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Abstract This paper considers a semi-parametricmixedmodel for longitudinal counts
under the assumption that for conditional on a common random effect over time the
repeated count responses of an individual follow a Poisson AR(1) (auto-regressive
order 1) non-stationary correlation structure. A step-by-step estimation approach
is developed which provides consistent estimators for the non-parametric function,
regression parameters, variance of the random effects, and auto-correlation structure
of the model. Proofs for the consistency properties of the estimators along with their
convergence rates are derived. A simulation study is conducted to examine first the
estimation effects on parameters when the non-parametric function is ignored, and
then an overall estimation study is carried out in the presence of the non-parametric
function by including its estimation as well.

Keywords Consistency · Dynamic relationship for repeated counts · Generalized
quasi-likelihood · Longitudinal correlations · Overdispersion of main interest ·
Parametric and non-parametric functions · Random effects and their variance ·
Regression effects of main interest · Semi-parametric model and estimation

1 Introduction

In a longitudinal setup, there are situations where repeated count responses such as the
yearly number of visits to a physician, alongwith a set of primary (main) covariates are
collected from a large number of independent individuals over a small period of time.
Suppose that ti j denotes the time at which the j th ( j = 1, . . . , ni ) count response is
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recorded from the i th (i = 1, . . . , K ) individual so that yi = (yi1, . . . , yi j , . . . , yini )
′

denotes the ni × 1 vector of repeated count responses for the i th individual. Also
suppose that yi j is influenced by a fixed and known p−dimensional time-dependent
covariate vector xi j (ti j ), and β : p × 1 measures this influence. In this setup, it is
likely that the repeated counts yi1, . . . , yi j , . . . , yini from the same individual i will be
correlated. It is of interest to examine the effect (β) of the covariates on the responses
after taking the correlations of the repeated responses into account. For this type of
longitudinal count data analysis one may, for example, refer to Sutradhar (Section
3, 2003) [see also Sutradhar (Chapter 6, 2003)]. These authors have illustrated their
longitudinal fixed effects model by analyzing a health care utilization (HCU) data set
consisting of a repeated number of yearly physician visits of an individual along with
his/her covariates such as gender, education level and age.

There also exist at least two generalizations of the above longitudinal fixed effects
model. Some authors such as Sutradhar et al. (2016) (see also Severini and Staniswalis
1994; Zeger and Diggle 1994; Sneddon and Sutradhar 2004; Lin and Carroll 2001,
2006; You and Chen 2007; Warriyar and Sutradhar 2014) provide (a) a generalization
of the fixed effects model to a longitudinal semi-parametric setup where it is assumed
that in addition to the primary covariates (xi j (·)), certain secondary covariates are
also needed to explain the mean and variances of the repeated counts. To be specific,
suppose that qi j (ti j ) is a scalar secondary covariate collected at time ti j which is not of
direct interest but influences the response through a suitable non-parametric function
γ (qi j ), where, for example, for a yearly data with j as the j th year, ti j may refer
to a day within j th year as the recording time for the secondary covariate qi j and
be defined as ti j ≡ [( j − 1)+{numericdayof theeventoccurrence for individual i} ×
{numberofdays inyear j}−1] for j = 1, . . . , ni ; i = 1, . . . , K ,which makes both ti j
and qi j dense for i = 1, . . . , K . For example, if the i th individual visited the physician
on January 15th of the first calendar year ( j = 1) of the longitudinal study, then ti1
would be ti1 = [0 + 15/365] instead of writing ti1 = 1, the year 1 of the study. In
this longitudinal semi-parametric setup, a correlation model for repeated count data is
formulated as: yi1 ∼ Poisson(m̃i1)with m̃i1 = E[Yi1] = exp(x ′

i1(ti1)β+γ (qi1(·))) =
Var[Yi1], and for j = 2, . . . , ni it is assumed that the repeated counts follow an AR(1)
(auto-regressive order 1) type dynamic model

yi j = ρ ∗ yi, j−1 + di j =
yi, j−1∑

s=1

bs(ρ) + di j , (1)

where Pr[bs(ρ) = 1] = ρ and Pr[bs(ρ) = 0] = 1−ρ, with ρ as the correlation index
parameter; di j ∼ Poisson[m̃i j − ρm̃i, j−1], with m̃i j = exp(x ′

i j (ti j )β + γ (qi j )) for
j = 2, . . . , ni . In addition, di j and yi, j−1 are assumed to be independent. This semi-
parametric dynamic model (1) for count data has been recently studied by Sutradhar
et al. (2016) including the inferences for the non-parametric function γ (·) and the
regression effectsβ.Note that this semi-parametric longitudinal fixedmodel (1)maybe
treated as a generalization of theAR(1) type longitudinal fixed effectmodels studied by
Sutradhar (2010, Eq. (14)) and Sutradhar (2011, Chapter 6), for example. Furthermore,
we remark that ρ ∗ yi, j−1 in (1) generates a count by adding yi, j−1 binary responses,
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and this count-generating operation is referred to as the binary thinning operation.
More specifically, model (1) is written for the counts such that the previous count
yi, j−1 generates a count, namely ρ ∗ yi, j−1, which after addition to an error count
produces the count yi j for the present time j. Notice that the dynamic model (1) is
similar to, but different from, the well-known auto-regressive order 1 (AR(1)) model
for Gaussian (linear) data. For Gaussian responses, the model is written as yi j =
ρyi, j−1 + εi j with εi j

i id∼ N (0, σ 2
ε ), which for j �= k provides a correlation structure

corr(yi j , yik) = ρ| j−k|. See, for example, the study by Sutradhar (2011, Section 2.1)
for details. But, unlike the Gaussian AR(1) model, model (1) produces a correlation
structure (see Eq. (11)) in time-dependent covariates, and the correlation structure
contains the decay function ρ| j−k| as well.

Some authors such as Montalvo (1997), Wooldridge (1999), Sutradhar and Bari
(2007), Winkelmann (2008), Sutradhar (2011, Chapter 8), and Sutradhar et al. (2014)
have studied (b) an alternative generalization of the longitudinal fixed model. Instead
of considering a secondary covariate, these authors assumed that the repeated counts
may be influenced by an individual random effect, say, τ ∗

i for the i th individual in addi-
tion to the standard primary covariates. Thus, they generalized the longitudinal fixed

effects model for repeated counts to the mixed model setup. Let τ ∗
i

i id∼ N
(
0, σ 2

τ

)
, and

τi = τ ∗
i /στ . In this setup, the repeated responses yi1, . . . , yi j , . . . , yini are modeled

conditional on τi , through a dynamic relationship given by

yi j |τi = ρ ∗ yi, j−1|τi + di j |τi , j = 2, . . . , ni , (2)

where it is assumed that yi1|τi ∼ Poisson(m∗
i1(β, στ |τi )), and for j = 2, . . . , ni ,

yi, j−1|τi ∼ Poisson(m∗
i, j−1), and di j |τi ∼ Poisson(m∗

i j−ρm∗
i, j−1)withm

∗
i j (β, στ |τi )

= exp(x ′
i j (ti j )β + στ τi ) for j = 1, . . . , ni . In (2), conditional on τi , di j and yi, j−1

are independent. Furthermore, similar to model (1), for a given count yi, j−1, ρ ∗
yi, j−1 = ∑yi, j−1

k=1 bk(ρ) is a binomial thinning operation, where bk(ρ) stands for a
binary random variable with Pr[bk(ρ) = 1] = ρ and Pr[bk(ρ) = 0] = 1 − ρ. It
then follows that conditional on τi , yi j follows a Poisson distribution with mean and
variance given by m∗

i j for all j = 1, . . . , ni , and the lag (k − j) correlation has

the formula Corr(Yi j ,Yik |τi ) = ρk− j
√
m∗

i j/m
∗
ik for j < k. The formulas for the

unconditional mean, variance and correlations are available in Sutradhar and Bari
(2007), for example. See also the Eqs. (6)–(9) below for similar formulas.

In practice, it may happen that in addition to the primary and secondary covariates
used to construct the semi-parametric fixed model (1), the repeated responses of an
individual may also be influenced by an individual latent effect as in model (2). To
illustrate the need for this type of combined model, we refer to a longitudinal semi-
parametric fixed model (Sutradhar et al. 2016) fitted to the HCU data to examine
the effect of the primary covariates gender and education level, and of the secondary
covariate age, on the number of yearly physician visits. Here, primary covariates were
fitted through a parametric regression function and the secondary covariate was fitted
non-parametrically. Note, however, that there remains a possibility that the physician
visit may also be influenced by certain latent individual effects. The analysis of this
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type of longitudinal responses affected by both random effects and non-parametric
functions is, however, not adequately addressed in the literature. To address this issue,
in this paper, we propose a semi-parametric longitudinal mixed model for repeated
count data collected from a large number of independent individuals. We remark that
the proposedmodel may be treated as a generalization of theGLLMM (2) (generalized
linear longitudinalmixedmodel) to the semi-parametric setup. Thus, it may be referred
as the semi-parametric GLLMM (SGLLMM) for count data. This SGLLMM model
along with its basic properties is described in Sect. 2. The step-by-step estimation for
the non-parametric function, regression, overdispersion, and longitudinal correlation
index parameters is given in Sect. 3. The asymptotic properties of the estimators are
also discussed in this section. The results of an extensive simulation study on the
performance of the estimation approaches for the proposed semi-parametric dynamic
mixedmodel are reported in Sect. 4. Some concluding remarks are provided in Sect. 5.

2 Proposed SGLLMM for count data and its basic properties

In this section, we extend the GLLMM (2) for count data to the semi-parametric setup.
For the purpose, we add a non-parametric function γ (qi j ) (see model (1)) to the linear
predictor x ′

i j (ti j )β + στ τi in the mixed model (2). Note that in many longitudinal
studies, primary covariates are collected at ti j ≡ j. Thus, for convenience one may
use xi j ( j) for xi j (ti j ). Also when convenient we use simply xi j for xi j ( j). Let

μ∗
i j (β, στ , γ (·)|τi ) = exp{x ′

i j ( j)β + στ τi + γ (qi j )}, for all j = 1, . . . , ni

≡ μ∗
i j .

By combining models (1) and (2), we now write the proposed semi-parametric mixed
model (SMM), an alternative shorter reference for SGLLMM, as

yi1|τi ∼ Poisson(μ∗
i1),

yi j |τi = ρ ∗ yi, j−1|τi + di j |τi , for j = 2, . . . , ni , with (3)

di j |τi ∼ Poisson(μ∗
i j − ρμ∗

i, j−1),

where conditional on τi , di j and yi, j−1 are independent. Notice that models (2) and (3)
are similar but different. The difference lies in the fact that the SMM in (3) implies that
yi j , conditional on τi , has the marginal Poisson distribution, that is, yi j |τi ∼ Poi(μ∗

i j ),

whereas under themixedmodel (2), yi j |τi ∼ Poi(m∗
i j )withm

∗
i j = exp(x ′

i j ( j)β+στi )

which is free from non-parametric functions γ (qi j ). More specifically, the SMM (3)
provides the conditional means and variances as

E[Yi j |τi ] = μ∗
i j = exp{x ′

i j ( j)β + στ τi + γ (qi j )} = var[Yi j |τi ]. (4)

Furthermore, for j < k, the conditional covariance between yi j and yik under the
SMM (3) can be derived as
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Semi-parametric dynamic mixed models 219

cov(Yi j , Yik |γ (·), τi ) = E(Yi j Yik |γ (·), τi ) − E(Yi j |γ (·), τi )E(Yik |γ (·), )
= EYi j [Yi jEYi, j+1{. . .EYi,k−1(E(Yik |yi,k−1, yi,k−2, . . . , yi, j+1))}]

−μ∗
i j (β, στ , γ (qi j ), τi )μ

∗
ik(β, στ , γ (qik), τi )

= ρk− jμ∗
i j (β, στ , γ (qi j ), τi ) = σi, jk(β, στ , γ (·), τi , ρ). (5)

After some algebras, one obtains the basic properties of the SMM (3) such as the
unconditional mean, variance and pairwise covariances as follows.

Unconditional means and variances

Since τi
i id∼ N (0, 1), the semi-parametricmixedmodel (SMM) (3) provides the uncon-

ditional means and variances of yi j ( j = 1, . . . , ni ) as

μi j ≡ μi j (β, στ , γ (·)) = ESMM [Yi j ] = exp{x ′
i jβ + γ (qi j )}E (exp(στ τi ))

= exp

{
x ′
i jβ + σ 2

τ

2
+ γ (qi j )

}
, (6)

and

σi j j ≡ σi j j (β, στ , γ (·)) = VarSMM
[
Yi j
]

= Var[E(Yi j |τi )] + E[Var(Yi j |τi )] = Var[μ∗
i j ] + E[μ∗

i j ]
= exp{2x ′

i jβ + 2γ (qi j )}Var(exp(στ τi )) + μi j

=
[
exp

{
x ′
i jβ + γ (qi j ) + σ 2

τ

2

}]2
(exp(σ 2

τ ) − 1) + μi j

= μi j + μ2
i j [exp(σ 2

τ ) − 1], (7)

respectively, because

Var[exp(στ τi )] = E[exp(2στ τi )] − [E{exp(στ τi )}]2
= exp(2σ 2

τ ) − exp(σ 2
τ ) = exp(σ 2

τ )(exp(σ 2
τ ) − 1).

Unconditional covariances

Notice from (5) that conditional on τi , the covariance between yi j and yik ( j < k)
is given by Cov(Yi j ,Yik |τi ) = ρk− jμ∗

i j . Consequently, for j < k, the unconditional
covariance between yi j and yik has the form

σi jk ≡ σi jk(β, στ , ρ, γ (q0))

= CovSMM (Yi j ,Yik) = E[Cov(Yi j ,Yik |τi )] + Cov[E(Yi j |τi ), E(Yik |τi )]
= E[ρk− jμ∗

i j ] + Cov[exp(x ′
i jβ + γ (qi j ) + στ τi ), exp(x

′
ikβ + γ (qik) + στ τi )]

= ρk− jμi j + μi jμik(exp(σ
2
τ ) − 1), (8)
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leading to the lag (k − j) correlations as

CorrSMM (Yi j ,Yik) = σi jk√
σi j jσikk

= μi jρ
k− j + μi jμik(exp(σ 2

τ ) − 1)

[{μi j + μ2
i j (exp(σ

2
τ ) − 1)}{μik + μ2

ik(exp(σ
2
τ ) − 1)}] 12

. (9)

In addition, since in model (3) di j |τi ∼ Poi(μ∗
i j −ρμ∗

i, j−1)with (μ∗
i j −ρμ∗

i, j−1) ≥
0, the correlation index parameter ρ must now satisfy the range restriction 0 ≤ ρ <

min[1, μ∗
i j/μ

∗
i, j−1], which is the same as

0 ≤ ρ < min[1, ν∗
i j/ν

∗
i, j−1] for j = 2, . . . , ni and i = 1, . . . , K , (10)

where ν∗
i j = exp(x ′

i jβ + γ (qi j )).
Notice from (9) that under the proposed model, unlike the longitudinal fixed model,

the correlation index parameter value ρ = 0 does not imply that the responses are
uncorrelated. The repeated responses are uncorrelated only when both ρ = 0 and
σ 2

τ = 0. However, since in the mixed model σ 2
τ > 0, the pairwise responses are

positively correlated irrespective of the case whether ρ is zero or not. One, therefore,
has to be careful while estimating the regression effects β and non-parametric function
γ (qi j (ti j )) using any GEE(I) (independence assumption-based generalized estimating
equation) approach. In fact, even though one can attempt to use ρ = 0 for initial
estimation of these parameters and functions, but using σ 2

τ = 0 for their estimation
would produce inconsistent estimates because σ 2

τ is involved in the mean function
(6) along with β and γ (qi j ). As opposed to the semi-parametric longitudinal fixed
model (Severini and Staniswalis 1994; Lin and Carroll 2001, 2006; You and Chen
2007; Warriyar and Sutradhar 2014) this is a major additional estimation problem in
the present semi-parametric longitudinal mixed model case. These estimation issues
are further discussed in Sect. 3.

Note that there are situations in practice where one may need to develop the semi-
parametric mixed models for the analysis of longitudinal linear and binary data. This
may be done using appropriate dynamicmodels for such linear and binary data. In gen-
eral, the dynamic models are different for linear, binary and count data. For example,
in a linear case, followingWarriyar and Sutradhar (2014) onemaywrite anAR(1)-type
SMM as

yi1 = x ′
i1(1)β + στ τi + γ (qi1) + εi1

yi j = {x ′
i j ( j)β + γ (qi j )} + ρ∗(yi, j−1 − x ′

i, j−1( j − 1)β − γ (qi, j−1))

+στ τi + εi j , for j = 2, . . . , ni , (11)

where εi j
i id∼ N (0, σ 2

ε ), (say).Notice that this dynamicmodel in (11) is quite different
than the dynamic model (3) for the repeated counts. Similarly, in the binary case, one
may write a semi-parametric dynamic mixed model by generalizing the so-called
binary dynamic mixed logit (BDML) model studied by Sutradhar (2011, Eq. (9.27)),
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Semi-parametric dynamic mixed models 221

for example. To be specific, using similar notation as in (3), the SMM for binary
responses may have the form

Pr [Yi1 = 1|γ (·), τi ] = exp(x ′
i1(ti1)β + γ (qi1) + στ τi )

1 + exp(x ′
i1(ti1)β + γ (qi1) + στ τi )

,

Pr [Yi j = 1|yi, j−1, γ (·), τi ]

= exp(x ′
i j (ti j )β + θyi, j−1 + γ (qi j ) + στ τi )

1 + exp(x ′
i j (ti j )β + θyi, j−1 + γ (qi j ) + στ τi )

j = 2, . . . , ni , (12)

where θ is a dynamic dependence parameter which is quite different than ρ in (3) and
ρ∗ in (11), and γ (·) is the non-parametric function involved in the semi-parametric
regression function. Further remark that because the correlation models (11) and (12)
are different than that of (3), the inferences for the SMMs (11) and (12)will be different
as well.We now turn back to our SMM (3) for the count data and develop its inferences
in the next section.

3 Quasi-likelihood estimation for the proposed semi-parametric
GLLMM

In this section, we develop a quasi-likelihood estimation approach which provides
consistent estimates for all parameters and the non-parametric function involved in
the SGLLMM. Note that this estimation approach has been used by some authors
(Severini and Staniswalis 1994; Lin and Carroll 2001, 2006; Warriyar and Sutradhar
2014) for the SGLLFM (semi-parametric generalized linear longitudinal fixedmodel).
Severini and Staniswalis (1994) and Lin and Carroll (2001) (see also Zeger and Diggle
1994) refer to their estimation approach as the semi-parametric generalized estimating
equation (SGEE) approach which does not need any specification of the underlying
longitudinal correlation structure. However, there has been many studies showing
that independence assumption-based GEE (GEE(I)) approach may produce more effi-
cient regression estimates at times than arbitrary ‘working’ correlation-based GEE
approach. See, for example, the studybySutradhar (2010, Section3.1) (see alsoSutrad-
har and Das 1999) in the context of GLLFM for count data. This efficiency behavior
undermines the use of the GEE or SGEE approaches. Thus, we do not discuss the GEE
approaches any further in the present paper. Instead, we assume that the repeated count
data are generated following the AR(1) Poisson mixed model (3)-based correlation
structure (9) and consequently use the true correlation structure-based semi-parametric
generalized quasi-likelihood (GQL) approach for the estimation of the main regres-
sion effects (of the primary covariates) and the overdispersion parameter (Sutradhar
and Bari 2007; Sutradhar 2011, Chapter 8). Next because the non-parametric function
and the longitudinal correlations are of secondary interest, we estimate them using the
simpler SQL (semi-parametric QL) and SMM (semi-parametric method of moments),
respectively, as opposed to the SGQL approach. These estimation approaches are
discussed in the following subsections.
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3.1 Independence assumption-based QL estimation for the non-parametric
function γ (·)

The non-parametric function γ (qi j ) has to be estimated for all j = 1, . . . , ni and
i = 1, . . . , K , where qi j is a secondary covariate collected at time ti j . Thus, it is
equivalent to estimate γ (q0), say, where q0 ≡ qi j for any given i and j. Notice that
because K is large in the present setup and ti j can be dense, this in general leads qi j to
be dense as well. However, ni is a total equi-spaced time period for the i th individual.
In the GLLFM setup, some authors such as Lin and Carroll (2001) (see also Sev-
erini and Staniswalis 1994) have considered a study with qi j (ti j ) = ti j and estimated
the non-parametric function in fixed time, that is γ (ti j ), using a ‘working’ correla-
tion structure-based estimating equation approach where the estimating equation was
apparently constructed using the repeated responses {yi,ti j , j = 1, . . . , ni } with cor-
relation matrices of dimension ni ×ni instead of tini × tini . In fact, these authors went
on further using ni = n, say, for estimating their so-called n × n unstructured ‘work-
ing’ common correlation matrix. This undermines their correlation approach which
was apparently claimed to have constructed for the dense time point-based responses.
In this paper, we have made this issue clear by defining secondary covariates qi j at
time ti j but the primary covariates xi j are recorded at time points j = 1, . . . , ni . Our
approach also indicates that because ti j or qi j are simply fixed covariates, for consis-
tent estimation of γ (qi j ), which is of secondary interest, it would be enough to use
an independent assumption-based estimating equation, whereas the main regression
parameter (effect of primary covariates) β would be estimated consistently and as
efficiently as possible using correlation structure-based estimating equation. Further-
more, unlike the existing fixed regression models, we also need to consistently and
efficiently estimate the other main overdispersion parameter σ 2

τ involved in the present
mixed model (3).

In quasi-likelihood (QL) approach for independent data (Wedderburn 1974), one
explores the mean and the variance functions, variance being a function of mean such
as in a GLM setup, to write a QL estimating equation for the parameter involved in the
mean function. When the mean function involves a non-parametric function, one may
estimate such a function by solving a kernel weight-based semi-parametric QL (SQL)
estimating equation. For the estimation of γ (q0) in the present setup which influences
the mean function μi j (β, στ , γ (q0)), the SQL estimating equation has the form

K∑

i=1

ni∑

j=1

wi j (q0)
∂μi j (β, στ , γ (q0))

∂γ (q0)

(
yi j − μi j (β, στ , γ (q0))

σi j j (β, στ , γ (q0))

)
= 0 (13)

(e.g., Carota and Parmigiani 2002; Warriyar and Sutradhar 2014), where wi j (q0) is
referred to as the so-called kernel weight defined as

wi j (q0) = pi j

(
q0 − qi j

b

)/ K∑

l=1

nl∑

u=1

plu

(
q0 − qlu

b

)
(14)
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where pi j is the kernel density with b as a suitable bandwidth parameter. Note that this
SQL estimating Eq. (13) is different than the so-called ‘working’ correlation-based
SGEE (semi-parametric GEE) used by Lin and Carroll (2001, 2006) (see also Severini
and Staniswalis 1994). This is simpler than SGEE and it assures the consistency of
the estimator, whereas even though SGEE is developed for efficient estimation it may,
however, produce inefficient estimate than the ‘working’ independence-based SQL
estimator (Sutradhar and Das 1999; Lin and Carroll 2001, Section 7).

With regard to the selection of the kernel density pi j (·), it should be noted that there
is, in fact, no unique choice for the selection of such a density. Some of the widely
used kernel densities, for example, are the so-called Gaussian density given by

pi j

(
q0 − qi j

b

)
= 1√

2π b
exp

{
−1

2

(
q0 − qi j

b

)2
}

, (15)

and the Epanechnikov kernel (Pagan and Ullah 1999, p. 28) with density

pi j (ϕ) =
{ 1

4 (1 − ϕ2) for |ϕ| ≤ 1
0 otherwise

with ϕ = q0 − qi j
b

. (16)

In (14)–(16), b is a suitable bandwidth parameter. Asymptotic results in Sect. 3.5
indicate that the consistent estimation for all parameters and functions under the present
model requires Kb4 → 0 as K → ∞. Thus, an appropriate choice of b in the
present setup should satisfy b ∝ K−α with 1/4 < α ≤ 1/3. Suppose that we choose
b = c0K−1/3.9. However, finding an analytical technique to choose an appropriate
value for c0 does not appear to be easy. In the simulation study in Sect. 4, we use
b = K−1/5 followingPagan andUllah (1999), andLin andCarroll (2001), for example.
In some studies, this bandwidth parameter is determined by a local cross-validation
technique (Sneddon and Sutradhar 2004, Section 3; Altman 1990). To examine the
appropriateness of the choice b = K−1/5 we apply amini-max numerical procedure in
Sect. 4 which appears to approximately justify the choice. We remark that this choice
b = K−1/5 should be equivalent to b = c0K−1/3.9, found based on our asymptotic
consideration. Its theoretical justification is, however, beyond the scope of the present
study.

Now because ∂μi j (β, σ 2
τ , γ (q0))/∂γ (q0) = μi j (β, σ 2

τ , γ (q0)), the SQL estimat-
ing Eq. (13) can be further simplified as

K∑

i=1

ni∑

j=1

wi j (q0)

(
yi j − μi j (β, σ 2

τ , γ (q0))

1 + μi j (β, σ 2
τ , γ (q0))(exp(σ 2

τ ) − 1)

)
= 0, (17)

which, for given values of β and σ 2
τ , may be solved iteratively until convergence.

Notice that the estimate of γ (q0) from the SQL estimating Eq. (17) is a function of
β and σ 2

τ . Hence, we denote the estimator of γ (q0) by γ̂ (q0;β, σ 2
τ ). The consistency

property of this estimator is discussed in Sect. 3.5, and we study through simulations
its finite sample properties along with the properties of other estimators in Sect. 4.
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3.2 SGQL estimation of regression effects β

Recall from (6)–(8) that if the non-parametric function γ (q0) was known, one then
could construct themeanvector and covariancematrix of yi = (yi1, . . . , yi j , . . . , yini )

′,
as

E(Yi ) = μi (β, σ 2
τ , γ (·))

= (μi1(β, σ 2
τ , γ (·)), . . . , μi j (β, σ 2

τ , γ (·)), . . . , μini (β, σ 2
τ , γ (·)))′, (18)

and
Cov(Yi ) = �i (β, σ 2

τ , ρ, γ (·)) = (σi jk(β, σ 2
τ , ρ, γ (·))) : ni × ni , (19)

respectively. However, it is clear from Sect. 3.1 that when γ (qi j ) are estimated by
solving the SQL estimating Eq. (17), we obtain the estimator γ̂ (qi j ;β, σ 2

τ ) which
contains unknown β and σ 2

τ .Consequently, the mean vector and the covariance matrix
now have the forms

μ̄i (β, σ 2
τ , γ̂ (β, σ 2

τ )) = (μ̄i1(β, σ 2
τ , γ̂ (β, σ 2

τ )), . . . , μ̄i j (β, σ 2
τ , γ̂ (β, σ 2

τ )), . . . ,

μ̄ini (β, σ 2
τ , γ̂ (β, σ 2

τ )))′ : ni × 1 and (20)

�̄i (β, σ 2
τ , ρ, γ̂ (β, σ 2

τ )) = (σ̄i jk(β, σ 2
τ , ρ, γ̂ (β, σ 2

τ ))) : ni × ni , (21)

respectively. We now use these new notations from (20) and (21) and following
Sutradhar (2003), for example, construct the semi-parametricGQL (SGQL) estimating
equation for β as

K∑

i=1

∂μ̄′
i (β, σ 2

τ , γ̂ (β, σ 2
τ ))

∂β
�̄−1
i (β, σ 2

τ , ρ, γ̂ (β, σ 2
τ ))

×(yi − μ̄i (β, σ 2
τ , γ̂ (β, σ 2

τ ))) = 0. (22)

For convenience, the computational formula for the derivative matrix
∂μ̄′

i (β,σ 2
τ ,γ̂ (β,σ 2

τ ))

∂β
is given in Appendix A1.

The SGQLestimate ofβ obtained by solving the estimating Eq. (22)will be denoted
by β̂. Its asymptotic and finite sample properties are discussed in Sects. 3.5.2 and 4,
respectively.

3.3 SGQL estimation of the random effect variance σ 2
τ

In general, the generalized method of moments (GMM) and the generalized quasi-
likelihood (GQL) methods are popular for the estimation of the overdispersion index
parameter σ 2

τ involved in the GLLMM (1) for repeated count data. However, it has
been demonstrate by Rao et al. (2012) (see also Sutradhar 2011, Chapter 8, Table 8.2)
in a linear longitudinal setup that the GQL approach produces more efficient estimate
for this parameter as compared to the GMM approach. Furthermore, Sutradhar and
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Bari (2007) has demonstrated that the GQL approach performs well in estimating this
parameter in a longitudinal setup for count data. In this section, we generalize this
GQL approach to the semi-parametric longitudinal setup. We also provide a normality
(of count responses)-based SGQL (semi-parametric GQL) approximation.

3.3.1 SGQL estimation for σ 2
τ using raw squared responses

Consider a vector of squared responses ui = [y2i1, . . . , y2i j , . . . , y2ini ]′. Then a GQL

estimating equation for σ 2
τ may be developed by minimizing the quadratic distance

function
Q = (ui − E[Ui ])′{Cov[Ui ]}−1(ui − E[Ui ]) (23)

(Sutradhar andBari 2007), where using μ̄i j ≡ μ̄i j (β, σ 2
τ , γ̂ (β, σ 2

τ )) forμi j = E[Yi j ],
one may compute the mean vector E[Ui ] using

E[Y 2
i j ] = λ̄i j j (β, σ 2

τ , γ̂ (·)) = μ̄i j + μ̄2
i j e

σ 2
τ , (24)

and the covariance matrix Cov(Ui ) using

Var(Y 2
i j ) = μ̄i j [1 + 7μ̄i j exp(σ

2
τ ) + 6μ̄2

i j exp(3σ
2
τ ) + μ̄3

i j exp(6σ
2
τ )] − λ̄2i j j , (25)

and, for j < k,

Cov(Y 2
i j , Y

2
ik) = 2ρ2(k− j)μ̄2

i j exp(σ
2
τ ) + 4ρk− j μ̄ik μ̄

2
i j exp(3σ

2
τ ) + 2ρk− j μ̄2

i j exp(σ
2
τ )

+ 2ρk− j μ̄ik μ̄i j exp(σ
2
τ ) + ρk− j μ̄i j + μ̄2

ik μ̄
2
i j exp(6σ

2
τ ) + μ̄ik μ̄

2
i j exp(3σ

2
τ )

+ μ̄2
ik μ̄i j exp(3σ

2
τ ) + μ̄ik μ̄i j exp(σ

2
τ ) − λ̄i j j λ̄ikk . (26)

Next, for convenience, using the notations

λ̄i (β, σ 2
τ , γ (·)) = E(Ui ) = E[Y 2

i1, . . . ,Y
2
i j , . . . ,Y

2
ini ]′

= [λ̄i11(β, σ 2
τ , γ̂ (·)), . . . , λ̄i j j (β, σ 2

τ , γ̂ (·)), . . . , λ̄ini ni (β, σ 2
τ , γ̂ (·))]′, (27)

and �̄i = Cov(Ui ), we minimize Q in (23) and obtain the SGQL estimating equation
for σ 2

τ as

K∑

i=1

∂λ̄′
i (β, σ 2

τ , γ̂ (·))
∂σ 2

τ

�̄−1
i (β, σ 2

τ , ρ, γ̂ (·))(ui − λ̄i (β, σ 2
τ , γ̂ (·))) = 0 (28)

(Sutradhar 2004), where the derivative
∂λ̄′

i (β,σ 2
τ ,γ̂ (·))

∂σ 2
τ

has the formula as shown in

Appendix A.2. The estimate of σ 2
τ obtained from (28) will be referred as the raw

SGQL estimate.
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3.3.2 SGQL estimation for σ 2
τ using corrected (CR) squared responses

For technical convenience, an alternative way to construct a GQL estimating equation
for σ 2

τ would be exploiting the vectors of second-order corrected squared responses
from the individuals. For the i th individual, let

gi = [(yi1 − μ̄i1(·))2, . . . , (yi j − μ̄i j (·))2, . . . , (yini − μ̄ini (·))2]′

denote the second-order corrected squared response vector, with known μ̄i j (·) (18)
computed from the previous iteration under a suitable iterative scheme. Following
(28), in this case, we write the SGQL estimating equation for σ 2

τ as

K∑

i=1

∂σ̄ ′
i (β, σ 2

τ , γ̂ (·))
∂σ 2

τ

�̄−1
i,CR(β, σ 2

τ , ρ, γ̂ (·))(gi − σ̄i (β, σ 2
τ , γ̂ (·))) = 0, (29)

where
σ̄i = E(Gi ) = (σ̄i11, . . . , σ̄i j j , . . . , σ̄ini ni )

′, �̄i,CR = Cov(Gi ), (30)

with ‘CR’ indicating a ‘corrected’ response-based quantity, and by (24)

σ̄i j j = μ̄i j + μ̄2
i j (exp(σ

2
τ ) − 1). (31)

In (29),

∂σ̄ ′
i

∂σ 2
τ

= ∂

∂σ 2
τ

(σ̄i11, . . . , σ̄i j j , . . . , σ̄ini ni ), with

∂σ̄i j j

∂σ 2
τ

= ∂μ̄i j

∂σ 2
τ

+ 2μ̄i j

(
∂μ̄i j

∂σ 2
τ

)
(exp(σ 2

τ ) − 1) + μ̄2
i j exp(σ

2
τ ), (32)

where the formula for ∂μ̄i j/∂σ 2
τ is given by (64) under Appendix A.2. Furthermore,

we provide the formulas for the elements of the covariancematrix �̄i,CR = Cov(Gi ) in
Appendix A.3. The estimate of σ 2

τ obtained from (29) will be referred as the corrected
(CR) SGQL estimate.

3.3.3 Normal approximation-based SGQL estimation using squared corrected
responses

The normality-based SGQL estimating equation would be the same as that of (29)
constructed based on corrected squared responses except that the fourth-order moment
matrix �̄i,CR is now replaced with a normality-based fourth-order moment matrix, say
�̄i,CRN. Thus, in notation of (29),

CovN (Gi ) = �̄i,CRN, (33)
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where the elements of this matrix are computed from the normality-based fourth-order
product moments formula

EN [(Yi j − μ̄i j )(Yik − μ̄ik)(Yil − μ̄il)(Yim − μ̄im)]
= σ̄i jk σ̄ilm + σ̄i jl σ̄ikm + σ̄i jm σ̄ikl . (34)

for i = 1, . . . , K and 1 ≤ j, k, l,m ≤ ni . For example, under normality,

Var[(Yi j − μ̄i j )
2] = EN [(Yi j − μ̄i j )

4] − σ̄ 2
i j j

= 3σ̄ 2
i j j − σ̄ 2

i j j = 2σ̄ 2
i j j , (35)

by (34). Notice that the normality assumption for count responses {yi j , j = 1, . . . , ni }
makes the higher order moments calculation simpler. Remark that Prentice and Zhao
(1991) and Zhao and Prentice (1990) have used such normality approximation to
compute higher order moments for binary repeated data. This approximation appears
to work well for repeated count data in the GLM setup (Sutradhar 2011, Chapter 8),
whereas in this section we have considered its use in the semi-parametric longitudinal
mixed model setup.

For completeness, using the notations from (33) to (35), we now write the desired
normality-based SGQL estimating equation for σ 2

τ as

K∑

i=1

∂σ̄ ′
i (β, σ 2

τ , γ̂ (·))
∂σ 2

τ

�̄−1
iC,N (β, σ 2

τ , ρ, γ̂ (·))(gi − σ̄i (β, σ 2
τ , γ̂ (·))) = 0, (36)

which is solved iteratively until convergence. The solution for σ 2
τ obtained from (36)

will be referred as the normality-based corrected (CRN) SGQL estimate.

3.4 Moment estimation for the longitudinal correlation index parameter ρ

The estimation of the regression parameter β discussed in Sect. 3.2 and of overdis-
persion parameter σ 2

τ discussed in Sect. 3.3 require the longitudinal correlation index
parameter ρ to be known. We show in this section that the ρ parameter can be esti-
mated by solving an unbiased moment equation that leads to a consistent estimator.
Notice from (7) and (8) that the variances and the lag 1 covariances of the repeated
counts under the present model have the formulas

E[(Yi j − μi j )
2] = σi j j = μi j + μ2

i j (exp(σ
2
τ ) − 1), and

E[(Yi j − μi j )(Yi, j+1 − μi, j+1)] = σi, j, j+1 = ρμi j

+ μi jμi, j+1(exp(σ
2
τ ) − 1), (37)
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respectively. Let ỹi j = (yi j − μ̄i j )/(σ̄i j j )
1/2. As shown in Appendix A.4, the moment

estimator of the correlation index parameter involved in (37) has the formula

ρ̂ = ā1 − b̄1
ḡ1

, (38)

where

ā1 =
∑K

i=1
∑ni−1

j=1 ỹi j ỹi, j+1/
∑K

i=1(ni − 1)
∑K

i=1
∑ni

j=1 ỹ
2
i j/
∑K

i=1 ni
(39)

ḡ1 =
K∑

i=1

ni−1∑

j=1

μ̄i j (σ̄i j j σ̄i, j+1, j+1)
−1/2

/ K∑

i=1

(ni − 1) (40)

and

b̄1 = (exp(σ 2
τ ) − 1)

K∑

i=1

ni−1∑

j=1

φ̄i j φ̄i, j+1

/ K∑

i=1

(ni − 1), (41)

with φ̄i j = μ̄i j/(σ̄i j j )
1/2.

Note that the estimation of the non-parametric function γ (·) (Sect. 3.1), regression
effects β (Sect. 3.2), overdispersion component σ 2

τ (Sect. 3.3), and the longitudinal
correlation index parameter ρ by (38) is carried out in cycles of iteration until conver-
gence.

3.5 Asymptotic results

3.5.1 Asymptotic properties of the SQL estimator of γ (·)

Note that the SQL estimating Eq. (13) (see also (17)) is an extension of the well-known
QL estimating equation (Wedderburn 1974). This estimating equation, which is free
of ρ, is written by exploiting the means and the variances of the responses, variance
being a function of the mean in the present GLMM setup, by treating the repeated
responses of an individual as independent. The non-parametric function γ (q�u) has
to be evaluated for all u = 1, . . . , nl; and � = 1, . . . , K . For convenience, in (13),
we have shown the estimation for γ (q0) for q0 ≡ q�u for a selected value of � and
u. Recall from (17) that γ̂ (q0;β, σ 2

τ ) is an SQL estimator of γ (q0). It is shown in
Appendix B.1 that

γ̂ (q0;β, σ 2
τ ) − γ (q0) = O(b2) + op(1/

√
K ), (42)
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where b ∝ K−α for a suitable value for α. Consequently, for
√
K -consistency of

γ̂ (q0;β, σ 2
τ ), we need to have Kb4 → 0 as K → ∞, which requires 1/4 < α ≤ 1/3.

3.5.2 Asymptotic properties of the SGQL estimator of β

Notice that in the SGQL estimating Eq. (22) for β, we have used γ̂ (β, σ 2
τ ) for

γ̂ (qi j ;β, σ 2
τ ) by suppressing qi j for notational simplicity. By the same token, γ̂ (β, σ 2

τ )

used to define μ̄i (·) and �̄i , refers to using all values of γ̂ (qi j ;β, σ 2
τ ) for j = 1, . . . , ni .

Suppose we express all these ni values of the function as

γ̂ (qi ;β, σ 2
τ ) ≡ [γ̂ (qi1;β, σ 2

τ ), . . . , γ̂ (qi j ;β, σ 2
τ ), . . . , γ̂ (qini ;β, σ 2

τ )].

Then by (22), for true β, define

DK (β) = 1

K

K∑

i=1

∂μ̄′
i (β, σ 2

τ , γ̂ (qi ;β, σ 2
τ ))

∂β
�̄−1
i (β, σ 2

τ , γ̂ (qi ;β, σ 2
τ ), ρ)

×[Yi − μ̄i (β, σ 2
τ , γ̂ (qi ;β, σ 2

τ ))].

Because the SGQL estimator β̂ of β obtained from (22) satisfy DK (β̂) = 0, a linear
Taylor expansion about true β provides

DK (β) + (β̂ − β)D′
K (β) + op(1/

√
K ) = 0, (43)

yielding

β̂ − β = −[D′
K (β)]−1[DK (β) + op(1/

√
K )]

= F−1
K (β)DK (β) + op(1/

√
K ), (44)

where

FK (β) = 1

K

K∑

i=1

∂μ̄′
i (β, σ 2

τ , γ̂ (qi ;β, σ 2
τ ))

∂β
�̄−1
i (β, σ 2

τ , γ̂ (qi ;β, σ 2
τ ), ρ)

× ∂μ̄i (β, σ 2
τ , γ̂ (qi ;β, σ 2

τ ))

∂β ′ .

Next, for a suitable covariance matrix Vβ as defined in Appendix B.2, it is shown
in the same appendix that

√
K {β̂ − β − O(b2)} → N (0, Vβ) (45)

asK → ∞. Further because b ∝ K−α, it follows from (45) that for
√
K -consistency

of β̂, we need to have Kb4 → 0 as K → ∞, which happens when 1/4 < α ≤ 1/3
(see Lin and Carroll 2001, for example, for upper limit).
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3.5.3 Asymptotic properties of the SGQL estimator of σ 2
τ

Notice that the SGQL estimating Eq. (22) for β has the form

K∑

i=1

∂μ̄′
i (β, σ 2

τ , γ̂ (β, σ 2
τ ))

∂β
�̄−1
i (β, σ 2

τ , ρ, γ̂ (β, σ 2
τ ))(yi − μ̄i (β, σ 2

τ , γ̂ (β, σ 2
τ ))) = 0,

whereas the SGQL estimating Eq. (28) for σ 2
τ has a similar but different form given

by

MK =
K∑

i=1

∂λ̄′
i (β, σ 2

τ , γ̂ (·))
∂σ 2

τ

�̄−1
i (β, σ 2

τ , ρ, γ̂ (·))(ui − λ̄i (β, σ 2
τ , γ̂ (·))) = 0. (46)

One of the big differences between these estimating equations lies in the fact that
even though the non-parametric function estimate γ̂ (·) involved in both equations is
a function of the first-order response {yi j } (see Eq. 17), the estimating equation for β

is constructed using the first-order response vector yi , whereas ui used to construct
the estimating equation for σ 2

τ is a vector of second-order (squared) responses. This
difference has to be accommodatedwhen asymptotic properties of the SGQLestimator
of σ 2

τ is derived following the asymptotic properties of β̂ given in the last section.
Because the SGQL estimator σ̂ 2

τ of σ 2
τ obtained from (46) satisfies MK (σ̂ 2

τ ) = 0,
a linear Taylor series expansion, similar to (44) for β estimation, about σ 2

τ provides

√
K {σ̂ 2

τ − σ 2
τ } = L−1

K {√K MK } + op(1), (47)

where

LK = 1

K

K∑

i=1

∂λ̄′
i (β, σ 2

τ , γ̂ (·))
∂σ 2

τ

�̄−1
i (β, σ 2

τ , ρ, γ̂ (·))∂λ̄′
i (β, σ 2

τ , γ̂ (·))
∂σ 2

τ

. (48)

Next for a variance quantity Vσ 2
τ
defined in Appendix B.3, it is shown under the

same appendix that

√
K {σ̂ 2

τ − σ 2
τ − O(b2)} D−→ N (0, Vσ 2

τ
) as K → ∞. (49)

Similar to the condition for the
√
K -consistency of β̂, for

√
K -consistency of σ̂ 2

τ , we
need to have O(b2) = Kb4 → 0 as K → ∞, that is, 1/4 < α ≤ 1/3.

123



Semi-parametric dynamic mixed models 231

3.5.4 Consistency of the moment estimator of ρ

For Y ∗
i j = (Yi j − μi j )/(σi j j )

1/2, it follows that

E(Y ∗
i j
2
) = 1 for all i and j (50)

⇒ E

⎡

⎣
ni∑

j=1

(Y ∗
i j
2 − 1)

⎤

⎦ = 0 for all i = 1, . . . , K

and

E

[(
Yi j − μi j√

σi j j

)(
Yi, j+1 − μi, j+1√

σi, j+1, j+1

)]
= σi, j, j+1√

σi j jσi, j+1, j+1
(51)

⇒ E

⎡

⎣
ni−1∑

j=1

(
Y ∗
i j Y

∗
i, j+1 − σi, j, j+1√

σi j jσi, j+1, j+1

)⎤

⎦ = 0 for all i = 1, . . . , K .

Now because E

[(∑ni−1
j=1

[
Y ∗
i j Y

∗
i, j+1 − σi, j, j+1√

σi j jσi, j+1, j+1

])2]
in (51) and

E

[(∑ni
j=1

[
Y ∗
i j
2 − 1

])2]
in (50) are all functions ofμi j , σ 2

τ and ρ, they are bounded

under the assumption that μi j and ni are all bounded. Thus, for a sufficiently large but
finite m0, one may write

E

⎡

⎢⎣

⎛

⎝
ni−1∑

j=1

[
Y ∗
i j Y

∗
i, j+1 − σi, j, j+1√

σi j jσi, j+1, j+1

]⎞

⎠
2
⎤

⎥⎦ < m0,

and also E

⎡

⎢⎣

⎛

⎝
ni∑

j=1

[Y ∗
i j
2 − 1]

⎞

⎠
2
⎤

⎥⎦ < m0, (52)

for all i = 1, . . . , K . When this condition in (52) is satisfied, and because Yi j ’s are
independent for different i , it follows from the law of large numbers for independent
random variables (Breiman 1968, Theorem 3.27) that

∑K
i=1
∑ni−1

j=1

(
y∗
i j y

∗
i, j+1 − σi, j, j+1√

σi j jσi, j+1, j+1

)

∑K
i=1(ni − 1)

P−→ 0

⇒
∑K

i=1
∑ni−1

j=1 y∗
i j y

∗
i, j+1∑K

i=1(ni − 1)
=

ρ
∑K

i=1
∑ni−1

j=1
μi j√

σi j jσi, j+1, j+1
∑K

i=1(ni − 1)

+
(exp(σ 2

τ ) − 1)
∑K

i=1
∑ni−1

j=1
μi jμi, j+1√

σi j jσi, j+1, j+1
∑K

i=1(ni − 1)
+ op(1), (53)
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and

∑K
i=1
∑ni

j=1(y
∗
i j
2 − 1)

∑K
i=1 ni

P−→ 0

⇒
∑K

i=1
∑ni

j=1 y
∗
i j
2

∑K
i=1 ni

= 1 + op(1). (54)

Next, dividing (53) by (54), we obtain

a1(1 + op(1)) = ρ g1 + b1 + op(1) ⇒ ρ̃ = a1 − b1
g1

= ρ + op(1) as K → ∞,

where a1, b1 and g1 are given by (69), (72) and (71), respectively under Appendix
A.4. So

ρ̃ = a1 − b1
g1

P−→ ρ as K → ∞. (55)

Note that this consistency result in (55) remains valid when γ (·) in μi j s is replaced
by its consistent estimate γ̂ (·). Thus, following (55), ρ̂ in (38) is consistent for ρ.

4 A simulation study

We generate four sets of data under the proposed SGLLMM (3) as follows:
Step1.Parameters selection:Weconsider the following four sets of parameter values.
Set 1: (β1, β2) = (0.5, 0.5), σ 2

τ = 0.5, ρ = 0.5;
Set 2: (β1, β2) = (0.5, 0.5), σ 2

τ = 0.5, ρ = 0.8;
Set 3: (β1, β2) = (0.5, 0.5), σ 2

τ = 1.0, ρ = 0.5;
Set 4: (β1, β2) = (0.5, 0.5), σ 2

τ = 1.0, ρ = 0.8.

Step 2. Primary covariate selection: For the primary covariate selection, we choose
ni = 4 equi-spaced time points for all i = 1, . . . , K , with K = 100. Next, because
β = (β1, β2)

′ is the effect of two time ( j)-dependent primary covariates, we choose
these covariates as

xi j1( j) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1
2 for i = 1, . . . , 25 and j = 1, 2
1 for i = 1, . . . , 25 and j = 3, 4
− 1

2 for i = 26, . . . , 75 and j = 1
0 for i = 26, . . . , 75 and j = 2, 3
1
2 for i = 26, . . . , 75 and j = 4
j

2ni
for i = 76, . . . , 100 and j = 1, 2, 3, 4
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and

xi j2( j) =
⎧
⎨

⎩

j−2.5
2ni

for i = 1, . . . , 50 and j = 1, 2, 3, 4
0 for i = 51, . . . , 100 and j = 1, 2
1
2 for i = 51, . . . , 100 and j = 3, 4.

Note that these covariate values are also available fromSutradhar (2010, p. 188). These
values are chosen to reflect the variable time dependence for the different groups of
individuals. Thus, the choice is quite general. Onemay choose other specific covariates
depending on the situations.

Step 3. Random effects generation: The random effects τi for i = 1, . . . , 100, are
generated from N (0, 1) distribution.

Step 4. Secondary covariate selection: For a given i(i = 1, . . . , 100), we choose a
value for qi j from a uniform (U) distribution, namely

qi j ∼ U [ j − 0.5, j + 0.5], (56)

for j = 1, . . . , ni = 4. Note that for each j = 1, . . . , 4, the interval [ j −0.5, j +0.5]
was divided into 25 (alternatively it could be 50 or 100, and so on) equi-spaced points
allowing one value to be chosen from 25 values. Thus, altogether ni = 4 values were
chosen from j-related four intervals. This was independently repeated for K = 100
individuals. Consequently, these 400 values are expected to be dense and they reflect
the time dependence. Onemay select other distribution to choose qi j . In practice, these
values are available as a part of the data.

Step 5. Non-parametric function selection:We chose, for example, a quadratic non-
parametric function given by

γ (qi j ) = 0.3 + 0.2

(
qi j − ni + 1

2

)
+ 0.05

(
qi j − ni + 1

2

)2

(57)

with ni = 4, where qi j is generated by (56). Remark that in practice this non-
parametric function influencing yi j would be unknown.

Step 6. Data generation: The repeated counts {yi j , j = 1, . . . , ni ; i = 1, . . . , K } are
then generated by the SGLLMM (3).

Note that when data are generated under the present SGLLMM (or SMM in brief)
(3) following the aforementioned six steps, but one ignores the presence of non-
parametric function in the model and makes an attempt to estimate the parameters
(β, σ 2

τ , and ρ) by treating the data as though they were generated from the GLLMM,
the estimates are bound to be biased. We examine the performance of such naive GQL
(NGQL) estimators by repeating the data generation 1000 times and computing the
simulated mean (SM), simulated standard error (SSE), and simulated mean squared
error (SMSE) of the NGQL estimates for β and σ 2

τ , and moment estimate of ρ. The
parameter values and their simulated estimates are shown in Table 1.
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Table 1 Simulated means (SMs), simulated standard errors (SSEs) and mean squared errors (MSEs) of
NGQL estimates (ignoring the presence of non-parametric function) of regression parameters β and random
effects variance σ 2

τ under non-stationaryAR(1) correlationmodel (3) for selected values of correlation index
parameter ρ with K = 100, ni = 4; based on 1000 simulations

True β = (β1, β2)
′ σ 2

τ ρ Quantity β̂1,NGQL β̂2,NGQL σ̂ 2
τ,NGQL ρ̂Moment

β = (0.5, 0.5)′ 0.5 0.5 SM 0.9483 1.1209 0.6829 0.1850

SSE 0.1199 0.1778 0.1468 0.1640

MSE 0.2153 0.4171 0.0550

0.8 SM 0.9638 1.1134 0.6836 0.5261

SSE 0.0995 0.1550 0.1445 0.1540

MSE 0.2250 0.4003 0.0545

1.0 0.5 SM 0.9669 1.0962 1.1364 0.1100

SSE 0.1227 0.1751 0.2656 0.1662

MSE 0.2331 0.3861 0.0890

0.8 SM 0.9704 1.0957 1.1461 0.3337

SSE 0.1031 0.1469 0.2960 0.2288

MSE 0.2319 0.3764 0.1088

As expected, the results in Table 1 show that the estimates of β and σ 2
τ are highly

biased. For example, when ρ = 0.5, for the true regression parameter β = (0.5, 0.5)′
and random effects variance σ 2

τ = 0.5, the estimated values of β and σ 2
τ are found to be

(0.9483, 1.1209)′ and 0.6829, respectively. The estimate for ρ = 0.5 was found to be
0.185. Clearly all of these naive estimates computed by ignoring the non-parametric
function γ (qi j ) are useless, and hence one must take the non-parametric function
γ (qi j ) into account in estimating these regression, overdispersion and correlation
index parameters. This will require the consistent estimation of the non-parametric
function as well, which was discussed in Sect. 3.1.

We now examine the performance of the proposed semi-parametric estimation
approach discussed in Sect. 3 for the estimation of the non-parametric function γ (qi j ),
and the parameters (β, σ 2

τ , and ρ). The overdispersion parameter σ 2
τ was estimated

using squared response-based exact, corrected squared (CR) response-basedCR-exact,
and CR-normal (CRN) techniques as discussed in Sect. 3.3. We also examine the per-
formance of the SGQL approach by pretending that the correlation index parameter ρ

is zero. Remark that in the present setup, ρ = 0 does not mean the repeated responses
are independent. The independence follows when both ρ = 0 and σ 2

τ = 0. All esti-
mates (simulated mean, SM) along with their standard errors (SSE) and mean square
errors (MSE) are obtained based on 1000 simulations. The results are provided in Table
2 for β, σ 2

τ and ρ parameters. The SQL estimate for the non-parametric function γ (·)
is displayed in Fig. 1. Note that this estimate uses σ 2

τ estimated by the exact weight
matrix discussed above. As discussed in Sect. 3.1, the bandwidth parameter b for γ (·)
estimation is chosen as K−1/5. We have also verified this bandwidth choice by an ad
hoc mini-max approach discussed in Appendix C.

Figure 1 shows that the SQL approach estimates the true non-parametric curvewell.
The estimated curve almost coincides with the true curve when overdispersion index
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Fig. 1 The plot for γ (·) estimation for the approach with σ 2
τ estimated by the exact weight matrix given

in Sect. 3.3.1. The thick curve is for the true γ (·) function value. The thinner curves are for the estimated
γ (·) value and one standard error. The bandwidth b = K−1/5

parameter is small, that is, σ 2
τ = 0.5. This holds for small and large correlation index

parameter (ρ) values. The curve estimate is not so satisfactory when σ 2
τ = 1.0. This

happens because σ 2
τ = 1.0 produces large overdispersion in the data and as the results

of Table 2 show, the estimates σ̂ 2
τ are slightly biased when σ 2

τ = 1.0.
Next, the results from Table 2 show that the main regression parameters β1 =

β2 = 0.5 are estimated very well by the proposed SGQL approach irrespective of the
SGQL approaches (Approx (ρ = 0), Exact, CR-exact or CR-normal) used for the
estimation of σ 2

τ . This estimation pattern holds whether correlation index ρ is small
(0.5) or large (0.8). For example, for large ρ = 0.8 and small σ 2

τ = 0.5 (estimated
by exact weight-based approach), the SGQL estimates of β = (β1, β2)

′ ≡ (0.5, 0.5)′
are (0.4940, 0.4844)′ with MSEs (0.0165, 0.0516)′. The estimates are similar even
when σ 2

τ is large (1.0). Specifically the estimates are (0.4922, 0.4701)′ with MSEs
(0.0163, 0.0471)′. As far as the estimation of correlation parameters σ 2

τ and ρ is
concerned, the SGQL approaches for σ 2

τ and the method of moments for ρ work well
whether σ 2

τ is small or large. For example, when ρ = 0.8, for σ 2
τ = 0.5, the CR-

normal weight-based SGQL approach produces the estimate σ̂ 2
τ = 0.474 with MSE

0.0163, and the method of moments yields ρ estimate as 0.770 with SSE 0.0870. For
large σ 2

τ = 1.0, the CR-normal weight-based SGQL approach produces the estimate
σ̂ 2

τ = 0.8841withMSE0.0720, and themethod ofmoments yieldsρ estimate as 0.740
with SSE 0.1446. Thus, the simulation study suggests that the proposed estimation
approaches perform very well whether the overdispersion is small or relatively large.

5 Concluding remarks

In the past, many authors such as Breslow and Clayton (1993), Breslow and Lin
(1995), and Lin and Breslow (1996) have studied the inference techniques for the
parameters involved in the generalized linear mixed models (GLMMs) for binary and
count data. To be specific, Breslow and Clayton (1993), among others, have used a
best linear unbiased prediction (BLUP) analog estimation approach (also known as the
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Table 2 Simulated means (SMs), simulated standard errors (SSEs) and mean squared errors (MSEs) of
the SGQL estimates of regression parameters β and the exact, CR-exact, CRN weight matrix-based SGQL
estimates for the random effects variance σ 2

τ under non-stationary AR(1) correlation model (3) for selected
values of correlation index parameter ρ with K = 100, ni = 4; based on 1000 simulations

True β = (β1, β2)
′ σ 2

τ ρ Method Quantity β̂1 β̂2 σ̂ 2
τ ρ̂

β = (0.5, 0.5)′ 0.5 0.5 Exact SM 0.4947 0.4881 0.4899 0.4594

SSE 0.1576 0.2907 0.1252 0.1254

MSE 0.0249 0.0846 0.0158

Approx (ρ = 0) SM 0.4947 0.4876 0.4803 0.4710

SSE 0.1576 0.2909 0.1264 0.1180

MSE 0.0248 0.0847 0.0164

CR-exact SM 0.4942 0.4872 0.4737 0.4771

SSE 0.1576 0.2909 0.1265 0.1221

MSE 0.0248 0.0847 0.0167

CRN SM 0.4941 0.4868 0.4694 0.4824

SSE 0.1575 0.2908 0.1249 0.1162

MSE 0.0248 0.0847 0.0165

0.8 Exact SM 0.4940 0.4844 0.5013 0.7503

SSE 0.1283 0.2267 0.1269 0.0959

MSE 0.0165 0.0516 0.0161

Approx (ρ = 0) SM 0.4941 0.4838 0.4792 0.7684

SSE 0.1284 0.2269 0.1291 0.0839

MSE 0.0165 0.0517 0.0171

CR-exact SM 0.4937 0.4843 0.4784 0.7657

SSE 0.1281 0.2271 0.1265 0.0918

MSE 0.0164 0.0517 0.0165

CRN SM 0.4936 0.4841 0.4739 0.7689

SSE 0.1280 0.2269 0.1250 0.0870

MSE 0.0164 0.0517 0.0163

1.0 0.5 Exact SM 0.5032 0.4896 0.8823 0.4470

SSE 0.1660 0.2809 0.2263 0.1891

MSE 0.0275 0.0789 0.0650

Approx (ρ = 0) SM 0.5021 0.4898 0.8845 0.4569

SSE 0.1665 0.2811 0.2346 0.1881

MSE 0.0277 0.0790 0.0683

CR-exact SM 0.5017 0.4894 0.8768 0.4595

SSE 0.1665 0.2814 0.2327 0.1901

MSE 0.0277 0.0792 0.0693

CRN SM 0.5017 0.4881 0.8743 0.4673

SSE 0.1662 0.2805 0.2336 0.1852

MSE 0.0276 0.0787 0.0703
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Table 2 continued

True β = (β1, β2)
′ σ 2

τ ρ Method Quantity β̂1 β̂2 σ̂ 2
τ ρ̂

0.8 Exact SM 0.4922 0.4701 0.8989 0.7221

SSE 0.1275 0.2152 0.2461 0.1545

MSE 0.0163 0.0471 0.0707

Approx (ρ = 0) SM 0.4918 0.4686 0.8883 0.7368

SSE 0.1278 0.2152 0.2402 0.1456

MSE 0.0164 0.0472 0.0701

CR-exact SM 0.4921 0.4690 0.8875 0.7331

SSE 0.1277 0.2152 0.2384 0.1500

MSE 0.0163 0.0472 0.0694

CRN SM 0.4911 0.4685 0.8841 0.7399

SSE 0.1280 0.2156 0.2421 0.1446

MSE 0.0165 0.0474 0.0720

Thenon-parametric functionγ (·) is estimated bySQLapproach andρ is estimated usingmethodofmoments
in all cases. The bandwidth b = K−1/5 = 0.3981072

PQL (penalized quasi-likelihood approach)), where random family effects are treated
to be the fixed effects and the regression and variance components of the GLMMs
are estimated based on the so-called estimates of the random effects. As opposed to
the BLUP analog approach of Breslow and Clayton (1993), Jiang and Zhang (2001)
have suggested an improved method of moments. It, however, follows from Sutradhar
(2004) that the estimators obtained based on the improved method of moments (IMM)
may also be highly inefficient as compared to the estimators obtained based on a
generalized quasi-likelihood (GQL) approach. The GQL estimators are consistent and
highly efficient, the exact maximum likelihood estimators being fully efficient (i.e.,
optimal) which are, however, known to be cumbersome to compute, specially in the
GLLMM (generalized linear longitudinal mixed model) setup. For GQL inferences
in the GLLMM setup for count and binary data, we refer to Sutradhar et al. (2008,
2014), respectively, among others.

In this paper, we have extended the GLLMM for count data to the semi-parametric
setup. The proposedmodel is referred to as the semi-parametric GLLMM (SGLLMM)
(3) which has been discussed in Sect. 2. This SGLLMM may also be considered as a
generalization of the semi-parametric generalized linear longitudinal model (SGLLM)
studied, for example, by Severini and Staniswalis (1994), Lin and Carroll (2001), You
and Chen (2007) and Warriyar and Sutradhar (2014), to the mixed model setup. We
have developed an SQL approach for the estimation of the non-parametric function, an
SGQL approach for the estimation of main regression and overdispersion parameters,
whereas the longitudinal correlation index parameter has been estimated using the
well-knownmethod of moments. These estimationmethods along with the asymptotic
properties of the estimators are discussed in Sect. 3. A simulation study conducted in
Sect. 4 indicates that the proposed estimation approaches perform very well whether
the overdispersion parameter is small or large.
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Appendix A. Aids for analytical estimation

Appendix A.1. Computation of the derivative matrix in the SGQL estimating Eq.
(22) for β

Note that the computation of the derivative matrix
∂μ̄′

i (β,σ 2
τ ,γ̂ (β,σ 2

τ ))

∂β
in (22) requires

the formula for the derivative γ̂ (β,σ 2
τ )

∂β
, whereas this derivative would have been zero

if γ (·) was known. The exact formula for the gradient matrix
∂μ̄′

i (β,σ 2
τ ,γ̂ (β,σ 2

τ ))

∂β
may be

computed as

∂μ̄′
i (β, σ 2

τ , γ̂ (β, σ 2
τ ))

∂β

= ∂(μ̄i1(β, σ 2
τ , γ̂ (β, σ 2

τ )), . . . , μ̄ini (β, σ 2
τ , γ̂ (β, σ 2

τ )))

∂β
, (58)

where for j = 1, . . . , ni , one obtains

∂μ̄i j (β, σ 2
τ , γ̂ (qi j ;β, σ 2

τ ))

∂β

= μ̄i j (β, σ 2
τ , γ̂ (qi j ;β, σ 2

τ ))

[
xi j + ∂γ̂ (qi j ;β, σ 2

τ )

∂β

]
. (59)

Now to compute the derivative
∂γ̂ (qi j ;β,σ 2

τ )

∂β
for (59), we turn back to the estimating Eq.

(17) for γ (q0), and take its derivative with respect to β and obtain

K∑

i=1

ni∑

j=1

wi j (q0)

{ (
exp(σ 2

τ ) − 1
)
yi j + 1

[
1 + μ̄i j (β, σ 2

τ , γ̂ (q0;β, σ 2
τ ))
(
exp(σ 2

τ ) − 1
)]2

}

× μ̂i j (β, σ 2
τ , γ̂ (q0;β, σ 2

τ ))

[
xi j + ∂γ̂ (q0;β, σ 2

τ )

∂β

]
= 0,

yielding

∂γ̂ (q0;β, σ 2
τ )

∂β
(60)

=
−∑K

i=1
∑ni

j=1 wi j (q0)

{
1+yi j

(
exp(σ 2

τ )−1
)

[1+μ̄i j (β,σ 2
τ ,γ̂ (q0;β,σ 2

τ ))(exp(σ 2
τ )−1)]2

}
μ̄i j (β, σ 2

τ , γ̂ (q0;β, σ 2
τ )) xi j

∑K
i=1
∑ni

j=1 wi j (q0)

{
1+yi j (exp(σ 2

τ )−1)

[1+μ̄i j (β,σ 2
τ ,γ̂ (q0;β,σ 2

τ ))(exp(σ 2
τ )−1)]2

}
μ̄i j (β, σ 2

τ , γ̂ (q0;β, σ 2
τ ))

.
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Appendix A.2. Computation of the derivative vector in the raw SGQL estimating
Eq. (28) for σ 2

τ

Recall the squared response vector λ̄i ≡ λ̄i (β, σ 2
τ , γ (·)) from (27) and write

∂λ̄′
i

∂σ 2
τ

= ∂(λ̄i11, . . . , λ̄i j j , . . . , λ̄ini ni )

∂σ 2
τ

, with

∂λ̄i j j

∂σ 2
τ

=
∂
(
μ̄i j + μ̄2

i j exp(σ
2
τ )
)

∂σ 2
τ

= ∂μ̄i j

∂σ 2
τ

+ 2μ̄i j

(
∂μ̄i j

∂σ 2
τ

)
exp(σ 2

τ ) + μ̄2
i j exp(σ

2
τ ). (61)

In (61),
∂μ̄i j

∂σ 2
τ

= μ̄i j

[
1

2
+ ∂γ̂ (qi j ;β, σ 2

τ )

∂σ 2
τ

]
. (62)

Next by labeling μ̄i j with μ̄i j (qi j ), we obtain

∂γ̂ (q0;β, σ 2
τ )

∂σ 2
τ

= −1

2

− exp(σ 2
τ )

⎡

⎢⎢⎣

∑K
i=1
∑ni

j=1 wi j (q0)

{
yi j−μ̄i j (q0)

[1+μ̄i j (q0)(exp(σ 2
τ )−1)]2

}
μ̄i j (q0)

∑K
i=1
∑ni

j=1 wi j (q0)

{
1+yi j(exp(σ 2

τ )−1)

[1+μ̄i j (q0)(exp(σ 2
τ )−1)]2

}
μ̄i j (q0)

⎤

⎥⎥⎦,

(63)

yielding

∂μ̄i j

∂σ 2
τ

≡ ∂μ̄i j (qi j )

∂σ 2
τ

= − exp(σ 2
τ )

⎡

⎢⎢⎣

∑K
l=1
∑nl

u=1 wlu(qi j )

{
ylu−μ̄lu(qi j )

[1+μ̄lu(qi j )(exp(σ 2
τ )−1)]2

}
μ̄lu(qi j )

∑K
l=1
∑nl

u=1 wlu(qi j )

{
1+ylu(exp(σ 2

τ )−1)

[1+μ̄lu(qi j )(exp(σ 2
τ )−1)]2

}
μ̄lu(qi j )

⎤

⎥⎥⎦

×μ̄i j (qi j ) . (64)

The formula for the derivative is obtained using (64) in (61).

Appendix A.3. Computation of the elements of the covariance matrix �̄iC in the
corrected (CR) SGQL estimating Eq. (29) for σ 2

τ

The formulas for the elements of �̄iC may be computed in a manner similar to that
for the elements of �̄i in (28). To be specific, the variance and covariance elements of
�̄iC have the formulas
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Var[(Yi j − μ̄i j )
2] = μ̄4

i j (exp(6σ
2
τ ) − 4 exp(3σ 2

τ ) + 6 exp(σ 2
τ ) − 3)

+ μ̄3
i j (6 exp(3σ

2
τ ) − 12 exp(σ 2

τ ) + 6) + μ̄2
i j (7 exp(σ

2
τ ) − 4)

+ μ̄i j − σ̄ 2
i j j , (65)

and

Cov[(Yi j − μ̄i j )
2, (Yik − μ̄ik)

2]
= [μ̄2

i j μ̄ik(4ρ
k− j + 1) + μ̄i j μ̄

2
ik ](exp(3σ 2

τ ) − 2 exp(σ 2
τ ) + 1)

+ 2ρk− j μ̄2
i j (exp(σ

2
τ ) − 1 + ρk− j exp(σ 2

τ )) + μ̄i j μ̄ik [2ρk− j (exp(σ 2
τ ) − 1) + exp(σ 2

τ )]
+ ρk− j μ̄i j + μ̄2

i j μ̄
2
ik(exp(6σ

2
τ ) − 4 exp(3σ 2

τ ) + 6 exp(σ 2
τ ) − 3) − σ̄i j j σ̄ikk , (66)

respectively.

Appendix A.4. Derivation for the moment estimator in (38) for the correlation
index parameter ρ

Let y∗
i j = (yi j − μi j )/(σi j j )

1/2. It then follows from (6) to (8) that

E

[∑K
i=1
∑ni

j=1 y
∗
i j
2

∑K
i=1 ni

]
= 1, (67)

and

E

[∑K
i=1
∑ni−1

j=1 y∗
i j y

∗
i, j+1∑K

i=1(ni − 1)

]
=

ρ
∑K

i=1
∑ni−1

j=1
μi j√

σi j jσi, j+1, j+1
∑K

i=1(ni − 1)

+
(
exp(σ 2

τ ) − 1
)∑K

i=1
∑ni−1

j=1
μi jμi, j+1√

σi j jσi, j+1, j+1
∑K

i=1(ni − 1)
. (68)

We now exploit (67) and (68), more specifically we consider the ratio of the quan-
tities within the square brackets in (67) and (68) and denote it by a1 as

a1 =
∑K

i=1
∑ni−1

j=1 y∗
i j y

∗
i, j+1/

∑K
i=1(ni − 1)

∑K
i=1
∑ni

j=1 y
∗
i j
2/
∑K

i=1 ni
(69)

We may then write a first-order approximate expectation as

E [a1] = ρg1 + b1, (70)
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where

g1 =
K∑

i=1

ni−1∑

j=1

μi j (σi j jσi, j+1, j+1)
−1/2/

K∑

i=1

(ni − 1), (71)

and

b1 = (exp(σ 2
τ ) − 1)

K∑

i=1

ni−1∑

j=1

φi jφi, j+1/

K∑

i=1

(ni − 1), (72)

with φi j = μi j/(σi j j )
1/2. Next by replacing μi j , σi j j , and σi, j+1, j+1 with μ̄i j , σ̄i j j ,

and σ̄i, j+1, j+1, respectively, one can compute ā1, b̄1, and ḡ1, from a1, b1, and g1,
respectively. Consequently, by (70), we write the moment estimator of ρ as

ρ̂ = ā1 − b̄1
ḡ1

, (73)

which is (38).

Appendix B. Aids for asymptotic results

Appendix B.1. Consistency of the SQL estimator of the non-parametric function
γ (q0)

For notational simplicity, here we use μi j (q0) for μi j (β, στ , γ (q0)). Now for known

β and σ 2
τ , and for true mean μi j = exp(x ′

i jβ + σ 2
τ

2 + γ (qi j )), a Taylor expansion of
(17) gives

γ̂ (q0;β, σ 2
τ ) − γ (q0) = AK

+
∑K

i=1
∑ni

j=1 wi j (q0)
μi j−μi j (q0)

1+μi j (q0)(exp(σ 2
τ )−1)

∑K
i=1
∑ni

j=1 wi j (q0)
μi j (q0)

1+μi j (q0)(exp(σ 2
τ )−1)

+ op(1/
√
K ) (74)

where

AK = 1

BK

1

K

K∑

i=1

ni∑

j=1

pi j (q0)
yi j − μi j

1 + μi j (q0)
(
exp(σ 2

τ ) − 1
)

with BK = 1
K

∑K
i=1
∑ni

j=1 pi j (q0)
μi j (q0)

1+μi j (q0)(exp(σ 2
τ )−1)

, and pi j (q0) is the short abbre-

viation for pi j (
q0−qi j

b ) defined in (14). The computational details are omitted. The fact
that AK has zero mean and bounded variance implies
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AK = Op(1/
√
K ), (75)

according to Theorem 14.4-1 in Bishop et al. (2007). Furthermore, it can be shown
that the second term in (74) is in the order of O(b2). Consequently, using (75) in (74),
one obtains γ̂ (q0;β, σ 2

τ ) − γ (q0) = O(b2) + op(1/
√
K ) which is (42).

Appendix B.2. Derivation of the asymptotic distribution of the SGQL estimator
of the regression effects β

Notice from (44) that

lim
K→∞ FK = E

[
∂μ̄′

i (β, σ 2
τ , γ̂ (qi ; β, σ 2

τ ))

∂β
�̄−1
i (β, σ 2

τ , γ̂ (qi ; β, σ 2
τ ), ρ)

∂μ̄i (β, σ 2
τ , γ̂ (qi ; β, σ 2

τ ))

∂β ′

]

= F, say. (76)

Let Z1i = ∂μ̄′
i (β,σ 2

τ ,γ̂ (qi ;β,σ 2
τ ))

∂β
�̄−1
i (β, σ 2

τ , γ̂ , ρ), and v̄
j ′k′
1i ′ (β, σ 2

τ , γ̂ , ρ) be the

( j ′, k′)th element of the inverse covariance matrix �̄−1
i (β, σ 2

τ , γ̂ (qi ;β, σ 2
τ ), ρ). Also

let BK (qi ′k′) represent BK in (74) when q0 is replaced by general qi ′k′ , and

Z2i = (Z2i1, · · · , Z2ini )

where

Z2i j =
K∑

i ′=1

ni∑

j ′=1

ni∑

k′=1

1

BK (qi ′k′)

∂μ̄i ′ j ′(β, σ 2
τ , γ̂ (qi ′ j ′ ;β, σ 2

τ ))

∂β
v̄
j ′k′
1i ′ (β, σ 2

τ , γ̂ , ρ)

μi ′k′(β, σ 2
τ , γ (qi ′k′))

pi j (qi ′k′)

1 + μi j (qi ′k′)(eσ 2
τ − 1)

.

After some algebra, it then follows that DK (β) in (44) reduces to

DK (β) = 1

K

K∑

i=1

(Z1i − Z2i )(Yi − μi ) + O(b2) + op(1/
√
K ). (77)

Hence, using (77) and (76) in (44), one obtains

√
K {β̂ − β} = F−1 1√

K

K∑

i=1

(Z1i − Z2i ) (Yi − μi )

+ O(
√
Kb4) + op(1). (78)

Next because E[Yi − μi ] = 0, and cov[Yi ] = �i , using Lindeberg–Feller central
limit theorem (Amemiya 1985, Theorem 3.3.6) for independent random variables with
non-identical distributions, one obtains
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√
K {β̂ − β − O(b2)} → N (0, Vβ) (79)

as in (45). In (79),

Vβ = F−1 1

K

[
K∑

i=1

(Z1i − Z2i )�i (Z1i − Z2i )
′
]
F−1.

Appendix B.3. Derivation of the asymptotic distribution of the SGQL estimator
of the overdispersion index parameter σ 2

τ

Express MK in (46) as
MK = M1K − M2K , (80)

where

M1K = 1

K

K∑

i=1

Q1i [ui − λi (β, σ 2
τ , γ (qi ))]

M2K = 1

K

K∑

i=1

Q1i [λ̄i (β, σ 2
τ , γ̂ (qi ;β, σ 2

τ )) − λi (β, σ 2
τ , γ (qi ))], (81)

with

Q1i = ∂λ̄′
i (β, σ 2

τ , γ̂ (qi ;β, σ 2
τ ))

∂σ 2
τ

�̄−1
i (β, σ 2

τ , γ̂ , ρ).

For j, k = 1, . . . , ni , let v
jk
2i (β, σ 2

τ , γ̂ , ρ) be the ( j, k)th element of the ni × ni
inverse fourth-order moments matrix �̄−1

i (β, σ 2
τ , γ̂ , ρ). Now because

λ̄i (·)=[λ̄i1(·), . . . , λ̄i j (·), . . . , λ̄ini (·)]′, and λi (·)=[λi1(·), . . . , λi j (·), . . . , λini (·)]′,

M2K in (81) may be expressed as

M2K = 1

K

K∑

i=1

ni∑

j=1

ni∑

k=1

∂λ̄i j (β, σ 2
τ , γ̂ (qi j ;β, σ 2

τ ))

∂σ 2
τ

v
jk
2i (β, σ 2

τ , γ̂ , ρ)[λ̄ik(β, σ 2
τ , γ̂ (qik;β, σ 2

τ )) − λik(β, σ 2
τ , γ (qik))].

(82)

Next for

W ∗
i jk = ∂λ̄i j (β, σ 2

τ , γ̂ (qi j ;β, σ 2
τ ))

∂σ 2
τ

v
jk
2i (β, σ 2

τ , γ̂ , ρ)
∂λ̄ik(β, σ 2

τ , γ (qik))

∂γ (qik)
,

123



244 N. Zheng, B. C. Sutradhar

a Taylor expansion of λ̄i j (β, σ 2
τ , γ̂ (qi j ;β, σ 2

τ )) with respect to γ (qi j ) for all i =
1, . . . , K and j = 1, . . . , ni , reduces M2K in (82) to

M2K = 1

K

K∑

i=1

ni∑

j=1

ni∑

k=1

{W ∗
i jk[γ̂ (qik;β, σ 2

τ ) − γ (qik)]

+ Op([γ̂ (qik;β, σ 2
τ ) − γ (qik)]2)}. (83)

Further, using the formula for γ̂ (qik;β, σ 2
τ ) − γ (qik) from (42), M2K in (83) may be

re-expressed as

M2K = 1

K

K∑

i=1

Q2i (Yi − μi ) + O(b2) + op(1/
√
K ), (84)

where Q2i = (Q2i1, · · · , Q2i j , · · · , Q2ini )
′ with

Q2i j = 1

K

K∑

i ′=1

ni∑

j ′=1

ni∑

k′=1

1

BK (qi ′k′)
W ∗

i ′ j ′k′
pi j (qi ′k′)

1 + μi j (qi ′k′)(eσ 2
τ − 1)

.

By applying the result from (84) and (80), it now follows from (47) that

√
K {σ̂ 2

τ − σ 2
τ } = L−1 1√

K

K∑

i=1

Q1i [ui − λi (β, σ 2
τ , γ (qi ))]

− L−1 1√
K

K∑

i=1

Q2i (Yi − μi ) + O(
√
Kb4) + op(1), (85)

where L = limK→∞ LK = E[LK ], LK being given by (48).
Further, using similar arguments as in (79), one may apply the Lindeberg–Feller

central limit theorem for non-identically distributed random variables, and obtains

√
K
{
σ̂ 2

τ − σ 2
τ − O

(
b2
)}

D−→ N (0, Vσ 2
τ
) as K → ∞, (86)

where

Vσ 2
τ

= L−1 1

K

K∑

i=1

[Q1i�i (β, σ 2
τ , γ̂ (qi ;β, σ 2

τ ), ρ)QT
1i

+Q2i�i (β, σ 2
τ , γ̂ (qi ;β, σ 2

τ ), ρ)QT
2i − 2Q1iCov(Ui ,Yi )Q

T
2i ]L−1. (87)

Similar to the condition for the
√
K -consistency of β̂, for

√
K -consistency of σ̂ 2

τ , we
need to have O(b2) = Kb4 → 0 as K → ∞, that is, 1/4 < α ≤ 1/3.
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Note that in this section we have derived the asymptotic properties of σ̂ 2
τ which

is obtained by applying the SGQL estimation approach using squared responses as
discussed in Sect. 3.3.1. The derivation of the asymptotic properties for the (CR)SGQL
and (CRN)SGQL estimators of σ 2

τ obtained by applying the SGQL approach from
Sect. 3.3.2 or 3.3.3 will be similar and hence omitted to save space.

Appendix C. A cross checking for bandwidth selection under the simula-
tion study

It was indicated in Sect. 3.1 that in general the bandwidth parameter b involved in
the kernel weights for the estimation of the non-parametric function γ (·) is chosen
as b = K−1/5 (Pagan and Ullah 1999; Lin and Carroll 2001) which is related to our
asymptotic choice b = c0K−1/3.9, c0 being an unknown constant. In our simulation
study, in Sect. 4 we have considered K = 100 and hence chosen b = K−1/5 ≈ 0.40.
To validate this choice further, we computed the asymptotic mean square error of the
non-parametric function estimator γ̂ (q0, b;β, σ 2

τ , ρ) (see (17)) using

MSE(q0, b;β, σ 2
τ , ρ) = Bias2(q0, b;β, σ 2

τ ) + Variance(q0, b;β, σ 2
τ , ρ), (88)

for known β and σ 2
τ . By a trial and error method we then choose the value of b which

minimizes maxq0 MSE(q0, b;β, σ 2
τ , ρ) using all possible values of q0, that is, we

obtain b following the mini-max criterion

min
b

max
q0

MSE(q0, b;β, σ 2
τ , ρ) ⇒ b.

Note that using (74) from Appendix B.1, we compute the approximate bias and
variance terms in (88) as

Bias(q0, b;β, σ 2
τ ) �

∑K
i=1
∑ni

j=1 pi j (q0)
μi j−μi j (q0)

1+μi j (q0)(exp(σ 2
τ )−1)

∑K
i=1
∑ni

j=1 pi j (q0)
μi j (q0)

1+μi j (q0)(exp(σ 2
τ )−1)

,

and

Variance(q0, b; β, σ 2
τ , ρ) � Var(AK )

= 1

B2
K

1

K 2

K∑

i=1

⎧
⎨

⎩

ni∑

j=1

[
pi j (q0)

1 + μi j (q0)(exp(σ 2
τ ) − 1)

]2
σi j j

+ 2
ni−1∑

j=1

ni∑

k= j+1

[
pi j (q0)

1 + μi j (q0)(exp(σ 2
τ ) − 1)

][
pik(q0)

1 + μik(q0)(exp(σ 2
τ ) − 1)

]
σi jk

⎫
⎬

⎭ ,

respectively, where σi j j and σi jk are given in (7)–(8).
Using q0 as any of the 100 equal-spaced points from 0.5 to 4.5 (see (56)), and

using a set of trial values for b as b = 0.20, 0.22, . . . , 0.66, 0.68, the above mini-max
criterion, for fixed β = (β1, β2)

′ = (0.5, 0.5)′, produced the estimate of b as
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b = 0.36, 0.36, 0.42, 0.42,

corresponding to

(σ 2
τ , ρ) = (0.5, 0.5), (0.5, 0.8), (1.0, 0.5), (1.0, 0.8).

These values of b are close to b = K−1/5 = 0.40 for K = 100,which supports the use
of the general formula b = K−1/5 where K is the number of independent individuals
in the study.
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