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Abstract Weconsider the problem of parameter estimation by continuous time obser-
vations of a deterministic signal in white Gaussian noise. It is supposed that the signal
has a cusp-type singularity. The properties of the maximum-likelihood and Bayesian
estimators are described in the asymptotics of small noise. Special attention is paid to
the problem of parameter estimation in the situation of misspecification in regularity,
i.e., when the statistician supposes that the observed signal has this singularity, but
the real signal is smooth. The rate and the asymptotic distribution of the maximum-
likelihood estimator in this situation are described.

Keywords Parameter estimation · Cusp-type singularity · Small noise ·
Misspecification

1 Introduction

Consider the problem of parameter estimation by continuous time observations XT =
(Xt , 0 ≤ t ≤ T ) of a signal in a white Gaussian noise (WGN)

dXt = S(ϑ, t) dt + ε dWt , X0 = 0, 0 ≤ t ≤ T . (1)
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40 O. V. Chernoyarov et al.

Here, S(ϑ, t) is a known function (signal), Wt , 0 ≤ t ≤ T , is a Wiener process, and
ϑ ∈ � = (α, β) is an unknown parameter.

We want to estimate the parameter ϑ by continuous time observations XT and
to describe the properties of the estimators in the asymptotics of small noise, i.e.,
ε ∈ (0, 1] is known and the asymptotics corresponds to ε → 0.

It is known that if the signal S(ϑ, ·) is a smooth function of ϑ , then the maximum-
likelihood estimator (MLE) ϑ̂ε and the Bayesian estimators (BEs) ϑ̃ε are consistent
and asymptotically normal (with rate of convergence ε):

ε−1 (
ϑ̂ε − ϑ

) �⇒ N (
0, I(ϑ)−1) and ε−1 (

ϑ̃ε − ϑ
) �⇒ N (

0, I(ϑ)−1),

where I(ϑ) is the Fisher information

I(ϑ) =
∫ T

0
Ṡ(ϑ, t)2 dt (2)

(here and in the sequel, “dot” means derivation w.r.t. ϑ). We also have the conver-
gence of all polynomial moments and both estimators are asymptotically efficient
(see Ibragimov and Has’minskii 1974, 1981).

If the signal S(ϑ, t) = S(t −ϑ), where S(t) is a discontinuous function of t having
a jump at the point t = 0, then I(ϑ) = ∞. In this case, the MLE ϑ̂ε and the BEs ϑ̃ε

have the rate of convergence ε2 with different limit distributions:

ε−2 (
ϑ̂ε − ϑ

) �⇒ û and ε−2 (
ϑ̃ε − ϑ

) �⇒ ũ,

and the BEs are asymptotically efficient. Here, E(û2) > E(ũ2), i.e., the MLE is not
asymptotically efficient. For the proofs, see Ibragimov and Has’minskii (1975).

We are interested in the properties of the MLE ϑ̂ε in the case of observations (1),
where the signal S(ϑ, t) has a cusp-type singularity, i.e., at the vicinity of the point
t = ϑ , it has the representation S(ϑ, t) ≈ a |t − ϑ |κ , where κ ∈ (

0, 1
2

)
. Note that for

these values of κ , we have I(ϑ) = ∞.
The problem of parameter estimation for cusp-type singular density functions by

i.i.d. observations was considered in Prakasa (1968). It was shown that the rate of

convergence of the MLE ϑ̂n is n
− 1

2κ+1 :

n
1

2κ+1
(
ϑ̂n − ϑ

) �⇒ η̂.

An exhaustive study of singular estimation problems for i.i.d. observations, including
cusp-type singularity, can be found in Ibragimov and Has’minskii (1981). For sto-
chastic processes observed in continuous time, similar problems were considered in
Dachian (2003) for inhomogeneous Poisson processes and in Dachian and Kutoyants
(2003) and Fujii (2010) for ergodic diffusion processes. Note as well the works Döring
(2015), Döring and Jensen (2015), and Prakasa (1985, 2004), where the problem of
estimation of the cusp location was considered for regression models. Nonparametric
regression model with cusp-type singularities was studied in Raimondo (1998).
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On parameter estimation for cusp-type signals 41

This work is devoted to two problems. The first (auxiliary) one is to describe the
asymptotics of the MLE ϑ̂ε and of the BEs ϑ̃ε in the case of a signal with cusp-type
singularity. This problem is studied in Sect. 2. The observed process is supposed to
be

dXt = [
a |t − ϑ0|κ + h(ϑ0, t)

]
dt + ε dWt , X0 = 0, 0 ≤ t ≤ T .

Here, the parameters a > 0 and κ ∈ (
0, 1

2

)
, as well as the (smooth) function h(·)

are known, while the location ϑ0 ∈ (α, β) of the cusp is unknown. We consider the
problem of estimation of the true value ϑ0 by continuous time observations XT =
(Xt , 0 ≤ t ≤ T ). The properties of the estimators are described in the asymptotics
ε → 0. It is shown that

ε− 2
2κ+1

(
ϑ̂ε − ϑ

) �⇒ ξ̂ and ε− 2
2κ+1

(
ϑ̃ε − ϑ

) �⇒ ξ̃ ,

where ξ̂ and ξ̃ are twodifferent r.v.’s, and theBEs are asymptotically efficient.Note that
it is shown in Novikov (2014) that E(ξ̂2) > E(ξ̃2), i.e., the MLE is not asymptotically
efficient.

The second (main) problem is to study the properties of the MLE, when the theo-
retical signal supposed by the statistician has cusp-type singularity, but the real signal
is a smooth function. Let us consider the following example to illustrate this statement
of the problem. Suppose that the model of observations chosen by the statistician
(theoretical model) is

dXt = M(ϑ, t) dt + ε dWt , X0 = 0, 0 ≤ t ≤ T, (3)

where ϑ ∈ � = (α, β), 0 < α < β < T , and the signal is

M(ϑ, t) = sgn(t − ϑ)
[|t − ϑ |κ 1I{|t−ϑ |≤1} + 1I{|t−ϑ |>1}

]

with some known a > 0 and κ ∈ (
0, 1

2

)
. The observed process (real model) is

dXt = S(ϑ0, t) dt + ε dWt , X0 = 0, 0 ≤ t ≤ T, (4)

where

S(ϑ, t) = sgn(t − ϑ)

[ |t − ϑ |
δ

1I{|t−ϑ |≤δ} + 1I{|t−ϑ |>δ}
]

with some δ > 0. A plot of these two signals (with δ = 1
4 ) is given in Fig. 1.

We show that

ε− 2
3−2κ

(
ϑ̂ε − ϑ0

) �⇒ ζ̂ ,

where ζ̂ is some random variable described in Sect. 3.
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42 O. V. Chernoyarov et al.

Fig. 1 Theoretical (dashed line) and real (continuous line) signals

This statement of the problem arose from our contacts with specialists in statistical
radiophysics. The motivation is the following. The algorithms of detection of the
change-point are based on the assumption that the signal has rectangular or cusp-type
shape (see, e.g., (3)). However, the real electronic devices cannot produce signals
with exactly perpendicular or cusp-type front, even if the smooth (real) signals can be
close, in some sense, to the supposed shape. The properties of the estimators strongly
depend on the analytic properties of the observed signal and the form of the supposed
theoretical signal. Therefore, it is interesting to study the properties of the estimators
of the location of a cusp or of a change-point in the situations of misspecification in
regularity.We consider two different approximations. The first one is an approximation
of a rectangular signal by a smooth or cusp-type real signal (considered inChernoyarov
et al. 2015). It is shown there that if the theoretical signal is of change-point type and
the observed signal is smooth, then

ε− 2
3
(
ϑ̂ε − ϑ

) �⇒ η̂.

The second approximation is presented in this work. Here, the real signal is
smooth (finite derivative), while the approximating cusp-type signal has infinite
derivative. This problem is studied in Sect. 3, where we consider a slightly more
general situation, where the MLE converges to the value ϑ̂ which minimizes the
Kullback–Leibler distance between the measures corresponding to real and theoreti-
cal models.

The proofs in Sect. 2 are carried out following two general results: Theorems 1.10.1
and 1.10.2 from Ibragimov and Has’minskii (1981), i.e., we verify the conditions of
these theorems for our model of observations. In Sect. 3, the direct application of the
samemethod is not possible, since in the case ofmisspecification, the expectation of the
pseudo-likelihood-ratio process Zε(u) is no more equal to 1 and tends to zero. Recall
that the property Eϑ0 Zε(u) = 1 is widely used in the proofs of the above-mentioned
theorems from Ibragimov and Has’minskii (1981). The idea is to introduce another
normalized process Ẑε(u) and to describe the properties of the MLE with the help of
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On parameter estimation for cusp-type signals 43

this new process. We discuss as well the problem of the simultaneous estimation of
the parameters ϑ, a, and κ .

2 Cusp location estimation

We consider the problem of parameter estimation by continuous time observations
XT = (Xt , 0 ≤ t ≤ T ) of a deterministic signal in the presence of a white Gaussian
noise of small intensity:

dXt = S(ϑ0, t) dt + ε dWt , X0 = 0, 0 ≤ t ≤ T . (5)

Here, the unknown parameter isϑ0 ∈ � = (α, β) andwe are interested in the behavior
of the estimators of this parameter in the asymptotics of small noise, i.e., as ε → 0.

Suppose that the signal S(ϑ, t) has a cusp-type singularity:

S(ϑ, t) = a |t − ϑ |κ + h(ϑ, t),

where 0 < α < ϑ < β < T . Here, a > 0 and κ ∈ (
0, 1

2

)
are some known the

constants, and h(ϑ, t) is continuously differentiable known function having bounded
derivatives. Note that the Fisher information is not finite in this case, and so this
parameter estimation problem is non-regular (singular).

The likelihood-ratio function is (see Liptser and Shiryayev 2001) is

V
(
ϑ, XT ) = exp

{
1

ε2

∫ T

0
S(ϑ, t) dXt − 1

2ε2

∫ T

0
S(ϑ, t)2 dt

}
, ϑ ∈ �,

and the maximum-likelihood estimator (MLE) ϑ̂ε is defined by the equation

V
(
ϑ̂ε, X

T ) = sup
ϑ∈�

V
(
ϑ, XT )

. (6)

Suppose that ϑ is a random variable with continuous positive density function
p(θ), α < θ < β. The Bayesian estimator (BE) ϑ̃ε with prior density p(·) and
quadratic loss function is

ϑ̃ε =
∫ β

α
θ p(θ) V

(
θ, XT

)
dθ

∫ β

α
p(θ) V

(
θ, XT

)
dθ

. (7)

We are interested in the properties of the estimators ϑ̂ε and ϑ̃ε in the asymptotics
ε → 0.

Introduce the Hurst parameter H = κ + 1
2 and the two-sided fractional Brownian

motion (fBm) WH (u), u ∈ R. Recall, that EWH (u) = 0 and

EWH (u)WH (v) = 1

2

[
|u|2H + |v∣∣2H − |u − v|2H

]
, u, v ∈ R. (8)
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44 O. V. Chernoyarov et al.

In addition, introduce two random variables ξ̂ and ξ̃ by the relations

Z
(
ξ̂
) = sup

u∈R
Z(u) and ξ̃ =

∫
R
u Z(u) du

∫
R
Z(u) du

,

where the process

Z(u) = exp

{

aW

H (u) − 
2
a

2
|u|2H

}
, u ∈ R. (9)

Here


2
a = a2

∫ ∞

−∞
[|v − 1|κ − |v|κ]2 dv.

Introduce as well the process

Zo(v) = exp

{
wH (v) − 1

2
|v|2H

}
, v ∈ R,

where wH (v) is a fBm, and the corresponding random variables ξ̂o and ξ̃o are defined
by the relations

Zo(ξ̂o
) = sup

v∈R
Zo(v) and ξ̃o =

∫
R

v Zo(v) dv
∫
R
Zo(v) dv

.

Note that
ξ̂ = 


−1/H
a ξ̂o and ξ̃ = 


−1/H
a ξ̃o. (10)

The proof of (10) follows immediately by changing the variable u = 

−1/H
a v in Z(u)

and putting wH (v) = 
a W H
(



−1/H
a v

)
.

Asymptotically efficient estimators are defined with the help of the following lower
bound. For all ϑ0 ∈ � and all estimators ϑ̄ε, we have the relation

lim
δ→0

lim
ε→0

sup
|ϑ−ϑ0|<δ

ε−2/H Eϑ

∣∣ϑ̄ε − ϑ
∣∣2 ≥ E

(
ξ̃2

) = 

−2/H
a E

(
ξ̃o

2
)
. (11)

Therefore, we call an estimator ϑ∗
ε asymptotically efficient if for all ϑ0 ∈ �, we have

the equality
lim
δ→0

lim
ε→0

sup
|ϑ−ϑ0|<δ

ε−2/H Eϑ

∣∣ϑ∗
ε − ϑ

∣∣2 = E
(
ξ̃2

)
. (12)

The proof of the bound (11) follows from the general results presented in Section
1.9 (see (1.9.4)) of Ibragimov and Has’minskii (1981). We can recall here the sketch
of the proof, supposing that the properties of the BEs for this model are already
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On parameter estimation for cusp-type signals 45

established (see Theorem 1 below). Introduce a continuous positive density function
q(ϑ), ϑ0 − δ < ϑ < ϑ0 + δ. Then, we can write

sup
|ϑ−ϑ0|<δ

Eϑ

∣∣ϑ̄ε − ϑ
∣∣2 ≥

∫ ϑ0+δ

ϑ0−δ

Eϑ

∣∣ϑ̄ε − ϑ
∣∣2 q(ϑ) dϑ

≥
∫ ϑ0+δ

ϑ0−δ

Eϑ

∣∣ϑ̃q,ε − ϑ
∣∣2 q(ϑ) dϑ,

where we denoted ϑ̃q,ε the BE for the prior density q(·). As we have the convergence
of moments of the BEs, we obtain the limit

lim
ε→0

sup
|ϑ−ϑ0|<δ

ε−2/H Eϑ

∣∣ϑ∗
ε − ϑ

∣∣2 ≥ lim
ε→0

ε−2/H
∫ ϑ0+δ

ϑ0−δ

Eϑ

∣∣ϑ̃q,ε − ϑ
∣∣2 q(ϑ) dϑ

=
∫ ϑ0+δ

ϑ0−δ

E
∣∣ξ̃

∣∣2 q(ϑ) dϑ = E
(
ξ̃2

)

for all δ > 0. Remind that E
(
ξ̃2

)
does not depend on ϑ . This proves the lower

bound (11).

Theorem 1 The MLE and the BEs are consistent, and have different limit distribu-
tions:

ε−1/H (
ϑ̂ε − ϑ

) �⇒ ξ̂ and ε−1/H (
ϑ̃ε − ϑ

) �⇒ ξ̃ ,

the polynomial moments converge:

lim
ε→0

Eϑ

∣∣∣∣
ϑ̂ε − ϑ

ε1/H

∣∣∣∣

p

= Eϑ

∣∣ξ̂
∣∣p and lim

ε→0
Eϑ

∣∣∣∣
ϑ̃ε − ϑ

ε1/H

∣∣∣∣

p

= Eϑ

∣∣ξ̃
∣∣p

for any p > 0, and the BEs are asymptotically efficient.

Proof To prove this theorem, we put ϕε = ε1/H , introduce the normalized likelihood
ratio

Zε(u) = V
(
ϑ0 + ϕεu, XT

)

V
(
ϑ0, XT

) , u ∈ Uε = (
ε−1/H (α − ϑ0), ε

−1/H (β − ϑ0)
)
,

and check the conditions of general Theorems 1.10.1 and 1.10.2 from Ibragimov and
Has’minskii (1981). The verification of these conditions is done with the help of
several lemmas presented below.

Lemma 1 We have the convergence of finite-dimensional distributions of Zε(·): for
any any k = 1, 2, . . . and any u1, . . . , uk ∈ R, we have
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(
Zε(u1), . . . , Zε(uk)

) �⇒ (
Z(u1), . . . , Z(uk)

)
. (13)

Moreover, this convergence is uniform in ϑ on compacts K ⊂ �.

Proof We can write (u > 0)

ln Zε(u) = 1

ε2

∫ T

0

[
S(ϑ0 + ϕεu, t) − S(ϑ0, t)

]
dXt

− 1

2ε2

∫ T

0

[
S(ϑ0 + ϕεu, t)2 − S(ϑ0, t)

2
]
dt

= 1

ε

∫ T

0

[
S(ϑ0 + ϕεu, t) − S(ϑ0, t)

]
dWt

− 1

2ε2

∫ T

0

[
S(ϑ0 + ϕεu, t) − S(ϑ0, t)

]2 dt.

For the last integral, we have

∫ T

0

[
S(ϑ0 + ϕεu, t) − S(ϑ0, t)

]2 dt

=
∫ T

0

[
a |t − ϑ0 − ϕεu|κ − a |t − ϑ0|κ + h(ϑ0 + ϕεu, t) − h(ϑ0, t)

]2
dt

=
∫ T−ϑ0

−ϑ0

[
a |t − ϕεu|κ − a |t |κ + ϕε u ḣ

(
ϑ̃, t − ϑ0

)]2
dt,

where we changed the variable and used Taylor expansion for the function h(ϑ, t).
The function ḣ(ϑ, t) is bounded, and hence, we have

ε−2
∫ T

0

[
ϕε u ḣ

(
ϑ̃, t

)]2
dt = ε

2
κ+ 1

2
−2

u2
∫ T

0
ḣ
(
ϑ̃, t

)2 dt ≤ C u2 ε

1−2κ
κ+ 1

2 −→ 0.

Putting t = ϕεs, we obtain

∫ T

0

[
S(ϑ0 + ϕεu, t) − S(ϑ0, t)

]2 dt

= ϕ2κ+1
ε

∫ T−ϑ0
φε

− ϑ0
ϕε

[
a |s − u|κ − a |s|κ + ϕ1−κ

ε u ḣ
(
ϑ̃, sϕε − ϑ0

)]2
dt

= a2 ϕ2κ+1
ε

∫ T−ϑ0
φε

− ϑ0
ϕε

[|s − u|κ − |s|κ]2 dt
(
1 + o(1)

)
.
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Hence

1

ε2

∫ T

0

[
S(ϑ0 + ϕεu, t) − S(ϑ0, t)

]2 dt

= a2 ϕ2κ+1
ε

ε2

∫ T−ϑ0
ϕε

− ϑ0
ϕε

[|s − u|κ − |s|κ]2 ds
(
1 + o(1)

)

= a2 |u|2κ+1
∫ T−ϑ0

ϕεu

− ϑ0
ϕεu

[|v − 1|κ − |v|κ]2 dv
(
1 + o(1)

) −→ 
2
a |u|2κ+1, (14)

where we put s = v u.
For the stochastic integral, we have

ε−2 Eϑ0

(∫ T

0

[
ϕε u ḣ

(
ϑ̃, t

)]
dWt

)2

= ε

1−2κ
κ+ 1

2 u2
∫ T

0
ḣ
(
ϑ̃, t

)2 dt

≤ C u2 ε

1−2κ
κ+ 1

2 −→ 0.

Hence

1

ε

∫ T

0

[
S(ϑ0 + ϕεu, t) − S(ϑ0, t)

]
dWt

= a
∫ T−ϑ0

ϕε

− ϑ0
ϕε

[|s − u|κ − |s|κ]
dW̃ (s)

(
1 + o(1)

)

�⇒ a
∫ ∞

−∞
[|s − u|κ − |s|κ]

dW (s) ∼ N (
0, |u|2H
2

a

)
.

Here, W̃ (s), s ∈ [−ϑ0
ϕε

, T−ϑ0
ϕε

]
, andW (v), u ∈ R, are two-sidedWiener processes. For

example, the process W (·) is defined as follows:

W (v) =
{
W+(v), if v > 0,

W−(−v), if v ≤ 0,

where W+(·) and W−(·) are two independent Wiener processes.
Let us denote

WH (u) = 
−1
1

∫ ∞

−∞
[|s − u|κ − |s|κ]

dW (s)

and verify (8). Using the elementary equality a b = 1
2

[
a2 +b2 − (a−b)2

]
, we obtain
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EWH (u)WH (v)

= 1

2

[
E

(
WH (u)

)2 + E
(
WH (v)

)2 − E
(
WH (u) − WH (v)

)2]

= 1

2

[
|u|2H + |v|2H − |u − v|2H

]

since

E
(
WH (u) − WH (v)

)2 = 
−2
1

∫ ∞

−∞
[|s − u|κ − |s − v|κ]2 ds

= 
−2
1

∫ ∞

−∞

[∣∣r − (u − v)
∣∣κ − |r |κ

]2
dr = |u − v|2κ+1.

Hence, WH (u), u ∈ R, is a two-sided fBm.
Therefore, we proved the convergence of one-dimensional distributions. The mul-

tidimensional case can be treated in a similar way: for arbitrary vectors (λ1, . . . , λk)

and (u1, . . . , uk), we can show the convergence

k∑

j=1

λ j ln Zε(u j ) �⇒
k∑

j=1

λ j ln Z(u j ),

and so the lemma is proved. 
�
Let us now denote

�(ϑ, ϑ0) =
∫ T

0

[
S(ϑ, t) − S(ϑ0, t)

]2 dt.

We have the following elementary estimate on �(·).
Lemma 2 There exists a constant μ > 0, such that

�(ϑ, ϑ0) ≥ μ |ϑ − ϑ0|2H . (15)

Proof First, let us note that for any ν > 0, we have

m(ν) = inf|ϑ−ϑ0|>ν
�(ϑ, ϑ0) > 0.

Indeed, if for some ν > 0, we had m(ν) = 0, then there would exist ϑ1 �= ϑ0, such
that for all t ∈ [0, T ], we would have

a |t − ϑ1|κ + h(ϑ1, t) = a |t − ϑ0|κ + h(ϑ0, t),

and the function

h(ϑ1, t) = a |t − ϑ0|κ − a |t − ϑ1|κ + h(ϑ0, t)
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would have no continuous bounded derivative on t . Hence, for |ϑ − ϑ0| > ν, we get

�(ϑ, ϑ0) ≥ m(ν) ≥ m(ν)
|ϑ − ϑ0|2H
|β − α|2H .

Further, for |ϑ − ϑ0| ≤ ν with sufficiently small ν, we have

�(ϑ, ϑ0) = |ϑ − ϑ0|2H 
2
a

(
1 + o(1)

)
.

Therefore, for sufficiently small ν, we can write

�(ϑ, ϑ0) ≥ 1

2

2
a |ϑ − ϑ0|2H .

Taking

μ = min

(
m(ν)

|β − α|2H ,

2
a

2

)
,

we obtain (15). 
�
This estimate allows us to verify the boundedness of all moments of the likelihood-

ratio process.

Lemma 3 There exists a constant c > 0, such that

Eϑ0 Z
1/2
ε (u) ≤ e−c |u|2H . (16)

Proof We have

Eϑ0 Zε(u)1/2 = exp

{
− 1

8 ε2
�(ϑ0 + ϕεu, ϑ0)

}
≤ exp

{
−μ

8
|u|2H

}
,

where we used (15). 
�
Lemma 4 For any N > 0, |u1| < N, and |u2| < N, we have the estimate

Eϑ0

∣∣Z1/2
ε (u2) − Z1/2

ε (u1)
∣∣2 ≤ C (1 + N ) |u2 − u1|2H (17)

with some constant C > 0.

Proof We can write

Eϑ0

∣∣Z1/2
ε (u2) − Z1/2

ε (u1)
∣∣2 = 2

(
1 − Eϑ0+ϕεu1

(
Zε(u2)

Zε(u1)

) 1
2
)

= 2

(
1 − exp

{
− 1

8ε2
�(ϑ0 + ϕεu2, ϑ0 + ϕεu1)

})
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≤ 1

4ε2
�(ϑ0 + ϕεu2, ϑ0 + ϕεu1)

= 1

4ε2

∫ T

0

[
a |t − ϑ0 − ϕεu2|κ − a |t − ϑ0 − ϕεu1|κ

+ h(ϑ0 + ϕεu2, t) − h(ϑ0 + ϕεu1, t)
]2 dt

≤ 1

2ε2

∫ T

0

[
a |t − ϑ0 − ϕεu2|κ − a |t − ϑ0 − ϕεu1|κ

]2 dt

+ 1

2ε2

∫ T

0

[
h(ϑ0 + ϕεu2, t) − h(ϑ0 + ϕεu1, t)

]2 dt

≤ ϕ2κ+1
ε

2ε2

2
a |u2 − u1|2κ+1 + ϕ2

ε

2ε2

∫ T

0
ḣ
(
ϑ̃, t

)2 dt (u2 − u1)
2

≤ C
(
1 + |u2 − u1|1−2κ) |u2 − u1|2κ+1 ≤ C (1 + N ) |u2 − u1|2H

(note that 2κ < 1 and 2H > 1). 
�
The properties (13), (16), and (17) of the likelihood ratio correspond to the con-

ditions of Theorems 1.10.1 and 1.10.2 from Ibragimov and Has’minskii (1981), and
hence, the MLE ϑ̂ε and the BEs ϑ̃ε have all the properties stated in Theorem 1.

Remark 1 More detailed analysis shows that if the signal has several points of cusp,
say

S(ϑ, t) =
L∑

�=1

a� |t − ϑ |κ� ,

where κl ∈ (
0, 1

2

)
, the result of Theorem 1 holds with

κ = min
1≤�≤L

κ�.

The proof is similar to that of Theorem 1.

Remark 2 It is possible to study the properties of the estimators ϑ̂ε and ϑ̃ε in the case
of multiple different singularities. For example, suppose that

S(ϑ, t) =
L∑

�=1

a� |t − ϑl |κ� ,

where ϑ = (ϑ1, . . . , ϑL) ∈ �. Here, � = (α1, β1) × · · · × (αL , βL), 0 < α� < β� <

T for � = 1, . . . , L , and β� < α�+1 for � = 1, . . . , L − 1.

Then, the limit of the normalized likelihood ratio

Zε(u1, . . . , uL) = V
(
ϑ1 + ε1/H1u1, . . . , ϑL + ε1/HL uL , XT

)

V
(
ϑ1, . . . , ϑL , XT

)
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is the process

Z(u1, . . . , uL) =
L∏

�=1

Z�(u�), u� ∈ R,

with

Z�(u�) = exp

{
γ� W

H�

� (ul) − γ 2
�

2
|u� |2H�

}
, u� ∈ R,

where

γ 2
� = a2�

∫ ∞

−∞
[|v − 1|κ� − |v|κ�

]2 dv

and WH1
1 (·), . . . ,WHL

L (·) are independent fBm processes. The MLE
ϑ̂ε = (

ϑ̂1,ε, . . . , ϑ̂L ,ε

)
and the BEs ϑ̃ε = (

ϑ̃1,ε, . . . , ϑ̃L ,ε

)
are defined as before

by the relations (6) and (7). They have different limit distributions. In particular, for
the MLE, we have the convergence

(
ϑ̂1,ε − ϑ1

ε1/H1
, . . . ,

ϑ̂L ,ε − ϑL

ε1/HL

)
�⇒ (

ξ̂1, . . . , ξ̂L
)
,

where the random variables ξ̂1, . . . , ξ̂L are defined by the equations

Z�

(
ξ̂�

) = sup
u∈R

Z�(u), � = 1, . . . , L ,

and are independent. Of course, the BEs have the same rate of convergence and their
asymptotic distribution is given by

(
ϑ̃1,ε − ϑ1

ε1/H1
, . . . ,

ϑ̃L ,ε − ϑL

ε1/HL

)
�⇒ (

ξ̃1, . . . , ξ̃L
)
,

where the random variables ξ̃1, . . . , ξ̃L are defined by

ξ̃� =
∫
R
u� Z�(u�) du�∫
R
Z�(u�) du�

, � = 1, . . . , L ,

and are also independent.
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3 Misspecification

We are interested in the following problem ofmisspecification. Suppose that themodel
of observations chosen by the statistician (theoretical model) is

dXt = M(ϑ, t) dt + ε dWt , X0 = 0, 0 ≤ t ≤ T . (18)

The signal M(ϑ, t) is supposed to be

M(ϑ, t) = a |t − ϑ |κ , 0 ≤ t ≤ T,

where κ ∈ (
0, 1

2

)
and ϑ ∈ � = (α, β), 0 < α < β < T .

The observed process (real model) is

dXt = S(ϑ0, t) dt + ε dWt , X0 = 0, 0 ≤ t ≤ T, (19)

where ϑ0 ∈ � is the true value and the function S(ϑ, ·) ∈ L2(0, T ) is sufficiently
smooth.

The (misspecified) likelihood-ratio function constructed on the base of the theoret-
ical model (18) is

V
(
ϑ, XT ) = exp

{
1

ε2

∫ T

0

[
M(ϑ, t) − M(ϑ1, t)

]
dXt

− 1

2ε2

∫ T

0

[
M(ϑ, t)2 − M(ϑ1, t)

2] dt
}
, ϑ ∈ �,

where we have to substitute the observations from Eq. (19). Here, ϑ1 is some fixed
value. Therefore, the (pseudo) MLE ϑ̂ε is defined by the equation

V
(
ϑ̂ε, X

T ) = sup
ϑ∈�

V
(
ϑ, XT )

. (20)

To see the limit of the MLE, we write the likelihood ratio as follows
(
below we put

M(ϑ1, t) = 0
)
:

ε2 ln V
(
ϑ, XT )

= ε

∫ T

0
M(ϑ, t) dWt − 1

2

∫ T

0

[
M(ϑ, t)2 − 2M(ϑ, t) S(ϑ0, t)

]
dt

= ε

∫ T

0
M(ϑ, t) dWt − 1

2

∥∥M(ϑ, ·) − S(ϑ0, ·)
∥∥2 + 1

2

∥∥S(ϑ0, ·)
∥∥2

where ‖·‖ denotes the L2(0, T ) norm. It is easy to verify the convergence

sup
ϑ∈�

∣∣∣∣ε
2 ln V

(
ϑ, XT ) + 1

2

∥∥M(ϑ, ·) − S(ϑ0, ·)
∥∥2 − 1

2

∥∥S(ϑ0, ·)
∥∥2

∣∣∣∣ −→ 0.
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Suppose that the equation

inf
ϑ∈�

∥∥M(ϑ, ·) − S(ϑ0, ·)
∥∥ = ∥∥M

(
ϑ̂, ·) − S(ϑ0, ·)

∥∥

has a unique solution ϑ̂ ∈ �. Then, we obtain as usual in such situations that the
MLE ϑ̂ε converges to the value ϑ̂ , which minimizes the Kullback–Leibler distance. It
is interesting to note that, in general, misspecified case ϑ̂ �= ϑ0, but for some models,
we have ϑ̂ = ϑ0, i.e., despite having a wrong model, the MLE is consistent. The most
interesting for us question is to determine the rate of convergence and the limiting
distribution of the MLE.

Introduce the function

�(ϑ, ϑ̂) = ∥∥M(ϑ, ·) − S(ϑ0, ·)
∥∥2 − ∥∥M

(
ϑ̂, ·) − S(ϑ0, ·)

∥∥2

and the following condition of regularity:
Condition M.

1. The parameter κ ∈ (
0, 1

2

)
.

2. For all ϑ0 ∈ �, the function S(ϑ0, t) is two times continuously differentiable w.r.t.
t ∈ [0, T ].

3. For all ϑ0 ∈ �, the function �(·, ϑ̂) has a unique minimum at the point ϑ̂ =
ϑ̂(ϑ0) ∈ �.

4. Its second derivative

γ (ϑ̂) ≡ ∂2�(ϑ, ϑ̂)

∂ϑ2

∣∣∣
∣
ϑ=ϑ̂

> 0

for all ϑ0 ∈ �.

Let us denote

Ẑ(u) = exp

{
aW H (u) − γ (ϑ̂)

4
u2

}
, u ∈ R,

Ẑ o(u) = exp

{
wH (v) − v2

2

}
, v ∈ R

where WH (·) and wH (·) are fBm processes, and define the random variables ζ̂ and
ζ̂o by the relations

Ẑ
(
ζ̂
) = sup

u∈R
Ẑ(u) and Ẑ o(ζ̂o

) = sup
v∈R

Ẑ o(v).

Note that

ζ̂ =
(

2a

γ
(
ϑ̂

)
) H

2H−1

ζ̂o. (21)
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To verify (21), we change the variable u = rv with r = (2a)
1

2−H γ
(
ϑ̂

)− 1
2−H and write

a W H (u) − γ
(
ϑ̂

)

4
u2 = a W H (rv) − γ

(
ϑ̂

)
r2

4
v2

= a r H
(
WH (rv)

r H
− γ

(
ϑ̂

)
r2−H

4a
v2

)
= a r H

(
wH (v) − v2

2

)
,

where the fBm wH (v) = r−H WH (rv).

Theorem 2 Let the condition M be fulfilled, then the estimator ϑ̂ε converges to the
value ϑ̂ , its limit distribution is given by

ϑ̂ε − ϑ̂

ε
2

3−2κ

�⇒ ζ̂ , (22)

and for any p > 0, we have

lim
ε→0

Eϑ

∣
∣∣∣
ϑ̂ε − ϑ̂

ε
2

3−2κ

∣
∣∣∣

p

= Eϑ

∣∣ζ̂
∣∣p =

(
2a

γ
(
ϑ̂

)
) p

2−H

E
∣∣ζ̂o

∣∣p. (23)

Proof Introduce the normalized pseudo-likelihood-ratio process

Zε(u) = V
(
ϑ̂ + ϕεu, XT

)

V
(
ϑ̂, XT

) , u ∈ Uε =
(

α − ϑ̂

ϕε

,
β − ϑ̂

ϕε

)
,

where ϕε → 0 will be defined later and denote ϑu = ϑ̂ + ϕεu. Below, we use the
same argument as the one used in the preceding section in a similar situation (u > 0)

ln Zε(u) = 1

ε2

∫ T

0

[
M

(
ϑ̂ + ϕεu, t

) − M
(
ϑ̂, t

)]
dXt

− 1

2ε2

∫ T

0

[
M

(
ϑ̂ + ϕεu, t

)2 − M
(
ϑ̂, t

)2] dt

= 1

ε

∫ T

0

[
a

∣∣t − ϑu
∣∣κ − a

∣∣t − ϑ̂
∣∣κ

]
dWt

− 1

2ε2

∫ T

0

[
a

∣∣t − ϑu
∣∣κ − a

∣∣t − ϑ̂
∣∣κ

]

[
a

∣∣t − ϑu
∣∣κ + a

∣∣t − ϑ̂
∣∣κ − 2 S(ϑ0, t)

]
dt

= a ϕ
κ+ 1

2
ε

ε

∫ T−ϑ̂
ϕε

− ϑ̂
ϕε

[|s − u|κ − |s|κ]
dW (s) − 1

2ε2
�

(
ϑu, ϑ̂

)
.
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Let us study the function �(ϑu, ϑ̂) for a fixed u > 0 as ϕε → 0. We have

�(ϑ, ϑ̂) =
∫ T

0

[
M(ϑ, t) − S(ϑ0, t)

]2 dt −
∫ T

0

[
M

(
ϑ̂, t

) − S(ϑ0, t)
]2 dt

=
∫ T−ϑ

−ϑ

[
a |s|κ − S(ϑ0, s + ϑ)

]2 dt −
∫ T

0

[
M

(
ϑ̂, t

) − S(ϑ0, t)
]2 dt

and

�′
ϑ(ϑ, ϑ̂) = [

a |ϑ |κ − S(ϑ0, 0)
]2 − [

a |T − ϑ |κ − S(ϑ0, T )
]2

−2
∫ T−ϑ

−ϑ

[
a |s|κ − S(ϑ0, s + ϑ)

]
S′(ϑ0, s + ϑ) ds.

Recall that as ϑ̂ ∈ � is the point of minimum of the function �(ϑ, ϑ̂), ϑ ∈ �, we
have the equalities

�
(
ϑ̂, ϑ̂

) = 0 and �′
ϑ

(
ϑ̂, ϑ̂

) = 0.

Let us write the Taylor expansion

�
(
ϑu, ϑ̂

) = �
(
ϑ̂, ϑ̂

) + ϕεu �′
ϑ

(
ϑ̂, ϑ̂

) + ϕ2
ε u

2

2
�′′

ϑ

(
ϑ̂, ϑ̂

) (
1 + o(1)

)

= ϕ2
ε u

2

2
�′′

ϑ

(
ϑ̂, ϑ̂

) (
1 + o(1)

)

and study the difference

�′
ϑ

(
ϑu, ϑ̂

) − �′
ϑ

(
ϑ̂, ϑ̂

) =
[
a |ϑu |κ − S(ϑ0, 0)

]2 −
[
a

∣∣ϑ̂
∣∣κ − S(ϑ0, 0)

]2

+
[
a

∣∣T − ϑ̂
∣∣κ − S(ϑ0, T )

]2 −
[
a |T − ϑu |κ − S(ϑ0, T )

]2

− 2
∫ T−ϑu

−ϑu

[
a |s|κ − S(ϑ0, s + ϑu)

]
S′(ϑ0, s + ϑu) ds

+ 2
∫ T−ϑ̂

−ϑ̂

[
a |s|κ − S

(
ϑ0, s + ϑ̂

)]
S′(ϑ0, s + ϑ̂

)
ds.

We have the estimates

[
a |ϑu |κ − S(ϑ0, 0)

]2 −
[
a

∣∣ϑ̂
∣∣κ − S(ϑ0, 0)

]2

= a
[∣∣ϑ̂ + ϕεu

∣∣κ − ∣∣ϑ̂
∣∣κ

] [
a

∣∣ϑ̂ + ϕεu
∣∣κ + a

∣∣ϑ̂
∣∣κ − 2 S(ϑ0, 0)

]

= 2aκ

ϑ̂1−κ

[
a
∣∣ϑ̂

∣∣κ − S(ϑ0, 0)
]
ϕεu + O(ϕ2

ε u
2)
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and

[
a

∣
∣T − ϑ̂

∣
∣κ − S(ϑ0, T )

]2 −
[
a
∣
∣T − ϑ̂ − ϕεu

∣
∣κ − S(ϑ0, T )

]2

= 2aκ

|T − ϑ̂ |1−κ

[
a
∣
∣T − ϑ̂

∣
∣κ − S(ϑ0, T )

]
ϕεu + O(ϕ2

ε u
2)

since

∣∣ϑ̂ + ϕεu
∣∣κ − ∣∣ϑ̂

∣∣κ = ∣∣ϑ̂
∣∣κ

(
1 + κϕεu

ϑ̂

)
− ∣∣ϑ̂

∣∣κ + O(ϕ2
ε u

2)

= κ ϕεu

ϑ̂1−κ
+ O(ϕ2

ε u
2).

Furthermore, we can write

∫ T−ϑ̂

−ϑ̂

[
a |s|κ − S

(
ϑ0, s + ϑ̂

)]
S′(ϑ0, s + ϑ̂

)
ds

− 2
∫ T−ϑu

−ϑu

[
a , |s|κ − S(ϑ0, s + ϑu)

]
S′(ϑ0, s + ϑu) ds

=
∫ T

0

∣∣t − ϑ̂
∣∣κ [

S′(ϑ0, t + ϕεu) − S′(ϑ0, t)
]
dt

+
∫ T

0

[
S(ϑ0, t + ϕεu) S′(t + ϕεu) − S(ϑ0, t) S

′(ϑ0, t)
]
dt

+
(∫ −ϑ̂

−ϑu

−
∫ T−ϑ̂

T−ϑu

)[
a |s|κ − S(ϑ0, s + ϑu)

]
S′(ϑ0, s + ϑu) ds.

For the above integrals, we obtain the relations

∫ T

0

∣∣t − ϑ̂
∣∣κ [

S′(ϑ0, t + ϕεu) − S′(ϑ0, t)
]
dt

=
∫ T

0

∣
∣t − ϑ̂

∣
∣κ S′′(ϑ0, t) dt ϕεu + O(ϕ2

ε u
2),

∫ T

0

[
S(ϑ0, t + ϕεu) S′(ϑ0, t + ϕεu) − S(ϑ0, t) S

′(ϑ0, t)
]
dt

= 1

2

∫ T

0

[
S(ϑ0, t)

2]′′
t dt ϕεu + O(ϕ2

ε u
2),

∫ −ϑ̂

−ϑu

[
a |s|κ − S(ϑ0, s + ϑu)

]
S′(ϑ0, s + ϑu) ds
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=
[
a

∣
∣ϑ̂

∣
∣κ − S(ϑ0, 0)

]
S′(ϑ0, 0) ϕεu + O(ϕ2

ε u
2),

∫ T−ϑ̂

T−ϑu

[
a |s|κ − S(ϑ0, s + ϑu)

]
S′(ϑ0, s + ϑu) ds

=
[
a |T − ϑ̂ |κ − S(ϑ0, T )

]
S′(ϑ0, T ) ϕεu + O(ϕ2

ε u
2).

All these together allow us to write

�′
ϑ

(
ϑu, ϑ̂

)

ϕεu
= 2aκ

ϑ̂1−κ

[
a

∣∣ϑ̂
∣∣κ − S(ϑ0, 0)

]
+ 2aκ

|T − ϑ̂ |1−κ

[
a

∣∣T − ϑ̂
∣∣κ − S(ϑ0, T )

]

+
[
a

∣∣ϑ̂
∣∣κ − S(ϑ0, 0)

]
S′(ϑ0, 0) +

[
a

∣∣T − ϑ̂
∣∣κ − S(ϑ0, T )

]
S′(ϑ0, T )

+ 2
∫ T

0

∣∣t − ϑ̂
∣∣κ S′′(ϑ0, t) dt +

∫ T

0

[
S(ϑ0, t)

2]′′
t dt + O(ϕεu). (24)

Therefore, we obtain the following expression for the second derivative

�′′
ϑ(ϑ̂, ϑ̂) = lim

ϕε→0

�′
ϑ(ϑu, ϑ̂) − �′

ϑ(ϑ̂, ϑ̂)

ϕεu

= 2aκ

ϑ̂1−κ

[
a

∣∣ϑ̂
∣∣κ − S(ϑ0, 0)

]
+ 2aκ

|T − ϑ̂ ϑ̂ |1−κ

[
a

∣∣T − ϑ̂
∣∣κ − S(ϑ0, T )

]

+
[
a

∣∣ϑ̂
∣∣κ − S(ϑ0, 0)

]
S′(ϑ0, 0) +

[
a

∣∣T − ϑ̂
∣∣κ − S(ϑ0, T )

]
S′(ϑ0, T )

+ 2
∫ T

0

∣∣t − ϑ̂
∣∣κ S′′(ϑ0, t) dt +

∫ T

0

[
S(ϑ0, t)

2]′′
t dt. (25)

Now, the log-likelihood ratio has the representation

ln Zε(u) = a ϕ
κ+ 1

2
ε

ε
WH (u)

(
1 + o(1)

) − ϕ2
ε u

2

4ε2
�′′

ϑ

(
ϑ̂, ϑ̂

) (
1 + o(1)

)

= ϕ
κ+ 1

2
ε

ε

⎛

⎝a W H (u)
(
1 + o(1)

) − ϕ
3
2−κ
ε

ε
�′′

ϑ

(
ϑ̂, ϑ̂

) u2

4

(
1 + o(1)

)
⎞

⎠.

Therefore, putting

ϕ
3
2−κ
ε

ε
= 1, ϕε = ε

2
3−2κ and Ẑε(u) = Zε(u)ε

4κ−2
3−2κ

,
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we obtain the convergence of finite-dimensional distributions

(
Ẑε(u1), . . . , Ẑε(uk)

) �⇒ (
Ẑ(u1), . . . , Ẑ(uk)

)

for any k = 1, 2, . . .
Using the same argument as in the proofs of Lemmas 2–4, we obtain the relations

�
(
ϑ, ϑ̂

) ≥ μ
(
ϑ − ϑ̂

)2
,

Eϑ0 Ẑ
1/2
ε (u) ≤ e−c u2 ,

Eϑ0

[
Ẑ1/2

ε (u2) − Ẑ1/2
ε (u1)

]2 ≤ C (1 + N ) |u2 − u1|2.

Hence, once more the asymptotic properties of the pseudo-MLE ϑ̂ε follow from the
general result (Theorem 21 in Appendix 1) from Ibragimov and Has’minskii (1981).
This theorem provides the weak convergence of the measures induced by the random
process Ẑε(·) to the measure of the limit process Ẑ(·), and therefore, we obtain the
convergence of the distribution of the MLE.

Let us remind how the properties of ϑ̂ε are related with the convergence of the
stochastic processes Ẑε(·) �⇒ Ẑ(·). We have

Pϑ0

(
ϑ̂ε − ϑ̂

ϕε

< x

)
= Pϑ0

(
ϑ̂ε < ϑ̂ + ϕεx

)

= Pϑ0

{

sup
ϑ<ϑ̂+ϕεx

V
(
ϑ, XT )

> sup
ϑ≥ϑ̂+ϕεx

V
(
ϑ, XT )

}

= Pϑ0

{

sup
ϑ<ϑ̂+ϕεx

V
(
ϑ, XT

)

V
(
ϑ̂, XT

) > sup
ϑ≥ϑ̂+ϕεx

V
(
ϑ, XT

)

V
(
ϑ̂, XT

)

}

= Pϑ0

{

sup
u<x, u∈Uε

Zε(u) > sup
u≥x, u∈Uε

Zε(u)

}

= Pϑ0

{

sup
u<x, u∈Uε

Ẑε(u) > sup
u≥x, u∈Uε

Ẑε(u)

}

= Pϑ0(ûε < x),

(26)

where ûε = ϑ̂ε−ϑ̂
ϕε

is defined by the relation

Ẑε(ûε) = sup
u∈Uε

Ẑε(u).

Now, from the convergence Ẑε(·) �⇒ Ẑ(·), we obtain
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Pϑ0

{

sup
u<x, u∈Uε

Ẑε(u) > sup
u≥x, u∈Uε

Ẑε(u)

}

−→ Pϑ0

{
sup
u<x

Ẑ(u) > sup
u≥x

Ẑ(u)

}
= Pϑ0

(
ζ̂ < x

)

(for details, see Theorem 1.10.1 from Ibragimov and Has’minskii 1981). 
�

4 Some other problems

Of course, it is possible to consider a slightlymore general problem ofmisspecification
with the signal

S(ϑ, t) = a |t − ϑ |κ 1I{t<ϑ} + b |t − ϑ |κ 1I{t≥ϑ} + h(ϑ, t),

where a2+b2 > 0 and h(ϑ, t) is some smooth function of ϑ and t . As usual in singular
estimation problems, the limit likelihood ratio Z(·) does not depend on the function
h(·, ·) and the properties of the pseudo-MLE are quite close to those presented in
Theorem 2.

There are other interesting problems of misspecification cusp vs discontinuous and
discontinuous vs cusp, which can be illustrated by the following example. Suppose
that we have two signals

S(ϑ, t) = sgn(t − ϑ)
[|t − ϑ |κ 1I{|t−ϑ |≤1} + 1I{|t−ϑ |>1}

]

where κ ∈ (
0, 1

2

)
and

M(ϑ, t) = sgn(t − ϑ).

A plot of these two signals is given in Fig. 2.

Fig. 2 Signals S (dashed line) and M (continuous line)
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One problem is the estimation of the parameter ϑ in the situation, where S(ϑ0, t)
is the observed signal and M(ϑ, t) is the supposed (theoretical) signal. The second
problem corresponds to the situation where the observed signal is M(ϑ0, t) and the
theoretical signal is S(ϑ, t). Both these problems are studied in a forthcoming paper
Chernoyarov et al. (2015).

Let us consider the problem of estimation of the parameter κ0 ∈ (k, K ), 0 < k <

K < ∞ by observations

dXt = a |t − ρ|κ0 dt + ε dWt , X0 = 0, 0 ≤ t ≤ T,

where a > 0 andρ ∈ (0, T ) are some knownparameters. The likelihood-ratio function
is

V
(
κ, XT ) = exp

{∫ T

0

a |t − ρ|κ
ε2

dXt −
∫ T

0

a2 |t − ρ|2κ
2ε2

dt

}
, κ ∈ (k, K ),

and the MLE κ̂ε is the solution of the equation

V
(
κ̂ε, X

T ) = sup
κ∈(k,K )

V
(
κ, XT )

.

This is a regular problem with finite Fisher information

I(κ) = a2
∫ T

0
|t − ρ|2κ (

ln|t − ρ|)2 dt > 0.

It is easy to see that the identifiability condition

inf|κ−κ0|>ν

∫ T

0

[|t − ρ|κ − |t − ρ|κ0]2 dt > 0.

is fulfilled for any κ0 and any ν > 0.
Therefore, the asymptotic normality

κ̂ε − κ0

ε
�⇒ N (

0, I(κ0)
−1)

follows from the general theorem devoted to the parameter estimation in regular fam-
ilies (see Theorem 3.5.1 from Ibragimov and Has’minskii 1981). Just note that the
normalized likelihood ratio

Z∗
ε (v) = V

(
κ0 + ε v, XT

)

V
(
κ0, XT

) , v ∈ Vε =
(
k − κ0

ε
,
K − κ0

ε

)
,
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converges to the process

Z∗(v) = exp

{
v� − v2

2
I(κ0)

}
, v ∈ R, (27)

where � ∼ N (
0, I(κ0)

)
.

It is interesting to consider the problem of estimation of the two-dimensional para-
meter ϑ = (ρ, κ). The likelihood ratio in this case is

V
(
ρ, κ, XT ) = exp

{∫ T

0

a |t − ρ|κ
ε2

dXt −
∫ T

0

a2 |t − ρ|2κ
2ε2

dt

}
, ϑ ∈ �,

where � = (α, β) × (k, K ), 0 < α < β < T, 0 < k < K < ∞.
It can be shown that the normalized likelihood ratio

Zε(u, v) = V
(
ρ0 + ε1/H u, κ0 + ε v, XT

)

V
(
ρ0, κ0, XT

)

converges to the random process

Z(u, v) = Z(u) Z∗(v)

with the processes Z(·) and Z∗(·) defined by the expressions (9) and (27), where the
fBm WH (·) and the random variable � are independent.

The MLE ϑ̂ε = (ρ̂ε, κ̂ε) is consistent and its components ρ̂ε and κ̂ε are asymp-
totically independent and have different limit distributions and different convergence
rates:

ρ̂ε − ρ0

ε1/H
�⇒ ξ̂ and

κ̂ε − κ0

ε
�⇒ �

I(κ0)
∼ N (

0, I(κ0)
−1). (28)

The proof follows the mains steps of the proof of the Theorem 1. However, it is
rather cumbersome and is not presented here. Similar problems were considered, for
example, in Section 5.1 of Kutoyants (1994), and the proof of the convergence (28)
can be carried out following the argument presented there.

The case of the three-dimensional parameter ϑ = (a, ρ, κ) can be treated in a
similar way.

Acknowledgements We are grateful to the Referees for their useful comments. This work was done under
partial financial support of the Grant of RSF Number 14-49-00079.

References

Chernoyarov,O.V., Kutoyants, Yu.A., Trifonov,A.P. (2015).Onmisspecification in regularity and properties
of estimators (submitted). arXiv:1509.02715.

Dachian, S. (2003). Estimation of cusp location by Poisson observations. Statistical Inference for Stochastic
Processes, 6(1), 1–14.

Dachian, S., Kutoyants, YuA. (2003). On cusp estimation of ergodic diffusion process. Journal of Statistical
Planning and Inference, 117, 153–166.

123

http://arxiv.org/abs/1509.02715


62 O. V. Chernoyarov et al.

Döring, M. (2015). Asymmetric cusp estimation in regression models. Statistics: A Journal of Theoretical
and Applied Statistics, 49(6), 1279–1297.

Döring, M., Jensen, U. (2015). Smooth change point estimation in regression models with random design.
Annals of the Institute of Statistical Mathematics, 67, 595–619.

Fujii, T. (2010). An extension of cusp estimation problem in ergodic diffusion processes. Statistics and
Probability Letters, 80(9–10), 779–783.

Ibragimov, I. A., Has’minskii, R. Z. (1974). Estimation of of a signal parameter in Gaussian white noise.
Problems of Information Transmission, 10, 31–46.

Ibragimov, I. A., Has’minskii, R. Z. (1975). Parameter estimation for a discontinuous signal in white
Gaussian noise. Problems of Information Transmission, 11, 203–212.

Ibragimov, I. A., Has’minskii, R. Z. (1981). Statistical Estimation—Asymptotic Theory. NewYork: Springer.
Kutoyants, Y. A. (1994). Identification of Dynamical Systems with Small Noise. Dordrecht: Kluwer Acad-

emic Publisher.
Liptser, R. S., Shiryayev, A. N. (2001). Statistics of Random Processes, I, II (2nd ed.). New York: Springer.
Novikov, A., Kordzakhia, N., Ling, T. (2014). On moments of Pitman estimators. Theory of Probability and

its Applications, 58(4), 601–614.
Prakasa Rao, B. L. S. (1968). Estimation of the location of the cusp of a continuous density. The Annals of

Mathematical Statistics, 39(1), 76–87.
Prakasa Rao, B. L. S. (1985). Asymptotic theory of least squares estimator in a nonregular nonlinear

regression model. Statistics and Probability Letters, 3(1), 15–18.
Prakasa Rao, B. L. S. (2004). Estimation of cusp in nonregular nonlinear regression models. Journal of

Multivariate Analysis, 88(2), 243–251.
Raimondo, M. (1998). Minimax estimation of sharp change points. The Annals of Statistics, 26(4), 1379–

1397.

123


	On parameter estimation for cusp-type signals
	Abstract
	1 Introduction
	2 Cusp location estimation
	3 Misspecification
	4 Some other problems
	Acknowledgements
	References




