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Abstract We study poissonized triangular (reducible) urns on two colors, which we
take to be white and blue. We analyze the number of white and blue balls after a
certain period of time has elapsed. We show that for balanced processes in this class,
a different scaling is needed for each color to produce nontrivial limits, contrary to
the distributions in the usual irreducible urns which only require the same scaling
for both colors. The limit distributions (of the scaled variables) underlying triangular
urns are Gamma. The technique we use couples partial differential equations with the
method ofmoments applied in a bootstrappedmanner to produce exact and asymptotic
moments. For the dominant color, we get exact moments, while relaxing the balance
condition. The exact moments include alternating signs and Stirling numbers of the
second kind.

Keywords Urn · Pólya urn · Pólya process ·Branching process ·Gamma distribution ·
Partial differential equation

1 Introduction

Owing to their conceptual simplicity and versatility, urn schemes have become a
fundamental mathematical tool. They are widely used in modeling, simulation and
testing. The applications are limitless, spanning a range of importantmodern areas such
as algorithmics, genetics, epidemiology, physics, engineering, economics, networks
and much more. For centuries, urns containing balls and similar constructs have been
used as models (there is a mention of them in the Talmud; see Rabinovitch 1969),
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304 C. Chen and H. Mahmoud

sometimes in a different terminology like particles at various energy levels or objects
in boxes. Perhaps the earliest contributions in the flavor that in our time got to be
commonly named Pólya urns are Eggenberger and Pólya (1923) and Ehrenfest and
Ehrenfest (1907), where the authors used urns as models for contagion and for gas
diffusion. Numerous Pólya urn models useful for applications appeared thereafter, too
many (literally hundreds) to be cited individually. For a classic survey see Johnson
and Kotz (1977), Kotz and Balakrishnan (1997), or Mahmoud (2008) for the basics
and many applications including informatics and biosciences.

To keep our discussion simple, we treat the two-color Pólya urn process; general-
ization to multicolor may be possible. In the classic flavor, the time n = 0, 1, 2, . . . is
discrete. At the beginning of time, the urn is nonempty and contains a certain number
of white and blue balls. At every subsequent epoch of time, a ball is chosen at random
from the urn, its color is observed, then the ball is placed back in the urn. Depending
on its color, the returning ball comes back accompanied with an additional number of
white and blue balls. If we have chosen a white ball, we put in the urn a additional
white balls and b blue, but if we have chosen a blue ball, we put in the urn c white
balls and d additional blue. These dynamics of the urn scheme are captured by a ball
replacement matrix:

(
a b
c d

)
. (1)

The rows of this matrix are indexed with the color of the ball picked at a stage (white
and blue, respectively, from top to bottom), and the columns are indexed with the
color of the balls added (white and blue, respectively, from left to right). Entry (i, j)
is the number of balls of color j ∈ {white, blue} added upon drawing a ball of color
i ∈ {white, blue}. We concentrate on cases where all matrix entries are nonnegative.
Thus, tenability is not an issue.

The interest is often in the long-term composition of the urn or in waiting times till
certain events occur. Several balanced classes have been studied, where balancemeans
that the total number of balls added (regardless of the color of the ball withdrawn) is
constant. In a balanced urn, we have a + b = c + d. This sum, say θ , is often called
the balance factor of the urn. Balance is introduced for mathematical convenience.
Nevertheless, the balanced triangular case, with replacement matrix

(
a d − a
0 d

)
, (2)

with d > a > 0, was a challenge for some time. Only recently has there been an
intensified foray on this case, and we now have a few decent characterizations; see
the studies by Flajolet et al. (2006), Janson (2006), Kuba and Panholzer (2014), and
Zhang et al. (2015).

Associated with a Pólya urn scheme is a process obtained by embedding in contin-
uous time, lately called the Pólya process; see Sparks and Mahmoud (2013). To create
a clear distinction, we adhere to the term “scheme,” when we speak of an urn that
grows in discrete time, and to the term “process,” when we speak of an urn that grows
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The continuous-time triangular Pólya process 305

in continuous time. The process was introduced by Athreya and Karlin (1968) as a
mathematical transform (poissonization) to understand Pólya urn schemes. Athreya
and Karlin (1968) reports that depoissonization of the Pólya urn process (to recover
results on the discrete urn scheme, i.e., produce an inverse transform) is fraught with
difficulty.

2 Scope

Is the continuous-time balanced triangular Pólya urn process as hard to analyze as
the discrete-time Pólya urn scheme, which stood as a challenge for a long time? In
this manuscript we take on the analysis of the balanced triangular urn process. In
the following two subsections, we define them first and mention the tools we need. In
Sect. 3, we state themain results with interpretation. In Sect. 4, we describe themethod
of bootstrapping the moments, and give the proofs for the theorems on asymptotics.
In Sect. 5, we derive exact moments. Section 6 concludes with some remarks.

2.1 Embedding in real time

What distinguishes continuous-time Pólya processes from the more conventional
discrete-time Pólya urn schemes is the timing of the ball draws. In the discrete-time
Pólya urn schemes, the balls are picked at equispaced time intervals (and the spacing
is taken to be the unit of time). In the continuous-time Pólya processes, each ball is
endowed with a clock that rings in exponential time Exp(1) (an exponential random
variable with mean 1). All the clocks are independent of each other and of any other
random variables related to the past. When the clock of a ball rings (a renewal point
in the Pólya process or an epoch), the ball is immediately picked from the urn, and
the rules associated with its color are instantaneously executed. All new balls come
endowed with their own independent clocks. The collective process enjoys mem-
orylessness, as it is induced by independent clocks with exponential ringing time.
If a clock at an epoch is at a certain proportion of its ringing time, the associated
ball does not carry over that time to the next renewal. By memorylessness of expo-
nential random variables, the time remaining on the clock to ring is distributed as
Exp(1), as if the process is reset to start afresh after each renewal. Thus, the Pólya
process is Markovian, with no memory of the past, but the rates change (the pro-
cess speeds up) depending on how many balls are added. In general, the Markovian
process may be an inhomogeneous jump process, with the jumps occurring at the
epochs.

Let W (t) and B(t), be the number of white, respectively, blue, balls in the urn at
time t in a balanced triangular Pólya process. Formally, the two-color Pólya process

is the two-component vector
(

W (t)
B(t)

)
. In what follows, we refer to the total number of

balls at time t as τ(t), i.e., we have

τ(t) = W (t) + B(t).
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306 C. Chen and H. Mahmoud

So, W0 = W (0) and B0 = B(0) are the initial numbers of white and, respectively,
blue balls, and τ0 = τ(0) is the initial number of all balls in the urn.

Asymptotic results for a large class of balanced Pólya processes can be obtained
from Janson (2004) and earlier classic results of branching processes from Athreya
and Ney (1972), Chapter 3. Theorem 3.1 by Janson (2004), coupled with a discussion
by Athreya and Ney (1972), yields

e−θ t
(

W (t)
B(t)

)
a.s.−→ Gamma

(τ0

θ
, θ

) (
v

1 − v

)
.

Note that, in a balanced urn with balance factor θ , the value θ is the principal (larger)
eigenvalue of the transpose of the replacement matrix, and

(
v

1−v

)
is the corresponding

(principal) eigenvector (normalized to be of length 1).
The class covered by this result is constrained to meet certain conditions, including

balance, tenability and irreducibility, and excludes triangular urns. A color is called
dominant, if when the urn starts with one ball of that color, every other color appears
infinitely often. Irreducibility, as defined in Janson (2004), comes down to the condition
that every color is dominant. Triangular urns are not irreducible. It is clear that in the
two-color flavor of the triangular Pólya process, if we start with only one blue ball,
white balls never appear.

2.2 Tools: partial differential equations and bootstrapped moments

We shall establish here the counterpart of the results in Janson (2004) for the excluded
triangular case via an analytic method. Let

φ(t, u, v) := E
[
euW (t)+vB(t)]

be the joint moment generating function of the vector
(

W (t)
B(t)

)
. For the general tenable

Pólya urn (not necessarily balanced or triangular) with replacement matrix (1), the
work by Balaji and Mahmoud (2006) gives the partial differential equation (PDE):

∂φ(t, u, v)

∂t
+ (

1 − eau+bv
)∂φ(t, u, v)

∂u
+ (

1 − ecu+dv
)∂φ(t, u, v)

∂v
= 0. (3)

This functional equation has only been solved in a limited number of cases, as for
instance for the case of forward and backward diagonal processes, see Balaji and
Mahmoud (2006); for the Ehrenfest process, see Balaji et al. (2006); for those bal-
anced processes with Bernoulli matrix entries, see Sparks and Mahmoud (2013); for
Apollonian process, see Zhang and Mahmoud (2016).

While the PDE (3) is of the first order, with a known general solution, there is a
latent difficulty in extracting the joint or marginal distributions. The general solution
via the method of characteristics gives the solution as an integration along charac-
teristic curves; see Levine (1997). Unfortunately, these characteristics are difficult to
determine for the PDE (3) and integration along the characteristics is far from easy.
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The continuous-time triangular Pólya process 307

The simplest of urn cases involve integrating expressions having the Lambert W func-
tion, which itself has an implicit definition. In the cases solved, the authors appealed
to indirect methods of solution, relying more on the probabilistic meaning of the PDE.

For the special balanced triangular urn with replacement matrix (2), the governing
PDE (3) becomes

∂φ

∂t
+ (

1 − eau+(d−a)v
)∂φ

∂u
+ (

1 − edv
)∂φ

∂v
= 0. (4)

We shall pursue a strategy that extracts moments, in a bootstrapped way (i.e.,
following a particular order) from this PDE, and analyze exact and limit moments for
the ball counts associated with the balanced triangular Pólya processes. More about
the specific order will be discussed in Sect. 4.

3 Main results

In this section, we state the salient results. The number of white balls needs the scaling
eat to converge nontrivially (even in the unbalanced case). Lemma 3 gives the limit
distribution of e−at W (t), which is implicit in prior work as will be mentioned.

By contrast, the number of blue balls needs the scaling edt to converge nontrivially.

Theorem 1 Let B(t) be the number of blue balls in the urn at time t in a balanced
triangular Pólya process with replacement matrix

(
a d − a
0 d

)
,

with d > a > 0. Assume the process starts with W0 white balls and B0 blue balls
(i.e., it starts with a total of τ0 = W0 + B0 > 0). As t → ∞, we have

B(t)

edt
D−→ Gamma

(τ0

d
, d

)
.

The exact moments of W (t) involve alternating signs, Stirling numbers of the
second kind and rising factorials. These exact moments are derived under relaxed
balance conditions.

Pochhammer’s symbol for the rising factorial is

〈x〉s = x(x + 1) · · · (x + s − 1),

for any x ∈ R, and any integer s ≥ 0, with the interpretation that 〈x〉0 = 1.
The numbers

{r
j
}
are Stirling numbers of the second kind. This is the number of

ways to partition a set of r distinct objects into j nonempty parts. For properties
of these combinatorial numbers, we refer the reader to textbooks such as David and
Barton (1962) and Graham et al. (1994).
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Theorem 2 Let W (t) be the number of white balls in the urn at time t in a triangular
Pólya process with replacement matrix

(
a b
0 d

)
,

with a > 0, b > 0 and d > 0. Assume the process starts with W0 white balls. The
moments of W (t) are

E
[
W n(t)

] = an
n∑

i=1

(−1)n−i
{

n

i

} 〈
W0

a

〉
i
eait , n ≥ 1. (5)

The method of bootstrapped moments will furnish a bivariate distribution for the
balanced triangular Pólya process under suitable scaling, with both marginal distribu-
tions being Gamma limits.

4 The method of bootstrapped moments

For positive integers, i, j ≥ 0, consider E[W i (t)B j (t)], the mixed moment of W (t)
and B(t) of order (i, j). From the PDE (3) we develop ordinary differential equations
for the mixed moments, one for each such moment. These ordinary differential equa-
tions will involve full history recurrences—the right-hand side of the recurrence for
the mixed moment of order (i, j) involves a term with the mixed moment of order
(i, j), and the functions E[W r (t)Bs(t)], for every 1 ≤ r + s ≤ i + j and s < j . The
exact forms are rather complex, but the general form is amenable to the extraction of
simple asymptoticmixedmoments. The asymptoticmixedmoments are of theGamma
type (have certain forms of the Gamma function). They are sufficient for the purpose
of identifying an asymptotic joint Gamma distribution.

Take the partial derivative of both sides of (4), i times with respect to u and j times
with respect to v, then evaluate at u = v = 0. This operation produces a first-order
ordinary differential equation for the mixed moment of order (i, j) as follows. First,
note that

∂ i+ j

∂ui ∂v j
φ(t, u, v)

∣∣∣
u=v=0

= E
[
W i (t)B j (t)

]
.

Next apply the differential operator ∂ i+ j

∂ui ∂v j to both sides of the PDE (4) and evaluate
at u = v = 0. We get

∂ i+ j

∂ui ∂v j

(
∂

∂t
φ(t, u, v)

) ∣∣∣∣
u=v=0

+ ∂ i+ j

∂ui ∂v j
(1 − eau+(d−a)v)

∂φ

∂u

∣∣∣∣
u=v=0

+ ∂ i+ j

∂ui ∂v j
(1 − edv)

∂φ

∂v

∣∣∣∣
u=v=0

= 0. (6)
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We go through such applications one part at a time. Consider the leftmost term in (6):

∂ i+ j

∂ui ∂v j

(
∂

∂t
φ(t, u, v)

) ∣∣∣∣
u=v=0

= d

dt
E

[
∂ i+ j

∂ui ∂v j
eW (t)u+B(t)v

∣∣∣
u=v=0

]

= d

dt
E

[
W i (t)B j (t)

]
.

For the middle part in the left-hand side of (6), we obtain (via Leibniz rule for
differentiation)

∂ i+ j

∂ui ∂v j

(
1 − eau+(d−a)v

)∂φ

∂u

∣∣∣∣
u=v=0

= ∂ i

∂ui

j∑
s=0

(
j

s

)
∂ j−s

∂v j−s

(
1 − eau+(d−a)v

) ∂s

∂vs

(
∂φ

∂u

) ∣∣∣∣
u=v=0

= ∂ i

∂ui

((
1 − eau+(d−a)v

) ∂ j

∂v j

(
∂φ

∂u

)) ∣∣∣∣
u=v=0

− ∂ i

∂ui

j−1∑
s=0

(
j

s

)
(d − a) j−seau+(d−a)v ∂s

∂vs

(
∂φ

∂u

) ∣∣∣∣
u=v=0

=
i∑

r=0

(
i

r

)
∂ i−r

∂ui−r

(
1 − eau+(d−a)v

) (
∂r

∂ur

(
∂ j+1φ

∂u ∂v j

)) ∣∣∣∣
u=v=0

−
j−1∑
s=0

i∑
r=0

(
i

r

)(
j

s

)
(d − a) j−s ∂ i−r

∂ui−r
eau+(d−a)v

(
∂r

∂ur

(
∂s+1φ

∂u ∂vs

)) ∣∣∣∣
u=v=0

= −
i−1∑
r=0

(
i

r

)
ai−r

E
[
W r+1(t)B j (t)

]

−
j−1∑
s=0

i∑
r=0

(
i

r

)(
j

s

)
ai−r (d − a) j−s

E
[
W r+1(t)Bs(t)

]
.

Likewise, operating on the rightmost term in the left-hand side of (6), we get

∂ i+ j

∂ui ∂v j

(
1 − edv

)∂φ

∂v

∣∣∣∣
u=v=0

= ∂ i

∂ui

j∑
s=0

(
j

s

)
∂ j−s

∂v j−s

(
1 − edv

) ∂s

∂vs

(
∂φ

∂v

) ∣∣∣∣
u=v=0

= ∂ i

∂ui

((
1 − edv

)∂ j+1φ

∂v j+1

) ∣∣∣∣
u=v=0

123
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− ∂ i

∂ui

j−1∑
s=0

(
j

s

)
d j−sedv ∂s+1φ

∂vs+1

∣∣∣∣
u=v=0

= −
j−1∑
s=0

(
j

s

)
d j−s

E
[
W i (t)Bs+1(t)

]
.

Putting all the parts together, we find the first-order differential equation

d

dt
E

[
W i (t)B j (t)

] =
i−1∑
r=0

(
i

r

)
ai−r

E
[
W r+1(t)B j (t)

]

+
i∑

r=0

j−1∑
s=0

(
i

r

)(
j

s

)
ai−r (d − a) j−s

E
[
W r+1(t)Bs(t)

]

+
j−1∑
s=0

(
j

s

)
d j−s

E
[
W i (t)Bs+1(t)

]
. (7)

Proposition 1 Let W (t) and B(t) be the number of white and blue balls, respectively,
in the urn at time t in a balanced triangular Pólya process with replacement matrix

(
a d − a
0 d

)
,

with d > a > 0. Assume the urn starts with W0 white balls and B0 blue balls (and
thus we have τ0 = W0 + B0).

We have

E
[
W (t)

] = W0e
at ,

E
[
B(t)

] = (
W0 + B0

)
edt − W0e

at ,

Var
[
W (t)

] = aW0
(
e2at − eat),

Cov
[
W (t), B(t)

] = aW0
(
e(a+d)t − e2at),

Var
[
B(t)

] = d
(
W0 + B0

)
e2dt − 2aW0e

(a+d)t + aW0e
2at

− d
(
W0 + B0

)
edt + aW0e

at .

Proof In the differential equation (7), set i = 1 and j = 0 to get

d

dt
E

[
W (t)

] = a E
[
W (t)

]
.

The solution for this differential equation is

E[W (t)] = e
∫ t
0 a dx

E[W (0)] = W0e
at .
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Similarly, using (7), we can obtain the following differential equations:

d

dt
E

[
B(t)

] = (d − a)E
[
W (t)

] + d E
[
B(t)

]
,

d

dt
E

[
W 2(t)

] = a2
E

[
W (t)

] + 2a E
[
W 2(t)

]
,

d

dt
E

[
W (t)B(t)

] = a(d − a)E
[
W (t)

] + (a + d)E
[
W (t)B(t)

]
+ (d − a)E

[
W 2(t)

]
,

d

dt
E

[
B2(t)

] = (d − a)2 E
[
W (t)

] + 2(d − a)E
[
W (t)B(t)

] + d2
E

[
B(t)

]
+ 2d E

[
B2(t)

]
.

The solutions to these equations are straightforward, yielding the statement of the
proposition. 	

Remark 1 Note that in Proposition 1 we listed the expression for Cov[W (t), B(t)]
before that for Var[B(t)] to reflect the order in which the corresponding differential
equations were solved. The solution to the differential equation for E[W (t)] was
bootstrapped into the differential equation for E[B(t)], the solution to which was then
bootstrapped into the differential equation forE[W (t)B(t)], the solution to which was
then bootstrapped into the differential equation for E[B2(t)].

We say thatE
[
W i (t)B j (t)

]
is a mixedmoment of total order i + j . We can continue

in the fashion of the proof of Proposition 1 to produce any desired number of moments
of higher total order. The strategy is to first produce a few moments of low total order.
Whenever we get to a higher total order, we bootstrap ingredients that are available,
which are the solutions of mixed moments of lower total order, or of the same total
order that have already been computed. For a fixed total order i + j = k, we follow
an order of decreasing i , i.e., we solve for i = k, k − 1, . . . , 0.

The first few are obtained without difficulty. However, the computational complex-
ity is ever increasing with the total order. As an illustration, we list all the mixed
moments of total order 3 in the appendix. The reader will notice that moments of total
order 1 and 2 are quite simple and are given by short formulas, and these formulas
become lengthy for moments of total order 3.

Toward asymptotics, we simplify notation and focus on the functional equation
aspect of the formulation. Set

mi, j (t) = E
[
W i (t)B j (t)

]
.

Weprove by a bootstrapped induction on i+ j that themixedmoments of order (i, j)
of the balanced triangular Pólya process are a combination of exponential functions.
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Lemma 1 The mixed moments E
[
W i (t)B j (t)

]
have the form

mi, j (t) =
∑

1≤r+s≤i+ j
s≤ j

ξ
(i, j)
r,s e(ar+ds)t , (8)

where ξ
(i, j)
r,s = ξ

(i, j)
r,s (a, d, W0, B0) ∈ R are coefficients.1

Proof The bootstrapping requires a particular order. When we deal with total order
k = i + j , we first take the differential equation for the kth moment of the number of
white balls, i.e., the mixed moment of order (k, 0). This moment involves lower order
moments of the number of white balls.We then proceed to compute themixedmoment
of order (k − 1, 1). The mixed moment of order (k − 1, 1) depends on moments of
total order k − 1 = i + j − 1, and the mixed moment of the order (k, 0), which we
have already computed. We continue by following a decreasing order for i (that is,
i = k, k − 1, . . . , 0). This bootstrapping technique was illustrated in the computation
of moments of total order up to 3 (see Remark 1 and the appendix).

The forms of the means of W (t) and B(t) provide a basis for the induction, at
i + j = 1. For some value (i, j), assuming the differential equation (8) holds for mr,s

with r + s ≤ i + j and s < j . Then, the differential form (7) yields

m′
i, j (t) = (ai + d j)mi, j (t) +

i−2∑
r=0

(
i

r

)
ai−r mr+1, j (t)

+
i∑

r=0

j−1∑
s=0

(
i

r

)(
j

s

)
ai−r (d − a) j−smr+1,s(t)

+
j−2∑
s=0

(
j

s

)
d j−smi,s+1(t)

= (ai + d j)mi, j (t) +
i−2∑
r=0

(
i

r

)
ai−r

∑
1≤k+�≤r+1+ j

�≤ j

ξ
(r+1, j)
k,� e(ak+d�)t

+
i∑

r=0

j−1∑
s=0

(
i

r

)(
j

s

)
ai−s(d − a) j−r

∑
1≤k+�≤r+1+s

�≤s

ξ
(r+1,s)
k,� e(ak+d�)t

+
j−2∑
s=0

(
j

s

)
d j−s

∑
1≤k+�≤i+s+1

�≤s+1

ξ
(i,s+1)
k,� e(ak+d�)t . (9)

1 Some of the coefficients may be 0. For simplicity we drop the parameters in the parentheses from the
notation.
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This equation boils down to a simple differential form:

m′
i, j (t) = (ai + d j)mi, j (t) + hi, j (t), (10)

where hi, j (t) is a function that collects all the sums. For the purpose of asymptotic

analysis, the exact values of the coefficients ξ
(i, j)
r,s do not weigh in heavily as the

dominant asymptotic equivalent does not involve them.
First-order differential equations have a standard theory; see Edwards and Penney

(2007), for example. Suppose g(x) and h(x) are continuous functions on an open
interval containing the point x0. Then, the differential equation

f ′(x) + g(x) f (x) = h(x)

has a unique solution:

f (x) = 1

e
∫ x

x0
g(t)dt

(
f (x0) +

∫ x

x0
e
∫ t

x0
g(s) ds

h(t) dt

)
.

Therefore, the general solution of (10) is

mi, j (t) = 1

e
∫ t
0 −(ai+d j)dx

(
mi, j (0) +

∫ t

0
e
∫ x
0 −(ai+d j) ds hi, j (x) dx

)

= e(ai+d j)t
(

mi, j (0) +
∫ t

0
e−(ai+d j)x hi, j (x) dx

)
. (11)

Since all the functions involved in the integral are exponential, the integration preserves
exponential forms, which completes the induction. 	


Note that the function mi, j (t) is comprised of exponential functions of the form
eαi, j t , where αi, j ≤ ai + d j . Therefore, as t → ∞, we have

E
[
W i (t)B j (t)

] = mi, j (t) ∼ Ki, je
(ai+d j)t , (12)

where Ki, j = K (i, j, a, d, W0, B0) does not depend on t . For simplicity, we write
only the two subscripts i, j .

The variable W (t) is easier to analyze asymptotically than B(t). Also, W (t) is
amenable to exact analysis. So, we postpone the work on W (t) for later and take up
the more demanding asymptotic analysis of B(t). The derivation of the asymptotic
moments of B(t) needs those of τ(t), which we discuss first in the following lemma.
The source Balaji and Mahmoud (2006) gives the exact moment generating function
of this total τ(t). Asymptotics are also known via an argument based on the theory of
branching processes by Athreya and Ney (1972), Chapter 3.
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Lemma 2 Let τ(t) be the total number of balls in the urn at time t in a balanced
triangular Pólya process with replacement matrix

(
a d − a
0 d

)
,

with d > a > 0. Assume the process starts with a total of τ0 balls. The moment
generating function of τ(t) is

φτ(t)(u) =
(

e−dtedu

1 − (1 − e−dt )edu

) τ0
d

.

As t → ∞, we have

τ(t)

edt
D−→ Gamma

(τ0

d
, d

)
.

Remark 2 Note that, when τ0 is a multiple of d, the moment generating function
of τ(t) is a convolution of τ0/d independent geometric random variables, each with
probability of success e−dt . Also note that Lemma 2 remains valid if the balanced
Pólya urn is not triangular.

In view of uniform integrability, we have the following corollary.

Corollary 1

E
[
τ r (t)

] ∼ gre
drt ,

where gr is the well-known rth moment of the Gamma distribution.

We now turn to the proofs of the main results stated in Sect. 3.

Proof of Theorem 1 We start with the binomial expansion

Bn(t) = (
τ(t) − W (t)

)n =
n∑

r=0

(
n

r

)
(−1)n−rτ r (t)W n−r (t).

Now, take expectations of both sides to get

E
[
Bn(t)

] = E

[
n∑

r=0

(
n

r

)
(−1)n−rτ r (t)W n−r (t)

]

= E
[
τ n(t)

] +
n−1∑
r=0

(
n

r

)
(−1)n−r

E
[
τ r (t)W n−r (t)

]
.
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We isolated the nth moment of τ on the right-hand side because, as we shall see, it
provides the asymptotically dominant term.

Let us bound the terms in the sum via Cauchy–Schwarz inequality:

∣∣∣∣∣
n−1∑
r=0

(
n

r

)
(−1)n−r

E
[
τ r (t)W n−r (t)

]∣∣∣∣∣ ≤
n−1∑
r=0

(
n

r

)
E

[
τ r (t)W n−r (t)

]

≤
n−1∑
r=0

(
n

r

)√
E

[
τ 2r (t)

]
E

[
W 2(n−r)(t)

]
.

According to Corollary 1 and (12) applied with i = 2(n − r) and j = 0, we write

∣∣∣∣∣
n−1∑
r=0

(
n

r

)
(−1)n−r

E
[
τ r (t)W n−r (t)

]∣∣∣∣∣ ≤
n−1∑
r=0

√
O

(
e2rdt

) × O
(
e2(n−r)at

)

≤
n−1∑
r=0

O
(
erdt+(n−r)at);

we subsumed the binomial coefficient into the O notation, and we emphasize that the
constants hidden in O depend on n, r, a, d, W0 and B0. Note that 0 < rd +(n −r)a ≤
(n − 1)d + a, for 0 ≤ r ≤ n − 1. Therefore, we have

∣∣∣∣∣
n−1∑
r=0

(
n

r

)
(−1)n−r

E
[
τ r (t)W n−r (t)

]∣∣∣∣∣ = O
(
e(n−1)dt+at).

Consequently, we have

E
[
Bn(t)

] = E
[
τ n(t)

] + O
(
e(n−1)dt+at).

Upon scaling (by endt ), we write equivalently

E

[
Bn(t)

endt

]
= E

[
τ n(t)

endt

]
+ O

(
e−(d−a)t).

By an argument based on the theory of branching processes by Athreya and Ney
(1972), Chapter 3, and Janson (2004), we know that e−dtτ(t) converges (also follows
from Lemma 2):

τ(t)

edt
D−→ Gamma

(τ0

d
, d

)
.

We now see that the moments of e−dt B(t) converge to those of a certain Gamma
random variable, and the Gamma distribution is uniquely characterized by its moment.
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We conclude that

B(t)

edt
D−→ Gamma

(τ0

d
, d

)
.

	

By the nature of a triangular urn, white draws feed into the supply of white balls in

the urn, and blue draws do not. So, we can view W (t) as a branching process originated
from an initial population of W0 particles. The same argument by Athreya and Ney
(1972), Chapter 3 and Janson (2004) can be used to find the appropriate scaling and
the limit distribution for the scaled process. For the white balls, we have a formulation
similar to that for the total number of balls (see Lemma 2).

Lemma 3 Let W (t) be the number of white balls in the urn at time t in a triangular
Pólya process with replacement matrix

(
a b
0 d

)
, (13)

with a > 0, b > 0 and d > 0. Assume the process starts with W0 > 0 white balls.
The moment generating function of W (t) is

φW (t)(u) =
(

e−ateau

1 − (1 − e−at )eau

) W0
a

.

As t → ∞,

W (t)

eat
D−→ Gamma

(
W0

a
, a

)
.

Remark 3 Note that Lemma3 is stated formore general triangular urns, not necessarily
balanced.

5 Exact moments

The bootstrapping method discussed can be used to find the exact moments of W (t).
These exact moments are presented in terms of Pochhammer’s symbols for the rising
factorials and Stirling numbers of the second kind.

Proof of Theorem 2 We develop a generating function for the (rising) factorial (which
we name R(u)) of W (t) from the connection

RW (t)(u) =
∞∑

n=0

E
[〈

W (t)
〉
n

] un

n!

=
∞∑

n=0

( ∞∑
w=0

〈w〉n P(W (t) = w)

)
un

n!
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=
∞∑

w=0

P(W (t) = w)

∞∑
n=0

〈w〉n
un

n!

=
∞∑

w=0

1

(1 − u)w
P
(
W (t) = w

)

= φW (t)

(
ln

(
1

1 − u

))
.

From Lemma 3, we then proceed with

RW (t)/a(u) = φW (t)

(
1

a
ln

(
1

1 − u

))

=
(

e−ateln(1/(1−u)

1 − (1 − e−at )eln(1/(1−u)

)W0/a

= (
1 − ueat)−W0/a

.

Reverting to the definition of the (rising) factorial moment generating function, and
an expansion of the simple function on the right-hand side, we obtain

∞∑
n=0

E

[〈
W (t)

a

〉
n

]
un

n! =
∞∑

n=0

〈
W0

a

〉
n
eant un

n! .

Extracting powers of u, we arrive at

E

[〈
W (t)

a

〉
n

]
=

〈
W0

a

〉
n
eant , for n ≥ 1. (14)

Table 250 in Graham et al. (1994) provides the identity

xn =
n∑

i=0

{
n
i

}
(−1)n−i 〈x〉i .

By (14), we reach the conclusion that

E

[(
W (t)

a

)n]
=

n∑
i=0

{
n
i

}
(−1)n−i

E

[〈
W (t)

a

〉
i

]

=
n∑

i=0

{
n
i

}
(−1)n−i

〈
W0

a

〉
i
eait , for n ≥ 1.

Multiplying both sides by an , the result follows. 	
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White balls feed into white balls only. Likewise, all the balls feed into all the colors.
Thus, again, we can view the total number of balls as a branching process with both
colors combined into one to obtain a result for the total τ(t) quite similar to that for
the white balls:

E
[
τ n(t)

] = dn
n∑

i=1

(−1)n−i
{

n
i

} 〈τ0
d

〉
i
edit , n ≥ 1.

6 Concluding remarks

As discussed in the body of the article, the counts of white and blue balls in a large
class of irreducible balanced urns (with balance factor θ ) are given by

e−θ t
(

W (t)
B(t)

)
a.s.−→ Gamma

(τ0

θ
, θ

) (
v

1 − v

)
, (15)

where
(

v
1−v

)
is the principal eigenvector (normalized to be of length 1); see Janson

(2004). To put matters in perspective, let us present our findings in a similar manner.
The results we obtained assert that

e−dt
(

W (t)
B(t)

)
D−→ Gamma

(τ0

d
, d

) (
0
1

)
. (16)

The class of balanced triangular urns is reducible as the blue color is not dominant.
Yet, we see by comparing the general forms (15) and (16) that it is plausible that the
type of result in Janson (2004) may extend to cover additional reducible classes. We
note the 0 in (16)—it appears because scaling by edt is too much for the number of
white balls. As discussed in the manuscript, an appropriate scaling is a function of the
order eat .

Some asymptotic results in this manuscript can be obtained from the theory of
branching processes. We used a technique that espouses partial differential equations
a method of bootstrapped moments. The merits of the latter method lie in the potential
of producing exact distributions and exact moments.

The Gamma distribution we obtained as a limit for the (scaled) number of blue
balls was derived under a condition of balance. However, several other results in the
manuscript relax this condition. For instance, the Gamma distribution we obtained as a
limit for the (scaled) number of white balls remains valid if the triangular Pólya urn is
not balanced. The exact distribution of the number of white balls remains unchanged
for unbalanced triangular Pólya urns. Furthermore, the exact moments of total order
up to 3 in Proposition 1 and the appendix can be easily adapted for unbalanced urns.
For instance, for a triangular urn with the replacement matrix (13), the means become

E
[
W (t)

] = W0e
at ,

E
[
B(t)

] =
(

b

d − a
W0 + B0

)
edt − b

d − a
W0 e

at .
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Albeit essential differences between discrete-time triangular Pólya schemes and
continuous-time triangular Pólya processes, there are similarities. To realize the simi-
larity, we recall a result from Zhang et al. (2015). Let Ws be the number of white balls
in the urn after s draws from triangular Pólya schemewith the replacementmatrix (13).
We then have

E[W n
s ] = an

〈 τ0
d 〉s

n∑
i=1

(−1)n−i
{

n
i

} 〈
W0

a

〉
i

〈
τ0 + ia

d

〉
s
.

We note that several elements, including alternating signs, powers, Stirling numbers,
rising factorials are common among the two formulas.
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Appendix

The mixed moments of total order 3 are given by the following differential equations:

d

dt
E

[
W 3(t)

] = a3
E

[
W (t)

] + 3a2
E

[
W 2(t)

] + 3a E
[
W 3(t)

]
,

d

dt
E

[
W 2(t)B(t)

] = a2(d − a)E
[
W (t)

] + a2
E

[
W (t)B(t)

] + 2a(d − a)E
[
W 2(t)

]
+ (2a + d)E

[
W 2(t)B(t)] + (d − a)E

[
W 3(t)

]
,

d

dt
E

[
W (t)B2(t)

] = a(d − a)2 E
[
W (t)

] + (
2a(d − a) + d2)

E
[
W (t)B(t)

]
+ (d − a)2 E

[
W 2(t)

] + 2(d − a)E
[
W 2(t)B(t)

]
+ (a + 2d)E

[
W (t)B2(t)

]
,

d

dt
E

[
B3(t)

] = (d − a)3 E
[
W (t)

] + 3(d − a)2 E
[
W (t)B(t)]

+ 3(d − a)E
[
W (t)B2(t)

] + d3
E

[
B(t)

]
+ 3d2

E
[
B2(t)

] + 3d E
[
B3(t)

]
.

Solving these differential equations we obtain the mixed moments of total order 3:

E
[
W 3(t)

] = W0
(
W0 + a

)(
W0 + 2a

)
e3at − 3aW0

(
W0 + a

)
e2at + a2W0e

at ,

E
[
W 2(t)B(t)

] = W0
(
W0 + a

)(
W0 + B0 + d

)
e(2a+d)t

− W0
(
W0 + a

)(
W0 + 2a

)
e3at

− aW0
(
W0 + B0 + a

)
e(a+d)t + aW0

(
W0 + a

)
e2at ,
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E
[
W (t)B2(t)

] = W0
(
W0 + B0 + a

)(
W0 + B0 + a + d

)
e(a+2d)t

− 2W0
(
W0 + a

)(
W0 + B0 + 2a

)
e(2a+d)t

+ W0
(
W0 + a

)(
W0 + 2a

)
e3at

− dW0
(
W0 + B0 + a

)
e(a+d)t + aW0

(
W0 + a

)
e2at ,

E
[
B3(t)

] = (
W0 + B0

)(
W0 + B0 + d

)(
W0 + B0 + 2d

)
e3dt

− 3W0
(
W0 + B0 + a

)(
W0 + B0 + a + d

)
e(a+2d)t

+ 3W0
(
W0 + a

)(
W0 + B0 + 2a

)
e(2a+d)t

− W0
(
W0 + a

)(
W0 + 2a

)
e3at

− 3d
(
W0 + B0

)(
W0 + B0 + d

)
e2dt

+ 3(a + d)W0
(
W0 + B0 + a

)
e(a+d)t

− 3aW0
(
W0 + a

)
e2at + d2(W0 + B0

)
edt − a2W0e

at .
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