Supplementary Material of “Parameter Change Test for
Autoregressive Conditional Duration Models” by Lee and Oh

1 Proofs of Theorems 1-2 and Propositions 1-2

Proof of Theorem 1. We first show that ||L, — L,||x/n <3 0. Since 1, ; > g > 0, an
application of the mean value theorem leads to ||(¢;) 1 — (¢5) Y| |k < g2 l4hs — 3] | and || log ¥h; —
log ¥i||k < gflﬂqﬁi — ||k Thus, there exists C' > 0 with

1n = Lullx < CY (14 3)[[th — il < C (14 za)lJthi — il k-

i=1 =1

€.a.S.

Owing to Proposition 3.12 of Straumann and Mikosch (2006), we have ||t — ;|| %3 0. Also,
due to (C.1), the fact that Eey = 1, and Lemma 2.2 of Straumann and Mikosch (2006), we have
E[log* (1 4 z0)] < co. Hence, ||L, — Ln||x/n <5 0.

For the uniqueness of the maximum of L on K, we need to prove that L(0) < L(6) for all
0 € K\{0y}. Since E[log 1 o] is finite and does not depend on the parameter 8, we can demonstrate

that
Yoo o > & <log Yoo Yoo
Vo) o(6) Yo(60)  1o(6)
is uniquely maximized at @ = 0. Since log(z) — z < —1 for all > 0 with equality if and only if
x = 1, we should have Q(0) < —1 = Q(0) with equality if and only if 10 /10(0) = 1 and also if
and only if @ = 8y, which shows that ) and L are uniquely maximized at 8 = 6.
By (C.3) and Proposition 3.12 of Straumann and Mikosch (2006), it can be seen that the

function

Q(O):E<log > 6cK,

0 — 1;(0) = — <J(Zé) + log %(9))

is continuous on K with probability 1. Since for every fixed 6 € K, the sequence {l;(8)} is
stationary and ergodic, it holds that n=' Y"1  1;(0)
Ezg = oo, the latter limit can take the value —oo at certain point 8, but 1y(8) > g > 0 guarantees

a.s.

= L(0) = E[lp(0)] as n — oo. In case

L(#) < oo for all @ € K. Therefore, we can use the same arguments as given in the proof of
Lemma 3.11 of Pfanzagl (1969) to show that the function L is upper semicontinuous on K and
lim sup,,_, . Supge g’ Ln(0)/n < supgegs L(0) with probability 1 for any compact subset K’ C K.
Since ||Ly, — Lu||x/n =5 0, we have limsup,,_, . supge xr Ln(0)/n < supgej L(@) a.s.. Further,
since || Ly, — Ln||x/n <3 0 and L, (60)/n %5 L(0y), we get limsupy, ., Ln(80)/n = L(6p) a.s..
Let € > 0 be arbitrary and suppose that P(limsup, .. [0, — 60| > ¢) > 0. Let K’ =
Kn{6:10 -8y > ¢} Since K’ is compact, there is an event D C {limsup, .. |6 — 6o >
€, limsup,,_, . supge s Ln(0)/n < supgere L(@)and limsupy_,. Ln(80)/n = L(0p)} with a posi-

tive probability, such that on D, there exists a convergent subsequence(6,,, ) C K’ with limy_, 0,,, =
6. Note that by the definition of the QMLE, lim sup,,_, ﬁnk (6p)/nk < limsupy_, I:nk (é’nk)/n/zC =



lim supy,_, o SUPge g+ L, (8)/ny, on D. Further, lim supy,_, . supge xr Ln, (8) /11 < supge g L(0) and
lim supy,_, o Ln, (80)/n = L(6y) on D. Since any upper semicontinuous function L attains its
maximum on compact sets and D is not an empty set, there exist at least one point 8 € K’ with
L(#) > L(6p). This, however, contradicts the fact that L is uniquely maximized at 6. Subse-
quently, with probability 1, we get \@n — 6| < € for all but finitely many n’s. Since € > 0 is
arbitrary, we conclude that 0, =% 0y as n — co. This completes the proof. 0

Proof of theorem 2. An inspection of the proof of Theorem 1 shows that condition (N.1) also
implies 0, “% 0y, where 0 = argmaxgc i L, (0). Subsequently, for sufficiently large n, we can

express

where [¢,, — 09| < |0,, — 8o]|. Since 0, is the maximizer of L, and 6y lies in the interior of K, one
has L/,(6,,) = 0, and thus, (1.1) is rewritten as

(2) n" Ly () (0 — B0) = —n 'L, (80).

Due to the fact that E||lj||x < oo and the stationarity and ergodicity of {l/}, we can apply
Theorem 2.7 of Straumann and Mikosch to obtain L /n “% L" in C(K,R**?) as n — oo, where
L"(6) = E[I4(0)], € K. This uniform convergence result and the fact that ¢,, “3 6o imply

L'(¢,)/n “3 B[l (00)] = Bo, n — 0o.

Owing to Propositions 3.12, 6.1 and 6.2 of Straumann and Mikosch (2006), it can be seen that )y,
Y and 1 are F_j-measurable. Also, since ¢9(0g) = 10,0 a.s., To = Yo,0€0 and €y is independent
of F_1, it holds that

(3) By = —E[(¥)(00))"%(80) /¢35 0],

which is invertible due to Lemma 1 below. Thus, the matrix L ({,)/n has an inverse of the form:

B, (1+0p(1)), n — oo, and (2) can be reexpressed as

Vii(8, — 80) = =By (1 + 0p(1)L,(80)/v/n,  n— ox.

Since 1;(00) = i a.s. and x; = ; p€;, we can write

L,(80) => 1i(60) =Y %D,{(éoo) (e; —1).
1 i=1 b

(8

1=
Further, since the random element }/v; ¢ is F;—1-measurable, F;_; is independent of ¢;, and
Ee; = 1, the sequence {l}(6o)} forms a stationary and ergodic zero mean martingale difference
sequence with respect to the filtration {F;}: owing to (N.3), the sequence I;(6y) is square in-

tegrable. Then, applying a central limit theorem for square integrable stationary and ergodic



martingale difference sequences (cf. Theorem 18.3 of Billingsley (1999)), we get n~'/2L’ (8y) LN

N(0,E[(15(60))T15(80)]), n — oo. Hence, due to (3), we have
Vi, — 00) 5 N0, Vo), n— oo

Now that \/ﬁ\én — én\ 220 owing to Lemma 3 below, an application of Slutsky’s lemma, finalizes
the proof. 0

Lemma 1. If (N.1)-(N.4) hold, then By = E[l{[(8)] is negative definite.
Proof. Note that By is negative definite if and only if Co = E[(¢)(00))" 1((00) /¢ o] is positive

definite. Assume that XOTCOXO = 0 for some x € R?. In this case, we get

1/)00

which in turn implies ¥ (680)xo = 0 a.s. and ¥(0p)x¢o = 0 a.s. owing to the stationary of {U}}.

Now, observe that

d96

20 Ty(6o).

0=0¢

¥1(00) = =4 (X0, Toy) Xo,%o,0)

el
0:90 a\If

From this, since 9] (60)xo = 0, it follows that (0ge(Xo, Vo0)/00)|e=6,%x0 = 0 a.s.. This together
with (N.4) implies xo = 0. This validates the lemma. 0O

Lemma 2. If (N.1) and (N.2) hold, we have

n V2L — Lk “5 0, n — 0.

Proof. Note that (C.3) implies ¥;(0), ;(6) > g >0 for all & € K. By applying the mean value
theorem to the function f(a,b) = ab™*(1 — z;/b), a € R, b > g, we can express

o))l
¢z i Vi Vi) |k

(4) < O —a){|[0F — dillx + 1 — il |04 i + (105 — il sl [0F — 2|k}

N —Ullx =

for some C' > 0. Then, using (4) and Lemmas 2.1 and 2.2 of Straumann and Mikosch (2006), we
can see that ||/, — L,||x < 322, ||I! — )| < co a.s. This establishes the lemma. 0O

Lemma 3. If (N.1)-(N.4) hold, we have



Proof. Using the mean value theorem, we can express

(5) L;z(én) - L;z(én) = L;;(&n)(én - 0n)7

where Z’n lies on the line segment connecting 6,, and 0,,: this line segment is completely contained

in the interior of K when n is large enough. Since L/ (8,) = L. (8,) = 0, (5) is equivalent to
(6) n2(L0(05) = L0 (05)) = n L () {n' (6, — 60,)).

Owing to Lemma 2, we can easily see that both the RHS and LHS sides of (6) should tend to 0 a.s.
as n — oo. Further, using the fact that E||If||; < oo and ¢ “3 8y and applying Theorem 2.7 of
Straumman and Mikosch (2006) to L /n, L"(¢,,)/n “3 By, which in turn implies /n(6,,—8,,) =5 0.

This validates the lemma. 0

Proof of Proposition 1. To verify consistency, we first check that (C.1), (C.3) and (C.4) hold.
Note that (C.3) holds due to (L.4). To show (C.1), we consider the SRE:

log ¥it1 = ¢;(log ¥y),

where ¢;(x) = wo+agloge;+ (ap+ o). Note that A((bg(r)) = o+ Po|" < 1 for all r owing to (L.2)
and E[log™ |¢{,(0)]] = E(log™ |wo + aplog eg|) < 0o owing to Lemma 2.2 of Straumann and Mikosch
(2006) and the fact that E|logeg|” < co. Thus, (C.1) holds by virtue of Theorem 2.8 of Straumann
and Mikosch (2006). Next, we verify (C.4). For this, we only have to show that log;(0) = log; o
implies @ = 0. Suppose that log;(0) = log1; o a.s.. Then, by the stationarity,

(W —wo) + (e —ap)log€i—1 + (v — g+ B — Bo) log i—10 =0 a.s..

If a—ag+ B — B0 #0, logi—10 is a measurable function of €;_1 but at the same time must be
independent of €;_1. This implies that log;_1 0 is deterministic. However, taking the variance of
log ¥i—1,0 gives Var(logvi_10) = Y peolao + Bo)*Var(aglogey) > 0, owing to (L.2) and (L.3).
Thus, we should have oo+ 8 = g + fo, which indicates that w = wp and o = oy owing to (L.3), so
that (C.4) holds.

To establish the proposition, we need to verify that (C.2) holds. However, in the log-ACD case,
(C.2) does not hold, and we directly verify that

zill = v Ik T30, i oo,
since this will complete the proof as seen in Theorem 1. To this end, we introduce the SRE:
(7) log ¥i1 = ¢i(log ),

where

[0i(a)](0) = w+ alogx; + fa(B), 6 € K.



Since A(gb(()r)) = |B]" < 1 for all r and Elog* [|¢o(0)||x = Elog™ sup,, , |w + alogz| < co owing
to (L.1) and (L.3), Theorem 2.8 of Straumann and Mikosch (2006) allows SRE (4.4) to admit an

ergodic stationary solution

(8) logy; = Y B¥(w+ alogw; ),

k=0

where log 1); is F;_1-measurable and || log U —log Uil|lx %% 0 as i — oo. Then, due to the fact that
Elog™ g < oo, which is true because Elog 1,9 < oo and Eey = 1, we obtain z;| |@ZAJ;1 -k <30
as 7 — oo. This asserts the strong consistency.

Next, we prove the asymptotic normality. Obviously, (N.1) is satisfied. Instead of (N.2),
we verify that logi; is twice continuously differentiable on K, (log;)" and (log;)” are F;_i-

measurable, and

(9) [(log ) — (logn)' ||k <3 0, i — oo,
(10) ||<$}i>’ - <;>'HK ZEN)

Taking the first and second derivatives in @ of both the sides of
log i41 = w + alog z; + Blog 1),

we get R
(log Pi41)' = di((log¥)') = B(log ;) + (1,log z;,log ¥s) 7,

(log ¥i1)" = Qgi((log ¥;)") = B(log ;)" + (0,0,1)T (log ¥s)’ + ((log q[;l-)’)T(O,O, 1).

Further, replacing logv); with log1); and (log zﬂz)’ with (log1);)’, we obtain the following SREs on
C(K,R?) and C(K,R3*3), respectively:

(logdi1)' = ¢i((logd;)') = B(log d;) + (1,log z;,log v;)",
(logeir1)” = ¢i((loge;)") = B(loge;)” + (0,0, 1) (log ;) + ((log l/%)/)T(O, 0,1).

€.a.8. €.a.S. €.a.S.

First, note that A(d; — ér) <%¥ 0 and ||6:(0) — ¢:(0)[|x <“3 0 since ||log P — log 4i||x %5 0
as i — oo. Also, E||logv;_i||% < oo owing to (8) and the fact that ||logv;||x < |logio| +
|| log 4b; — log i ol| 1, E|logwiol” < oo and E|loge;|” < oo. Further, we have E[log™ ||¢o(0)]|x] =
Eflog™ ||(1,1log xo,log ¥0)T||k] < oo since E||logtp|/% < oo and E|logxg|” < co. Hence, using
Theorem 2.10 and the identical argument used in the proof of Proposition 6.1 of Straumann and
Mikosch (2006) and the fact that E[log A(do)] < logsupgex |B] < 0, we can see that log; is
Fi—1-measurable and differentiable and (9) is satisfied. Manifestly, (10) holds because (i)’ =
— o (log ¢y’

Next, note that since (log);)’ is a linear combination of log z;_, and log¥;_, E||(log ¢;)'||% <
0o, which implies Eflog™ ||$:(0)||x]=Elog™ ||(0,0,1)T (log ;) —i—((logwi)’)T(O,O,l)HK < o0. Fur-
ther, note that A(ggl—q%) “%% 0 and HQASZ(())—gZ)z(O)HK 2% 0 owing to (9). In addition, E[log A(¢g)] <



log supge g |3| < 0. Then, combining all these facts and using the identical argument used in the
proof of Proposition 6.2 of Straumann and Mikosch (2006), we can conclude that (log;)" is F;—1-
measurable and differentiable.

Concerning (N.3), note that E||(log¢;)||% < oo implies E||(log;)"||% < oco. Since € is inde-
pendent of {log 1, (log ), (log 10)"}, Eef < 0o, and Elt)go|” < oo, we obtain IEHxO(%)/H;(/Z < 00
and El|zo(£)"|1%/* < oo. Henceforth, El[lj]|x < oo, E[if||x < oo and E|(log ) (80)[* < oo,
which asserts (N.3).

Finally, note that (logty)'(6g)x = 0 a.s. implies (1,logzg,logpo)x a.s. for every x € R?,
which holds if and only if x = 0.

Combining this and all the results obtained thus far (that is, (N.1), (N.3), (9), (10), and the
Fi—1-adaptivity and twice differentiability of log;), one can establish the proposition following

the same lines as in Theorems 1 and 2. This completes the proof. 0

Proof of Proposition 2. Note that E||¢f/vo||%=E||(logvo)’||% < co. The proposition is then
validated if E(log™ ||¢||x) < oo, which, however, is difficult to show in our case. Thus, we follow

another approach. Notice that E(log™ x9) < co. Further, it can be shown similarly to (9) that

||(log ¥s)" — (log )" |, <30, i — o0,

so that ||(i)”—(i)”||;¢ %% 0 owing to the fact that (i)” = (i)%log@bi)’((logwi)’)T—i(logwi)”.

Since these assert essentially the same result as stated in Lemma 2 in the Appendix, the proposition

is validated. 0
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