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Abstract Spatial semiparametric varying coefficient models are a useful extension of
spatial linearmodel. Nevertheless, how to conduct variable selection for it has not been
well investigated. In this paper, by basis spline approximation together with a general
M-type loss function to treat mean, median, quantile and robust mean regressions in
one setting, we propose a novel partially adaptive group Lr (r ≥ 1) penalized M-
type estimator, which can select variables and estimate coefficients simultaneously.
Under mild conditions, the selection consistency and oracle property in estimation are
established. The newmethod has several distinctive features: (1) it achieves robustness
against outliers and heavy-tail distributions; (2) it is more flexible to accommodate
heterogeneity and allows the set of relevant variables to vary across quantiles; (3) it
can keep balance between efficiency and robustness. Simulation studies and real data
analysis are included to illustrate our approach.
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1 Introduction

Regression models are widely used in analysis of geostatistical data that arise often in
environmental and ecological studies (Hallin et al. 2004, 2009; Tang and Cheng 2009;
Tang 2014). In this paper, we focus on variable selection in spatial semiparametric
varying coefficient regression models. This problem has not been well developed in
both theory and methodology.

Shrinkage methods have emerged as a popular approach for variable selection in
traditional regression settings. The examples include but not limited to the LASSO
(Tibshirani 1996), the bridge regression (Fu 1998), the SCAD (Fan and Li 2001).
Recently, many works have been done to extend such methods to nonparametric and
semiparametric settings. Fan and Li (2001) for partially linear models; Wang et al.
(2008), Wang and Xia (2009) for varying coefficient regression models; Xue (2009),
Huang et al. (2010) and Wang et al. (2014) for additive models; Kai et al. (2011),
Hohsuk et al. (2012) and Tang et al. (2013) discussed variable selection issue for
quantile varying coefficientmodels.Wang andLin (2014) andZhao et al. (2014) further
discussed robust variable selection methods for partially linear varying coefficient
models. An excellent discussion of group selection can be found in Huang et al.
(2012).

For geostatistical data, variable selection method is mainly limited to linear regres-
sions. Hoeting et al. (2006) used Akaikes information criterion (AIC) for variable
selection. Wang and Zhu (2009) proposed a penalized least squares (LS) which can
construct simultaneous variable selection and parameter estimation for spatial linear
regressions. Zhu et al. (2010) and Chu et al. (2011) proposed two penalized maxi-
mum likelihood estimation (PMLE) methods for spatial linear regression models with
certain error distribution assumption.

However, variable selection for the spatial nonparametric or semiparametricmodels
has not yet been well investigated to the best of our knowledge. In a linear regres-
sion setup, it has been very well understood that ignoring any important predictor can
lead to seriously biased results, whereas including spurious covariates can degrade
the estimation efficiency substantially. Thus, variable selection is important for any
regression problems. Furthermore, due to the complex spatial correlation, outliers and
heterogeneity in the spatial datamay be possible,we need to develop a genuine variable
selection method to automatically adapt to these environments. In this paper, this issue
is studied in a unified framework. Using a general M-type loss function as a unified
method to treat mean regression, median regression, quantile regression and robust
mean regression in one setting and B-spline approximation, we propose a partially
adaptive group Lr (r ≥ 1) penalized M-type estimation, which can construct variable
selection and coefficients estimation simultaneously. Theoretical analysis shows that
the new method with r = 1 or r = 2 enjoys the favorable asymptotic properties: the
variable selection procedure is consistent, and estimators enjoy the oracle property.
Here, the oracle property means that the estimators of the nonparametric components
achieve the optimal convergence rate, and the estimators of the parametric compo-
nents have the same asymptotic distribution as that obtained under the true model.
Theoretical investigation also indicates that the asymptotic properties can be extended
to more general Lr penalty with r ≥ 1.

123



Variable selection in geostatistics 325

Our new method offers the following progresses. (I) The existing methods are
limited to spatial parameter regression. Our work develops the method to spatial semi-
parametric regression. (II) Compared with the variable selection methods in spatial
parametric regression (Wang and Zhu 2009; Zhu et al. 2010; Chu et al. 2011), the new
method has the following distinct features: firstly, it can achieve the robustness against
outliers and heavy-tail distributions; secondly, it can accommodate heterogeneity and
allows the sets of relevant covariates that may differ when we consider different quan-
tiles, and thus the new method enables us to explore the entire conditional distribution
of the spatial response; thirdly, our method contains some other methods such asWang
and Zhu (2009) as special cases in some sense.

It is remarkable that investigating the statistical theory of penalty method for spatial
semiparametric models is not trivial. Firstly, for spatial linear model, it involves only
one type of penalized parameters (i.e., the tuning parameters); nevertheless, for spatial
semiparametric models, three types of regularization parameters: the smoothing para-
meters, tuning parameters for parametric part and tuning parameters for nonparametric
part, are involved. Due to their interaction, what are the right convergence rates for
the tuning parameters and smoothing parameters is much less well understood. Fur-
thermore, the main technical challenge of our work is to establish the oracle property
in the complex spatial dependence semiparametric setting for the penalized general
M-type loss function, which includes both smooth case (e.g., the mean regression)
and nonsmooth case (e.g., the quantile regression).

The rest of this paper is organized as follows. Section 2 introduces our newmethod,
investigates its theoretical properties and discusses the implementation issues. Numer-
ical studies and real data analysis are reported in Sect. 3. All the technical proofs are
provided in the Appendix.

2 Partially adaptive group penalized M-type estimator

2.1 Spatial semiparametric varying coefficient models

For a wide application, we consider the spatial data in a general context. Let ZN ,
Z = {0,±1,±2, . . .}, N ≥ 1, denote the integer lattice points in the N -dimensional
Euclidean space. A point i = (i1, . . . , iN ) ∈ Z

N is referred to as a site. Spatial data
are modeled as finite realizations of vector stochastic processes indexed by i ∈ Z

N :
randomfields. In this paper, wewill consider strictly stationary (p+q+2) dimensional
real random fields, of the form

{
(Yi, Xi, Zi,Ui), i ∈ Z

N
}

, (1)

where Yi ∈ R
1, Xi ∈ R

p, Zi ∈ R
q , and Ui ∈ [U0,U1] are defined over some

probability space (�,A , P). Let S,S ′ ⊂ Z
N be two sets of sites, and the generated

Borel σ -fields are defined as B(S) := B ((Yi, Xi, Zi,Ui) : i ∈ S) and B(S ′) :=
B ((Yi, Xi, Zi,Ui) : i ∈ S ′), respectively. For each couple S and S ′, d(S,S ′) :=
min

{‖i − i′‖2 : i ∈ S, i′ ∈ S ′} denotes the distance between S and S ′, where ‖ ·
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326 K. Wang

‖2 stands for the Euclidean norm. We will assume that
{
(Yi, Xi, Zi,Ui), i ∈ Z

N
}

satisfies the following mixing condition: there exist two functions, ϕ : R+ → R
+

such that ϕ(t) ↓ 0 as t → ∞, and ψ : N2 → R
+ is a symmetric positive function

nondecreasing in each variable, such that whenever S,S ′ ⊂ Z
N ,

α
(B(S),B(S ′)

) := sup
{|P(AB) − P(A)P(B)| : A ∈ B(S), B ∈ B(S ′)

}

≤ ψ
(
Card(S),Card(S ′)

)
ϕ
(
d(S,S ′)

)
, (2)

where Card(·) denotes cardinality. ψ ≡ 1 corresponds to strongly mixing.
Throughout, we assume that the random field (1) is observed over a rectangular

region of the form In := {
i = (i1, . . . , iN ) ∈ Z

N : 1 ≤ ik ≤ nk, k = 1, . . . , N
}
, for

n = (n1, . . . , nN )with strictly positive coordinates n1, . . . , nN . The total sample size
is n̂ = ∏N

k=1 nk . As in Tran (1990), we write n → ∞ if min1≤k≤N {nk} → ∞ and,
moreover, ni/n j < C, 1 ≤ i, j ≤ N for some 0 < C < ∞.

Remark 1 In fact, the α-mixing condition (2.2) is quite general, it generalizes the clas-
sical time series (N = 1) mixing concepts and means that process is asymptotically
independent. Recently, much work has been done for the spatial process with such
mixing condition, e.g., Hallin et al. (2004) gave a local linear spatial regression, Hallin
et al. (2009) studied the spatial nonparametric estimation, Tang (2014) and Lu et al.
(2014) investigated the estimation for spatial varying coefficient models, Lu and Tjøs-
theim (2014) considered nonparametric estimation of probability density functions
for irregularly observed spatial data. It was shown in Hallin et al. (2004) that spatial
process of the form Xn = ∑

i∈ZN aiZn−i can satisfy the mixing condition (2.2), if
Zi’s are independent random variables, ai → 0 exponentially fast and the probability
density function of Zi exists (such as normal, cauchy, exponential, and uniform dis-
tributions). For more detailed introduction about this mixing condition (2.2), one can
see Tran (1990, 1993) and Fan and Yao (2003).

As discussed in (Gao et al. 2006; Lu et al. 2007, 2014), the issue of avoiding
the curse of dimensionality is particularly important in spatial nonparametric regres-
sion analysis. Thus, for {(Yi, Xi, Zi,Ui), i ∈ In}, we consider the following spatial
semiparametric varying coefficient regression models

Yi = XT
i α(Ui) + ZT

i β + εi, (3)

where εi ∈ R
1 is a random error, α(·) = (α1(·), . . . , αp(·))T ∈ R

p is an unknown
smooth function vector, β = (β1, . . . , βq)

T is the constant coefficient vector, and
their true values are α0(·) and β0, respectively. However, the true error distribu-
tion and spatial dependence structure among the spatial response are not assumed
accurately.

Model (3) is a useful extension of the spatial linear regression model (Wang and
Zhu 2009; Zhu et al. 2010; Chu et al. 2011), but much less has been done about its
variable selection issue.
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2.2 The main results

To estimate αk(u), k = 1, . . . , p, we consider B-spline approximations. Denote by
B
h̄
Kn

(u) the set of spline functions of order h̄ + 1 with knots K = {U0 = τ0 < τ1 <

· · · < τKn < τKn+1 = U1}. B(u) ∈ B
h̄
Kn

(u) if and only if B(u) ∈ Ch̄−1[U0,U1],
and its restriction to each [τk, τk+1) is a polynomial of degree at most h̄. A piecewise
constant function, linear spline, quadratic spline and cubic spline corresponds to h̄ =
0, 1, 2, 3, respectively. Let

Bk(u) = (τk − τk−h̄−1)[τk−h̄−1, . . . , τk](z − u)h̄+, k = 1, . . . , qn,

where qn = Kn+ h̄+1, [τk−h̄−1, . . . , τk](z−u)h̄+ denotes the (h̄+1)th-order divided
difference of the function (z − u)h̄+, τk = U0, when k = −h̄, . . . ,−1, and τk = U1,
when k = Kn + 2, . . . , Kn + h̄ + 1. Then, π(u) = (B1(u), . . . , Bqn(u))T forms a
basis forBh̄

Kn
(u). For more details about spline function, see Schumaker (1981). Thus,

αk(·) can be approximated as:

αk(u) ≈
qn∑
s=1

Bs(u)θk,s = π(u)T θk, (4)

where {θk = (θk,1, . . . , θk,qn)
T ∈ R

qn}pk=1 are spline coefficient vectors, and model
(3) can be approximated as:

Yi ≈
p∑

k=1

qn∑
s=1

Xik Bs(Ui)θk,s + ZT
i β + εi = �T

i � + ZT
i β + εi, (5)

where �i = (Xi1π
T
i , . . . , Xipπ

T
i )T ∈ R

pqn , � = (θT1 , . . . , θT
p )T ∈ R

pqn , π i =
π(Ui).

The main interest is selecting the relevant variables in the parametric and nonpara-
metric parts simultaneously for model (3). For the nonparametric part, we say, e.g., Xk

is irrelevant for some k ∈ {1, . . . , p}, if and only if αk(·) ≡ 0, or equivalently θk = 0.
Thus,we treat θ k, k = 1, . . . , p as groups, and by selecting groupswith nonzero θ k , we
can identify the relevant variables. Similarly, for the parametric part, Zk is regarded as
irrelevant, if and only if βk = 0. Without loss of generality, assume that {β0k = 0}ck=1
and {β0k = 0}qk=c+1. Let β∗ = (β1, . . . , βc)

T with true value β∗
0. Similarly, assume

{α0l(u)}vl=1 are nonzero components of α0(u) and {α0l(u) ≡ 0}pl=v+1.
Thus, for a general loss function ρ(·), the partially adaptive group Lr (r ≥ 1) norm

penalized M-type estimator (�̂, β̂) is obtained by minimizing

Q(�,β) :=
∑
i∈In

ρ
(
Yi − �T

i � − ZT
i β
)

+
p∑

k=1

λ∗
nk‖θk‖r +

q∑
k=1

λ∗∗
nk |βk |, (6)
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328 K. Wang

where ‖θk‖r = {∑qn
s=1 |θk,s |r }1/r , {λ∗

nl}pl=1 and {λ∗∗
nk}qk=1 are tuning parameters that

control model complexity of nonparametric and parametric components, respectively.
In this paper, we mainly focus on the cases of r = 1 and r = 2 for simplicity. Then,
αk(u) can be estimated as: α̂k(u) = π(u)T θ̂k, k = 1, . . . , p.

Typical choices forρ(·) are convex.Onewell known case is theLS lossρ(u) = 1
2u

2.
But it is well known that the LS method can be adversely influenced by outliers or
heavy-tail distributions. To achieve the robustness, we can consider the robust loss
functions such as least absolute deviation (LAD) loss ρ(u) = |u| , or more generally,
Huber’s loss with bounded derivative ρ′(u) = max{−k,min{u, k}}, where k > 0.
The LS and LAD can be regarded as two extremes of the Huber loss for k = 0 and
k = ∞, respectively. For more details, see Huber (1981). Furthermore, if the data
are heterogeneous, then the set of active variables may be different when modeling
different conditional quantiles. Thus, the quantile regression with ρ(u) = u(τ −
I(u<0)), τ ∈ (0, 1), provides a more complete picture of the conditional distribution
of the spatial response and is more natural and effective for analyzing spatial data
with heteroscedasticity. Thus, by choosing appropriate M-type loss function ρ(u), the
new method not only keeps balance between efficiency and robustness but also can be
more flexible to accommodate heterogeneity.

Remark 2 The penalizedM-type estimator considered here does not take into account
the spatial dependence structure in spatial data, because the exact correlation structure
is usually unknown in advance. For spatial parametric regression, a method for dealing
with dependence structure is to assume that the errors follow a Gaussian process with
a parametric covariance (Zhu et al. 2010; Chu et al. 2011), then penalized maximum
likelihood can be implemented. But these assumptions do not exactly hold, as is
usually the case in practice; furthermore, ignoring spatial dependence will not affect
the consistency of variable selection (see Theorems 1 and 2 below).

Next, we will discuss the asymptotic properties of the proposed new method. Let
(u) be the derivative of ρ(u). To establish the asymptotic properties, we first intro-
duce a definition and some regularity conditions.

Definition 1 Define Hγ as the collection of all functions on [U0,U1] whose dth
order derivative satisfies the Hölder condition of order ν with γ ≡ d + ν. That is,
for any h ∈ Hγ , there exists a constant c ∈ (0,∞) such that for each h ∈ Hγ ,
|h(d)(s) − h(d)(t)| ≤ c|s − t |ν , for any U0 ≤ s, t ≤ U1.

C1. {αk(u) ∈ Hγ }vk=1 for some γ > N + 1/2.
C2. The random field {(Yi, Xi, Zi,Ui), i ∈ Z

N } is strictly stationary. For all distinct
i and j in Z

N , Ui and Uj admit a joint density fi,j satisfying | fi,j(u1, u2) −
f (u1) f (u2)| ≤ c1 for all u1, u2 ∈ [U0,U1], where c1 > 0 is some constant, and
f denotes the marginal density of Ui.

C3. For all i ∈ Z
N , the random design vectors Xi and Zi are bounded in probability,

and the eigenvalues of E(XiXT
i | Ui = u), u ∈ [U0,U1] are bounded away from

0 and infinity uniformly.
C4. ρ(u) is convex and E ((εi) | Xi, Zi,Ui) = 0, for all i ∈ Z

N . Furthermore, for
some δ > 0, supi∈ZN E

(|(εi)|2+δ | Xi, Zi,Ui

)
< ∞, and there exist positive

numbers bi with 0 < inf bi ≤ sup bi < ∞ such that supi∈ZN |E((εi + s) |
Xi, Zi,Ui) − bis| = Op(s2) as s → 0.
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C5. There exist constants 0 < c2, c3 < ∞ such that supi∈ZN E{[(εi+s)−(εi)]2 |
Xi, Zi,Ui} ≤ c3|s|, as s → 0, and |(v + s) − (v)| ≤ c3 for any |s| ≤ c2 and
v ∈ R

1.
C6. The eigenvalues of 1

n̂�∗
n and 1

n̂	∗
n are bounded away from infinity and zero for

sufficiently large n̂. Where �∗
n and 	∗

n are given in the following.

C7. Tuning parameters satisfy: max{a∗
n, a

∗∗
n }K 1/2

n n̂−1/2 → 0, b∗
nn̂

−1/2 → ∞ and
b∗∗
n (̂nKn)

−1/2 → ∞. Where a∗
n = sup{λ∗

nk, k = 1, . . . , v}, b∗
n = inf{λ∗

nk, k =
v + 1, . . . , p} and a∗∗

n = sup{λ∗∗
nk, k = 1, . . . , c}, b∗∗

n = inf{λ∗∗
nk, k = c +

1, . . . , q}.
Condition C1 is a smoothness condition on function coefficients determining the rate
of convergence of the spline estimator. C2 is a standard condition in this context; it
has been used, for example, by Tran (1990), Hallin et al. (2004) and Tang (2014)
in the spatial setting. C3 imposed in Huang et al. (2002) is a technical condition to
derive the optimal convergence rate of the estimators in functional coefficient setting.
Conditions C4 and C5 are only on score function (u) and the random error εi; same
conditions were also used in Tang (2014) and Lu et al. (2014). C6 is used to represent
the asymptotic covariancematrix of the nonzero parametric part. C7 is the convergence
rate of tuning parameters and their data-adaptive version will be given in Sect. 2.4.
Obviously, these conditions do not contradict the condition (2), this is because (2) only
characterizes the dependence structure of the spatial process, while these regularity
conditions do not involve the dependence structure.

Theorem 1 (Estimation Sparsity) Suppose the regularity conditions C1-C7 hold,
Kn = O(n1/(2γ+1)) and ϕ(t) = O(exp(−κt)) in (2) for some κ > 0. Then, for
r = 1 and r = 2, β̂ and α̂(u) satisfy

(I) α̂l(u) ≡ 0, l = v + 1, . . . , p holds with probability tending to 1;
(II) β̂l = 0, l = c + 1, . . . , q holds with probability tending to 1.

By Theorem 1 we know that, as long as (6) is used to obtain β and α(u), sparse
solutions can be consistently produced. To establish the oracle property in estimation,
we first present the following definition and some notations.

Definition 2 The function g(x∗, u) is said to belong to the varying coefficient class
of functions F if (I) g(x∗, u) = x∗T h(u) =∑v

k=1 xkhk(u); (II)
∑v

k=1 E[xkhk(u)]2 <

∞, where xk and hk(u) ∈ Hγ are the kth coordinates of x∗ and h(u), respectively,
k = 1, . . . , v.

Let X∗
i = (Xi1, . . . , Xiv)

T and Z∗
i = (Zi1, . . . , Zic)

T . To obtain the asymptotic
distribution of β̂

∗
, we first need to adjust for the dependence of Z∗

i and (X∗
i ,Ui), which

is common in semiparametric models. Denote gk(X∗
i ,Ui) =∑v

l=1 Xil gkl(Ui),

g∗
k (X

∗
i ,Ui) = arg infgk (X∗

i ,Ui)∈F E{bi[Zik − gk(X∗
i ,Ui)]2},

and ςk(X∗
i ,Ui) = E(Zik |X∗

i ,Ui). Note that,

E{bi[Zik − gk(X∗
i ,Ui)]2}

= E{bi[Zik − ςk(X∗
i ,Ui)]2} + E{bi[ςk(X∗

i ,Ui) − gk(X∗
i ,Ui)]2},
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330 K. Wang

therefore, g∗
k (X

∗
i ,Ui) are the projections of ςk(X∗

i ,Ui) onto the varying coefficient
functional space F (under the L2 norm). In other words, g∗

k (X
∗
i ,Ui) is an element that

belongs to F and it is the closest function to ςk(X∗
i ,Ui) among all the functions in

F, for any k = 1, . . . , c. We define g∗(X∗
i ,Ui) = (g∗

1(X
∗
i ,Ui), . . . , g∗

c (X
∗
i ,Ui))

T ,
ς(X∗

i ,Ui) = (ς∗
1 (X∗

i ,Ui), . . . , ς
∗
c (X∗

i ,Ui))
T and

	∗
n =

∑
i

[Z∗
i − g∗(X∗

i ,Ui)]T bi[Z∗
i − g∗(X∗

i ,Ui)],

�∗
n =

∑
i

[Z∗
i − g∗(X∗

i ,Ui)]T E[2(εi)][Z∗
i − g∗(X∗

i ,Ui)].

Then, the following theorem gives the oracle property of the estimator.

Theorem 2 (Oracle Property)Under the same conditions used in Theorem 1, we have

(I) 1
n̂

∑
i∈In

{̂αl(Ui) − α0l(Ui)}2 = Op
(̂
n−2γ /(2γ+1)

)
, l = 1, . . . , v;

(II) �∗
n
−1/2	∗

n

(
β̂

∗ − β∗
0

)
→d N (0, Ic).

Theorem 2 means that the penalized M-estimators have the oracle property, which
implies that the estimators of the nonparametric components achieve the optimal
convergence rate, and the estimators of the parametric components have the same
asymptotic distribution as that obtained under the correct submodel.

As commented by the reviewer, our method only focuses on the estimation and
variable selection, while the inference results based on the estimation are not involved.
Actually, it is an interesting topic, and we will investigate it in the future.

Remark 3 Let gi(·) be the density of εi conditional on (Xi, Zi,Ui). In this remark, we
will show that, if gi(·) satisfies some conditions, then the general M-type loss function
including mean regression, median regression, quantiles regression and robust mean
regression can satisfy C4 and C5. Thus, the conclusions in Theorems 1 and 2 hold for
them uniformly.

(I) Forρ(u) = u(τ−I(u<0)), if gi(·) is bounded away from zero and infinite, satisfies∫ 0
−∞ gi(s)ds = τ , and has a bounded first derivative in the neighborhood of zero,
then E(εi) = 0 and C5 is satisfied, and C4 holds with bi = gi(0).

(II) For(u) = max{−k,min{u, k}}, k > 0, if gi(·) is bounded and symmetric about
0, then C5 and E(εi) = 0 hold automatically, C4 holds with bi = ∫ k−k gi(s)ds.

(III) Loss functions ρ(u) = |u| and ρ(u) = 1
2u

2 satisfy the two conditions automati-
cally.

2.3 Issues in practical implementation

In this section, we discuss the algorithm for the new method. If ρ(·) is two-order
differentiable everywhere, by local quadratic approximation (LQA, Fan and Li (2001);
Hunter andLi 2005), a general algorithm for (6) can be realized by amodifiedNewton–
Raphson algorithm. More specifically, when r = 2, let (�(0),β(0)) be the initial value
chosen as the nonpenalized estimator, i.e.,
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(�(0),β(0)) = argmin�,β

{∑
i∈In

ρ(Yi − �T
i � − ZT

i β)
}
.

Then, the (t + 1)-step estimate (�(t+1),β(t+1)) can be obtained by minimizing

∑
i∈In

ρ
(
Yi − �T

i � − ZT
i β
)

+
p∑

k=1

λ∗
nk

‖θk‖22
‖θ (t)

k ‖2
+

q∑
k=1

λ∗∗
nk

β2
k

|β(t)
k |

. (7)

For r = 1, a similar procedure can be implemented by replacing the second term in (7)
with

∑p
k=1 λnk

∑qn
s=1 θ2k,s/|θ(t)

k,s |. Then, (�̂, β̂) is the limit value of (�(t+1),β(t+1)).
While, an alternative algorithm that does not make use of the derivative of (·)

is the following re-weighted least squares algorithm. Let Mi = (�T
i , ZT

i )T , ri =
Yi − �T

i �(t) − ZT
i β(t) and Wi = (ri)/ri. Then, the next iteration gives

(�(t+1)T ,β(t+1)T )T =
⎛
⎝∑

i∈In

WiMiMT
i + �(t)

⎞
⎠

−1⎛
⎝∑

i∈In

WiMiYi

⎞
⎠, (8)

where

�(t) = diag

⎛
⎜⎜⎜⎜⎝

λ∗
n1

‖θ (t)
1 ‖2

, · · · ,
λ∗
n1

‖θ (t)
1 ‖2︸ ︷︷ ︸

qn

, · · · ,
λ∗
np

‖θ (t)
p ‖2

, · · · ,
λ∗
np

‖θ (t)
p ‖2︸ ︷︷ ︸

qn

,
λ∗∗
n1

|β(t)
1 |

, · · · ,
λ∗∗
nq

|β(t)
q |

⎞
⎟⎟⎟⎟⎠

,

for the L2 penalty, while for the L1 penalty

�(t) = diag

(
λ∗
n1

|θ(t)
1,1|

, · · · ,
λ∗
n1

|θ(t)
1,qn

|
, · · · ,

λ∗
np

|θ(t)
p,1|

, · · · ,
λ∗
np

|θ(t)
p,qn |

,
λ∗∗
n1

|β(t)
1 |

, · · · ,
λ∗∗
nq

|β(t)
q |

)
.

The re-weighted least squares algorithm usually converges quickly. But when some
of the residuals are close to 0, these points receive too large weight. We adopt the
modification (Fan and Li 2001) to replace the weight Wi by (ri)/(ri + an), where
an is the 2n̂−1/2 quantile of the absolute residuals {|ri|, i ∈ In}.

Furthermore, if ρ(u) = ρτ (u) = u(τ − I(u<0)), τ ∈ (0, 1), a convenient linear
programming algorithmcan be directly applied to solve problem (6).More specifically,
for r = 1, (6) can be reformulated as the following:

argmin
{∑
i∈In

[τη+
i + (1 − τ)η−

i ] +
p∑

k=1

λ∗
nk

qn∑
s=1

(θ+
k,s + θ−

k,s) +
q∑

k=1

λ∗∗
nk(β

+
k + β−

k )
}
,

s.t. η+
i − η−

i + �T
i (�+ − �−) + ZT

i (β+ − β−) = Yi, i ∈ In,
η+
i ≥ 0, η−

i ≥ 0, θ+
k,s ≥ 0, θ−

k,s ≥ 0, β+
k ≥ 0, β−

k ≥ 0. (9)
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where β+ = (β+
1 , . . . , β+

q )T ∈ R
q
+, β− = (β−

1 , . . . , β−
q )T ∈ R

q
+ and �+ = (θ+

k,s) ∈
R

pqn+ ,�− = (θ−
k,s) ∈ R

pqn+ . Thus, interior-point method can be used to solve it. For
r = 2, by local linear approximation (LLA) Zou and Li (2008), the solution can be
obtained by an iterative linear programming algorithm. More specifically, choose an
initial value �(0), ‖θk‖2 can be approximated as:

‖θk‖2 ≈ ‖θ (0)
k ‖2 + ‖θ (0)

k ‖−1
2 |θ (0)

k |T (|θk | − |θ (0)
k |), (10)

where |θk | = (|θk,1|, . . . , |θk,qn |)T . Then, update the estimate repeatedly until con-
vergence, in which the (t + 1)-step solution is given by minimizing

∑
i∈In

ρτ

(
Yi − �T

i � − ZT
i β
)

+
p∑

k=1

λ∗
nk

qn∑
s=1

|θ(t)
k,s |

‖θ (t)
k ‖2

|θk,s | +
q∑

k=1

λ∗∗
nk |βk |. (11)

Here, (11) can be computed by (9) directly.
To implement the above procedures, tuning parameters {λ∗

nl}pl=1, {λ∗∗
nk}qk=1 and Kn

need to be determined. In practice, we take λ∗
n j = λ∗

n/‖θ (0)
j ‖r , 1 ≤ j ≤ p and

λ∗∗
n j = λ∗∗

n /|β(0)
j |, 1 ≤ j ≤ q. By this selection, we can verify that as long as

n̂−1/2K 1/2
n max{λ∗

n, λ
∗∗
n } → 0 and K−3/2

n min{λ∗
n, λ

∗∗
n } → ∞, C7 can be satisfied.

Thus, we only need to select tuning parameters (λ∗
n, λ

∗∗
n ) and Kn.

For (�(0),β(0)), we also need to choose the Kn. Similar to Wang et al. (2009), we
choose Kn as the minimizer of the following Schwarz-type information criterion,

SIC (Kn) = log

⎧⎨
⎩
∑
i∈In

ρτ

(
Yi − �T

i �(0) − ZT
i β(0)

)
⎫⎬
⎭+ log n̂

2n̂
{p(Kn + h̄ + 1) + q}.

(12)

Moreover, in this work we restrict our attention to the spline with h̄ = 3. For the
proposed estimator (�̂, β̂), we also need to choose Kn again, and for the simplic-
ity of implementation, we use the same Kn as used in the procedure of constructing
(�(0),β(0)). Then, the optimal (λ∗

n, λ
∗∗
n ) can be chosen as the minimizer of the fol-

lowing BIC type criterion

BIC(λ∗
n, λ

∗∗
n ) = log

⎧⎨
⎩
1

n̂

∑
i∈In

ρτ

(
Yi − �T

i �̂ − ZT
i β̂
)
⎫⎬
⎭

+ DFv

log(̂n/Kn)

(̂n/Kn)
+ DFc

log n̂
n̂

, (13)

where 0 ≤ DFv ≤ p and 0 ≤ DFc ≤ q are simply the numbers of nonzero nonpara-
metric and parametric components, respectively.
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3 Simulation studies and real data analysis

3.1 Simulation studies

In this section, we use two simulation experiments to investigate the finite sample
performance of the new method. Experiment 1 is homoscedastic, and Experiment
2 is heterogeneous data. We consider the spatial semiparametric varying coefficient
regression models in a two-dimensional space (N = 2). For the sake of simplicity, we
write (i, j) instead of (i1, i2), X(i, j)k and Z(i, j)k instead of Xik and Zik , respectively,
for the sites i ∈ Z

2.
Experiment 1: (homoscedastic model) Denote by {ε(α)

(i, j) : (i, j) ∈ Z
2} a i.i.d

αN (0, 1) + (1 − α)N (0, 15) white-noise processes, where α ∈ [0, 1]. Let

Y(i, j) = β1(U(i, j)) +
12∑
k=2

X(i, j)kαk(U(i, j)) +
10∑
k=1

Z(i, j)kβk + ε(i, j). (14)

The relevant variables {X(i, j)k}4k=2 and {Z(i, j)k}3k=1 are generated by

X(i, j)2 = U(i−1, j) +U(i+1, j)

2
, X(i, j)3 = U(i, j−1) +U(i, j+1)

2
,

X(i, j)4 = U(i−1, j) +U(i+1, j) +U(i, j−1) +U(i, j+1),

Z(i, j)1 = U(i−1, j) −U(i+1, j)

2
+ e(0)

(i, j), Z(i, j)2 = U(i, j−1) −U(i, j+1)

2
+ e(0)

(i, j)

Z(i, j)3 = U(i−1, j) +U(i+1, j) +U(i, j−1) +U(i, j+1) + e(0)
(i, j),

and the redundant variables {X(i, j)k}12k=5 and {Z(i, j)k}10k=4, index variable {U(i, j) :
(i, j) ∈ Z

2} and random error {ε(i, j) : (i, j) ∈ Z
2} are generated by the following

spatial autoregression:

X(i, j)k = sinh(X(i−1, j)k + X(i+1, j)k + X(i, j−1)k + X(i, j+1)k) + e(k)
(i, j), k = 5, . . . , 12,

Z(i, j)k = cos(Z(i−1, j)k + Z(i+1, j)k + Z(i, j−1)k + Z(i, j+1)k) + e(0)
(i, j), k = 4, . . . , 10,

U(i, j) = sin(U(i−1, j) +U(i+1, j) +U(i, j−1) +U(i, j+1)) + e(0)
(i, j),

ε(i, j) = ε(i−1, j) + ε(i+1, j) + ε(i, j−1) + ε(i, j+1)

6
+ ε

(α)
(i, j),

where {e(0)
(i, j) : (i, j) ∈ Z

2} and {e(k)
(i, j) : (i, j) ∈ Z

2}, k = 5, . . . , 12, are mutually

independent i.i.d N (0, 1) white-noise processes, sinh(u) = (eu − e−u)/(eu + e−u).
The coefficients αk(u), k = 1, . . . , 12 and βk, k = 1, . . . , 10 are given by α1(u) =
0.8 exp(u/2) + 0.5 exp(−u/2), α2(u) = 0.6u(1 + 0.3u2), α3(u) = 6 − 6u, α4(u) =
5 + 10 sin(πu/3), αk(u) ≡ 0, k = 5, . . . , 12, β1 = 1, β2 = −1, β3 = 2 and β4 =
· · · = β10 = 0. This is an extension of the model used in Hallin et al. (2004). In
terms of data sets, we consider three cases: (1) α = 1, (2) α = 0.9 and (3) an outlier
case, in which 5% of the values of response is shifted with shift value c = 3. In each
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case, by the iterative steps of Hallin et al. (2004), spatial data are generated from (14)
over a rectangular domain of m × n sites, more specially, over a grid of the form
{(i, j) : 81 ≤ i ≤ 81+m, 81 ≤ j ≤ 81+ n}, for various values of m and n. Through
500 repetitions, 500 data sets are obtained.

For comparison, three types of loss functions are chosen as: ρ1(u) = 1
2u

2 (LS);
ρ2(u) = |u| (LAD); Huber,s loss: ρ3(u) = 1

2u
2 if |u| ≤ 1.345 and ρ3(u) =

1.345|u| − 0.5(1.345)2 otherwise. For the three loss functions with the Lr norm
penalty, the corresponding estimators are abbreviated as LS(r), LAD(r) andHuber(r),
respectively.

To measure the estimation accuracy of α̂(u), we use the average squared error
(ASE) and the average absolute error (ADE) from the true curves, which are defined,
respectively, as:

ASE = 1

T

T∑
j=1

p∑
k=1

[̂
αk(u j ) − α0k(u j )

]2
,ADE = 1

T

T∑
j=1

p∑
k=1

∣∣̂αk(u j ) − α0k(u j )
∣∣ ,

where u j = u([2.5%mn]) + j (u([97.5%mn]) − u([2.5%mn]))/T , j = 1, . . . , T , are grid
points (T = 200 in our simulation) and u(1) ≤ u(1) ≤ · · · ≤ u(mn) is a permutation of
{U(i, j) : 80 ≤ i ≤ 80 + m, 80 ≤ j ≤ 80 + n}. The means of the ASE and ADE are
denoted by μ(ASE) and μ(ADE), respectively. While the estimation accuracy of β̂ is
measured by the mean squared error (MSE). To indicate the variable selection results,
the percentage of correctly fitting CF% is used, which represents the percentage of
selecting true relevant variables. Furthermore, we also compare the average numbers
of coefficients that are correctly shrunk to zero, which is denoted by C.

Tables 1 and 2 report the simulation results for this experiment. We can see that
the results for L1 and L2 norm penalties are similar. Furthermore, for α = 1, we find
that LS(r), Huber(r) and LAD(r) perform similarly in terms of C and CF% values,
implying that they perform similarly for variable selection; all they can select the true
relevant variables in the nonparametric and parametric components simultaneously
with high probability. While by the values ofμ(ASE),μ(ADE) andMSE, we find that
LS(r) performs better than LAD(r) and Huber(r). This is not a surprise, since in this
case the LAD(r) and Huber(r)will lose efficiency in some degree. Furthermore, when
α = 0.9 or outliers exist in the dataset, LAD(r) and Huber(r) have better performance
than LS(r) does, that they can increase the estimation accuracy noticeably and increase
CF% and have better performance in terms of C. All of these results affirm that this
new method works well in the spatial semiparametric setting.

Experiment 2: (heterogeneous model) In this experiment, {Z(i, j)k}10k=1 and
{U(i, j) : (i, j) ∈ Z

2} are generated in the same as inExperiment 1,while {(X(i, j)2, . . . ,

X(i, j)12) : (i, j) ∈ Z
2} are generated as follows. First, {(X̃(i, j)2, . . . , X̃(i, j)12) :

(i, j) ∈ Z
2} are generated through the following spatial autoregression:

X̃(i, j)2 = cos(X̃(i−1, j)2 + X̃(i+1, j)2 + X̃(i, j−1)2 + X̃(i, j+1)2) + e(2)
(i, j),

X̃(i, j)3 = sin(X̃(i−1, j)3 + X̃(i+1, j)3 + X̃(i, j−1)3 + X̃(i, j+1)3) + e(3)
(i, j),

123



Variable selection in geostatistics 335

Table 1 Simulation results for the nonparametric components in Experiment 1

m × n = 15 × 15 m × n = 20 × 20

C CF% μ(ASE) μ(ADE) C CF% μ(ASE) μ(ADE)

α = 1

LAD(1) 7.852 87.20 2.247 × 10−3 0.1001 8.000 100.00 4.217 × 10−4 0.0457

LAD(2) 7.848 86.80 2.301 × 10−3 0.1012 7.995 99.60 4.169 × 10−4 0.0460

LS(1) 7.860 88.00 1.902 × 10−3 0.0823 8.000 100.00 3.811 × 10−4 0.0336

LS(2) 7.842 86.00 1.673 × 10−3 0.0787 8.000 100.00 3.512 × 10−4 0.0309

Huber(1) 7.840 85.40 2.013 × 10−3 0.2264 8.000 100.00 3.718 × 10−4 0.0511

Huber(2) 7.844 86.00 2.190 × 10−3 0.2371 8.000 100.00 4.069 × 10−4 0.0439

α = 0.9

LAD(1) 7.802 80.60 4.076 × 10−3 0.1409 7.980 98.60 8.083 × 10−4 0.0560

LAD(2) 7.810 81.00 3.759 × 10−3 0.1657 7.994 99.40 8.131 × 10−4 0.0574

LS(1) 4.550 50.20 2.936 × 10−2 0.2542 7.632 70.20 5.682 × 10−3 0.0793

LS(2) 4.546 48.80 2.789 × 10−2 0.2613 7.630 69.40 5.591 × 10−3 0.0801

Huber(1) 7.788 80.00 2.089 × 10−2 0.2178 7.980 98.80 3.713 × 10−3 0.0701

Huber(2) 7.786 79.80 1.897 × 10−2 0.2069 7.985 99.00 4.016 × 10−3 0.0813

Outlier case

LAD(1) 7.678 71.80 3.412 × 10−2 0.2963 7.968 95.50 3.039 × 10−3 0.0756

LAD(2) 7.664 70.00 3.357 × 10−2 0.2872 7.964 94.80 2.018 × 10−3 0.0760

LS(1) 4.486 44.80 8.963 × 10−2 0.3847 5.668 57.60 4.108 × 10−2 0.0931

LS(2) 4.502 46.00 9.030 × 10−2 0.3727 5.672 60.40 3.013 × 10−2 0.0907

Huber(1) 7.665 70.60 2.777 × 10−2 0.2354 7.970 96.00 7.215 × 10−3 0.0713

Huber(2) 7.602 69.80 2.679 × 10−2 0.2401 7.962 94.60 8.135 × 10−3 0.0697

X̃(i, j)4 = sinh(X̃(i−1, j)4 + X̃(i+1, j)4 + X̃(i, j−1)4 + X̃(i, j+1)4) + e(4)
(i, j),

X̃(i, j)k = 1

4
(X̃(i−1, j)k + X̃(i+1, j)k + X̃(i, j−1)k + X̃(i, j+1)k) + e(k)

(i, j), k = 5, . . . , 12,

where {e(k)
(i, j) : (i, j) ∈ Z

2}, k = 2, . . . , 12, are i.i.d N (0, 1) white-noise processes.

Then, set X(i, j)2 = �(X̃(i, j)2) and X(i, j)k = X̃(i, j)k for k = 3, . . . , 12. The spatial
response {Y(i, j) : (i, j) ∈ Z

2} is generated according to the following heteroscedastic
model:

Y(i, j) = α1(U(i, j)) + X(i, j)3α3(U(i, j)) + X(i, j)4α4(U(i, j)) + Z(i, j)1

− 2Z(i, j)2 + ε(i, j), (15)

where ε(i, j) = α2(U(i, j))X(i, j)2ε̃(i, j), {̃ε(i, j) : (i, j) ∈ Z
2} is an N (0, 1) white-noise

process, and α1(u) = 0.6u(1+ 0.3u2), α2(u) = 0.5 sin2(u + 0.4), α3(u) = 6− 0.2u,
α4(u) = 2.5 sin(0.95u + 0.5). In this experiment, X(i, j)2 plays an essential role
in the conditional distribution of Y(i, j) given the covariates, but it does not directly
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Table 2 Simulation results for the parametric components in Experiment 1

m × n = 15 × 15 m × n = 20 × 20

C CF% MSE C CF% MSE

α = 1

LAD(1) 6.858 89.40 1.298 × 10−2 7.000 100.00 6.361 × 10−3

LAD(2) 6.863 90.00 1.276 × 10−2 7.000 100.00 6.093 × 10−3

LS(1) 6.870 91.00 1.108 × 10−2 7.000 100.00 5.339 × 10−3

LS(2) 6.868 91.60 1.112 × 10−2 7.000 100.00 4.988 × 10−3

Huber(1) 6.849 88.40 1.264 × 10−2 7.000 100.00 6.175 × 10−3

Huber(2) 6.850 89.60 1.301 × 10−2 7.000 100.00 6.118 × 10−3

α = 0.9

LAD(1) 6.797 89.00 1.509 × 10−2 6.987 98.80 6.911 × 10−3

LAD(2) 6.789 88.60 1.612 × 10−2 6.992 99.60 6.836 × 10−3

LS(1) 5.539 50.40 2.739 × 10−1 6.109 68.20 2.093 × 10−1

LS(2) 5.528 49.80 2.819 × 10−1 6.116 69.00 1.998 × 10−1

Huber(1) 6.807 87.80 1.316 × 10−2 6.979 98.80 6.570 × 10−3

Huber(2) 6.819 89.80 1.357 × 10−2 6.981 99.00 6.768 × 10−3

Outlier case

LAD(1) 6.776 83.60 4.387 × 10−2 6.976 96.60 8.873 × 10−3

LAD(2) 6.761 82.00 4.366 × 10−2 6.969 95.80 9.017 × 10−3

LS(1) 4.132 45.20 4.916 × 10−1 5.008 57.60 6.678 × 10−1

LS(2) 4.096 46.40 5.009 × 10−1 4.972 60.40 7.019 × 10−1

Huber(1) 6.795 80.80 1.712 × 10−2 6.979 96.80 1.035 × 10−2

Huber(2) 6.801 81.60 1.809 × 10−2 6.988 97.20 9.867 × 10−3

influence the center (mean or median) of the conditional distribution, because the
conditionalmean andmedian of ε̃(i, j) are zero. Similar toExperiment 1, 500 simulation
spatial data sets are independently generated from (15) over a rectangular domain
{(i, j) : 81 ≤ i ≤ 81 + m, 81 ≤ j ≤ 81 + n}, for various values of m and n.

For comparison, we further consider ρ(u) = u(τ − I(u<0)) as loss function, for
different τ and r , the corresponding estimators are abbreviated as Q(τ, r), here we
choose τ = 0.25, τ = 0.5 and τ = 0.75. In this experiment, to assess the variable
selection results, we further use P% to denote the proportion of selecting X2 as a
relevant variable in the nonparametric component.

Tables 3 and 4 list the simulation results for the nonparametric and parametric
parts, respectively. Similar to Experiment 1, in terms of variable selection, we find
that Q(0.5,r), LS(r) and Huber(r) perform similarly, while due to heteroscedastic
error, Q(0.5,r) and Huber(r) perform better than LS(r) does in terms of parameter
estimation accuracy. Furthermore, from the values of P% in Table 3, we find that
the active variable X2 is often missed by LS(r), Q(0.5, r) and Huber(r) methods.
However, with high probability, X2 can be selected into the model when Q(0.75, r)
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Table 3 Simulation results for the nonparametric components in Experiment 2

m × n = 15 × 15 m × n = 20 × 20

P% CF% μ(ASE) μ(ADE) P% CF% μ(ASE) μ(ADE)

Q(0.75, 1) 100.00 80.60 6.362 × 10−3 0.4062 100.00 99.00 7.218 × 10−4 0.0502

Q(0.75, 2) 100.00 82.00 5.962 × 10−3 0.4007 100.00 100.00 8.034 × 10−4 0.0470

Q(0.5, 1) 6.00 77.80 1.384 × 10−3 0.1972 0.00 100.00 5.181 × 10−4 0.0259

Q(0.5, 2) 6.50 78.00 1.575 × 10−3 0.1859 1.00 98.00 5.167 × 10−4 0.0260

Q(0.25, 1) 100.00 81.80 6.310 × 10−3 0.4072 100.00 100.00 7.203 × 10−4 0.0498

Q(0.25, 2) 100.00 81.60 6.171 × 10−3 0.4101 100.00 100.00 7.368 × 10−4 0.0479

LS(1) 4.00 81.80 4.915 × 10−2 0.2808 0.00 100.00 4.902 × 10−3 0.0652

LS(2) 5.80 83.00 4.730 × 10−2 0.3012 0.00 99.40 4.512 × 10−3 0.0709

Huber(1) 7.00 82.80 2.259 × 10−2 0.2264 0.00 100.00 3.118 × 10−3 0.0602

Huber(2) 6.50 83.00 2.298 × 10−2 0.2371 0.00 100.00 4.012 × 10−3 0.0579

Table 4 Simulation results for the parametric components in Experiment 2

m × n = 15 × 15 m × n = 20 × 20

C CF% MSE C CF% MSE

Q(0.75, 1) 7.868 87.80 2.011 × 10−2 8.000 100.00 6.673 × 10−3

Q(0.75, 2) 7.876 89.00 1.983 × 10−2 8.000 100.00 6.597 × 10−3

Q(0.5, 1) 7.859 86.40 2.109 × 10−2 8.000 100.00 7.018 × 10−3

Q(0.5, 2) 7.868 87.00 2.133 × 10−2 8.000 100.00 6.886 × 10−3

Q(0.25, 1) 7.883 90.00 1.997 × 10−2 8.000 100.00 6.639 × 10−3

Q(0.25, 2) 7.871 88.60 2.116 × 10−2 8.000 100.00 7.102 × 10−3

LS(1) 7.839 85.20 2.919 × 10−2 8.000 100.00 8.018 × 10−3

LS(2) 7.833 84.90 2.863 × 10−2 8.000 100.00 7.961 × 10−3

Huber(1) 7.898 90.40 1.971 × 10−2 8.000 100.00 6.871 × 10−3

Huber(2) 7.902 91.00 1.983 × 10−2 8.000 100.00 6.907 × 10−3

and Q(0.25, r) are used. This is not surprising, since the conditional mean and median
of ε̃(i, j) are zero, while its 25 and 75% quantiles are not zero. These demonstrate that
by considering several different quantile positions, it is likely to gain a more complete
picture of the underlying structure of the conditional distribution. Furthermore, by
values of CF%, with high probability, all the methods can correctly select the relevant
variables in the nonparametric and parametric parts simultaneously.

3.2 Real data analysis

To further illustrate the usefulness of the proposed method, we apply the new method
to a real data. It was known from the simulation study that the adaptive group L1
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and L2 penalties lead to similar results. Thus, we only consider the L1 penalty for
simplicity in the real data analysis.

The data set studied here comes from the Boston Standard Metropolitan Statistical
Area with 506 observations (1 observation per census tract). This data set has been
studied in several literatures. For example, Harrison and Rubinfeld (1978) investigated
variousmethodological issues related to the use of housing data to estimate the demand
for clean air, Pace and Gilley (1997) demonstrated the substantial benefits obtained by
modeling the spatial dependence of the errors, Tang (2014) discussed the estimation
issue for spatial functional coefficient model.

Following Harrison and Rubinfeld (1978) and Pace and Gilley (1997), we take
ln (Price) as the response, NOX (levels of nitrogen oxides) as the index variable, and
the following indictors as the covariates: CRIM (crime rate), RM (average number of
rooms per dwelling), AGE (proportion of structures built before 1940), TAX (property
tax rate), PTRATIO (pupil-teacher ratio), B (black population proportion). For the
variables AGE, TAX, PTRATIO and LSTAT, we make the same modification as Tang
(2014). Then, we consider the following model:

ln(Price) = β0(NOX) + β1(NOX)CRIM + β2(NOX)RM + β3(NOX)AGE

+ β4(NOX)TAX + β5(NOX)PTRATIO + β6(NOX)B + error. (16)

Figure 1 presents the boxplot of response variable ln(Price), which indicates that
there are outliers. Thus, we choose the robust loss function ρ(u) = |u|. Then, the
resulting LAD(1) estimate suggests that RM,AGE, TAX, PTRATIO andB are relevant
variables, whereas CRIM is inactive. Figure 2 gives the estimated coefficient functions
for β0(·), β2(·), β3(·), β4(·), β5(·) and β6(·), respectively. Obviously, Fig. 2 shows that
they are unlikely to be constant zero, because none of them is significantly close to
zero. To confirm whether the eliminated variable (i.e., CRIM) is truly irrelevant, we
consider non-penalized LAD estimates, which is shown in Fig. 3. We can see that it
is always close to zero over the entire range of the index variable NOX; thus, Fig.
3 further confirms that CRIM is unlikely to be relevant. Therefore, the new method
works well in variable selection.

For comparison, we carry out an AIC based all-subset selection procedure to select
among 27 = 128 candidate models. Specifically, we fit each candidate model, and
calculate its AIC value, and then select the model with the smallest AIC. To better
understand the performance of our penalization-based LAD(1) method and the all-
subset selection procedure, in the following, we compare the twomethods by assessing
their selection stability and computation time.

To compare the selection stability, we apply them to 200 bootstrap samples, each
of which is obtained by resampling 300 observations without replacement. Table 5
summarizes the average computation time and the frequencies that the covariates are
selected in the observed data and in the bootstrap data among 200 bootstraps. We can
see that both the proposed LAD(1) method and the all-subset selection method are
stable in variable selection. However, the proposed LAD(1) method is much faster
in computation than the all-subset selection method. This is because that all-subset
approach requires searching over all possible combinations of covariates.
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Fig. 1 Boxplot of ln(Price)
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Fig. 2 Estimates of coefficient functions of relevant variables, where the horizontal thin lines are y = 0
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Fig. 3 Non-penalized LAD
estimator for coefficient function
of variable CRIM; the horizontal
black thin line is y = 0
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Table 5 Frequencies that the covariates are selected in the observed sample and in the bootstrap samples.
Av.Time: the average computation time of the methods

β0(·) β1(·) β2(·) β3(·) β4(·) β5(·) β6(·) Av.Time(sd)

All-subset

Observed 1 0 1 1 1 0 1 /

Bootstrap 200 15 192 190 187 23 165 18.32(2.58)

LAD(1)

Observed 1 0 1 1 1 1 1 /

Bootstrap 200 2 198 200 177 190 200 3.11(1.06)

4 Appendix

Let C denote some positive constants not depending on n, but which may assume
different values at each appearance. We first list some notations used in the following,
define Z = (Zi, i ∈ In)T , � = (�i, i ∈ In)T , B = diag(bi, i ∈ In), 
 =
diag(E[2(εi)], i ∈ In), P = �(�T B�)−1�T B, Ẑ = (I − P)Z and 	̂n =
Ẑ
T
BẐ, �̂n = Ẑ

T

Ẑ. Let Rnik = α0k(Ui) − π(Ui)

T θ0k and Rni = XT
i α0(Ui) −

�T
i �0.

Lemma 1 Suppose that C1-C4 hold. There exists a vector �0 = (θ01
T
, . . . , θ0p

T
)T

which satisfies

(I) ‖θ0k‖1 = 0, k ∈ {1, . . . , v}; ‖θ0k‖1 = 0, k ∈ {v + 1, . . . , p};
(II) supu∈[U0,U1] |α0k(u) − π(u)T θ0k | = O(K−γ

n ), k = 1, . . . , p.
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Lemma 1 follows directly from Corollary 6.21 of (Schumaker 1981, Chapter 6). So by
Lemma 1 and condition C3, we have

sup
i,k

|Rnik | = O(K−γ
n ) and sup

i
|Rni| = O(K−γ

n ).

Lemma 2 Suppose Equation (2) holds. Let Lp(F) denote the class of F-measurable
random variable ξ satisfying ‖ξ‖p = (E |ξ |p)1/p < ∞. Let ξ ∈ Lp(B(S)) and
η ∈ Lp(B(S ′)). Then, for any 1 ≤ p, h, q < ∞ such that 1

p + 1
q + 1

h = 1,

|E(ξη) − EξEη| ≤ C‖ξ‖p‖η‖q [α
(B(S),B(S ′)

)]1/h .

The proof of Lemma 2 can be found in Lemma 5.1 of Hallin et al. (2004). The following
Lemma 3 can be founded in Lee et al. (2004).

Lemma 3 Let (Zi : i ∈ Z
N ) be a zero-mean real valued random fields such that

supi∈In
‖Zi‖2 ≤ b0 < ∞. Then, for each q = (q1, . . . , qN ) with integer-valued

coordinates qk ∈ [1, nk/2] and for each ε > 0 we have

P

⎛
⎝
∣∣∣∣∣∣
∑
i∈In

Zi

∣∣∣∣∣∣
≥ n̂ε

⎞
⎠ ≤ 2N

{
2 exp

(
− ε2q̂
2N+1v2(q)

)
+ 4b0

ε
ϕ

(
min

1≤k≤N
pk

)}
,

where q̂ = ∏N
k=1 qk, pk = nk/(2qk) and v2(q) = 2N+1σ 2(q)/ p̂2 + b0ε with p̂ =∏N

k=1 pk, σ
2(q) = mini,j E(

∑
k∈Aij

Zk)2 andAij =∏N
k=1((ik +2 jk)pk, (ik +2 jk +

1)pk]. The minimization in the defining equation for σ 2(q) is taken over all pairs of
N-tuple indices i and j with ik = 0, 1 and ik = 0, 1, . . . , qk − 1.

Proof (I) of Theorem 2 For any given � ∈ R
pqn and β ∈ R

q , let

ς (β,�) =
(

ς1
ς2

)
=
(

�̂
−1/2
n 	̂n(β − β0)

K−1/2
n Hn(� − �0) + K 1/2

n H−1
n �T BZ(β − β0)

)
,

(17)

where H2
n = Kn�

T B�, and we standardize Z̃i = �̂
1/2
n 	̂

−1
n Ẑi, �̃i = K 1/2

n H−1
n �i.

So we have

∑
i∈In

ρ(Yi − �T
i � − ZT

i β) =
∑
i∈In

ρ(εi − ςT
1 Z̃i − ςT

2 �̃i + Rni). (18)

Let

�n(ς) =
∑
i∈In

ρ(εi − ςT
1 Z̃i − ςT

2 �̃i + Rni) −
∑
i∈In

ρ(εi + Rni)
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=
∑
i∈In

{E[ρ(εi − ςT
1 Z̃i − ςT

2 �̃i + Rni) − ρ(εi + Rni)|Xi, Zi,U i]

− [ςT
1 Z̃i + ςT

2 �̃i](εi)}
+
∑
i∈In

[ρ(εi − ςT
1 Z̃i − ςT

2 �̃i + Rni) − ρ(εi + Rni) + [ςT
1 Z̃i

+ ςT
2 �̃i](εi) − E{ρ(εi − ςT

1 Z̃i − ςT
2 �̃i + Rni) − ρ(εi

+ Rni)|Xi, Zi,U i}]
= �n1(ς) +

∑
i∈In

[�i(ς) − E{ρ(εi − ςT
1 Z̃i − ςT

2 �̃i + Rni)

− ρ(εi + Rni)|Xi, Zi,U i}]
= �n1(ς) + �n2(ς), (19)

where �i(ς) = ρ(εi −ςT
1 Z̃i −ςT

2 �̃i + Rni)−ρ(εi + Rni)+[ςT
1 Z̃i +ςT

2 �̃i](εi).
By the definition of Q(�,β), we have

Q(�,β) − Q(�0,β0) = �n(ς)+
p∑

k=1

λ∗
nk(‖θk‖r − ‖θ0k‖r ) +

q∑
k=1

λ∗∗
nk(|βk | − |β0k |).

(20)

Then, a sufficient condition for proving this part is for any ε > 0 and r ≥ 1; there
exists some C , such that

Pr

(
inf

‖ς‖2=CK 1/2
n

Q(�,β) > Q(�0,β0)

)
> 1 − ε, (21)

as n → ∞. Specially, using the fact that Q(�,β) is minimized at ς̂ . By the con-
vexity of Q(·) and Corollary 2.5 of Eggleston (1958, Chapter 3), (21) can lead to

Pr
(
‖ς̂‖2 ≤ CK 1/2

n

)
> 1 − ε, as n → ∞, and thus ‖ς̂‖2 = Op(K

1/2
n ). Then, by

Lemma 1, we can obtain

n̂−1
∑
i∈In

{̂αl(Ui) − α0l(Ui)}2 ≤ 2n̂−1
∑
i∈In

{πT
i (̂θ l − θ0l )}2 + 2CK−2γ

n

≤ Op (̂n−1‖ς̂2‖22) + Op(‖β̂ − β0‖22) + O(K−2γ
n )

= Op(K
−2γ
n ) = Op

(
n̂−2γ /(2γ+1)

)
. (22)

Next, we will prove (21). Firstly, by the convex property of ρ(·), we have

|ρ(εi − ςT
1 Z̃i − ςT

2 �̃i + Rni) − ρ(εi + Rni) + [ςT
1 Z̃i + ςT

2 �̃i](εi + Rni)|
≤ |ςT

1 Z̃i + ςT
2 �̃i| · |(εi − ςT

1 Z̃i − ςT
2 �̃i + Rni) − (εi + Rni)|, (23)
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thus

|�i(ς)|
≤ |ςT

1 Z̃i + ςT
2 �̃i| · (|(εi − ςT

1 Z̃i − ςT
2 �̃i + Rni) − (εi + Rni)| + |(εi + Rni) − (εi)|)

≤ |ςT
1 Z̃i + ςT

2 �̃i| · (|(εi − ςT
1 Z̃i − ςT

2 �̃i + Rni) − (εi)| + 2|(εi + Rni) − (εi)|).
(24)

Thus, when ‖ς‖2 ≤ cK 1/2
n , by condition C5 and note that E [(εi) | Xi, Zi,Ui] = 0,

we have that

max
i∈In

|�2i(ς)| = max
i∈In

|�i(ς) − E (�i(ς) | Xi, Zi,Ui) | ≤ C · c · Kn

n̂1/2
. (25)

Furthermore, by regularity conditions C1 and C5,

σ 2(q) = min
i,j

E

⎛
⎝∑

k∈Aij

�2k(ς)

⎞
⎠

2

= E

⎛
⎝ ∑

k∈A00

�2k(ς)

⎞
⎠

2

=
∑
k∈A00

E�2
2k(ς) +

∑
i,j∈A00

∑
i=j

E�2i(ς)�2j(ς), (26)

where A00 =∏N
k=1(0, pk]. For the first part of formula (26), one can verify

∑
k∈A00

E�2
2k(ς) ≤

∑
k∈A00

E�2
k(ς)

≤
∑
k∈A00

CKnE[(ςT
1 Z̃i + ςT

2 �̃i)
2(K 1/2

n |ςT
1 Z̃i + ςT

2 �̃i| + Rni)]

≤ CKn p̂‖ς‖22
‖ς‖2Knn̂−1/2 + K−γ

n

n̂
. (27)

Note that

∑
i,j∈A00

∑
i=j

E�2i(ς)�2j(ς) =
∑
i,j∈S1

E�2i(ς)�2j(ς) +
∑
i,j∈S2

E�2i(ς)�2j(ς),

(28)

where

S1 = {i = j ∈ A00 : | jk − ik | ≤ cnk, k = 1, . . . , N } ,

S2 = {i, j ∈ A00 : | jk − ik | > cnk, k = 1, . . . , N } ,
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cnk = [K δ/(2+δ)a
n ], for k = 1, . . . , N , and constant a > (4+ δ)N/(2+ δ). According

to formula (27), we can obtain that

∑
i,j∈S1

|E�2i(ς)�2j(ς)| ≤
∑
i,j∈S1

[E�2
2i(ς)]1/2[E�2

2j(ς)]1/2

≤ CKn p̂
N∏

k=1

cnk‖ς‖22
‖ς‖2Knn̂−1/2 + K−γ

n

n̂

= O

(
p̂K 2+δN/(2+δ)a

n

n̂3/2

)
. (29)

By regularity conditions C2, C3 and C5, and let p = h = 2 + δ, q = (2 + δ)/δ in
Lemma 2, we can obtain that

∑
i,j∈S2

E�2i(ς)�2j(ς)

≤
∑
i,j∈S2

C[E(|�2i(ς)|2+δ)]2/(2+δ)[ϕ(‖i − j‖2)]δ/(2+δ)

≤
∑
i,j∈S2

C[E(|�i(ς)|2+δ)]2/(2+δ)[ϕ(‖i − j‖2)]δ/(2+δ)

≤
∑
i,j∈S2

C{E[|ςT
1 Z̃i + ςT

2 �̃i|2+δ(|ςT
1 Z̃i + ςT

2 �̃i| + |Rni|)]}2/(2+δ)[ϕ(‖i − j‖2)]δ/(2+δ)

≤
∑
i,j∈S2

CK 2
nn̂

−(3+δ)/(2+δ)‖ς‖2+2/(2+δ)
2 [ϕ(‖i − j‖2)]δ/(2+δ). (30)

Note that ϕ(t) = O(exp(−κt)), by the similar arguments used in Lemma 5.2 in Hallin
et al. (2004),

∑
i,j∈S2

[ϕ(‖i − j‖2)]2/(2+δ) ≤ C p̂
N∑

k=1

‖ p‖2∑
t=cnk

t N−1[ϕ(t)]δ/(2+δ)

≤ C p̂ exp

(
−ζ1K

δ/(2+δ)a
n δ

2 + δ

)
, (31)

where constant ζ1 ∈ (0, κ). So
∑

i,j∈S2 E�2i(ς)�2j(ς) = Op( p̂K
2+δN/(2+δ)a
n n̂

−3
2 ),

furthermore, by formulas (26)–(31), we can get that

σ 2(q) = O

(
K 2+δN/(2+δ)a
n p̂

n̂3/2

)
. (32)
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Thus, combining (26), (32) and Lemma 3, for any ε > 0, we can obtain

Pr

⎧⎨
⎩ sup

‖ς‖2≤CK 1/2
n

∣∣∣∣
1

Kn
�n2(ς)

∣∣∣∣ > ε

⎫⎬
⎭

≤ 2N
(
4CKnn̂1/2c

ε

)pKn {
2 exp

(
− K 2

nε
2q̂

2N+2(2N+2n̂2σ 2(q)/ p̂2 + b0n̂Knε)

)

+ 8̂nb0
Knε

ϕ( min
1≤k≤N

pk)

}

≤ 2N+1
{
exp

(
pKn log n̂

[
1 − Knε

2q̂

2N+2 p log n̂(2N+2n̂2σ 2(q)/ p̂2 + b0n̂Knε)

])

+ exp

(
pKn log n̂

[
1 − κ min

1≤k≤N

pk
pKn log n̂

])}

= o(1). (33)

What is more, for arbitrary ε > 0, we can prove that, when n → ∞, there exists large
constant C , such that

Pr

{
inf

‖ς‖2=CεK
1/2
n

1

Kn
�n1(ς) > 0

}
> 1 − ε. (34)

Thus, by formulas (33) and (34), we have that, for some large enough positive constant
C ,

lim
n→∞Pr

(
inf

‖ς‖2=CK 1/2
n

1

Kn
�n(ς) > 0

)
= 1. (35)

Then note, for any m-dimension vector ζ and r ≥ 1,

‖ζ‖r ≤ ‖ζ‖1 ≤ m1/2‖ζ‖2, (36)

holds. So for r ≥ 1,

∣∣∣‖θk‖r − ‖θ0k‖r
∣∣∣ ≤ ‖θk − θ0k‖r ≤ ‖θk − θ0k‖1 ≤ q1/2n ‖� − �0‖2. (37)

When ‖ς‖2 = CK 1/2
n , by (37), we have

p∑
k=1

λ∗
nk(‖θk‖r − ‖θ0k‖r ) ≥

s0∑
k=1

λ∗
nk(‖θk‖r − ‖θ0k‖r )

≥ a∗
n1

s0∑
k=1

(‖θk‖r − ‖θ0k‖r )
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≥ −vCa∗
n1q

1/2
n Knn̂−1/2

= o(Kn), (38)

and similarly,

q∑
k=1

λ∗∗
nk(|βk | − |β0k |) ≥ −c(a∗∗

n CK 1/2
n n−1/2) = op(1). (39)

Thus, for any ε > 0, there exists some constant C , such that

lim
n→∞Pr

(
inf

‖ς‖2=CK 1/2
n

�n(ς)+
p∑

k=1

λ∗
nk(‖θk‖r − ‖θ0k‖r )+

q∑
k=1

λ∗∗
nk(|βk | − |β0k |) > 0

)

> 1 − ε. (40)

��
Proof (I) of Theorem 1 Now, we prove θ̂k = 0, k = v + 1, . . . , p with probability
tending to one. A sufficient condition is that

{
∂Q(�,β)

∂θk,s
< 0, θk,s < 0,

∂Q(�,β)
∂θk,s

> 0, θk,s > 0

holds for k = v + 1, . . . , p and s = 1, . . . , qn. This suffices to prove that

∥∥∥∥∥∥
∑
i∈In


(
Yi − �T

i �̂ − ZT
i β̂
)
Xikπ i

∥∥∥∥∥∥
2

≤ λnk, k = v + 1, . . . , p, (41)

for r = 1, 2.
Let Sn(�,β) = ∑

i∈In
(Yi − �T

i � − ZT
i β)�i, S0n = ∑

i∈In
(εi)�i, and

�i = 2(εi)�
T
i �i, �ij = (εi)(εj)�

T
i �j, then

E

⎧⎪⎨
⎪⎩

⎡
⎣∑
i∈In

(εi)�i

⎤
⎦
T ⎡
⎣∑
i∈In

(εi)�i

⎤
⎦
⎫⎪⎬
⎪⎭

=
∑
i∈In

E�i +
∑
i,j∈S1

E�ij +
∑
i,j∈S2

E�ij.

(42)

Thus, by the regularity condition C4, we have

∑
i∈In

E�i =
∑
i∈In

E
(
E(2(εi)|Xi,Ui)�

T
i �i

)
≤ C n̂. (43)
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Furthermore, let Ln = K 2/(4+δ)
n , �i1 = �i(εi)I|(εi)|≤Ln and �i2 = �i(εi)

I|(εi)|>Ln . Using arguments similar to those used in the proof of Theorem 1 of Tang
and Cheng (2009), one can verify

∑
i,j∈S1

E�ij ≤ CKn(L
−δ/2
n + L2

nK
−1
n )

N∏
k=1

cnk = o(̂n). (44)

Using arguments similar to those used in the proof of Lemma 5.2 of Hallin et al.
(2004), and noting that ϕ(u) = O(exp(−κu)), we have

∑
i,j∈S2

E�ij ≤ CK δ/(2+δ)
n

∑
i,j∈S2

(ϕ(‖i − j‖2))δ/(2+δ)

≤ C p̂
N∑

k=1

‖ p‖2∑
u=cnk

uN−1(ϕ(u))δ/(2+δ)

≤ C p̂ exp

(
−κ(K δ/(2+δ)a

n )δ

2 + δ

)

= o(̂n). (45)

Thus, ‖S0n‖2 = Op (̂n1/2), and similarly,

∥∥∥E{Sn(�0,β0) − S0n}
∥∥∥
2

=
∥∥∥∥∥∥
∑
i∈In

�iE{(εi − Rni) − (εi)}
∥∥∥∥∥∥
2

= Op

⎛
⎝
∥∥∥∥∥∥
∑
i∈In

�ibiRni

∥∥∥∥∥∥
2

⎞
⎠

= Op(K
−γ
n n̂1/2), (46)

E

⎧⎪⎨
⎪⎩

⎡
⎣∑
i∈In

((εi − Rni) − (εi))�i

⎤
⎦
T ⎡
⎣∑
i∈In

((εi − Rni) − (εi))�i

⎤
⎦
⎫⎪⎬
⎪⎭

= Op

(
n̂1/2

K γ /2
n

)
. (47)

Note,

‖Sn(�0,β0) − S0n‖2 = O
(
‖E{Sn(�0,β0) − S0n}‖2+{E‖Sn(�0,β0) − S0n‖22}1/2

)
.

(48)
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Thus, by (46) and (47), ‖Sn(�0,β0) − S0n‖2 = Op(K
−γ
n n̂1/2); furthermore, by

Lemma 3 and the similar arguments as used in the proofs of Lemmas 8.4 and 8.5
in Wei and He (2006), and note Kn = o(̂n1/4), we can verify that ‖Sn(�̂, β̂) −
Sn(�0,β0)‖2 = op (̂n1/2) holds. So, by the above discussion, we have

‖Sn(�̂, β̂)‖2
≤ ‖Sn(�̂, β̂) − Sn(�

0,β0)‖2 + ‖Sn(�0,β0) − S0n‖2 + ‖S0n‖2
= Op (̂n1/2). (49)

Furthermore, according to C7,

λ∗
nk /̂n

1/2 ≥ a∗
n2/̂n

1/2 → ∞, (50)

as n → ∞. Thus, the proof is completed. ��
Proof (II) of Theorem 1 Similar to the proof of (I) in Theorem 1, we can prove that

∥∥∥∥∥∥
∑
i∈In

(Yi − �T
i �̂ − ZT

i β̂)Zik

∥∥∥∥∥∥
2

= Op(
√
nKn), (51)

for k = c + 1, . . . , q. Furthermore, by C8, λ∗∗
nk/

√
nKn ≥ b∗∗

n /
√
nKn → ∞, for

l = c + 1, . . . , q. So, this imply

lim
n→∞Pr

⎛
⎝λ∗∗

nk >

∥∥∥∥∥∥
∑
i∈In

(Yi − �T
i �̂ − ZT

i β̂)Zik

∥∥∥∥∥∥
2

⎞
⎠ = 1, k = c + 1, . . . , q.

(52)

Thus, the proof is completed. ��
Proof (II) of Theorem 2 Let

ς∗ (β∗, �∗
) =
(

ς∗
1

ς∗
2

)
=
(

�∗
n
−1/2	∗

n(β
∗ − β∗

0)

K−1/2
n H∗

n(�∗ − �0∗) + K 1/2
n H∗

n
−1�∗T BZ∗(β∗ − β∗

0)

)
,

(53)

where H∗
n
2 = Kn�

∗T B�∗, �∗ = (θT1 , . . . , θT
v )T and �0∗ =

(
θ01

T
, . . . , θ0v

T
)T

,

Z∗ = (Z∗
i , i ∈ In)T , �∗ = (�∗

i , i ∈ In)T . By theorem 1, we know that, with
probability tending to one, ς∗(β̂∗

, �̂∗) is the minimizer of

Q(ς∗
1, ς

∗
2) =

∑
i∈In

ρ(εi − ς∗
1
T Z̃

∗
i − ς∗

2
T
�̃

∗
i − Rni) +

v∑
l=1

λ∗
nl‖θ l‖r +

c∑
k=1

λ∗∗
nk |βk |,

(54)
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where �̃
∗
i = K 1/2

n H∗
n
−1�∗

i , Z̃
∗
i = �∗

n
1/2	∗

n
−1Z∗∗

i , Z∗∗
i is defined similarly to Ẑi.

Firstly, define ς̂∗∗
1 = �∗

n
−1/2∑

i∈In
Z∗∗
i

T(εi). Then, using arguments similar
to those used in the proof of Lemma 6 of Tang and Cheng (2009), we have that ς̂∗∗

1
converges to normal distribution with mean 0 and covariance matrix Ic. So, in order
to prove this theorem, we only need to verify ‖ς̂∗∗

1 − ς̂∗
1‖2 = op(1), or equivalently,

for any δ > 0, Pr(‖ς̂∗∗
1 − ς̂∗

1‖2 < δ) → 1.
By the definition of ς̂∗∗

1 and ς̂∗
1, there exists some constant C > 0, such that

limn→∞ Pr(‖ς̂∗∗
1 ‖2 < C) = 1 and limn→∞ Pr(‖ς̂∗

1‖2 < CK 1/2
n ) = 1. Let

Vi(ς
∗
1, ς̂

∗∗
1 ) = ρ(εi − ς∗

1
T Z̃

∗
i − ς̂∗T

2 �̃
∗
i − Rni) − ρ(εi − ς̂∗∗T

1 Z̃
∗
i − ς̂∗T

2 �̃
∗
i − Rni),

(55)

thus by the convexity of loss function ρ(·), it is sufficient to prove that

Pr

⎧⎨
⎩ inf

‖ς∗
1−ς̂∗∗

1 ‖2=δ

∑
i∈In

Vi(ς
∗
1, ς̂

∗∗
1 ) > 0

⎫⎬
⎭→ 1. (56)

By arguments similar to those used in the proof of Theorem 3.1 of Tang (2014), for
any given δ > 0,

sup
‖ς∗

1−ς̂∗∗
1 ‖2≤δ

∣∣∣∣∣∣
∑
i∈In

{Vi(ς∗
1, ς̂

∗∗
1 ) − (ς∗

1 − ς̂∗∗
1 )T Z̃

∗
i(εi) − EVi(ς

∗
1, ς̂

∗∗
1 )}

∣∣∣∣∣∣
= op(1), (57)

sup
‖ς∗

1−ς̂∗∗
1 ‖2≤δ

∣∣∣∣∣∣
∑
i∈In

EVi(ς
∗
1, ς̂

∗∗
1 ) − 1

2
(ς∗

1
�
�∗

n
1
2 	∗

n
−1

�∗
n

1
2 ς∗

1 − ς̂∗∗�
1 �∗

n
1
2 	∗

n
−1

�∗
n

1
2 ς̂∗∗

1 )

∣∣∣∣∣∣
= op(1).

(58)

Combining (57) and (58) yields

sup
‖ς∗

1−ς̂∗∗
1 ‖2≤δ

∣∣∣∣∣∣
∑
i∈In

Vi(ς
∗
1, ς̂

∗∗
1 ) − 1

2
(ς∗

1 − ς̂∗∗
1 )��∗

n
1
2 	∗

n
−1

�∗
n

1
2 (ς∗

1 − ς̂∗∗
1 )

∣∣∣∣∣∣
= op(1).

(59)

What is more, for constant C > 0, when ‖ς∗
1 − ς̂∗∗

1 ‖2 ≤ CK 1/2
n ,

∑c
k=1 λ∗∗

nk{|βk | −
|β̂∗∗

k |} ≥ −a∗∗
n ‖	∗

n
−1�∗

n
1
2 (ς∗

1 − ς̂∗∗
1 )‖1 = op(1), where β̂

∗∗ = 	∗
n
−1�∗

n
1
2 ς̂∗∗

1 + β∗
0.

So, based on the above discussion, as n tends to infinite, (56) holds. Thus, for any
δ > 0, limn→∞ Pr(‖ς̂∗∗

1 − ς̂∗
1‖2 > δ) = 0. The proof is completed. ��
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