
Supplementary Material of “Parameter Change Test for
Autoregressive Conditional Duration Models” by Lee and Oh

1 Proofs of Theorems 1-2 and Propositions 1-2

Proof of Theorem 1. We first show that ||L̂n − Ln||K/n
a.s.−→ 0. Since ψi, ψ̂i ≥ g > 0, an

application of the mean value theorem leads to ||(ψ̂i)−1− (ψi)
−1||K ≤ g−2||ψ̂i−ψi||K and || log ψ̂i−

logψi||K ≤ g−1||ψ̂i − ψi||K . Thus, there exists C > 0 with

||L̂n − Ln||K ≤ C
n∑
i=1

(1 + xi)||ψ̂i − ψi||K ≤ C
∞∑
i=1

(1 + xi)||ψ̂i − ψi||K .

Owing to Proposition 3.12 of Straumann and Mikosch (2006), we have ||ψ̂i − ψi||K
e.a.s.−→ 0. Also,

due to (C.1), the fact that Eϵ0 = 1, and Lemma 2.2 of Straumann and Mikosch (2006), we have

E[log+(1 + x0)] <∞. Hence, ||L̂n − Ln||K/n
a.s.−→ 0.

For the uniqueness of the maximum of L on K, we need to prove that L(θ) < L(θ0) for all

θ ∈ K\{θ0}. Since E[logψ0,0] is finite and does not depend on the parameter θ, we can demonstrate

that

Q(θ) = E
(
log

ψ0,0

ψo(θ)
− x0
ψo(θ)

)
= E

(
log

ψ0,0

ψo(θ)
− ψ0,0

ψo(θ)

)
, θ ∈ K,

is uniquely maximized at θ = θ0. Since log(x) − x ≤ −1 for all x > 0 with equality if and only if

x = 1, we should have Q(θ) ≤ −1 = Q(θ0) with equality if and only if ψ0,0/ψ0(θ) ≡ 1 and also if

and only if θ = θ0, which shows that Q and L are uniquely maximized at θ = θ0.

By (C.3) and Proposition 3.12 of Straumann and Mikosch (2006), it can be seen that the

function

θ 7→ li(θ) = −
(

xi
ψi(θ)

+ logψi(θ)

)
is continuous on K with probability 1. Since for every fixed θ ∈ K, the sequence {li(θ)} is

stationary and ergodic, it holds that n−1
∑n

i=1 li(θ)
a.s.→ L(θ) = E[l0(θ)] as n → ∞. In case

Ex0 = ∞, the latter limit can take the value −∞ at certain point θ, but ψ0(θ) ≥ g ≥ 0 guarantees

L(θ) < ∞ for all θ ∈ K. Therefore, we can use the same arguments as given in the proof of

Lemma 3.11 of Pfanzagl (1969) to show that the function L is upper semicontinuous on K and

lim supn→∞ supθ∈K′ Ln(θ)/n ≤ supθ∈K′ L(θ) with probability 1 for any compact subset K ′ ⊂ K.

Since ||L̂n − Ln||K/n
a.s.−→ 0, we have lim supn→∞ supθ∈K′ L̂n(θ)/n ≤ supθ∈K′ L(θ) a.s.. Further,

since ||L̂n − Ln||K/n
a.s.−→ 0 and Ln(θ0)/n

a.s.→ L(θ0), we get lim supk→∞ L̂n(θ0)/n = L(θ0) a.s..

Let ϵ > 0 be arbitrary and suppose that P(lim supn→∞ |θ̂n − θ0| ≥ ϵ) > 0. Let K ′ =

K ∩ {θ : |θ − θ0| ≥ ϵ}. Since K ′ is compact, there is an event D ⊂ {lim supn→∞ |θ̂n − θ0| ≥
ϵ, lim supn→∞ supθ∈K′ L̂n(θ)/n ≤ supθ∈K′ L(θ)and lim supk→∞ L̂n(θ0)/n = L(θ0)} with a posi-

tive probability, such that onD, there exists a convergent subsequence(θ̂nk
) ⊂ K ′ with limk→∞ θ̂nk

=

θ. Note that by the definition of the QMLE, lim supk→∞ L̂nk
(θ0)/nk ≤ lim supk→∞ L̂nk

(θ̂nk
)/nk =
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lim supk→∞ supθ∈K′ L̂nk
(θ)/nk on D. Further, lim supk→∞ supθ∈K′ L̂nk

(θ)/nk ≤ supθ∈K′ L(θ) and

lim supk→∞ L̂nk
(θ0)/nk = L(θ0) on D. Since any upper semicontinuous function L attains its

maximum on compact sets and D is not an empty set, there exist at least one point θ ∈ K ′ with

L(θ) ≥ L(θ0). This, however, contradicts the fact that L is uniquely maximized at θ0. Subse-

quently, with probability 1, we get |θ̂n − θ0| < ϵ for all but finitely many n’s. Since ϵ > 0 is

arbitrary, we conclude that θ̂n
a.s.−→ θ0 as n→ ∞. This completes the proof.

Proof of theorem 2. An inspection of the proof of Theorem 1 shows that condition (N.1) also

implies θ̃n
a.s.→ θ0, where θ̃ = argmaxθ∈KLn(θ). Subsequently, for sufficiently large n, we can

express

(1) L′
n(θ̃n) = L′

n(θ0) + L′′
n(ζn)(θ̃n − θ0),

where |ζn − θ0| < |θ̃n − θ0|. Since θ̃n is the maximizer of Ln and θ0 lies in the interior of K, one

has L′
n(θ̃n) = 0, and thus, (1.1) is rewritten as

(2) n−1L′′
n(ζn)(θ̃n − θ0) = −n−1L′

n(θ0).

Due to the fact that E||l′′0 ||K < ∞ and the stationarity and ergodicity of {l′′i }, we can apply

Theorem 2.7 of Straumann and Mikosch to obtain L′′
n/n

a.s.→ L′′ in C(K,Rd×d) as n → ∞, where

L′′(θ) = E[l′′0(θ)], θ ∈ K. This uniform convergence result and the fact that ζn
a.s.→ θ0 imply

L′′
n(ζn)/n

a.s.→ E[l′′0(θ0)] = B0, n→ ∞.

Owing to Propositions 3.12, 6.1 and 6.2 of Straumann and Mikosch (2006), it can be seen that ψ0,

ψ′
0 and ψ′′

0 are F−1-measurable. Also, since ψ0(θ0) = ψ0,0 a.s., x0 = ψ0,0ϵ0 and ϵ0 is independent

of F−1, it holds that

(3) B0 = −E[(ψ′
0(θ0))

Tψ′
0(θ0)/ψ

2
0,0],

which is invertible due to Lemma 1 below. Thus, the matrix L′′
n(ζn)/n has an inverse of the form:

B−1
0 (1 + oP (1)), n→ ∞, and (2) can be reexpressed as

√
n(θ̃n − θ0) = −B−1

0 (1 + oP (1))L
′
n(θ0)/

√
n, n→ ∞.

Since ψi(θ0) = ψi,0 a.s. and xi = ψi,0ϵi, we can write

L′
n(θ0) =

n∑
i=1

l′i(θ0) =

n∑
i=1

ψ′
i(θ0)

ψi,0
(ϵi − 1).

Further, since the random element ψ′
i/ψi,0 is Fi−1-measurable, Fi−1 is independent of ϵi, and

Eϵi = 1, the sequence {l′i(θ0)} forms a stationary and ergodic zero mean martingale difference

sequence with respect to the filtration {Fi}: owing to (N.3), the sequence l′i(θ0) is square in-

tegrable. Then, applying a central limit theorem for square integrable stationary and ergodic
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martingale difference sequences (cf. Theorem 18.3 of Billingsley (1999)), we get n−1/2L′
n(θ0)

d→
N(0,E[(l′0(θ0))

T l′0(θ0)]), n→ ∞. Hence, due to (3), we have

√
n(θ̃n − θ0)

d→ N(0,V0), n→ ∞.

Now that
√
n|θ̂n − θ̃n|

a.s.→ 0 owing to Lemma 3 below, an application of Slutsky’s lemma finalizes

the proof.

Lemma 1. If (N.1)-(N.4) hold, then B0 = E[l′′0(θ0)] is negative definite.

Proof. Note that B0 is negative definite if and only if C0 = E[(ψ′
0(θ0))

Tψ′
0(θ0)/ψ

2
0,0] is positive

definite. Assume that xT0 C0x0 = 0 for some x0 ∈ Rd. In this case, we get

E
∣∣∣∣ψ′

0(θ0)x0

ψ0,0

∣∣∣∣2 = 0,

which in turn implies ψ′
0(θ0)x0 = 0 a.s. and Ψ′

0(θ0)x0 = 0 a.s. owing to the stationary of {Ψ′
i}.

Now, observe that

ψ′
1(θ0) =

∂gθ
∂θ

(X0,Ψ0,0)

∣∣∣∣
θ=θ0

+
∂gθ
∂Ψ

(X0,Ψ0,0)

∣∣∣∣
θ=θ0

Ψ′
0(θ0).

From this, since ψ′
1(θ0)x0 = 0, it follows that (∂gθ(X0,Ψ0,0)/∂θ)|θ=θ0x0 = 0 a.s.. This together

with (N.4) implies x0 = 0. This validates the lemma.

Lemma 2. If (N.1) and (N.2) hold, we have

n−1/2||L̂′
n − L′

n||K
a.s.→ 0, n→ ∞.

Proof. Note that (C.3) implies ψ̂i(θ), ψi(θ) ≥ g > 0 for all θ ∈ K. By applying the mean value

theorem to the function f(a, b) = ab−1(1− xi/b), a ∈ R, b ≥ g, we can express

||l̂′i − l′i||K =

∥∥∥∥ ψ̂′
i

ψ̂i

(
1− xi

ψ̂i

)
− ψ′

i

ψi

(
1− xi

ψi

)∥∥∥∥
K

≤ C(1− xi){||ψ̂′
i − ψ′

i||K + ||ψ̂i − ψi||K ||ψ′
i||K + ||ψ̂i − ψi||K ||ψ̂′

i − ψ′
i||K}(4)

for some C > 0. Then, using (4) and Lemmas 2.1 and 2.2 of Straumann and Mikosch (2006), we

can see that ||L̂′
n − L′

n||K ≤
∑∞

i=1 ||l̂′i − l′i||K <∞ a.s. This establishes the lemma.

Lemma 3. If (N.1)-(N.4) hold, we have

√
n|θ̃n − θ̂n|

a.s.→ 0, n→ ∞.
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Proof. Using the mean value theorem, we can express

(5) L′
n(θ̃n)− L′

n(θ̂n) = L′′
n(ζ̃n)(θ̃n − θ̂n),

where ζ̃n lies on the line segment connecting θ̂n and θ̃n: this line segment is completely contained

in the interior of K when n is large enough. Since L′
n(θ̃n) = L̂′

n(θ̂n) = 0, (5) is equivalent to

(6) n−1/2(L̂′
n(θ̂n)− L′

n(θ̂n)) = n−1L′′
n(ζ̃n){n1/2(θ̃n − θ̂n)}.

Owing to Lemma 2, we can easily see that both the RHS and LHS sides of (6) should tend to 0 a.s.

as n → ∞. Further, using the fact that E||l′′0 ||K < ∞ and ζ̃
a.s.→ θ0 and applying Theorem 2.7 of

Straumman and Mikosch (2006) to L′′
n/n, L

′′
n(ζ̃n)/n

a.s.→ B0, which in turn implies
√
n(θ̂n−θ̃n)

a.s.→ 0.

This validates the lemma.

Proof of Proposition 1. To verify consistency, we first check that (C.1), (C.3) and (C.4) hold.

Note that (C.3) holds due to (L.4). To show (C.1), we consider the SRE:

logψi+1 = ϕ′i(logψi),

where ϕ′i(x) = ω0+α0 log ϵi+(α0+β0)x. Note that Λ(ϕ
′(r)
0 ) = |α0+β0|r < 1 for all r owing to (L.2)

and E[log+ |ϕ′0(0)|] = E(log+ |ω0 +α0 log ϵ0|) <∞ owing to Lemma 2.2 of Straumann and Mikosch

(2006) and the fact that E| log ϵ0|ν <∞. Thus, (C.1) holds by virtue of Theorem 2.8 of Straumann

and Mikosch (2006). Next, we verify (C.4). For this, we only have to show that logψi(θ) = logψi,0

implies θ = θ0. Suppose that logψi(θ) = logψi,0 a.s.. Then, by the stationarity,

(ω − ω0) + (α− α0) log ϵi−1 + (α− α0 + β − β0) logψi−1,0 = 0 a.s..

If α − α0 + β − β0 ̸= 0, logψi−1,0 is a measurable function of ϵi−1 but at the same time must be

independent of ϵi−1. This implies that logψi−1,0 is deterministic. However, taking the variance of

logψi−1,0 gives V ar(logψi−1,0) =
∑∞

k=0(α0 + β0)
2kV ar(α0 log ϵ0) > 0, owing to (L.2) and (L.3).

Thus, we should have α+ β = α0 + β0, which indicates that ω = ω0 and α = α0 owing to (L.3), so

that (C.4) holds.

To establish the proposition, we need to verify that (C.2) holds. However, in the log-ACD case,

(C.2) does not hold, and we directly verify that

xi||ψ̂−1
i − ψ−1

i ||K
e.a.s.−→ 0, i→ ∞,

since this will complete the proof as seen in Theorem 1. To this end, we introduce the SRE:

(7) logψi+1 = ϕi(logψi),

where

[ϕi(a)](θ) = ω + α log xi + βa(θ), θ ∈ K.
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Since Λ(ϕ
(r)
0 ) = |β|r < 1 for all r and E log+ ||ϕ0(0)||K = E log+ supω,α |ω + α log x0| < ∞ owing

to (L.1) and (L.3), Theorem 2.8 of Straumann and Mikosch (2006) allows SRE (4.4) to admit an

ergodic stationary solution

(8) logψi =
∞∑
k=0

βk(ω + α log xi−k),

where logψi is Fi−1-measurable and || log ψ̂i− logψi||K
e.a.s.−→ 0 as i→ ∞. Then, due to the fact that

E log+ x0 <∞, which is true because E logψ0,0 <∞ and Eϵ0 = 1, we obtain xi||ψ̂−1
i −ψ−1

i ||K
e.a.s.−→ 0

as i→ ∞. This asserts the strong consistency.

Next, we prove the asymptotic normality. Obviously, (N.1) is satisfied. Instead of (N.2),

we verify that logψi is twice continuously differentiable on K, (logψi)
′ and (logψi)

′′ are Fi−1-

measurable, and

||(log ψ̂i)′ − (logψi)
′||K

e.a.s.−→ 0, i→ ∞,(9)

||( 1
ψ̂i

)′ − (
1

ψ
)′||K

e.a.s.−→ 0.(10)

Taking the first and second derivatives in θ of both the sides of

log ψ̂i+1 = ω + α log xi + β log ψ̂i,

we get

(log ψ̂i+1)
′ =

ˆ̇
ϕi
(
(logψi)

′) = β(log ψ̂i)
′ + (1, log xi, log ψ̂i)

T ,

(log ψ̂i+1)
′′ =

ˆ̈
ϕi
(
(logψi)

′′) = β(log ψ̂i)
′′ + (0, 0, 1)T (log ψ̂i)

′ +
(
(log ψ̂i)

′)T (0, 0, 1).
Further, replacing log ψ̂i with logψi and (log ψ̂i)

′ with (logψi)
′, we obtain the following SREs on

C(K,R3) and C(K,R3×3), respectively:

(log di+1)
′ = ϕ̇i

(
(log di)

′) = β(log di)
′ + (1, log xi, logψi)

T ,

(log ei+1)
′′ = ϕ̈i

(
(log ei)

′′) = β(log ei)
′′ + (0, 0, 1)T (logψi)

′ +
(
(logψi)

′)T (0, 0, 1).
First, note that Λ(

ˆ̇
ϕi − ϕ̇i)

e.a.s.−→ 0 and || ˆ̇ϕi(0) − ϕ̇i(0)||K
e.a.s.−→ 0 since || log ψ̂i − logψi||K

e.a.s.−→ 0

as i → ∞. Also, E|| logψi−k||νK < ∞ owing to (8) and the fact that || logψi||K ≤ | logψi,0| +
|| logψi − logψi,0||K , E| logψi,0|ν < ∞ and E| log ϵi|ν < ∞. Further, we have E[log+ ||ϕ̇0(0)||K ] =
E[log+ ||(1, log x0, logψ0)

T ||K ] < ∞ since E|| logψ0||νK < ∞ and E| log x0|ν < ∞. Hence, using

Theorem 2.10 and the identical argument used in the proof of Proposition 6.1 of Straumann and

Mikosch (2006) and the fact that E[log Λ(ϕ̇0)] ≤ log supθ∈K |β| < 0, we can see that logψi is

Fi−1-measurable and differentiable and (9) is satisfied. Manifestly, (10) holds because ( 1
ψi
)′ =

− 1
ψi
(logψi)

′.

Next, note that since (logψi)
′ is a linear combination of log xi−k and logψi−k, E||(logψi)′||νK <

∞, which implies E[log+ ||ϕ̈i(0)||K ]=E log+ ||(0, 0, 1)T (logψi)′ +
(
(logψi)

′)T (0, 0, 1)||K < ∞. Fur-

ther, note that Λ(
ˆ̈
ϕi−ϕ̈i)

e.a.s.−→ 0 and || ˆ̈ϕi(0)−ϕ̈i(0)||K
e.a.s.−→ 0 owing to (9). In addition, E[log Λ(ϕ̈0)] ≤
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log supθ∈K |β| < 0. Then, combining all these facts and using the identical argument used in the

proof of Proposition 6.2 of Straumann and Mikosch (2006), we can conclude that (logψi)
′ is Fi−1-

measurable and differentiable.

Concerning (N.3), note that E||(logψi)′||νK < ∞ implies E||(logψi)′′||νK < ∞. Since ϵ0 is inde-

pendent of {logψ0, (logψ0)
′, (logψ0)

′′}, Eϵν0 <∞, and E|ψ0,0|ν <∞, we obtain E||x0
(

1
ψ0

)′||ν/2K <∞
and E||x0

(
1
ψ0

)′′||ν/2K < ∞. Henceforth, E||l′0||K < ∞, E||l′′0 ||K < ∞ and E|(logψ0)
′(θ0)|2 < ∞,

which asserts (N.3).

Finally, note that (logψ0)
′(θ0)x = 0 a.s. implies (1, log x0, logψ0,0)x a.s. for every x ∈ R3,

which holds if and only if x = 0.

Combining this and all the results obtained thus far (that is, (N.1), (N.3), (9), (10), and the

Fi−1-adaptivity and twice differentiability of logψi), one can establish the proposition following

the same lines as in Theorems 1 and 2. This completes the proof.

Proof of Proposition 2. Note that E||ψ′
0/ψ0||2K=E||(logψ0)

′||2K < ∞. The proposition is then

validated if E(log+ ||ψ′′
0 ||K) < ∞, which, however, is difficult to show in our case. Thus, we follow

another approach. Notice that E(log+ x0) <∞. Further, it can be shown similarly to (9) that

||(log ψ̂i)′′ − (logψi)
′′||K

e.a.s.−→ 0, i→ ∞,

so that ||( 1
ψ̂i
)′′−( 1

ψi
)′′||K

e.a.s.−→ 0 owing to the fact that ( 1ψ )
′′ = ( 1

ψi
)2(logψi)

′((logψi)
′)T− 1

ψi
(logψi)

′′.

Since these assert essentially the same result as stated in Lemma 2 in the Appendix, the proposition

is validated.
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