, as defined beforehand and use our method with n = 2000,
to estimate the 95% quantile of the maximal magnification of the vibration amplitude.

Since the computer model was implemented in Matlab, the computation of the
quantile estimate this time was done in Matlab as well. Therefore, to approximate m,
a Kriging estimator provided by the Matlab toolbox DACE was used. Kriging, which
is basically an interpolation method based on weighted averages of sample points,
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produces similar results as the thin plate spline and again has the advantage that the
design points do not have to be equidistant.

As a result, we get 0.10350, as 95%-quantile. For comparison, we also estimate
this quantile with order statistics and a sample of size 2000 and 100,000, respectively.
In the first case, the computed value is 0.09791, whereas in the latter case, we get a
value of 0.10129. Taking the order statistics with sample size 100,000 as an accurate
estimate, we compare the deviations of the other two estimates from 0.10129. Here,
one can see that the deviation of the order statistic with sample size 2000 is about 1.53
times larger than the deviation of our proposed method.

In the passive case, we simulate the value of x = (m, k, b, g = 0) as explained
before. Again, we use our method with n = 2000, to estimate the corresponding 95%
quantile. Since now, our example is again three dimensions, we can use B-splines
and so we compute our estimate both with Kriging and a quasi-interpolant of degree
M = 3. In either case, we obtain a value of 51.929, as 95%-quantile. As before, we
estimate this quantile with order statistics as well. The computed value when using a
sample size of 2000 is 51.851, whereas for a sample size of 100,000, we get a value of
51.919. Again, we compare howmuch the estimates with sample size 2000 differ from
the value 51.919 of the order statistic with sample size 100,000. Here, we observe that
the deviation of the order statistic with sample size 2000 is about 6.8 times larger than
the one for our proposed method. These results show that our estimate performs better
than the simple estimate based on the order statistics using the same sample size.

5 Proofs

We will use the following lemma to prove Lemma 1.

Lemma 2 Assume that X is an R
d -valued random variable which has a density f

with respect to the Lebesgue measure. Let m : Rd → R be a measurable function.
Assume that m(X) has a density g with respect to the Lebesguemeasure. Let α ∈ (0, 1)
and let qα be the α-quantile of m(X). Assume that g is bounded away from zero in a
neighborhood of qα .

Let A and B be subsets of Rd , such that for some ε > 0

m(x) ≤ qα − ε for x ∈ A and m(x) > qα for x ∈ B

and

P{X /∈ A ∪ B} > 0.

Set

h(x) = c5 · I{x /∈A∪B} · f (x)

where

c−1
5 = P{X /∈ A ∪ B},

123



Nonparametric quantile estimation using importance sampling 457

and set

ᾱ = α − P{X ∈ A}
P{X /∈ A ∪ B} .

Let Z be a random variable with density h. Then

qα = qm(Z),ᾱ .

Proof Since the assumptions of the lemma imply

P{X ∈ A} ≤ P{m(X) ≤ qα − ε} < α and P{X ∈ B} ≤ P{m(X) > qα} = 1 − α,

we have

ᾱ = α − P{X ∈ A}
1 − P{X ∈ A} − P{X ∈ B} ∈ (0, 1].

Choose ε > 0, such that g is bounded away from zero on [qα −ε, qα] and let qα −ε <

u ≤ qα . By definition of Z , we have

P{m(Z) ≤ u} =
∫

Rd
I{m(z)≤u}PZ (dz)

=
∫

Rd
I{m(x)≤u} · c5 · I{x /∈A∪B} · f (x) dx .

The assumptions of the lemma imply that A and B are disjoint, and furthermore,
because of qα − ε < u ≤ qα , they imply

I{m(x)≤u} · I{x∈A} = I{x∈A} and I{m(x)≤u} · I{x∈B} = 0.

From this, we conclude

P{m(Z) ≤ u} =
∫

Rd
I{m(x)≤u} · c5 · (1 − I{x∈A} − I{x∈B}) · f (x) dx

= c5 ·
(∫

Rd
I{m(x)≤u} · f (x) dx −

∫

Rd
I{x∈A} · f (x) dx

)

= c5 · (P{m(X) ≤ u} − P{X ∈ A}) .

Using P{m(X) ≤ u} < α for u < qα , P{m(X) ≤ qα} = α and the definition of c5,
we see that we have shown

P{m(Z) ≤ u} < ᾱ for qα − ε < u < qα and P{m(Z) ≤ qα} = ᾱ.

The proof is complete. ��
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Proof of Lemma 1. To apply Lemma 2, at first, we define

An := {x ∈ Kn : mn(x) < an} =
{
x ∈ Kn : mn(x) < q̄α,n1 − 2 · log n√

n
− 2 · βn

}

and

Bn := {x ∈ Kn : mn(x) > bn} =
{
x ∈ Kn : mn(x) > q̄α,n1 + 2 · log n√

n
+ βn

}
.

Here, we observe that using these sets, we can characterize the factor c2 by

c−1
2 = P{X /∈ An ∪ Bn|Dn1},

where by (6), we haveP{X /∈ An∪Bn|Dn1} > 0 outside of an event, whose probability
tends to zero for n → ∞. In addition, by rewriting h(x) as

h(x) = c2 · I{x /∈An∪Bn} · f (x)

and ᾱ as

ᾱ = α − P{X ∈ An|Dn1}
P{X /∈ An ∪ Bn|Dn1}

all factors are consistent with Lemma 2. Let now, Cn be the event that for all x ∈ An

and all y ∈ Bn

m(x) ≤ qα − βn and m(y) > qα

hold. Then, by Lemma 2, we get the relation

P{Cn} ≤ P{qα = qm(Z),ᾱ},
hence it suffices to show that P{Cn} tends to one as n → ∞. Therefore, we observe
that according to (5), for all x ∈ An and all y ∈ Bn , we have

m(x) ≤ mn(x) + βn < q̄α,n1 − 2 · log n√
n

− βn

and

m(y) ≥ mn(y) − βn > q̄α,n1 + 2 · log n√
n

.

This implies

P{Cn} ≥ P
{
q̄α,n1 − 2 · log n√

n
− βn ≤ qα − βn and q̄α,n1 + 2 · log n√

n
≥ qα

}

= P
{
q̄α,n1 − 2 · log n√

n
≤ qα ≤ q̄α,n1 + 2 · log n√

n

}
→ 1 (n → ∞)

by (3), which completes the proof. ��
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A crucial step in the proof of Theorem 1 is to show that the inverse of the cdf of
m(Z) is locally differentiable at ᾱ and to determine its derivative. We will do this in
the next three lemmas.

Lemma 3 Let g be the density of m(X) and let A be a measurable subset of R with
the property that for all x ∈ Kn, we have

m(x) ∈ A ⇒ an ≤ mn(x) ≤ bn . (13)

Then

P{m(Z) ∈ A|Dn1} = c2 ·
∫

A
g(y) dy.

Proof The definition of Z (13) and the fact that g is the density of m(X) implies

P{m(Z) ∈ A|Dn1} =
∫

R

I{m(z)∈A}PZ (dz)

=
∫

R

I{m(x)∈A} · c2 · (I{x∈Kn : an≤mn(x)≤bn} + I{x /∈Kn}
) · f (x) dx

= c2 ·
∫

R

I{m(x)∈A} · (I{x∈Kn} + I{x /∈Kn}
) · f (x) dx

= c2 ·
∫

R

I{m(x)∈A} · f (x) dx

= c2 · P{m(X) ∈ A}
= c2 ·

∫

A
g(y) dy.

��
Lemma 4 Assume that a density g of m(X) exists and let Gm(Z) be the cdf of m(Z),
that is

Gm(Z)(y) = P{m(Z) ≤ y|Dn1}.

Then, Gm(Z) is outside of an event, whose probability tends to zero for n → ∞, at
Lebesgue-almost all points y of the interval

I :=
(
qα − log n√

n
, qα + log n√

n

)

differentiable with derivative

G ′
m(Z)(y) = c2 · g(y). (14)

In particular, (14) holds for all continuity points y ∈ I of g.
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Proof Note that the distribution of Z depends on the density h, which depends (via
the estimate of the quantile) on Dn1 and hence is random itself. Now, let An be the
event that |qα − q̄α,n1 | ≤ log n√

n
. Then, (3) implies that P{An} tends to one for n → ∞.

In the following, we assume that An holds. The next step is to show that Lemma 3
is applicable for every subset A of I when n is large. To this end, notice that the
inequality

m(x) − βn ≤ mn(x) ≤ m(x) + βn

holds for every x ∈ Kn , due to (5). Therefore, for x ∈ Kn with m(x) ∈ I , we have
since An holds

an = q̄α,n1 − 2 · log n√
n

− 2 · βn ≤ qα − log n√
n

− 2 · βn ≤ m(x) − 2 · βn ≤ mn(x)

≤ m(x) + βn ≤ qα + log n√
n

+ βn ≤ q̄α,n1 + 2 · log n√
n

+ βn = bn .

This and Lemma 3 (applied with A = (min{y, y + h},max{y, y + h}]) imply that

Gm(Z)(y + h) − Gm(Z)(y)

h
= sign(h) · 1

h
· P{m(Z) ∈ (min{y, y + h},max{y, y + h}]}

= 1

h
·
∫ y+h

y
c2 · g(t) dt,

for every y ∈ I and all h ∈ R small enough to fulfill y + h ∈ I (here, sign(h) is the
sign of h.) Now, for h tending to zero, we get by the Lebesgue density theorem

G ′
m(Z)(y) = lim

h→0

1

h
·
∫ y+h

y
c2 · g(t) dt = c2 · g(y)

for Lebesgue-almost all points y of the interval I . This relation also trivially holds for
all continuity points y ∈ I of g. ��

Observe that by definition, c2 is bounded from below by one.

Lemma 5 Assume that the density g of m(X) exists, it is continuous onR and positive
at qα . Then

G−1
m(Z)(u) = inf

{
y ∈ R : Gm(Z)(y) ≥ u

}

is outside of an event, whose probability tends to zero for n → ∞, differentiable on
the interval

(
ᾱ − c6 · log n√

n
, ᾱ + c6 · log n√

n

)
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with derivative

d

du
G−1

m(Z)(u) = 1

c2 · g(G−1
m(Z)(u))

.

Proof Observe that the premise of Lemma 4 is fulfilled, so outside of an event, whose
probability tends to zero for n → ∞, G ′

m(Z)(y) = c2 · g(y) holds for all points y ∈
I =

(
qα − log n√

n
, qα + log n√

n

)
. Since we assume g to be continuous and G ′

m(Z)(qα) =
c2 · g(qα) to be positive, there exists a neighborhood U of qα , such that g(u) > λ

holds for all u ∈ U and some constant 0 < λ < g(qα). By this, we can apply the
inverse function theorem onU ∩ I . Now, for n large enough, the interval I will surely
be a subset ofU which meansU ∩ I = I in fact. In this case, we take a closer look at
the range Gm(Z)(I ). Since Gm(Z) is continuous and strictly increasing on I , we have

Gm(Z)(I ) =
(
Gm(Z)

(
qα − log n√

n

)
, Gm(Z)

(
qα + log n√

n

))
.

Now, assume qα = qm(Z),ᾱ to hold. Then, from

Gm(Z)

(
qα − log n√

n

)
= Gm(Z)(qα) − c2 ·

∫ qα

qα− log n√
n

g(t)dt ≤ ᾱ − c2 · λ · log n√
n

and

Gm(Z)

(
qα + log n√

n

)
= Gm(Z)(qα) + c2 ·

∫ qα+ log n√
n

qα

g(t)dt ≥ ᾱ + c2 · λ · log n√
n

,

we conclude that

Gm(Z)(I ) ⊇
(

ᾱ − c2 · λ · log n√
n

, ᾱ + c2 · λ · log n√
n

)
=: Ĩ .

Notice that Lemma 1 implies that P{qα = qm(Z),ᾱ} tends to one for n → ∞, so we
are outside of an event, whose probability tends to zero for n → ∞. Application of
the inverse function theorem implies

d

du
G−1

m(Z)(u) = 1

c2 · g(G−1
m(Z)(u))

, (15)

for all u ∈ Ĩ . Notice that since c2 ≥ 1, equality (15) holds for all u ∈(
ᾱ − λ · log n√

n
, ᾱ + λ · log n√

n

)
in particular. ��
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Proof of Theorem 1. First, note that qm(Z),ᾱ implicitly depends on n. Denote by Cn ,
the event that qα = qm(Z),ᾱ for n ∈ N and notice that for every s ∈ R, we have

P
{|q̄m(Z),ᾱ,n3 − qα| > s

} ≤ P
{|q̄m(Z),ᾱ,n3 − qm(Z),ᾱ| > s

} + P
{
Cc
n

}
.

Now, Lemma 1 implies that P
{
Cc
n

}
tends to zero for n → ∞, and so

lim sup
n→∞

P

{
|q̄m(Z),ᾱ,n3 − qα| >

log1.5(n)

n

}

≤ lim sup
n→∞

P

{
|q̄m(Z),ᾱ,n3 − qm(Z),ᾱ| >

log1.5(n)

n

}
. (16)

Let Gm(Z) be the cdf of m(Z), that is

Gm(Z)(y) = P{m(Z) ≤ y|Dn1} (y ∈ R),

and set

G−1
m(Z)(u) = inf

{
y ∈ R : Gm(Z)(y) ≥ u

}
.

Let U,U1,U2, . . . be independent and uniformly distributed random variables on
(0, 1) and denote the order statistics of U1, . . . ,Un3 by U1:n3, . . . ,Un3:n3 .

Since
(
G−1

m(Z)(U1), . . . ,G
−1
m(Z)(Un3)

)

has the same distribution as

(
m(Z1), . . . ,m(Zn3)

)

and since G−1
m(Z) is monotonically increasing on (0, 1), due to (16), it suffices to show

∣∣∣G−1
m(Z)(U�ᾱ·n3�:n3) − G−1

m(Z)(ᾱ)

∣∣∣ = OP

(
log1.5(n)

n

)
.

It follows from Lemma 5 and the mean value theorem that outside of an event, whose
probability tends to zero for n → ∞, we have

∣∣∣G−1
m(Z)(U�ᾱ·n3�:n3) − G−1

m(Z)(ᾱ)

∣∣∣ = ∣∣U�ᾱ·n3�:n3 − ᾱ
∣∣ · 1

c2 · g(G−1
m(Z)(Dn3))

where Dn3 is some random point between U�ᾱ·n3�:n3 and ᾱ, provided the distance
between U�ᾱ·n3�:n3 and ᾱ is less than c6 · log(n)/

√
n.
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Let FU be the cdf of U and let FU,n3 be the empirical cdf corresponding to
U1, . . . ,Un3 . Then, we have with probability one that

∣∣U�ᾱ·n3�:n3 − ᾱ
∣∣ =

∣∣∣∣U�ᾱ·n3�:n3 − FU,n3(U�ᾱ·n3�:n3) + �ᾱ · n3�
n3

− ᾱ

∣∣∣∣

≤ sup
t∈R

∣∣FU,n3(t) − FU (t)
∣∣ + 1

n3
.

This implies

∣∣U�ᾱ·n3�:n3 − ᾱ
∣∣ = OP

(√
log(n3)√

n3

)

(cf., e.g., Theorem 12.4 in Devroye et al. 1996). Furthermore, by Lemma 1, we can
assume that G−1

m(Z)(ᾱ) = qα holds, and we have that G−1
m(Z) is continuous at ᾱ and

that g is positive and continuous at qα . Hence, it suffices to show

1

c2
=

∫

Rd

(
I{x∈Kn : an≤mn(x)≤bn} + I{x /∈Kn}

)
f (x)dx = OP

(
log(n)√

n

)
.

This in turn follows from

P
{
X ∈ Kn : an ≤ mn(X) ≤ bn

∣∣Dn1

} = OP

(
log(n)√

n

)
(17)

and

P {X /∈ Kn} = OP

(√
log(n)√

n

)
. (18)

Note that (18) holds by assumption (11). To show (17), we assume that |qα − q̄α,n1 | ≤
log n√

n
. Then, the definitions of an , bn , and βn imply

P
{
X ∈ Kn : an ≤ mn(X) ≤ bn

∣∣Dn1

}

≤ P
{
X ∈ Kn : an − βn ≤ m(X) ≤ bn + βn

∣∣Dn1

}

≤ P
{
q̄α,n1 − 2 · log n√

n
− 3 · βn ≤ m(X) ≤ q̄α,n1 + 2 · log n√

n
+ 2 · βn

∣∣Dn1

}

≤ P
{
qα − 3 · log n√

n
− 3 · βn ≤ m(X) ≤ qα + 3 · log n√

n
+ 2 · βn

∣∣Dn1

}

≤ P
{
qα − 6 · log(n)√

n
≤ m(X) ≤ qα + 5 · log(n)√

n

}

≤ sup
x∈[qα−6, qα+5]

g(x) · 11 · log(n)√
n

.
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Here, we have used the fact that the continuous function g is bounded on any finite
interval around qα and that log(n)√

n
is bounded by 1 from above. Finally, (3) implies the

assertion. ��

6 Conclusion

This paper is concerned with estimation of quantiles, given a computer model of some
complex technical system, which depends on some non-deterministic input. With
increasing complexity, the costs to evaluate thosemodels,measured in time ormemory,
increase. The usage of importance sampling techniques paves the way to improve the
estimate without additional costly evaluations of the given simulation model. One of
the main tasks in the application of importance sampling is to find a suitable auxiliary
importance sampling density function. In this paper, a possible choice for such a
density is presented and the asymptotic behaviour of the corresponding estimate is
analyzed. Application on simulated data shows that our newly proposed estimate
clearly outperforms the classical order statistics, and performs similarly to alternative
approaches based on control variates or controlled stratification. However, in contrast
to the latter two approaches, for which no convergence proof exists, we provide the
proof of convergence for our newly proposed estimate.

Furthermore, simulation 6 shows that a data-dependent choice of the parameter βn

might improve the performance of our estimate. This will be studied in a forthcoming
paper, together with the influence of the Monte Carlo estimation of the integrals on
the rate of convergence of the estimate.
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