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Abstract In many real-life scenarios, system reliability depends on dynamic stress–
strength interference, where strength degrades and stress accumulates concurrently
over time. In some other cases, shocks appear at random time points, causing damage
which is only effective at the instant of shock arrival. In this paper,we consider the iden-
tifiability problem of a system under deterministic strength degradation and stochastic
damage due to shocks arriving according to a homogeneous Poisson process. We pro-
vide conditions under which the models are identifiable with respect to lifetime data
only.We also consider current status data and suggest to collect additional information
and discuss the issues of model identifiability under different data configurations.

Keywords Poisson process · Cumulative damage · Identifiability · Strength
degradation · Current status data · Shock arrival process

1 Introduction

The stress–strengthmodel iswidely used inmechanical engineering (Gupta et al 1999),
aerospace engineering (Guttman et al 1988), seismic risk assessment (Kaplan 1981),
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medicine (Wilcoxon 1945), psychology (Simonoff et al 1986), and various other allied
fields for reliability calculation. An item fails whenever stress on the item equals or
exceeds its strength. Traditionally, estimation of reliability of a stochastic system with
random strength (Y ) and subject to random stress (X) has been addressed as the prob-
lem of estimating P(Y > X) (Kotz et al 2003). In many important applications, for
example, in the area of disaster risk management, including assessment of seismic
risk (Kaplan 1981; Cornell 1968), the strength of the system degrades possibly by
corrosion, fatigue, ageing, etc., which may be reasonably described by a determin-
istic curve, s(t), say (Gertbsbakh and Kordonskiy 1969). In addition, the stress is
accumulation X (t) of random damages due to shocks arriving at random time points
according to a point process N (t) (Kapur and Lamberson 1977, p-192). See Bhuyan
and Dewanji (2015) for details, regarding such a stochastic system and calculation of
corresponding reliability. In the following, we refer to this as the ‘cumulative damage
model’. In some other cases, shocks appear at random time points, causing damage
which is only effective at the instant of shock arrival (Nakagawa and Osaki 1974),
referred to as ‘non-cumulative damage model’. Fracture of brittle materials, such as
glasses (Esary et al 1973), and semiconductor parts that have failed by some over-
current or fault voltage (Nakagawa 2007, p-21) are real-life examples of such models
for fixed threshold or strength. Examples, such as the impact forces on vehicle wheels
due to road bumps, and the forces on building structure due to wind are appropriate
real-life scenarios for such models (Xue and Yang 1997) with both strength and stress
being time dependent.

To explain natural random phenomena arising in real-life scenarios, stochastic
modeling based on the system mechanism involves certain classes of probability dis-
tributions and its associated parameters, which may lead to identifiability problem.
There has not been much work on identifiability issues when both stress and strength
are time dependent. Problem of non-identifiability of life distributions arising out of
stochastic shock models is of fundamental importance (Puri 1977). Clifford (1972)
and Esary et al (1973) mentioned the issue of identifiability problem for a stochastic
shock model, where shocks arrive according to a Poisson process with intensity μ,
and the probability of surviving first k shocks is denoted by P̄k , independent of time t .
The reliability function of such a system is given by R(t) = ∑∞

k=0 P̄ke
−μt (μt)k/k!.

Puri (1983) discussed the identifiability problems in detail for the above-mentioned
shock model. Clifford (1972) has emphasized its seriousness by means of numerical
examples producing conflicting predictions in the presence of identifiability prob-
lems. In this paper, we discuss identifiability issues for a system under deterministic
strength degradation and stochastic damages caused by shocks arriving according to
a homogeneous Poisson process.

Note that the failure time, for the non-cumulative damage model, is the arrival
time of the first such shock, when the corresponding damage equals or exceeds the
strength at that time. Let N (t) denote the point process representing the number
of shocks arriving by time t and the damages due to successive shocks be denoted
by X1, X2, X3, . . .. The reliability function R(t) at time t is then formally defined
as
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R(t) = P[T > t]
= P[Xi < s(τi ), for i = 1, . . . , N (t)],

where τ1, τ2 . . . denote the successive shock arrival times, T denotes the failure time,
and s(t) is the strength at time t. When the shock arrival process is Poisson with
intensity λ, and independent of the iid damages X1, X2, . . ., the reliability function
reduces to (see Xue and Yang 1997),

R(t) = exp

{

−λ

∫ t

0
{1 − F(s(τ ))}dτ

}

, (1)

where F(·) is the distribution function of X1.We assume that (i) s(t) is non-increasing,
(ii) s(t) > 0, for all t > 0, (iii) limt→∞ s(t) = 0, and (iv) s(t) is continuous. One
popular choice is the exponential degradation model given by s(t) = a exp(−bt).

Remark 1.1 Note that the model may not be identifiable if s(t) is not continuous.
For example, let us consider s(t) = {90 − t}I (t < 30) + max{80 − t, 0}I (t ≥ 30)
and X1, X2, . . . are the successive independent damages from the common distribution
having equal mass only at 40, 54, and 95 with the successive shocks arriving according
to a Poisson process with intensity 1. Let us consider another system with the same
strength function, the same intensity of the shock arrival process, and the successive
damages Y1,Y2, . . . having the common distribution with equal mass only at 40, 56,
and 95. Then, the reliability function, given by (1), for these two systems is equal for
all t > 0.

Under the same set of assumptions on s(t), the reliability function for the cumulative
damage model is given by (see Bhuyan and Dewanji 2014)

R(t) = P [ T > t] = P

⎡

⎣
N (t)∑

i=1

Xi < s(t)

⎤

⎦ . (2)

Assuming the shock arrival process to be Poisson with intensity λ and independent of
the iid damages X1, X2, . . ., the reliability function R(t) of (2) is

R(t) = e−λt +
∞∑

n=1

F (n)(s(t)−)e−λt (λt)n/n!, (3)

where F (n)(s(t)−) = P[∑n
1=1 Xi < s(t)]. Under the condition that F(s(0)) = 0, the

reliability function, given by either of (3) and (1), reduces to R(t) = exp{−λt}; that
is, the lifetime variable follows exponential distribution with mean 1/λ, and hence, we
do not have any identifiability issue. We do not consider such trivial cases for further
investigation. Note that the example in Remark 1.1 also serves to show that, if s(t) is
not continuous, the reliability model, given by (3), is not identifiable.

In this paper, we discuss identifiability issues with respect to different data configu-
rations for the stress–strength interference with known strength function. We provide
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conditions under which the non-cumulative damagemodel, given by (1), is identifiable
with respect to (i) failure time data, (ii) current status data, and (iii) current status data
with number of shocks. Similarly, we provide conditions under which the cumulative
damage model, given by (3), is identifiable with respect to (i) failure time data, (ii)
failure time data with failure type, (iii) current status data, (iv) current status data with
cumulative stress, (v) current status data with number of shocks, and (vi) current status
with number of shocks and accumulated stress. We first discuss the problem of model
identifiability with respect to failure time data in Sect. 2. In Sect. 3, we investigate
model identifiability with failure time data and failure type. Next, we investigatemodel
identifiability with current status data and with additional information in Sect. 4. We
conclude with some discussion in Sect. 5.

2 Identifiability with failure time data

In this section, we first discuss the identifiability issues with only failure time data
with known s(t) and no further assumption. Then, we make additional assumptions
on the dynamic stress–strength modeling and investigate the identifiability issue for
both non-cumulative and cumulative damage models with known s(t).

Let us first consider the non-cumulative damage model, where X1, X2, . . . are
iid damages from F(·), due to shocks arriving according to a Poisson process with
intensityλ. For another such system, suppose the successive iid damagesY1,Y2, . . . are
fromacommondistributionH(·), due to shocks arriving according to aPoissonprocess
with intensity μ. If F(x) = (1 − μ/λ) + (μ/λ)H(x), then the reliability function of
both the systems are equal for all t > 0; that is, from (1),

R(t) = exp

{

−λ

∫ t

0
{1 − F(s(τ ))}dτ

}

= exp

{

−μ

∫ t

0
{1 − H(s(τ ))}dτ

}

. (4)

Now, we consider the cumulative damage model. Let X (t) = ∑N1(t)
i=1 Xi be the

cumulative damage at time t due to shocks arriving according to a Poisson process
N1(t) with intensity λ. For another system, let Y (t) = ∑N2(t)

i=1 Yi be the cumulative
damage at time t due to shocks arriving according to a Poisson process N2(t) with
intensity μ. Note that two non-negative random variables, V and W , are said to be
stochastically equivalent if P[V < x] = P[W < x], for all x ≥ 0, and we write
V =st W . Similarly, we define strict stochastic ordering, if P[W ≥ x] ≥ P[V ≥ x],
for all x ≥ 0 and P[W ≥ x0] > P[V ≥ x0] for some x0 ≥ 0, and denote it by
V <st W (see Shaked and Shanthikumar 2007, for more details). If X (t) =st Y (t),
for all t > 0, then the reliability functions for these two different systems are the same;
that is, P [X (t) < s(t)] = P [Y (t) < s(t)], for all t > 0. Note that the characteristic
function of X (t) is given by φX (t)(u) = exp{λt (φX (u) − 1)}, where φX (u) is the
characteristic function of X1 (Ross 1996, p-82). Similarly, the characteristic function
of Y (t) is given by φY (t)(u) = exp{μt (φY (u) − 1)}, where φY (u) is the characteristic
function of Y1. Now, equating φX (t) and φY (t), we get
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φX (u) = μ

λ
φY (u) +

(
1 − μ

λ

)
. (5)

Assume μ < λ without loss of generality. Applying Gil–Pelaez inversion formula
(Gil-Pelaez 1951) on both sides of (5), we get

F(x) = 1

2
− 1

π

∫ ∞

0
Im

(
e−iux μ

λ
φY (u)

u

)

du − 1

π

∫ ∞

0
Im

(
e−iux

(
1 − μ

λ

)

u

)

du

=
(
1 − μ

λ

) 1

2
−

(
1 − μ

λ

) 1

π

∫ ∞

0
Im

(
e−iux

u

)

du

+ μ

2λ
− μ

πλ

∫ ∞

0
Im

(
e−iuxφY (u)

u

)

du

=
(
1 − μ

λ

)
+ μ

λ
H(x), (6)

for all x ≥ 0, where F(·) and H(·) are the distribution functions of X1 and Y1,
respectively. Therefore, from (6), one can conclude that the model is not identifiable if
F(x) = (1 − μ/λ) + (μ/λ)H(x). One can easily see that the expected accumulated
damage for both of these systems are equal at any time t . It is due to the fact that
the system, which suffers from more frequent shocks with rate λ, accumulates dam-
ages with distribution function having some mass at 0. Nakagawa and Osaki (1974)
provided interpretation of such shock models which may not necessarily incur any
damage to the system by citing real-life examples. Non-identifiability for these two
models with fixed threshold (that is, s(t) is independent of t) has been discussed
by Clifford (1972) and Esary et al (1973). Therefore, the model is not identifiable
with damages due to the successive shocks belonging to a family of distribution
Π = {G : G(x) = 0, for all x < 0}, even with a known strength function s(t). Quite
naturally, it is interesting to investigate whether these models are identifiable under the
condition that the damages due to successive shocks belong to a family of distributions
Πp = {G : G(0) = p} ⊂ Π , for some 0 ≤ p < 1.

We first consider the non-cumulative damage model and assume that the damage
distribution belongs to Πp, for some 0 ≤ p < 1. From (4), we get the identity

∫ t

0
λ{1 − F(s(τ ))}dτ =

∫ t

0
μ{1 − H(s(τ ))}dτ,

for all t > 0. Since F(·) and H(·) are right-continuous and s(τ ) is non-increasing
and continuous, using Lemma 2 (see the Appendix), F(s(τ )) and H(s(τ )) are left-
continuous functions of τ . Then, using Lemma 1 (see the Appendix) with h(τ ) = 1,
we get

λ{1 − F(s(τ ))} = μ{1 − H(s(τ ))}, (7)

for all τ ≥ 0. Since F(0) = H(0) = p for some 0 ≤ p < 1, taking limit τ → ∞ in
both sides of (7), we get λ = μ. Now, putting λ = μ in (7), we get F(x) = H(x) for
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all 0 ≤ x ≤ s(0). Hence, the model is identifiable. Note that the damage distribution
is not anyway identifiable in the region (s(0),∞).

Remark 2.1 If s(t) = s, for all t ≥ 0 (that is, strength of the system remains fixed over
time), then the non-cumulative damagemodel is not identifiable with failure time data,
since the two distinct choices (λ, F) and (μ, H), satisfying λ = μ[1 − H(s)]/[1 −
F(s)], lead to (7).

This identifiability issue for the cumulative damage model, under the assumption
that the successive damages belong to Πp, for some 0 ≤ p < 1, remains an open
problem. However, with some more restriction on the class Πp, we prove that the
model is identifiable. Let us consider a class of discrete distributions Πd with the
following properties. If F ∈ Πd , then the set D = {x : F(x−) �= F(x)} of mass
points of F is a non-empty closed set and all x ∈ D are isolated points. For example,
Poisson, Binomial, Geometric, etc. belong to Πd .

Now, we consider a subclass Πd
po = Πpo

⋂
Πd , where Πpo = {G(·) : G(0) =

po > 0}. Note thatΠd
po ⊂ Πd . Let X1, X2, . . . and Y1,Y2, . . . are two iid sequences of

successive damages from the respective common distributions F(·) and H(·) belong-
ing to Πd

po , for some po > 0, due to shocks arriving according to Poisson processes
N1(t) and N2(t) with intensities λ and μ, respectively. We consider the identity

P [X (t) < s(t)] = P [Y (t) < s(t)]

	⇒ P

⎡

⎣
N1(t)∑

i=1

Xi < s(t)

⎤

⎦ = P

⎡

⎣
N2(t)∑

i=1

Yi < s(t)

⎤

⎦

	⇒
∞∑

n=0

F (n)(s(t)−)e−λt (λt)n/n! =
∞∑

n=0

H (n)(s(t)−)e−μt (μt)n/n!, (8)

for all t > 0. We write z0 = min{x > 0 : x ∈ {xi , yi : , i = 1, 2, . . .}}/2, where xi ’s
and yi ’s are as in the proof of Theorem 1 (see the Appendix). Note that F(x−) =
H(x−) = p0 > 0 for all 0 < x ≤ z0, and hence, F (n)(x−) = H (n)(x−) = pn0 , for
all 0 < x ≤ z0 and for all n = 1, 2, . . .. Suppose, if possible, λ �= μ. Since s(t) is
a continuous function and limt→∞ s(t) = 0, there exists t1 > 0, such that s(t1) ∈
(0,min{z0, s(0)}) and, then, F (n)(s(t1)−) = H (n)(s(t1)−) = pn0 for all n = 1, 2, . . ..
Now, from (8) with t = t1, we get

∞∑

n=0

pn0e
−λt1(λt1)

n/n! =
∞∑

n=0

pn0e
−μt1(μt1)

n/n!

	⇒ e−λt1(1−p0) = e−μt1(1−p0)

	⇒ λ = μ,

which is a contradiction. Therefore, we assume λ = μ.
Now, by Theorem 1 with α = s(0) > 0, either F(x−) = H(x−) for all

0 < x ≤ s(0), or there exist u0 ∈ (0, s(0)), such that, without loss of general-
ity, F(u0−) > H(u0−) and F (n)(u0−) ≥ H (n)(u0−) for all n = 2, 3, . . .. Since
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Identifiability issues in dynamic stress–strength modeling 69

s(t) is a continuous function, there exists t2 > 0, such that s(t2) = u0. Therefore,
F(s(t2)−) > H(s(t2)−) and F (n)(s(t2)−) ≥ H (n)(s(t2)−), for all n = 2, 3, . . ..
Hence,

∑∞
n=0 F

(n)(s(t2)−)e−λt2(λt2)n/n! >
∑∞

n=0 H
(n)(s(t2)−)e−λt2(λt2)n/n!,

which contradicts (8). Therefore, F(x−) = H(x−), for all 0 < x ≤ s(0).

Remark 2.2 Following similar argument, but without requiring Theorem 1, one can
easily prove, from (7), that the non-cumulative damage model with F(·) belonging to
Πd

po , for some po > 0, is identifiable. This is expected as Πd
p0 ⊂ Πp0 .

2.1 Identifiability with failure time data and known damage distribution

Note that, when the damage distribution is known (i.e., F(x) = H(x), for all x ≥ 0),
using (7), we have λ = μ, and hence, the non-cumulative damagemodel is identifiable
with known strength function.

For the cumulative damage model, note that P[X (t) < s(t))] = P[Y (t) < s(t)]
means

P

⎡

⎣
N1(t)∑

i=1

Xi < s(t)

⎤

⎦ = P

⎡

⎣
N2(t)∑

i=1

Xi < s(t)

⎤

⎦

	⇒
∞∑

n=0

F (n)(s(t)−)e−λt (λt)n/n! =
∞∑

n=0

F (n)(s(t)−)e−μt (μt)n/n!

	⇒ EN1(t)[F (N1(t))(s(t)−)] = EN2(t)[F (N2(t))(s(t)−)], (9)

for all t > 0. To show λ = μ, we first consider F ∈ Πd with mass points x1 < x2 <

· · · . Since s(t) is a continuous function and limt→∞ s(t) = 0, there exists t3 > 0, such
that s(t3) = z, where z = x1

2 I (x1 > 0)+ x2
2 I (x1 = 0). Now, from (9) with t = t3, we

get

∞∑

n=0

qne−λt3(λt3)
n/n! =

∞∑

n=0

qne−μt3(μt3)
n/n!

	⇒ e−λt3(1−q) = e−μt3(1−q)

	⇒ λ = μ,

where q = F(s(t3)−).
Now, we consider that F(x−) is strictly increasing function of x and show λ = μ.

Suppose, if possible, λ < μ. Hence, N1(t) <st N2(t), for any fixed t > 0. Then, using
Lemmas 3 and 4 (see the Appendix) with η(Ni (t)) = F (Ni (t))(s(t)−), for i = 1, 2, we
get EN1(t)[F (N1(t))(s(t)−)] > EN2(t)[F (N1(t))(s(t)−)], which contradicts (9). Hence,
λ = μ.

Remark 2.3 Note that this result holds for a wider class of models for the shock arrival
process, in which any two distinct processes N1(t) and N2(t) in the class satisfy,
without loss of generality, N1(t) <st N2(t), for any fixed t > 0.
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2.2 Identifiability with failure time data and known shock arrival process

Note that when the shock arrival process is known (i.e., λ = μ), using (7), we get
F(x) = H(x), for all 0 ≤ x ≤ s(0), and hence, the non-cumulative damage model is
identifiable with known strength function.

Now, we consider the cumulative damage model and provide sufficient conditions
for identifiability of the damage distribution. We start with the following identity.

∞∑

n=0

F (n)(s(t)−)e−λt (λt)n/n! =
∞∑

n=0

H (n)(s(t)−)e−λt (λt)n/n!

	⇒
∞∑

n=0

[F (n)(s(t)−) − H (n)(s(t)−)]e−λt (λt)n/n! = 0, (10)

for all t > 0. Now, we define a class of distributions ΠC ⊂ Π with the following
properties. If G ∈ ΠC , then (i) G(x) is continuous for all x > 0 and (ii) G(x) is
strictly increasing function for x > 0; in addition, if G, H ∈ ΠC and G and H are
different, then the set EG,H = {x > 0 : G(x−) = H(x−)} is a closed set. Note
that a standard parametric family Fθ (·) of continuous life distributions (for example,
Exponential, Weibull, Gamma, Log-normal, Pareto, etc.) may be identified with ΠC .
Then, the set EG,H , with G and H corresponding to Fθ1 and Fθ2 , respectively, for
θ1 �= θ2, is the set of all those t0 satisfying t0 = F−1

θ1
(Fθ2(t0)). This set is found to be

empty or finite for some standard families. For example, it is empty for exponential
distributions, whereas it is a singleton set for Weibull or Log-normal distributions.
There are many life distributions which can be expressed in terms of power series
expansion. It is interesting to investigate the identifiability issues for this class of
damage distributions also.

Now, we assume that F, H ∈ Πd or F, H ∈ ΠC . Using Theorems 1 or 2 or
Corollary 1 (see the Appendix) and the continuity of the strength function s(t), there
exists t0, such that

∑∞
n=0 [F (n)(s(t0)−) − H (n)(s(t0)−)]e−λt0(λt0)n/n! > 0, which

contradicts (10). Hence, F(x−) = H(x−), for 0 < x ≤ s(0).

3 Identifiability with failure time and failure type

Note that the system fails at the time of arrival of a shock under the non-cumulative
damage model and under the cumulative damage model with constant strength. How-
ever, when strength degrades with time, under the cumulative damage model, there
are two different types of failures either due to strength degradation below the existing
level of accumulated stress, or due to arrival of a shock resulting in the increased
cumulative stress equalling or exceeding the strength at that time. In this section, we
consider only cumulative damage model and investigate the identifiability issues with
respect to failure time and failure type.

Let us denote the type of failure by 
, which takes value 1 if failure of the system
is due to the damage of an arriving shock causing increased cumulative stress, and 0
otherwise. To investigate identifiability issue, let us consider the joint probability of
{T ∈ (t − h, t],
 = i}, for i = 0, 1, and h > 0, as given by
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Identifiability issues in dynamic stress–strength modeling 71

P [T ∈ (t − h, t] ,
 = 1] = P [X (t − h) < s(t) ≤ X (t)] (11)

and

P [T ∈ (t − h, t] ,
 = 0] = P [X (t − h) ∈ [s(t), s(t − h))] . (12)

This means that the joint distribution of failure time and failure type depends on the
marginal distribution of X (t) and the joint distribution of {X (t − h), X (t)} for h > 0.
Note that the joint characteristic function of {X (t − h), X (t)} is given by

φX (t−h),X (t)(u1, u2)

= E
[
exp{iu1X (t − h) + iu2X (t)}]

= E
[
exp {i(u1 + u2)X (t − h) + iu2 {X (t) − X (t − h)}}]

= E
[
exp {i(u1 + u2)X (t − h)}] E [

exp {iu2X (h)}]
= φX (t−h)(u1 + u2)φX (h)(u2),

where φX (t)(u) is the characteristic function of X (t), as given in Sect. 2. Note that we
have used the property of stationarity and independent increments for X (t) (Snyder
and Miller 1991, p-180), that can be proved easily, for this derivation. We have seen in
Sect. 2 that the damage distributions F, H ∈ Π , related by F(x) = (1− μ

λ
)+ μ

λ
H(x)

for all x , lead to the same characteristic function φX (t)(u). Hence, this choice of F(·)
and H(·) also leads to the same joint characteristic function of {X (t − h), X (t)}, for
h > 0. Therefore, the additional information on failure type does not resolve the
identifiability problem existing with the failure time data. Now, adding (11) and (12)
gives P[T ∈ (t − h, t]], for all h > 0 and t > 0. Therefore, the sufficient conditions
for model identifiability with failure time data, as discussed in Sect. 2, also provide
model identifiability with failure time and failure type data, as expected.

4 Identifiability with current status data

Often, in practice, one inspects the system at some random time point and collects
relevant information along with the current status of the system. Here, we consider
the inspection time to be a random variable, denoted by U , with known distribution
function �(·), which is assumed to be continuous and strictly increasing with the cor-
responding density function ψ(·). We also assume thatU is independent of the shock
generating process N (t), and the corresponding damages X1, X2, . . .. We observe the
inspection time U = t and the current status of the system, denoted by D(t), at the
given inspection timeU = t . If the system isworking at a given inspection timeU = t ,
then D(t) takes value 1, say, and 0, otherwise. We consider the joint distribution of
the observed random variables {U, D(U )}, in particular, P[D(U ) = j,U ≤ v]. As
in Sect. 2, we consider the two models, one with Poisson shock arrival rate λ and
damage distribution F(·) and the other with Poisson shock arrival rate μ and damage
distribution H(·), leading to the same value for P[D(U ) = j,U ≤ v] for j = 0, 1
and all v > 0. Under the non-cumulative damage model and with j = 1,we get, using
(4),
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∫ v

0
exp

[

−λ

∫ t

0
{1 − F(s(τ ))} dτ

]

ψ(t)dt

=
∫ v

0
exp

[

−μ

∫ t

0
{1 − H(s(τ ))} dτ

]

ψ(t)dt

for all v > 0. Applying Lemma 1 twice, we get the identity given by (7) for all τ ≥ 0.
Therefore, the identifiability issues are again exactly the same as those discussed in
Sect. 2 for failure time data. For example, the model is non-identifiable in general,
since the two distinct choices (λ, F) and (μ, H), satisfying F(x) = (1− μ

λ
)+ μ

λ
H(x),

for all x , lead to the same value for P[D(u) = j,U ≤ v], for j = 0, 1 and all v > 0.
Next, under the cumulative damage model and with j = 1, we have

∫ v

0
P [X (t) < s(t)]ψ(t)dt =

∫ v

0
P [Y (t) < s(t)]ψ(t)dt,

for all v > 0. Since P [X (t) < s(t)]− P [Y (t) < s(t)] is a right-continuous function
of t (see Result 1 in the Appendix), using Lemma 1, we get P [X (t) < s(t)] =
P [Y (t) < s(t)], for all t ≥ 0. Hence, the identifiability issues are exactly the same as
those discussed in Sect. 2 for failure time data, as under the non-cumulative damage
model.

4.1 Current status data and cumulative stress

This section concerns only with the cumulative damage model. The joint distribution
of the inspection time U , the current status D(U ), and the cumulative stress X(U) is
given by

P [D(U ) = j, X (U ) < x,U ≤ v] =
∫ v

0
P [D(t) = j, X (t) < x |U = t]ψ(t)dt

=
∫ v

0
P [D(t) = j, X (t) < x]ψ(t)dt,

for v > 0, x > 0, and j = 0, 1. As before, we consider the two models (λ, F)

and (μ, H) with the cumulative stress denoted by X (·) and Y (·), respectively, and
investigate equality of the above probability under the two models. In particular, with
j = 0, we have, for all v > 0 and x ≥ s(t),

∫ v

0
P [s(t) ≤ X (t) < x]ψ(t)dt =

∫ v

0
P [s(t) ≤ Y (t) < x]ψ(t)dt.

Since P [s(t) ≤ X (t) < x] − P [s(t) ≤ Y (t) < x] is a right-continuous function of t
(see Result 1 in the Appendix), using Lemma 1, we get

P [s(t) ≤ X (t) < x] = P [s(t) ≤ Y (t) < x] ,
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for all t ≥ 0, and x ≥ s(t). Therefore, the identifiability issue is simi-
lar to those for the failure time data, as discussed in Sect. 2. For example, if
F(x) = (1 − μ/λ) + (μ/λ)H(x), then X (t) =st Y (t), for all t ≥ 0, and, hence,

P [s(t) ≤ X (t) < x] = P [s(t) ≤ Y (t) < x] , (13)

for all t ≥ 0 and 0 < s(t) ≤ x . Therefore, the additional information on cumulative
stress does not resolve the identifiability problem with respect to failure time data.

4.2 Current status data and number of shocks

We now consider information on the number of shocks arriving up to the inspection
time along with the current status. Therefore, we consider the joint distribution of
{U, D(U ), N (U )} as given by

P [D(U ) = j, N (U ) = n,U ≤ v] =
∫ v

0
P [D(t) = j, N (t) = n|U = t]ψ(t)dt

=
∫ v

0
P [D(t) = j, N (t) = n]ψ(t)dt,

for v > 0, n = 0, 1, . . ., and j = 0, 1. As before, we consider the two models (λ, F)

and (μ, H) and investigate equality of the above probability.Under the non-cumulative
damage model, with j = 1, we get

∫ v

0

exp{−λt}
n!

{∫ t

0
λF(s(τ ))dτ

}n

ψ(t)dt

=
∫ v

0

exp{−μt}
n!

{∫ t

0
μH(s(τ ))dτ

}n

ψ(t)dt,

for all v > 0, and for all n = 0, 1, . . .. Applying Lemma 1, we get

exp{−λt}
n!

{∫ t

0
λF(s(τ ))dτ

}n

= exp{−μt}
n!

{∫ t

0
μH(s(τ ))dτ

}n

, (14)

for all t ≥ 0 and n = 0, 1, . . .. Now, putting n = 0 in both sides of (14), we get
μ = λ. Again, putting n = 1 and μ = λ in (14), and applying Lemma 1, we have
F(s(τ )) = H(s(τ )), for all τ ≥ 0. Therefore, F(x) = H(x), for all 0 ≤ x ≤ s(0),
and the model is identifiable. Most importantly, there is no restriction on the class of
damage distributions as required for the failure time data and current status data.

Next, we consider the cumulative damage model. With j = 1, we have

∫ v

0
F (n)(s(t)−)

e−λt (λt)n

n! ψ(t)dt =
∫ v

0
H (n)((t)−)

e−μt (μt)n

n! ψ(t)dt,
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for all v > 0, and n = 0, 1, . . .. Since F (n)(s(t)−)e−λt (λt)n −H (n)(s(t)−)e−μt (μt)n

is a right-continuous function (see Result 1), using Lemma 1, we have

F (n)(s(t)−)
e−λt (λt)n

n! = H (n)(s(t)−)
e−μt (μt)n

n! , (15)

for all t ≥ 0, and n = 0, 1, . . .. Now, putting n = 0 in both sides of (15), we getμ = λ.
Again putting n = 1 and μ = λ in (15), we get F(s(t)−) = H(s(t)−), for all t ≥ 0.
Therefore, F(x−) = H(x−), for all 0 < x ≤ s(0), and the model is identifiable. In
addition, no restriction on the class of damage distributions is required unlike with
failure time data and current status data only.

4.3 Current status, number of shocks, and accumulated stress

This section also concerns only with the cumulative damage model. The joint distri-
bution of {U, D(U ), N (U ), X (U )} is given by

P [D(U ) = j, X (U ) < x, N (U ) = n,U ≤ v]

=
∫ v

0
P [D(t) = j, X (t) < x, N (t) = n|U = t]ψ(t)dt

=
∫ v

0
P [D(t) = j, X (t) < x, N (t) = n]ψ(t)dt

=
∫ v

0
P [D(t) = j, X (t) < x |N (t) = n] P [N (t) = n]ψ(t)dt,

for all v > 0, x > 0, n = 0, 1, . . ., and j = 0, 1. To investigate the equality of this
joint probability under the two models {λ, F} and {μ, H}, as before, we have, with
j = 0,

∫ v

0
F∗(x, n, t)

e−λt (λt)n

n! ψ(t)dt =
∫ v

0
H∗(x, n, t)

e−μt (μt)n

n! ψ(t)dt,

for all v > 0, x ≥ s(t), and n = 1, 2 . . ., where F∗(n, x, t) = P[s(t) ≤ X (t)
< x |N1(t) = n] = F (n)(x−) − F (n)(s(t)−) and H∗(n, x, t) = P[s(t) ≤ Y (t) <

x |N2(t) = n] = H (n)(x−) − H (n)(s(t)−) are right-continuous functions of t (see
Result 1). Applying Lemma 1, we get

F∗(x, n, t) =
(μ

λ

)n
e−(μ−λ)t H∗(x, n, t), (16)

for all t ≥ 0, x ≥ s(t), and n = 1, 2, . . .. Now, without loss of generality, sup-
pose μ > λ. Putting n = 1 and taking limit t → ∞ in both sides of (16), we get
F(x−) = limt→∞ F(s(t)−), for all x > 0, which contradicts the fact that F(·) is
a distribution function. Hence, we have μ = λ. Now put n = 1, μ = λ, and take
x → ∞ in both sides of (16) to get F(s(t)−) = H(s(t)−), for all t ≥ 0. Therefore,
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F(x−) = H(x−), for all 0 < x ≤ s(0). In fact, again putting n = 1, μ = λ, and
F(s(t)−) = H(s(t)−) in (16), we get F(x−) = H(x−), for all x > 0. The model
is, therefore, completely identifiable.

Remark 4.1 Even if the strength function s(t) is unknown, one can readily prove its
identifiability. If s1(t) and s2(t) denote the strength functions corresponding to the
models (λ, F) and (μ, H), respectively, we then have, following the same approach,
F(s1(t)−) = H(s2(t)−), for all t ≥ 0. This gives, from (16), with n = 1 and μ = λ,
F(x−) = H(x−), for all x > 0. Assuming the damage distribution to be strictly
increasing, we have s1(t) = s2(t), for all t ≥ 0.

5 Concluding remarks

Dynamic stress–strength interference, where stress varies over time and strength
degrades concurrently, can be used to analyse a wide range of mechanical and natural
phenomena. Stochastic mechanisms which are used to model such natural phenom-
ena involve a family of distributions of the observed random variables with associated
unknown parameters. In many situations, the model may not be identifiable with
respect to the observed random variables. Identifiability problems must be resolved
before one attempt to draw any inference based on the stochastic model under consid-
eration. Importance of scientific investigation on the identifiability issues of stochastic
shock models has been emphasized by several authors in the past. This paper makes
an attempt in that direction by considering different data configurations which may
be available from experimental data under the dynamic stress–strength interference
accounting for both stochastic damages due to shocks and deterministic strength degra-
dation in a single model.

Non-identifiability of the model under consideration has been discussed with
respect to failure time data and current status data. Conditions for model identifia-
bility have been provided in the same context. It is seen that the identifiability issues
with failure time data, or current status data, in the presence of additional information
like type of failure and accumulated stress are the same as those with only failure time
data. However, considering information on the number of shocks, it is observed that
problem of non-identifiability for both the non-cumulative and the cumulative dam-
age models is resolved under the assumption that the strength function s(t) is known.
Interestingly, the cumulative damage model is completely identifiable, even for an
unknown strength function s(t), with information on accumulated stress, number of
shocks, and current status. Quite naturally, the models under consideration are identi-
fiable with respect to any further information which may be available from continuous
monitoring of the system. In most of the discussions on the identifiability issue, the
damage distribution has been kept as arbitrary (that is, not assumed to belong to any
particular family of parametric distributions). As a result, it is identifiable only up
to s(0), if at all. On the other hand, if a parametric distribution is assumed for the
successive damages, then the associated parameter(s) will be identifiable, if at all, and
the damage distribution will be identifiable in the whole range.

As remarked in Sect. 1, continuity of s(t) is required for identifiability of both
the non-cumulative and the cumulative damage models. In addition, if limt→∞ s(t) =
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c > 0, under the non-cumulative damagemodel andwith failure time only, the damage
distribution is identifiable in the range [c, s(0)]. Our proofs of the identifiability results
for the cumulative model, and with failure time only, do not hold if c > 0. However,
interestingly,with current status data and information onnumber of shocks, the damage
distribution is identifiable in the range [c, s(0)] under both the non-cumulative and the
cumulative damage models.

If the damage distribution and the deterministic strength function are both unknown,
then both the cumulative and non-cumulative damage models are non-identifiable,
except in the case of Sect. 4.3. The following example clarifies this non-identifiability
problem further. Let us consider s1(t) = ABt and s2(t) = C

1+t , A,C > 0, 0 < B < 1.

If Y1 = C log(B)
log(X1)+log(B/A)

, then it is easy to check that F(s1(t)−) = H(s2(t)−), for all
t ≥ 0, where F(·) and H(·) are distribution functions of X1 and Y1, respectively. One
can ensure that Y1 is a non-negative random variable by choosing any distribution for
X1 with support {x : x ∈ (0, B/A)}. As for example, suppose X1 follows an Uni-
form (0.3, 0.4) distribution with s1(t) = 0.5(0.5)t and s2(t) = 1/(1 + t). Then, with
Y1 = log(0.5)/ log(X1), F(s1(t)−) = H(s2(t)−) and the reliability functions of the
two systems are exactly equal for both the cumulative and the non-cumulative damage
models. Therefore, the damage distribution and the deterministic strength functionwill
be confounded. This happens even when the damage distribution belongs to a specific
family and the strength function has a specific form. In the industrial applications,
engineers may often be able to provide some physical knowledge about the nature of
damage distribution and strength degradation. In addition, empirical evidence from
past experiments may help to identify the parametric forms of the damage distribution
and the deterministic strength function; however, the associated parameters may be
unknown. In such cases, parameters associated with damage distribution will be con-
founded with the unknown parameters of the strength function s(t) and, hence, these
parameters will not be identifiable individually. The confounding between F(·) and
s(t) is due to the result that F(s(t)) = H(s∗(t)), where H(·) is the cdf of cX with some
c > 0 and s∗(t) = cs(t). For example, assuming F(·) and H(·) to be Exponential dis-
tributionswithmeanβ and cβ, respectively, and taking s(t) = ABt and s∗(t) = cABt ,
leads to F(s(t)) = H(s∗(t)) = 1 − exp{− A

β
Bt }. This non-identifiability remains and,

therefore, s(t) may be assumed known when considering estimation of F(·) and λ.
However, in many real-life scenarios, initial strength of the system is known, which
may sometime resolve such identifiability problem.

Once such identifiability problem is detected, there are two different remedies (Puri
1983). If one or more of the parameters involved in this stress–strength interference is
known a priori, then one can hope that the other parameters do not suffer from the non-
identifiability problem. The same can happen if there exists any plausible relationship
among the parameters. Another way is to observe additional information and consider
the corresponding joint probability distribution for further analysis, as discussed in
the previous sections. Note that the model identifiability, as discussed in this work,
only indicates estimability of the model parameters and/or the corresponding damage
distribution.Oneneeds to develop amethodof estimating suchquantities. For example,
from (7), the non-cumulative damage model is identifiable with failure time data when
the damage distribution belongs toΠp , for some 0 ≤ p < 1, and is otherwise arbitrary.
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It is, however, not clear how to estimate the arbitrary damage distribution F and the
shock arrival rate λ based on failure time data. This methodological development is to
be taken up in future work. On the other hand, if a parametric distribution is assumed
for F , say Fθ , then we have a parametric failure time model with hazard rate given
by λ × [1 − Fθ (s(t))] which can be analyzed using standard maximum likelihood
method.

Acknowledgements The authors are thankful to Professor Subir Kumar Bhandari, and also the anonymous
Associate Editor and Reviewer, for many helpful comments and suggestions.

6 Appendix

Lemma 1 Suppose g(·) is a right-continuous or left-continuous function, h(0) ≥ 0,
and h(t) > 0, for all t > 0, then

∫ v

0 g(t)h(t)dt = 0, for all v > 0, implies g(t) = 0,
for all t ≥ 0.

Proof Let us first suppose that g(t) is a right-continuous function. In addition, suppose,
if possible, g(t0) �= 0, for some t0 ≥ 0. Without loss of generality, let us consider
g(t0) > 0. Then, there exists δ > 0, such that g(t) > 0, for all t ∈ [t0, t0 + δ). Then,
from the following equation:

∫ t0+δ

0
g(t)h(t)dt =

∫ t0

0
g(t)h(t)dt +

∫ t0+δ

t0
g(t)h(t)dt.

we have
∫ t0+δ

t0
g(t)h(t)dt = 0, which is a contradiction, since h(t) > 0 for all t > 0,

and g(t) > 0, for all t ∈ [t0, t0 + δ). Hence, g(t) = 0, for all t ≥ 0. The proof is
similar when g(t) is a left-continuous function. �

Lemma 2 If f is a right-continuous function and g is a non-increasing left-continuous
function, then f ◦ g is left-continuous.

Proof Let {xn} be a sequence, such that xn → x as n → ∞ and xn ≤ x , for all
n = 1, 2, . . .. Then, since g is left-continuous, g(xn) → g(x). In addition, since g is a
non-increasing function, g(xn) ≥ g(x), for all n = 1, 2, . . .. Therefore, f (g(xn)) →
f (g(x)), since f is a right-continuous function. From sequential characterization of
continuity (Rudin 1976, Theorem 4.2, p-84), we conclude that f ◦g is left-continuous.

�

Result 1 If f is a left-continuous function and g is non-increasing right-continuous
function, then f ◦ g is right-continuous.

Proof Similar to the proof of Lemma 2 (see Bhuyan and Dewanji 2014). �

Lemma 3 If V and W are two non-negative random variables, such that V <st W ,
and η(·) ≥ 0 is a strictly decreasing function, then E[η(V )] > E[η(W )].
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Proof We first show that η(W ) <st η(V ). We know that P[W > x] ≥ P[V > x], for
all x ≥ 0, and P[W > x0] > P[V > x0], for some x0 ≥0. Now P[η(W ) < x] =
P[W > η−1(x)] ≥ P[V > η−1(x)] = P[η(V ) < x], for all x ≥ 0, and P[η(W ) <

η(x0)] = P[W > x0] > P[V > x0] = P[η(V ) < η(x0)]. Hence, η(W ) <st η(V ).
Since η(W ) and η(V ) are non-negative random variables, we can write E[η(V )]−

E[η(W )] = ∫ ∞
0 {P[η(V ) > x] − P[η(W ) > x]}dx . We know that P[η(V ) > x]−

P[η(W ) > x] is a right-continuous function and P[η(V ) > y0]−P[η(W ) > y0] > 0
for some y0 ≥ 0. Therefore, there exists δ > 0, such that P[η(V ) > x] − P[η(W ) >

x] > 0 for all y0 ≤ x < y0 + δ. Hence, E[η(V )] > E[η(W )]. �
Lemma 4 Suppose X is a non-negative random variable and G(x−) = P(X < x) is
a strictly increasing function of x > 0, then G(n)(x−) is a strictly decreasing function
of n, for all x > 0, where n = 0, 1, . . ..

Proof We prove this result by the method of induction. Let us first fix some arbi-
trary x0 > 0. Since G(x−) is strictly increasing in x and limx→∞ G(x−) = 1,
G(x0−) < G(0)(x0−) = 1. Now

G(2)(x0−) =
∫

[0,x0)
G(x0 − t−)dG(t)

<

∫

[0,x0)
G(x0−)dG(t)

= {G(x0−)}2
≤ G(x0−).

By definition, G(2)(x−) is also strictly increasing in x > 0, sinceG(x−) is. Similarly,
it is easy to see that G(n)(x−) is also strictly increasing in x > 0, for all n = 1, 2, . . ..
Then

G(n+1)(x0−) =
∫

[0,x0)
G(n)(x0 − t−)dG(t)

<

∫

[0,x0)
G(n)(x0−)dG(t)

= G(n)(x−)G(x0−)

≤ G(n)(x0−).

Therefore, by induction, we conclude that G(n)(x−) is a strictly decreasing function
of n, for all x > 0. �
Theorem 1 Let X1, X2, . . . and Y1,Y2, . . . are two sequences of iid non-negative
random variables with the common cdf F ∈ Πd and H ∈ Πd , respectively. If X1 �=st

Y1, then, for all α > 0, either there exists u0 ∈ (0, α), such that, without loss of
generality, P[X1 < u0] > P[Y1 < u0] and P[∑n

i=1 Xi < u0] ≥ P[∑n
i=1 Yi < u0]

for all n = 2, 3, . . ., or for all u ∈ (0, α], P[Y1 < u] = P[X1 < u].
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Proof Fix α > 0. Let X1 and Y1 take values x1, x2, . . ., and y1, y2, . . ., respec-
tively. Let us write v0 = inf{x ≥ 0 : P(X1 < x) �= P(Y1 < x)}. Note that, since
the mass points of both F and H are isolated, this v0 is a mass point of either
F or H , but does not satisfy P[X1 < v0] �= P[Y1 < v0]. Therefore, v0 is
the first point, where the masses of F and H differ and all the mass points of
F and H , smaller than v0, are common having equal mass. Suppose z1, . . . , zk
are the common mass points of F and H , smaller than v0. If v0 ≥ α, then
P[Y1 < u] = P[X1 < u] for all u ∈ (0, α]. If v0 < α, then we define u0 = v0 + w0,
where w0 = [{

min
{
(v0,∞)

⋂{xi , yi : , i = 1, 2, . . .
}} ∧ α} − v0

]
/2. Note that the

set {xi , yi : i = 1, 2, . . .} has no limit point, and hence, (v0,∞)
⋂{xi , yi : , i = 1,

2, . . .} is a closed and non-empty set. Hence, the minimum is well-defined. Since
u0 > v0, we have P[X1 < u0] �= P[Y1 < u0]. We assume, without loss of generality,
P[X1 < u0] > P[Y1 < u0]. Therefore, P[X1 = v0] > P[Y1 = v0]. Let us consider
the set S = {z1, . . . , zk, v0}. Then,

P

[
n∑

i=1

Xi < u0

]

=
∑

{(l1,...,ln) : li∈S,l1+···+ln<u0}

n∏

i=1

P[Xi = li ]

≥
∑

{(l1,...,ln) : li∈S,l1+···+ln<u0}

n∏

i=1

P[Yi = li ]

= P

[
n∑

i=1

Yi < u0

]

,

for all n = 2, 3, . . .. Hence, the proof. �

Theorem 2 Let X1, X2, . . . and Y1,Y2, . . . are two sequences of iid non-negative
random variables with the common cdf F(·) ∈ ΠC and G(·) ∈ ΠC , respectively. If
X1 �=st Y1, then there exists x0 > 0, such that, for all u ∈ (0, x0), without loss of
generality, P[X1 < u] > P[Y1 < u] and P[∑n

i=1 Xi < u] ≥ P[∑n
i=1 Yi < u], for

all n = 2, 3, . . ..

Proof If EG,H , as defined above, is empty, then, without loss of generality, we have
P[X1 < x] > P[Y1 < x] for all x > 0; that is, X1 <st Y1. Now, by Theorem 1.A.3
of (Shaked and Shanthikumar 2007, p-6), we get

∑n
i=1 Xi ≤st

∑n
i=1 Yi for all n =

2, 3, . . . and, hence, P[∑n
i=1 Xi < x] ≥ P[∑n

i=1 Yi < x] for all x > 0 and for all
n = 2, 3, . . ..

If EG,H is non-empty, let us write x0 = min{x : x ∈ EG,H } > 0.
Since EG,H is a closed set, this minimum x0 exists. Let us define random
variables X∗

i and Y ∗
i , i = 1, 2, . . ., with probability distributions defined as

P[X∗
i < x] = P[Xi < x]/P[Xi ≤ x0] and P[Y ∗

i < x] = P[Yi < x]/P[Yi ≤ x0],
respectively, for all 0 < x ≤ x0, and P[X∗

i < x] = P[Y ∗
i < x] = 1 for all x >

x0. Note that P[X1 ≤ x0] = P[X1 < x0] = P[Y1 < x0] = P[Y1 ≤ x0] > 0. Since
P[X1 < x]−P[Y1 < x] is a continuous function, using Theorem4.23 of (Rudin 1976,
p-93), without loss of generality, we have P[X1 < x] > P[Y1 < x] for all x ∈ (0, x0).
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Hence, P[X∗
1 < x] > P[Y ∗

1 < x] for all x ∈ (0, x0), that is X∗
1 <st Y ∗

1 . Now, by The-
orem 1.A.3 of (Shaked and Shanthikumar 2007, p-6), we get

∑n
i=1 X

∗
i ≤st

∑n
i=1 Y

∗
i

for all n = 2, 3, . . ., and hence, P[∑n
i=1 X

∗
i < x] ≥ P[∑n

i=1 Y
∗
i < x] for all x > 0,

and for all n = 2, 3, . . .. Note that this theorem is not applicable on the origi-
nal variables, since P[X1 < x] > P[Y1 < x] for x ∈ (0, x0) only, not on
the entire support. Now, P[∑n

i=1 Xi < x] = {P[X1 ≤ x0]}n P[∑n
i=1 X

∗
i < x] and

P[∑n
i=1 Yi < x] = {P[Y1 ≤ x0]}n P[∑n

i=1 Y
∗
i < x], for all 0 < x ≤ x0 and for all

n = 2, 3, . . .. Therefore, P[∑n
i=1 Xi < x] ≥ P[∑n

i=1 Yi < x] for all x ∈ (0, x0), and
for all n = 2, 3, . . .. Hence, the proof. �
Corollary 1 Let X1, X2, . . . and Y1,Y2, . . . are two sequences of iid non-negative
random variables with the common distributions P[X1 ≤ x] = ∑∞

j=0 α j x j and

P[Y1 ≤ x] = ∑∞
j=0 β j x j , respectively. If X1 �=st Y1, then there exists x0 > 0, such

that, for all u ∈ (0, x0), without loss of generality, P[X1 < u] > P[Y1 < u] and
P[∑n

i=1 Xi < u] ≥ P[∑n
i=1 Yi < u], for all n = 2, 3, . . ..

Proof Let us consider the set A = {x > 0 : P(X1 < x) = P(Y1 < x)}. Note that
P[X1 < x] and P[Y1 < x] are continuous and strictly increasing functions for all
x > 0.

If A = φ, then A is closed. If A �= φ and the set of limit points of A is also
non-empty, then by Theorem 8.5 of (Rudin 1976, p-177), we have α j = β j , for all
j = 0, 1, . . .. This is a contradiction to the fact that X1 �=st Y1. Therefore, we consider
that A has no limit point. This implies A is a closed set.

For both the cases, distributions of X1 and Y1 belong to ΠC , and the Corollary 1
follows from Theorem 2. �
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