
Ann Inst Stat Math (2018) 70:395–419
https://doi.org/10.1007/s10463-016-0593-6

Quantile regression based on counting process
approach under semi-competing risks data

Jin-Jian Hsieh1 · Hong-Rui Wang1

Received: 1 December 2015 / Revised: 4 October 2016 / Published online: 31 December 2016
© The Institute of Statistical Mathematics, Tokyo 2016

Abstract In this paper, we investigate the quantile regression analysis for semi-
competing risks data in which a non-terminal event may be dependently censored
by a terminal event. The estimation of quantile regression parameters for the non-
terminal event is complicated. We cannot make inference on the non-terminal event
without extra assumptions. Thus, we handle this problem by assuming that the joint
distribution of the terminal event and the non-terminal event follows a parametric
copula model with unspecified marginal distributions. We use the stochastic prop-
erty of the martingale method to estimate the quantile regression parameters under
semi-competing risks data. We also prove the large sample properties of the proposed
estimator, and introduce a model diagnostic approach to check model adequacy. From
simulation results, it shows that the proposed estimator performs well. For illustration,
we apply our proposed approach to analyze a real data.

Keywords Copula model · Dependent censoring · Quantile regression ·
Semi-competing risks data

1 Introduction

Quantile regression analysis has received increasing attentions in the recent literature
of survival analysis, which has emerged as a significant extension of classic linear
regression using the concept of conditional quantiles. Given a (p + 1) × 1 covariate
vector Z and γ ∈ [0, 1], the conditional quantiles of a random variable, say T , are

B Jin-Jian Hsieh
jjhsieh@math.ccu.edu.tw

1 Department ofMathematics, National Chung Cheng University, 168, University Rd., Min-Hsiung,
Chia-Yi, Taiwan ROC

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10463-016-0593-6&domain=pdf


396 J.-J. Hsieh, H.-R. Wang

defined as ξγ (T |Z) = inf{t : Pr(T ≤ t |Z) ≥ γ }. A quantile regression model may
linearly link ξγ (T |Z) to Z for each 0 < γ < 1, that is,

ξγ (T |Z) = ZTβ0(γ ), γ ∈ (0, 1), (1)

where the regression parameter, β0(γ ), represents the effects of covariates on the γ

quantile of T and may change with γ . The model can fit the higher or lower quan-
tile of interest, among them the median (0.5th quantile) function is a special case.
According to this feature, quantile regression is very useful when data are hetero-
geneous on the conditional distribution or when the conditional distribution has a
non-standard shape. In practice, the failure time data are often quite right skewed.
An advantage of the quantile regression model is that it can provide a more complete
assessment of covariate effects under conditional distribution. Quantile regression
model has been widely investigated by many literatures. (Powell 1984, 1986) con-
sidered quantile regression analysis under a fixed censoring mechanism in which all
the censoring times are observed. Conditional independent right censorship, given
the covariates, has been assumed including Ying et al. (1995), Fitzenberger (1997),
Buchinsky and Hahn (1998), Yang (1999), Portnoy (2003), Peng and Huang (2008),
Yin et al. (2008), and Portnoy and Lin (2010). Under competing risks model, Peng
and Fine (2009) investigated quantile regression parameter estimation, and Fan and
Liu (2013) discussed the identification problem and confidence set of the quantile
regression parameter. Ji et al. (2014) considered quantile regression model based on
dependently censored data.

In this paper, we consider quantile regression model on the non-terminal event
time for semi-competing risks data (Fine et al. 2001). The semi-competing risks data
consist of a terminal event and a non-terminal event. The study of leukemia patients
receiving the bone marrow transplants is an example for semi-competing risks data.
The relapse time of leukemia from the bone marrow transplant is the non-terminal
event and the death time is the terminal event. When the quantile covariate effect
of the death time is of interest, the existing methods described in the above can
be applied. But, when the quantile covariate effect of the relapse time is of main
interest, the previous approaches are not appropriate due to the dependent censor-
ing. For this problem, Hsieh et al. (2013) applied inverse probability weight (IPW)
approach to construct an estimating equation of the quantile regression parameter.
Li and Peng (2015) applied stochastic integral technique to construct an estimat-
ing equation for the quantile regression parameter. Here, we adopt the counting
process technique to handle this problem. Because the non-terminal event is depen-
dently censored by the terminal event, we cannot make inference on the non-terminal
event without extra assumption on the dependence of the non-terminal event and
the terminal event. Thus, we assume that the two events follow a parametric copula
model.

The rest of the article is organized as follows. In Sect. 2, we introduce the semi-
competing risks data, quantile regression model, and copula function. In Sect. 3, we
propose a counting process approach to estimate quantile regression coefficients and
provide a model diagnostic method. We examine the finite sample performance of
our proposed approach via simulations in Sect. 4. In Sect. 5, we apply our proposed
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methodology to a real-data example. We conclude with some remarks in Sect. 6 and
delineate the proofs of large sample properties in the Appendix.

2 Data and model assumptions

This section begins with an illustration of semi-competing risks data. Let T and D
denote the time to non-terminal event and the time to terminal event, respectively.
T is subject to censoring by D but not vice versa. Let C be a censoring time. This
type of data is called as semi-competing risks data. The observable data consist of
{(Xi ,Yi , δXi , δYi ) : i = 1, . . . , n}, where X = T ∧ D∧C, Y = D∧C, δX = I (T ≤
D ∧ C), δY = I (D ≤ C), where ∧ is the minimum operator and I (·) is the indicator
function.

This study considers quantile regression model under semi-competing risks data.
Let Z̃ be a p × 1 discrete covariate vector and Z = (1, Z̃ T )T . Consider the following
linear quantile regressionmodel on h(T ),where h(·) is a knownmonotonic increasing
function, such that

ξγ (h(T )|Z) = ZTβ0(γ ), (2)

where 0 < γ < 1 and ξγ (h(T )|Z) is the (100 × γ )th quantile of h(T ) conditional
on Z . Let εγ = h(T ) − βT

0 (γ )Z , where εγ satisfies Pr(εγ ≤ 0|Z) = γ under model
(2). β0(γ ) is the true quantile regression parameter of interest. Further, C is assumed
to be independent of (T, D) conditional on Z .

Many papers considered the estimation of β0(γ ) under conditional independent
censoring given covariates, such as Ying et al. (1995), Fitzenberger (1997), Buchinsky
and Hahn (1998), Yang (1999), Portnoy (2003), Peng and Huang (2008), Yin et al.
(2008), and Portnoy and Lin (2010), which can be applied to quantile regression on
D. But, these approaches are not appropriate for the quantile regression on T , since
these approaches do not take into account the association of (T, D). In this study, we
specify that the association of (T, D) by assuming (T, D) follows a copula model as:

Pr(T > t, D > d|Z = z) = Cαz {ST |Z (t |z), SD|Z (d|z)}, 0 ≤ t ≤ d ≤ ∞, (3)

where ST |Z (t |z) and SD|Z (d|z) are the marginal survival functions of T and D, given
Z = z, Cα(·, ·) is a parametric copula function defined on the unit square, and α is
an association parameter. The advantage of the copula model is that the joint survival
function of (T, D) can be expressed as a function of the marginal survival functions
of T and D, and the corresponding association parameter through the copula function.
TheArchimedean copula (AC) family is a popular subclass of the copula family, which
can be expressed as:

Cα(u, v) = φ−1
α {φα(u) + φα(v)}, 1 ≥ u, v ≥ 0, (4)

where φα is a non-increasing convex function defined on (0,1] with φα(1) = 0. This
class of dependence functions includes Clayton’s copula with φα(s) = (s−α − 1)/α
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and Cα(u, v) = (u−α + v−α − 1)−1/α, and Frank’s copula with φα(s) = log{(1 −
α)/(1 − αs)} and Cα(u, v) = logα{1 + (αu − 1)(αv − 1)/(α − 1)}.

3 The proposed inference methods

3.1 The estimation of β0(γ )

This section introduces the estimation of the parameter β0(γ ) in model (2) under the
semi-competing risks data. To specify the dependence between T and D, we assume
the Archimedean copula function on the upper wedge as

P(T > t, D > d|Z = z) = φ−1
αz

{φαz (ST |Z (t |z)) + φαz (SD|Z (d|z))},
0 < t ≤ d < ∞, (5)

where ST |Z and SD|Z are the marginal distributions of T and D given Z . Let Ni (t) =
I (Xi ≤ t, δxi = 1) and

	T (t |zi ) =
{− log(Pr(T > t |D = di , Z = zi )), if D = di ,

− log(Pr(T > t |D > ci , Z = zi )), if D > ci .

Note that	T (·|zi ) is the cumulative hazard function of T conditional on Z = zi and the
event “D = di” or “D > ci”. Let Ei is the event defined from the censoring status of
Di , which is the event “Di = di” or “Di > ci”. DefineMi (t) = Ni (t)−	T (t∧Xi |zi ).
Thus, under “Z = zi” and the event defined by D which is “D = di” or “D > ci”,
Mi (t) is the martingale process associated with the counting process Ni (t) (Fleming
and Harrington 1991). Then, it has E(Mi (t)|Z = zi , Ei ) = 0, for t ≥ 0. Let

S0n (b(γ ), b0(γ )) = n−1
n∑

i=1

Zi
[
Ni {h−1(ZT

i b(γ ))} − 	T {h−1(ZT
i b0(γ )) ∧ Xi |Zi }

]
.

Thus, we have S0n (β0(γ ), β0(γ ))
p→ 0 by Appendix A. Therefore, we can estimate

β0(γ ) by solving the following equation with respect to b,

S0n (b, β0(γ )) = n−1
n∑

i=1

Zi
[
Ni {h−1(ZT

i b)} − 	T {h−1(ZT
i β0(γ )) ∧ Xi |Zi }

] = 0.

(6)

However, 	T (.|Zi ) is unknown. It is natural to replace 	T (.|Zi ) by 	̂T (.|Zi ) as:

Sn(b, β0(γ )) = n−1
n∑

i=1

Zi
[
Ni {h−1(ZT

i b)} − 	̂T {h−1(ZT
i β0(γ )) ∧ Xi |Zi }

] = 0.

(7)
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For the estimation of	T (t |z), when D = d, we can estimate	T (t |z) by 	̂T (t |z) =
− log{P̂(T > t |D = d, Z = z)}, where

P̂(T > t |D = d, Z = z) = P̂(T > t, D = d|Z = z)

P̂(D = d|Z = z)

= φ−1
′

α̂z
{φα̂z (ŜT |Z (t |z)) + φα̂z (ŜD|Z (d|z))}φ ′

α̂z
(ŜD|Z (d|z)),

where φ−1
′

α (t) = ∂
∂t φ

−1
α (t). When D > c, 	T (t |z) can be estimated by 	̂T (t |z) =

− log{P̂(T > t |D > c, Z = z)}, where

P̂(T > t |D > c, Z = z) = P̂(T > t, D > c|Z = z)

P̂(D > C |Z = z)

=
φ−1

α̂z
{φα̂z (ŜT |Z (t |z)) + φα̂z (ŜD|Z (c|z))}

ŜD|Z (c|z) .

Note that ŜT |Z (t |z) = P̂(T > t |Z = z) can be obtained by the copula-graphic
estimator by Lakhal et al. (2008) as:

ŜT |Z (t |z)

= φ−1
α̂z

{
n∑

i=1

I (Xi ≤ t, δxi = 1, Zi = z){φα̂z [ŜW |Z (Xi |z)] − φα̂z [ŜW |Z (X−
i |z)]}

}
,

whereW = T ∧D, ŜW |Z (x |z) = P̂(W > x |Z = z) can be obtained byKaplan–Meier
estimator basedon {(xi , δzi ) : Zi = z, i = 1, . . . , n},where δzi = 1−(1−δxi )(1−δyi ).
Further, SD|Z (x |z) = P(D > x |Z = z) can be estimated by Kaplan–Meier estimator
based on {(yi , δyi ) : Zi = z, i = 1, . . . , n}. From Lakhal et al. (2008), the estimator
of αz can be obtained by solving the root of the following estimating equation:

∑
i< j,Zi=Z j=z

w(X̃i j , Ỹi j )I (T̃i j ≤ D̃i j

≤ C̃i j )

{
I ((Xi−X j )(Yi−Y j ) > 0)− θαz (π̂z(X̃i j , Ỹi j ))

θαz (π̂z(X̃i j , Ỹi j )) + 1

}
= 0,

where X̃i j = Xi ∧ X j , Ỹi j = Yi ∧ Y j , T̃i j = Ti ∧ Tj , D̃i j = Di ∧ Dj ,
C̃i j = Ci ∧ C j , w(., .) is a weight function, θαz (v) = −vφ

′′
αz

(v)/φ
′
αz

(v), and

π̂z(s, t)=P̂r(T>s, D>t |Z=z)=∑n
i=1 I (Xi>x,Yi>y, Zi=z)/{nzĜz(y)}, where

nz = ∑n
i=1 I (Zi = z).
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Therefore, when h−1(zTi β0(γ )) ≤ Xi ,

	̂T (h−1(zTi β0(γ )) ∧ Xi |zi ) = 	̂T (h−1(zTi β0(γ ))|zi )

=

⎧⎪⎨
⎪⎩

− log{φ−1
′

α̂zi
{φα̂zi

(1 − γ )+φα̂zi
(ŜD|Z (di |zi ))}φ ′

α̂zi
(ŜD|Z (di |zi ))}, if D = di ,

− log{φ−1
α̂zi

{φα̂zi
(1−γ )+φα̂zi

(ŜD|Z (ci |zi ))}
ŜD|Z (ci |zi ) }, if D > ci .

(8)

When h−1(zTi β0(γ )) > Xi ,

	̂T (h−1(zTi β0(γ )) ∧ Xi |zi ) = 	̂T (Xi |zi )

=

⎧⎪⎪⎨
⎪⎪⎩

− log{φ−1
′

α̂zi
{φα̂zi

(ŜT |Z (Xi |zi )) + φα̂zi
(ŜD|Z (di |zi ))}φ′

α̂zi
(ŜD|Z (di |zi ))}, if D = di ,

− log{
φ−1

α̂zi
{φα̂zi

(ŜT |Z (Xi |zi ))+φα̂zi
(ŜD|Z (ci |zi ))}

ŜD|Z (ci |zi ) }, if D > ci .

(9)

From the above, the formulas in (8) and (9) do not involve β0(γ ). But, the comparison
of h−1(zTi β0(γ )) and Xi is not available due to the unknown of β0(γ ). To overcome
this problem, we use a two-stage iterative algorithm in the following.

Because (7) may not be continuous, an exact root may not exist. Here, we apply
the generalized solutions method (Fygenson and Ritov 1994) for this problem. Thus,
the solution of Eq. (7) with respect to b is equivalent to the minimizer of the following
L1 type function with respect to b,

Un(b, β0(γ )) =
(

n∑
i=1

δxi

∣∣∣h(Xi ) − bT Zi

∣∣∣
)

+
∣∣∣∣∣M − bT

n∑
l=1

−Zlδxl

∣∣∣∣∣
+

∣∣∣∣∣M − bT
n∑

k=1

2Zk	̂(h−1(ZT
i β0(γ )) ∧ Xi |Zi )

∣∣∣∣∣ , (10)

where M is an extremely large positive value to bound
∣∣∣bT ∑n

l=1 −Zlδxl

∣∣∣ and∣∣∣bT ∑n
k=1 2Zk	̂(h−1(ZT

i β0(γ )) ∧ Xi |Zi )

∣∣∣ from above for all b
′
s in the compact

parameter space of β0(γ ). To overcome the comparison problem due to the unknown
of β0(γ ), we suggest the following two-stage algorithm for the L1-type function
Un(b, β0(γ )).

Step1 Select an initial value b(0) and set i = 1.
Step2 Let β0(γ ) = b(i−1). The L1-type function is Un(b, b(i−1)). Compare

h−1(zTi b
(i−1)) and Xi to determine 	̂T (h−1(zTi b

(i−1)) ∧ Xi |zi ). When
h−1(zTi b

(i−1))≤ Xi , 	̂T (h−1(zTi b
(i−1))∧Xi |zi ) = (8);whenh−1(zTi b

(i−1)) >

Xi , 	̂T (h−1(zTi b
(i−1)) ∧ Xi |zi ) = (9).
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Quantile regression under semi-competing risks data 401

Step3 Minimize Un(b, b(i−1)) with respect to b and obtain the minimizer b(i). Then,
set i = i + 1.

Step4 Repeat step2 and step3 until b(i), i = 1, 2, . . . , converge.

By the algorithm with the L1-type function Un(b, β0(γ )), we can obtain the solution
of (7).

Since the variance of the proposed estimator is difficult to estimate, we use the
bootstrap approach (Efron 1979; Efron and Tibishirani 1993) to estimate the variance
of β̂(γ ). Based on the bootstrap approach, we can sample data {(X ′

i ,Y
′
i , δ

′
xi , δ

′
yi , Z

′
i ) :

(i = 1, . . . , n)} from the original data. Based on the bootstrapping sample, we can
obtain β̂

′
(γ ). Repeating the re-sampling procedure B times, we can obtain {β̂ ′

b(γ ) :
b = 1, . . . , B} and hence we can compute the variance of β̂(γ ) by

V
β̂(γ )

= 1

B − 1

B∑
b=1

(β̂
′
b(γ ) − β̄

′
(γ ))2,

where β̄
′
(γ ) = ∑B

i=b β̂
′
b(γ )/B.Then, we can construct the (1−α) confidence interval

for β(γ ) as β̂(γ ) ± z1−α/2V
1/2
β̂(γ )

, where z1−α/2 = 
−1(1 − α/2), and 
(·) is the
cumulative distribution function of a standard normal random variable. We can also
use the bootstrap percentile method to construct the (1 − α) confidence interval of
β0(γ ) as [β̂ ′

(B×α/2)(γ ), β̂
′
(B×(1−α/2))(γ )], where β̂

′
(b)(γ ), b = 1, . . . , B are the order

statistics of β̂
′
b(γ ), b = 1, . . . , B.

3.2 Asymptotic properties of the proposed estimator

In this subsection, we provide the large sample properties for the consistency and
weak convergence of the proposed estimator β̂(γ ). Firstly, we introduce regularity
conditions as follows:

C1. Z is uniformly bounded.
C2. β(γ ) is bounded.
C3. μ

′
(β0(γ )) is non-singular , where μ

′
(β0(γ )) = ∂μ(b)

∂b |b=β0(γ ).

C4. S̄(b) 	= 0 for b 	= β0(γ ) and lim inf‖b‖→∞ ‖S̄(b)‖ > 0, where β0(γ ) is the true
value.

Under the regularity conditions, we have the following theorems.

Theorem 1 Under assumptions of models (2) and (5) and conditions C1, C2, and C4,
β̂(γ ) is a consistent estimator.

Theorem 2 Under assumptions of models (2) and (5) and conditions C1, C2, and C3,
n1/2{β̂(γ ) − β0(γ )} converges weakly to a joint normal with zero mean.

The proof of Theorem 1 is presented in Appendix A and the proof of Theorem 2 is
shown in Appendix B.

123



402 J.-J. Hsieh, H.-R. Wang

3.3 Model diagnosis

Model checking is conducted to ensure high confidence in performing model-based
inference.Model checking for quantile regressionmodels with complete data has been
developed by Zheng (1998), Horowitz and Spokoiny (2002), and He and Zhu (2003).
However, these approaches can be applied to uncensored data only. Here, we develop
a model checking method for quantile regression model under semi-competing risks
data.Weusemartingale residual technique to construct an approach to checkmodel (2).
We define the residuals, ei (γ ) = Ni (h−1(ZT

i β̂(γ ))) − 	̂T
[
h−1(ZT

i β̂(γ )) ∧ Xi |Zi
]
,

i = 1, . . . , n, and consider the following statistic:

�n(γ ) = n−1/2
n∑

i=1

q(Zi )ei (γ ),

where q(·) is a known bounded weight function. Similar to the arguments in Lin et al.
(1993) and Peng and Fine (2009), �n(γ ) converges weakly to a zero-mean Gaus-
sian process if model (2) is specified correctly. Therefore, we propose the following
statistic:

U = n−1/2
n∑

i=1

q(Zi )ei (γ )

σ̂e
,

where σ̂e is an estimator of the standard deviation of �n(γ ), which can be obtained
by the bootstrap method. Thus,U converges to the standard normal distribution when
the considered model is correct. We can reject the model assumption (2) if |U | >

Zα/2, where Zα/2 is the quantile of N (0, 1) and α is the level of significance. If
there are K candidate models under consideration, we compute the absolute value
of Uk for each model as |Uk |, k = 1, . . . , K , and choose the one with the smallest
value.

4 Simulation studies

Here, we consider two cases to examine the finite-sample performance of the proposed
method. For the first case, we consider the model,

log(T ) = β01(γ ) + β02(γ )Z + εγ , (11)

where (β01(γ ), β02(γ )) = (−1,−1), and the covariate Z is generated from Ber(0.5).
(εγ , D) is generated from the Clayton copula and Frank copula with εγ marginally
followingU (−0.5γ, 0.5−0.5γ ) so that Pr(εγ ≤ 0) = γ , and Dmarginally following
the distribution of exp(2). For the second case, we consider

log(T ) = b0 + b1(1 + Z)ε, (12)
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where Z is generated from Ber(0.5), (b0, b1) = (−0.5, 0.5) and (ε, D) is generated
from the Clayton copula and Frank copula with ε following the distribution of U(0,0.5)
and D following the distribution of exp(2). In this case, (β01(γ ), β02(γ )) = (b0 +
0.5b1γ, 0.5b1γ ). The censoring variable C is generated from a uniform distribution
on [0,12]. Three levels of Kendall’s τ, 0.3, 0.5, 0.7 are considered. We consider the
quantile γ=0.1, 0.3, 0.5 and the sample size n=100 based on 400 simulations. To
obtain the standard error of the proposed estimator, we use the bootstrap method with
B = 50 (Efron and Tibishirani 1993). Under the settings, we also present Peng’s (Peng
and Huang 2008) estimator and Hsieh’s estimator (Hsieh et al. 2013) of β0(γ ). Peng
and Huang (2008) proposed an estimator of β0(γ ) by the counting process approach
under independent right censoring data. In these settings, we present Peng’s estimator
with T being independently censored by D ∧ C. Hsieh et al. (2013) suggested an
estimator of β0(γ ) by the IPW approach for the non-terminal event time under semi-
competing risks data. The approach by Li and Peng (2015) is constructed based on
quantile regression models on T and D, and copula model on (T, D). Thus, the
comparison with Li and Peng (2015) is not suitable because we do not set a quantile
regression model on D in the simulation settings. Tables 1, 2, 3, and 4 summarize
the simulation results, which present the bias of the proposed esimator (Bias), the
empirical standard deviation (EmpSd), the average of estimated standard deviation
(AveSd) based on the bootstrapmethod, themean square error (MSE), and the coverage
probability of the 95% confidence intervals (CP%). From the results, it shows that
our proposed estimator has good performance. Peng’s estimator produces bias when
the association increases, which is caused by the method without taking account the
association of (T, D). Inmost cases, theMSE of the proposed estimator is smaller than
that of Hsieh et al. (2013). We also examine the robustness for the mis-specification
of copula model. We consider the first case of simulation setting with Frank copula,
but the estimation procedure adopts Clayton copula for the dependence of (T, D).
The simulation results are presented in Table 5, which shows that the estimation of
β0(γ ) produces slight bias. For the model checking of copula model, we can refer to
Hsieh et al. (2008).

Then, we examine the proposed model diagnostic method. We consider the accel-
erated failure time model for the non-terminal event time as:

log(T ) = β(γ )Z + εγ , (13)

where β(γ ) = −1, Z ∼ 1+Ber(0.5), εγ ∼ U (−0.5γ, 0.5−0.5γ ) so that ξγ (εγ ) = 0,
and (εγ , D) follow Clayton copula with D ∼ exp(2). We consider τ=0.3, 0.5, 0.7,
γ=0.1, 0.3, 0.5, and q(z) = 1with sample size n=200 based on 200 replications. Three
forms of transformation are considered: (1) h(t) = log(t); (2) h(t) = t; (3) h(t) =
2(t1/2−1).Table 6 presents the rejection probability�200

i=1 I (|Ui | > Zα/2)/200.When
we choose the transformation of h(t) = log(t), the rejection probability is close to
the specified level of α = 0.05. For model selection, we choose an appropriate model
with the smallest |U | from the candidate models. We present the selection probability
in Table 7 and it shows that the suggested model diagnosis performs well.
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Table 6 The power of U

Kendall’s τ Quantile γ h(t) = log(t) h(t) = I (t) h(t) = 2(t1/2 − 1)

0.3 0.1 0.04 0.80 0.82

0.3 0.05 0.98 0.37

0.5 0.05 0.58 0.27

0.5 0.1 0.06 0.82 0.53

0.3 0.04 0.94 0.25

0.5 0.06 0.23 0.27

0.7 0.1 0.05 0.75 0.18

0.3 0.05 0.58 0.11

0.5 0.05 0.64 0.13

The sample size is 200 and replications are 200

Table 7 Selection probability based on U

Kendall’s τ Quantile γ h(t) = log(t) h(t) = I (t) h(t) = 2(t1/2 − 1)

0.3 0.1 0.9 0.06 0.04

0.3 0.785 0 0.215

0.5 0.78 0.1 0.12

0.5 0.1 0.8 0.12 0.08

0.3 0.69 0.01 0.3

0.5 0.605 0.27 0.125

0.7 0.1 0.63 0.07 0.3

0.3 0.625 0.17 0.205

0.5 0.65 0.08 0.27

The sample size is 200 and replications are 200

5 Data analysis

In this section, we apply our proposed methodology to a real data, the Bone Marrow
Transplant data, provided byKlein andMoeschberger (2003). There were 45 leukemia
patients receiving bone marrow transplants with acute myelocytic leukemia high-risk
remission (AML high-risk). Let T be the relapse time of leukemia from bone marrow
transplant, D be the death time from bone marrow transplant, and C be the censoring
time.Thus, the observedvariables are X = T∧D∧C ,Y = D∧C , δx = I (T ≤ D∧C),
and δy = I (D ≤ C), which is a semi-competing risks data. In this analysis, we would
like to investigate how the time to return of platelets to normal levels, Tp, affects the
relapse time. The covariate is coded as Z = 0 if Tp ≥ 19; Z = 1 if Tp < 19, where
19 is the median of Tp. Thus, we consider the quantile regression model as:

ξγ (log(T )|Z) = β0(γ ) + β1(γ )Z . (14)
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Table 8 The estimations of β0(γ ), β1(γ ) for data analysis

Quantile γ β0(γ ) β1(γ )

β̂0(γ ) Sd 95%CI β̂1(γ ) Sd 95%CI p-value

0.1 4.101 0.195 3.719 4.483 −0.560 0.562 −1.661 0.541 0.874

0.2 4.345 0.220 3.915 4.776 0.401 0.629 −0.831 1.633 0.878

0.3 4.544 0.407 3.746 5.342 0.961 0.770 −0.548 2.471 0.715

0.4 4.717 0.646 3.449 5.983 1.732 0.918 −0.068 3.533 0.774

By the suggested methodology with Clayton copula, the results are summarized in
Table 8 based on B=1000 bootstrap replications. From the p values in Table 8 by Sect.
3.3 with q(z) = 1/(z + 0.2)2, it shows that the considered model (14) is adaptive
for this data set. To check the copula model, we use the model checking approach by
Hsieh et al. (2008). With Clayton copula for (T, D), the p values are 0.47 for Z = 0
and 0.82 for Z = 1. Thus, the Clayton copula is adaptive for the data. Further, under
the one to one relationship between α and τ , τ̂ = 0.62 for Z = 0 and τ̂ = 0.83 for
Z = 1.

In Table 8, we present the quantile regression parameter estimator, the standard
deviation, and the 95% confidence interval for quantiles 0.1, 0.2, 0.3, and 0.4. For
quantiles larger than 0.5, the quantile regression parameters cannot be identified due
to censoring. From the results in Table 8, it shows that the covariate effect on the
quantile of the relapse is increasing as quantile increases. The 10% quantile of the
relapse time for “Tp < 19” is 0.571 times the patients with “Tp ≥ 19”. The 20%
quantile of the relapse time for “Tp < 19” is 1.493 times the patients with “Tp ≥ 19”.
The 30% quantile of the relapse time for “Tp < 19” is 2.615 times the patients with
“Tp ≥ 19”. The 40% quantile of the relapse time for “Tp < 19” is 5.653 times the
patients with “Tp ≥ 19”.

6 Concluding remarks

Quantile regression has received increasing attention in survival analysis. In this paper,
we consider the quantile regression model to analyze the nonterminal event time
under semi-competing risks data. In semi-competing risks data, the failure time T is
dependently censored by D, which makes the inference on T complicated. Here, we
assume the Archimedean copula model to specify the dependence between T and D.
Under the Archimedean copula assumption, this study utilizes the counting process
approach to construct an estimating equation for the quantile regression parameter, and
provide the consistency and weak convergence properties of the proposed estimator.
This study uses the bootstrap method to obtain the variance estimation of β̂(γ ) and
provides a model diagnostic approach to check the adequacy of the fitted model. From
the simulation studies, it shows that the proposed methods performwell. Furthermore,
we apply our proposed methodology to analyze a data set of BoneMarrow Transplant.
The proposed method provides an estimator of the quantile regression parameter for
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a interested quantile. When multiple quantiles are interested, we need to perform the
estimation procedure many times to obtain the estimators for the multiple quantiles.
The restriction of the suggested approach is that it can be applied to discrete covariates
only. For continuous covariates, we can group it as categorical variables or deal with it
with smoothing technique, which is treated as a future work. The approach by Hsieh
et al. (2013) and the proposed method do not need to set a quantile regression model
on the terminal event time, but the covariates of the two approaches are restricted
to discrete cases. The approach by Li and Peng (2015) needs to assume a quantile
regression model on the terminal event time but the covariates of the approach could
be continuous.

Acknowledgements This paper was financially supported by the National Science Council of Taiwan
(NSC102-2118-M-194-001-MY2).

Appendix A: The Proof of Theorem 1

Define N (t) = I (X ≤ t, δx = 1),

	(t |z) =
{− log(P(T > t |D = d, Z = z)), if D = d,

− log(P(T > t |D > c, Z = z)), if D > c,

Sn(b) = 1
n

∑n
i=1 Zi

[
Ni (h−1(Z

′
i b)) − 	̂(h−1(Z

′
iβ0(γ )) ∧ Xi |Zi )

]
, S0n (b) = 1

n

∑n
i=1

Zi
[
Ni (h−1(Z

′
i b))−	(h−1(Z

′
iβ0(γ ))∧ Xi |Zi )

]
, and S̄(b)= the limit of S0n (b). Let Ei

be the event defined from the censoring status of Di , which is the event “Di = di” or
“Di > ci”. Firstly, we prove that S̄(β0(γ )) = 0. Let Mi (t) = Ni (t) − 	(t ∧ Xi |zi ),
where	(t |zi ) is the cumulative hazard function of T condition on Z = zi and the event
“D = d ′′

i or “D > c′′
i . From Fleming and Harrington (1991), Mi is the martingale

process associated with the counting process Ni under “Z = zi” and the event defined
by D which has the form of “D = di” or “D > ci”. Thus, we have E(Mi (t)|Z =
zi , Ei ) = 0, for t ≥ 0. Then

E
[
Ni (h

−1(Z
′
iβ0(γ ))) − 	(h−1(Z

′
iβ0(γ )) ∧ Xi |Zi )|Zi , Ei

] = 0.

Therefore, we have

S̄(β0(γ )) = 0 (A.1)

Next, we show the proof of the consistency. Define �1 = {Zi I (Xi ≤
h−1(Z

′
i b(γ )))δxi : b(γ ) ∈ RP+1, Zi : bounded}. �1 is Glivenko–Cantelli (Sect.

2.4, van der Vaart and Wellner 1996), because the class of indicator functions of
polytopes in RP+1 is Glivenko–Cantelli and Zi is bounded. Thus

supb||S0n (b) − S̄(b)|| p→ 0. (A.2)
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By straightforward calculation, we have

Sn(b) = S0n (b) + (Sn(b) − S0n (b)).

Note that

sup
b

‖Sn(b) − S0n (b)‖

=
∥∥∥∥∥
1

n

n∑
i=1

Zi (	̂(h−1(Z
′
iβ0(γ )) ∧ Xi |Zi ) − 	(h−1(Z

′
iβ0(γ )) ∧ Xi |Zi ))

∥∥∥∥∥
≤ 1

n

n∑
i=1

‖Zi‖‖	̂(h−1(Z
′
iβ0(γ )) ∧ Xi |Zi ) − 	(h−1(Z

′
iβ0(γ )) ∧ Xi |Zi )‖. (A.3)

Let Mn = maxi ‖	̂(h−1(Z
′
iβ0(γ )) ∧ Xi |Zi ) − 	(h−1(Z

′
iβ0(γ )) ∧ Xi |Zi )‖. From

Hsieh et al. (2013),

max
i

‖	̂(h−1(Z
′
iβ0(γ )) ∧ Xi |Zi ) − 	(h−1(Z

′
iβ0(γ )) ∧ Xi |Zi )‖ p→ 0.

Thus, Mn
p→ 0. Because Z is bounded, 1

n

∑n
i=1 ‖Zi‖ is bounded. Thus, we have that

(A.3) ≤ Mn
1

n

n∑
i=1

‖Zi‖ p→ 0. (A.4)

Therefore,

supb‖Sn(b) − S̄(b)‖
= supb‖S0n (b) − S̄(b) + Sn(b) − S0n (b)‖
≤ supb‖S0n (b) − S̄(b)‖ + supb‖Sn(b) − S0n (b)‖

p→ 0.

(from (A.2) and (A.4)) (A.5)

From (A.1), we have S̄(β0(γ )) = 0 and S̄(b) 	= 0 for b 	= β0(γ ) by assumption C4.
Consider a compact set Dd = {b : ‖b − β0(γ )‖ ≤ d}, where d is a positive constant.
The continuity of S̄(b) implies that inf{b:‖b−β0(γ )‖≥d} ‖S̄(b)‖ > 0. The uniformly
convergence of Sn(b) to S̄(b) implies that there will be no solution for Sn(b) = 0
outside the compact set Dd when n is large. Since this is true for every d > 0, β̂(γ )

is consistent.
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Appendix B: The Proof of Theorem 2

Let

Sn(b, β0(γ )) = 1

n

n∑
i=1

Zi
[
Ni (h

−1(Z
′
i b)) − 	̂(h−1(Z

′
iβ0(γ )) ∧ Xi |Zi )

]
,

S0n (b, β0(γ )) = 1

n

n∑
i=1

Zi
[
Ni (h

−1(Z
′
i b)) − 	(h−1(Z

′
iβ0(γ )) ∧ Xi |Zi )

]
,

S̄(b, β0(γ )) = the limit of S0n (b, β0(γ )),

μ(b) = E[ZN (h−1(Z
′
b))].

By the two-stage estimation procedure and Lemma B.1 of Peng and Huang (2008),
we have

√
nSn(β̂(γ ), β0(γ )) − √

nSn(β0(γ ), β0(γ ))

= 1√
n

n∑
i=1

Zi [Ni (h
−1(Z

′
i β̂(γ ))) − Ni (h

−1(Z
′
iβ0(γ )))]

= √
n[μ(β̂(γ )) − μ(β0(γ ))] + op(1).

By Sn(β̂(γ ), β0(γ )) = 0 and Taylor expression,

−√
nSn(β0(γ ), β0(γ )) = √

n[μ(β̂(γ )) − μ(β0(γ ))] + op(1)

≈ μ
′
(β0(γ ))

√
n(β̂(γ ) − β0(γ )).

Thus

√
n(β̂(γ ) − β0(γ )) ≈ −[μ′

(β0(γ ))]−1√nSn(β0(γ ), β0(γ )), (A.6)

where μ
′
(β0(γ )) = ∂μ(b)

∂b |b=β0(γ ). Note that

√
nSn(β0(γ ), β0(γ ))

= √
n
1

n

n∑
i=1

Zi
[
Ni (h

−1(Z
′
iβ0(γ ))) − 	̂(h−1(Z

′
iβ0(γ )) ∧ Xi |Zi )

]

= √
n
1

n

n∑
i=1

Zi
[{Ni (h

−1(Z
′
iβ0(γ ))) − 	(h−1(Z

′
iβ0(γ )) ∧ Xi |Zi )}

+ {	(h−1(Z
′
iβ0(γ )) ∧ Xi |Zi ) − 	̂(h−1(Z

′
iβ0(γ )) ∧ Xi |Zi )}

= √
n
1

n

n∑
i=1

Zi {Ni (h
−1(Z

′
iβ0(γ ))) − 	(h−1(Z

′
iβ0(γ )) ∧ Xi |Zi )}
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+ √
n
1

n

n∑
i=1

Zi {	(h−1(Z
′
iβ0(γ )) ∧ Xi |Zi ) − 	̂(h−1(Z

′
iβ0(γ )) ∧ Xi |Zi )}

= A + B.

Thus, from (A.6), we have

√
n(β̂(γ ) − β0(γ )) = −[μ′

(β0(γ ))]−1[A + B]
⇒ √

n(β̂(γ ) − β0(γ )) = (−[μ′
(β0(γ ))]−1)(A + B)

Define �2 = {Ni (h−1(Z
′
iβ0(γ ))) − 	(h−1(Z

′
iβ0(γ )) ∧ Xi |Zi ) : γ ∈ (0, 1)}. Note

that {Ni (h−1(Z
′
iβ0(γ ))) : γ ∈ (0, 1)} is a VC-class (van der Vaart and Wellner 1996)

and 	(h−1(Z
′
iβ0(γ ))∧ Xi |Zi ) is Lipschitz in γ . By the permanence properties of the

Donsker class, �2 is a Donsker class. Thus, A converges weakly to a tight Gaussian
process with zero mean. Furthermore, A is the form of sum of iid terms. By section
3.2 in Fleming and Harrington (1991), the appendix of Lakhal et al. (2008) and delta
method, B, can be represented as sum of the iid terms and each term has zero mean.
Thus,

√
n(β̂(γ ) − β0(γ )) converges to joint normal with zero mean.
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