Supplementary Material of "Parameter Change Test for Autoregressive Conditional Duration Models" by Lee and Oh

1 Proofs of Theorems 1-2 and Propositions 1-2

Proof of Theorem 1. We first show that $||\hat{L}_n - L_n||_K / n \xrightarrow{a.s.} 0$. Since ψ_i , $\hat{\psi}_i \geq \underline{g} > 0$, an application of the mean value theorem leads to $||(\hat{\psi}_i)^{-1} - (\psi_i)^{-1}||_K \leq \underline{g}^{-2} ||\hat{\psi}_i - \psi_i||_K$ and $||\log \hat{\psi}_i - \log \psi_i||_K \leq \underline{g}^{-1} ||\hat{\psi}_i - \psi_i||_K$. Thus, there exists C > 0 with

$$||\hat{L}_n - L_n||_K \le C \sum_{i=1}^n (1+x_i) ||\hat{\psi}_i - \psi_i||_K \le C \sum_{i=1}^\infty (1+x_i) ||\hat{\psi}_i - \psi_i||_K$$

Owing to Proposition 3.12 of Straumann and Mikosch (2006), we have $||\hat{\psi}_i - \psi_i||_K \xrightarrow{e.a.s.} 0$. Also, due to (C.1), the fact that $\mathbb{E}\epsilon_0 = 1$, and Lemma 2.2 of Straumann and Mikosch (2006), we have $\mathbb{E}[\log^+(1+x_0)] < \infty$. Hence, $||\hat{L}_n - L_n||_K / n \xrightarrow{a.s.} 0$.

For the uniqueness of the maximum of L on K, we need to prove that $L(\theta) < L(\theta_0)$ for all $\theta \in K \setminus \{\theta_0\}$. Since $\mathbb{E}[\log \psi_{0,0}]$ is finite and does not depend on the parameter θ , we can demonstrate that

$$Q(\boldsymbol{\theta}) = \mathbb{E}\left(\log\frac{\psi_{0,0}}{\psi_o(\boldsymbol{\theta})} - \frac{x_0}{\psi_o(\boldsymbol{\theta})}\right) = \mathbb{E}\left(\log\frac{\psi_{0,0}}{\psi_o(\boldsymbol{\theta})} - \frac{\psi_{0,0}}{\psi_o(\boldsymbol{\theta})}\right), \qquad \boldsymbol{\theta} \in K,$$

is uniquely maximized at $\boldsymbol{\theta} = \boldsymbol{\theta}_0$. Since $\log(x) - x \leq -1$ for all x > 0 with equality if and only if x = 1, we should have $Q(\boldsymbol{\theta}) \leq -1 = Q(\boldsymbol{\theta}_0)$ with equality if and only if $\psi_{0,0}/\psi_0(\boldsymbol{\theta}) \equiv 1$ and also if and only if $\boldsymbol{\theta} = \boldsymbol{\theta}_0$, which shows that Q and L are uniquely maximized at $\boldsymbol{\theta} = \boldsymbol{\theta}_0$.

By (C.3) and Proposition 3.12 of Straumann and Mikosch (2006), it can be seen that the function

$$\boldsymbol{\theta} \mapsto l_i(\boldsymbol{\theta}) = -\left(\frac{x_i}{\psi_i(\boldsymbol{\theta})} + \log \psi_i(\boldsymbol{\theta})\right)$$

is continuous on K with probability 1. Since for every fixed $\boldsymbol{\theta} \in K$, the sequence $\{l_i(\boldsymbol{\theta})\}$ is stationary and ergodic, it holds that $n^{-1}\sum_{i=1}^n l_i(\boldsymbol{\theta}) \xrightarrow{a.s.} L(\boldsymbol{\theta}) = \mathrm{E}[l_0(\boldsymbol{\theta})]$ as $n \to \infty$. In case $\mathrm{E}x_0 = \infty$, the latter limit can take the value $-\infty$ at certain point $\boldsymbol{\theta}$, but $\psi_0(\boldsymbol{\theta}) \geq \underline{g} \geq 0$ guarantees $L(\boldsymbol{\theta}) < \infty$ for all $\boldsymbol{\theta} \in K$. Therefore, we can use the same arguments as given in the proof of Lemma 3.11 of Pfanzagl (1969) to show that the function L is upper semicontinuous on K and $\limsup_{n\to\infty} \sup_{\boldsymbol{\theta}\in K'} L_n(\boldsymbol{\theta})/n \leq \sup_{\boldsymbol{\theta}\in K'} L(\boldsymbol{\theta})$ with probability 1 for any compact subset $K' \subset K$. Since $||\hat{L}_n - L_n||_K/n \xrightarrow{a.s.} 0$, we have $\limsup_{n\to\infty} \sup_{\boldsymbol{\theta}\in K'} \hat{L}_n(\boldsymbol{\theta})/n \leq \sup_{\boldsymbol{\theta}\in K'} L(\boldsymbol{\theta})$ a.s.. Further, since $||\hat{L}_n - L_n||_K/n \xrightarrow{a.s.} 0$ and $L_n(\boldsymbol{\theta}_0)/n \xrightarrow{a.s.} L(\boldsymbol{\theta}_0)$, we get $\limsup_{k\to\infty} \hat{L}_n(\boldsymbol{\theta}_0)/n = L(\boldsymbol{\theta}_0)$ a.s..

Let $\epsilon > 0$ be arbitrary and suppose that $\mathbb{P}(\limsup_{n\to\infty} |\hat{\theta}_n - \theta_0| \ge \epsilon) > 0$. Let $K' = K \cap \{\theta : |\theta - \theta_0| \ge \epsilon\}$. Since K' is compact, there is an event $D \subset \{\limsup_{n\to\infty} |\hat{\theta}_n - \theta_0| \ge \epsilon$, $\limsup_{n\to\infty} \sup_{\theta \in K'} \hat{L}_n(\theta)/n \le \sup_{\theta \in K'} L(\theta)$ and $\limsup_{k\to\infty} \hat{L}_n(\theta_0)/n = L(\theta_0)\}$ with a positive probability, such that on D, there exists a convergent subsequence $(\hat{\theta}_{n_k}) \subset K'$ with $\lim_{k\to\infty} \hat{\theta}_{n_k} = \theta$. Note that by the definition of the QMLE, $\limsup_{k\to\infty} \hat{L}_{n_k}(\theta_0)/n_k \le \limsup_{k\to\infty} \hat{L}_{n_k}(\hat{\theta}_{n_k})/n_k =$

$$\begin{split} \lim \sup_{k\to\infty} \sup_{\boldsymbol{\theta}\in K'} \hat{L}_{n_k}(\boldsymbol{\theta})/n_k \text{ on } D. \text{ Further, } \lim \sup_{k\to\infty} \sup_{\boldsymbol{\theta}\in K'} \hat{L}_{n_k}(\boldsymbol{\theta})/n_k &\leq \sup_{\boldsymbol{\theta}\in K'} L(\boldsymbol{\theta}) \text{ and } \\ \limsup_{k\to\infty} \hat{L}_{n_k}(\boldsymbol{\theta}_0)/n_k &= L(\boldsymbol{\theta}_0) \text{ on } D. \text{ Since any upper semicontinuous function } L \text{ attains its } \\ \max \text{ maximum on compact sets and } D \text{ is not an empty set, there exist at least one point } \boldsymbol{\theta}\in K' \text{ with } \\ L(\boldsymbol{\theta}) &\geq L(\boldsymbol{\theta}_0). \text{ This, however, contradicts the fact that } L \text{ is uniquely maximized at } \boldsymbol{\theta}_0. \text{ Subsequently, with probability 1, we get } |\hat{\boldsymbol{\theta}}_n - \boldsymbol{\theta}_0| &< \epsilon \text{ for all but finitely many } n\text{'s. Since } \epsilon > 0 \text{ is arbitrary, we conclude that } \hat{\boldsymbol{\theta}}_n \xrightarrow{a.s.} \boldsymbol{\theta}_0 \text{ as } n \to \infty. \text{ This completes the proof.} \end{split}$$

Proof of theorem 2. An inspection of the proof of Theorem 1 shows that condition (N.1) also implies $\tilde{\theta}_n \xrightarrow{a.s.} \theta_0$, where $\tilde{\theta} = \operatorname{argmax}_{\theta \in K} L_n(\theta)$. Subsequently, for sufficiently large n, we can express

(1)
$$L'_{n}(\tilde{\boldsymbol{\theta}}_{n}) = L'_{n}(\boldsymbol{\theta}_{0}) + L''_{n}(\boldsymbol{\zeta}_{n})(\tilde{\boldsymbol{\theta}}_{n} - \boldsymbol{\theta}_{0}),$$

where $|\boldsymbol{\zeta}_n - \boldsymbol{\theta}_0| < |\tilde{\boldsymbol{\theta}}_n - \boldsymbol{\theta}_0|$. Since $\tilde{\boldsymbol{\theta}}_n$ is the maximizer of L_n and $\boldsymbol{\theta}_0$ lies in the interior of K, one has $L'_n(\tilde{\boldsymbol{\theta}}_n) = 0$, and thus, (1.1) is rewritten as

(2)
$$n^{-1}L_n''(\boldsymbol{\zeta}_n)(\tilde{\boldsymbol{\theta}_n}-\boldsymbol{\theta}_0)=-n^{-1}L_n'(\boldsymbol{\theta}_0).$$

Due to the fact that $\mathbb{E}||l_0''||_K < \infty$ and the stationarity and ergodicity of $\{l_i''\}$, we can apply Theorem 2.7 of Straumann and Mikosch to obtain $L_n''/n \xrightarrow{a.s.} L''$ in $\mathbb{C}(K, \mathbf{R}^{d \times d})$ as $n \to \infty$, where $L''(\boldsymbol{\theta}) = \mathbb{E}[l_0''(\boldsymbol{\theta})], \ \boldsymbol{\theta} \in K$. This uniform convergence result and the fact that $\boldsymbol{\zeta}_n \xrightarrow{a.s.} \boldsymbol{\theta}_0$ imply

$$L_n''(\boldsymbol{\zeta}_n)/n \stackrel{a.s.}{\to} \mathbb{E}[l_0''(\boldsymbol{ heta}_0)] = \mathbf{B}_0, \qquad n \to \infty.$$

Owing to Propositions 3.12, 6.1 and 6.2 of Straumann and Mikosch (2006), it can be seen that ψ_0 , ψ'_0 and ψ''_0 are \mathcal{F}_{-1} -measurable. Also, since $\psi_0(\theta_0) = \psi_{0,0}$ a.s., $x_0 = \psi_{0,0}\epsilon_0$ and ϵ_0 is independent of \mathcal{F}_{-1} , it holds that

(3)
$$\mathbf{B}_0 = -\mathbb{E}[(\psi_0'(\boldsymbol{\theta}_0))^T \psi_0'(\boldsymbol{\theta}_0)/\psi_{0,0}^2],$$

which is invertible due to Lemma 1 below. Thus, the matrix $L''_n(\zeta_n)/n$ has an inverse of the form: $\mathbf{B}_0^{-1}(1+o_P(1)), n \to \infty$, and (2) can be reexpressed as

$$\sqrt{n}(\tilde{\boldsymbol{\theta}}_n - \boldsymbol{\theta}_0) = -\mathbf{B}_0^{-1}(1 + o_P(1))L'_n(\boldsymbol{\theta}_0)/\sqrt{n}, \qquad n \to \infty.$$

Since $\psi_i(\boldsymbol{\theta}_0) = \psi_{i,0}$ a.s. and $x_i = \psi_{i,0}\epsilon_i$, we can write

$$L'_n(\boldsymbol{\theta}_0) = \sum_{i=1}^n l'_i(\boldsymbol{\theta}_0) = \sum_{i=1}^n \frac{\psi'_i(\boldsymbol{\theta}_0)}{\psi_{i,0}} (\epsilon_i - 1).$$

Further, since the random element $\psi'_i/\psi_{i,0}$ is \mathcal{F}_{i-1} -measurable, \mathcal{F}_{i-1} is independent of ϵ_i , and $\mathbb{E}\epsilon_i = 1$, the sequence $\{l'_i(\boldsymbol{\theta}_0)\}$ forms a stationary and ergodic zero mean martingale difference sequence with respect to the filtration $\{\mathcal{F}_i\}$: owing to (N.3), the sequence $l'_i(\boldsymbol{\theta}_0)$ is square integrable. Then, applying a central limit theorem for square integrable stationary and ergodic

martingale difference sequences (cf. Theorem 18.3 of Billingsley (1999)), we get $n^{-1/2}L'_n(\boldsymbol{\theta}_0) \xrightarrow{d} N(\mathbf{0}, \mathbb{E}[(l'_0(\boldsymbol{\theta}_0))^T l'_0(\boldsymbol{\theta}_0)]), n \to \infty$. Hence, due to (3), we have

$$\sqrt{n}(\tilde{\boldsymbol{\theta}}_n - \boldsymbol{\theta}_0) \stackrel{d}{\rightarrow} N(\mathbf{0}, \mathbf{V}_0), \qquad n \rightarrow \infty.$$

Now that $\sqrt{n}|\hat{\theta}_n - \tilde{\theta}_n| \stackrel{a.s.}{\to} 0$ owing to Lemma 3 below, an application of Slutsky's lemma finalizes the proof.

Lemma 1. If (N.1)-(N.4) hold, then $\mathbf{B}_0 = \mathbb{E}[l_0''(\boldsymbol{\theta}_0)]$ is negative definite.

Proof. Note that \mathbf{B}_0 is negative definite if and only if $\mathbf{C}_0 = \mathbb{E}[(\psi'_0(\boldsymbol{\theta}_0))^T \psi'_0(\boldsymbol{\theta}_0)/\psi^2_{0,0}]$ is positive definite. Assume that $\mathbf{x}_0^T \mathbf{C}_0 \mathbf{x}_0 = 0$ for some $\mathbf{x}_0 \in \mathbb{R}^d$. In this case, we get

$$\mathbb{E}\left|\frac{\psi_0'(\boldsymbol{\theta}_0)\mathbf{x}_0}{\psi_{0,0}}\right|^2 = 0,$$

which in turn implies $\psi'_0(\boldsymbol{\theta}_0)\mathbf{x}_0 = 0$ a.s. and $\Psi'_0(\boldsymbol{\theta}_0)\mathbf{x}_0 = 0$ a.s. owing to the stationary of $\{\Psi'_i\}$. Now, observe that

$$\psi_1'(\boldsymbol{\theta}_0) = \frac{\partial g_{\boldsymbol{\theta}}}{\partial \boldsymbol{\theta}}(X_0, \Psi_{0,0}) \bigg|_{\boldsymbol{\theta} = \boldsymbol{\theta}_0} + \frac{\partial g_{\boldsymbol{\theta}}}{\partial \Psi}(X_0, \Psi_{0,0}) \bigg|_{\boldsymbol{\theta} = \boldsymbol{\theta}_0} \Psi_0'(\boldsymbol{\theta}_0).$$

From this, since $\psi'_1(\boldsymbol{\theta}_0)\mathbf{x}_0 = 0$, it follows that $(\partial g_{\boldsymbol{\theta}}(X_0, \Psi_{0,0})/\partial \boldsymbol{\theta})|_{\boldsymbol{\theta}=\boldsymbol{\theta}_0}\mathbf{x}_0 = 0$ a.s.. This together with (N.4) implies $\mathbf{x}_0 = 0$. This validates the lemma.

Lemma 2. If (N.1) and (N.2) hold, we have

$$n^{-1/2} ||\hat{L}'_n - L'_n||_K \stackrel{a.s.}{\to} 0, \qquad n \to \infty.$$

Proof. Note that (C.3) implies $\hat{\psi}_i(\boldsymbol{\theta}), \psi_i(\boldsymbol{\theta}) \geq \underline{g} > 0$ for all $\boldsymbol{\theta} \in K$. By applying the mean value theorem to the function $f(a, b) = ab^{-1}(1 - x_i/b), a \in \mathbb{R}, b \geq g$, we can express

$$\begin{aligned} \|\hat{l}'_{i} - l'_{i}\|_{K} &= \left\|\frac{\hat{\psi}'_{i}}{\hat{\psi}_{i}}\left(1 - \frac{x_{i}}{\hat{\psi}_{i}}\right) - \frac{\psi'_{i}}{\psi_{i}}\left(1 - \frac{x_{i}}{\psi_{i}}\right)\right\|_{K} \\ (4) &\leq C(1 - x_{i})\{\|\hat{\psi}'_{i} - \psi'_{i}\|_{K} + \|\hat{\psi}_{i} - \psi_{i}\|_{K}\|\psi'_{i}\|_{K} + \|\hat{\psi}_{i} - \psi_{i}\|_{K}\|\hat{\psi}'_{i} - \psi_{i}\|_{K}\|\hat{\psi}'_{i} - \psi'_{i}\|_{K}\} \end{aligned}$$

for some C > 0. Then, using (4) and Lemmas 2.1 and 2.2 of Straumann and Mikosch (2006), we can see that $||\hat{L}'_n - L'_n||_K \leq \sum_{i=1}^{\infty} ||\hat{l}'_i - l'_i||_K < \infty$ a.s. This establishes the lemma.

Lemma 3. If (N.1)-(N.4) hold, we have

$$\sqrt{n}|\tilde{\boldsymbol{\theta}}_n - \hat{\boldsymbol{\theta}}_n| \stackrel{a.s.}{\to} 0, \qquad n \to \infty.$$

Proof. Using the mean value theorem, we can express

(5)
$$L'_{n}(\tilde{\boldsymbol{\theta}}_{n}) - L'_{n}(\hat{\boldsymbol{\theta}}_{n}) = L''_{n}(\tilde{\boldsymbol{\zeta}}_{n})(\tilde{\boldsymbol{\theta}}_{n} - \hat{\boldsymbol{\theta}}_{n}),$$

where $\tilde{\boldsymbol{\zeta}}_n$ lies on the line segment connecting $\hat{\boldsymbol{\theta}}_n$ and $\tilde{\boldsymbol{\theta}}_n$: this line segment is completely contained in the interior of K when n is large enough. Since $L'_n(\hat{\boldsymbol{\theta}}_n) = \hat{L}'_n(\hat{\boldsymbol{\theta}}_n) = 0$, (5) is equivalent to

(6)
$$n^{-1/2}(\hat{L}'_{n}(\hat{\theta}_{n}) - L'_{n}(\hat{\theta}_{n})) = n^{-1}L''_{n}(\tilde{\zeta}_{n})\{n^{1/2}(\tilde{\theta}_{n} - \hat{\theta}_{n})\}$$

Owing to Lemma 2, we can easily see that both the RHS and LHS sides of (6) should tend to 0 a.s. as $n \to \infty$. Further, using the fact that $\mathbb{E}||l_0''||_K < \infty$ and $\tilde{\boldsymbol{\zeta}} \stackrel{a.s.}{\to} \boldsymbol{\theta}_0$ and applying Theorem 2.7 of Straumman and Mikosch (2006) to L_n''/n , $L_n''(\tilde{\boldsymbol{\zeta}}_n)/n \stackrel{a.s.}{\to} \mathbf{B}_0$, which in turn implies $\sqrt{n}(\hat{\boldsymbol{\theta}}_n - \tilde{\boldsymbol{\theta}}_n) \stackrel{a.s.}{\to} 0$. This validates the lemma.

Proof of Proposition 1. To verify consistency, we first check that (C.1), (C.3) and (C.4) hold. Note that (C.3) holds due to (L.4). To show (C.1), we consider the SRE:

$$\log \psi_{i+1} = \phi_i' (\log \psi_i),$$

where $\phi'_i(x) = \omega_0 + \alpha_0 \log \epsilon_i + (\alpha_0 + \beta_0)x$. Note that $\Lambda(\phi'_0^{(r)}) = |\alpha_0 + \beta_0|^r < 1$ for all r owing to (L.2) and $\mathbb{E}[\log^+ |\phi'_0(0)|] = \mathbb{E}(\log^+ |\omega_0 + \alpha_0 \log \epsilon_0|) < \infty$ owing to Lemma 2.2 of Straumann and Mikosch (2006) and the fact that $\mathbb{E}|\log \epsilon_0|^{\nu} < \infty$. Thus, (C.1) holds by virtue of Theorem 2.8 of Straumann and Mikosch (2006). Next, we verify (C.4). For this, we only have to show that $\log \psi_i(\theta) = \log \psi_{i,0}$ implies $\theta = \theta_0$. Suppose that $\log \psi_i(\theta) = \log \psi_{i,0}$ a.s.. Then, by the stationarity,

$$(\omega - \omega_0) + (\alpha - \alpha_0) \log \epsilon_{i-1} + (\alpha - \alpha_0 + \beta - \beta_0) \log \psi_{i-1,0} = 0 \ a.s.$$

If $\alpha - \alpha_0 + \beta - \beta_0 \neq 0$, $\log \psi_{i-1,0}$ is a measurable function of ϵ_{i-1} but at the same time must be independent of ϵ_{i-1} . This implies that $\log \psi_{i-1,0}$ is deterministic. However, taking the variance of $\log \psi_{i-1,0}$ gives $Var(\log \psi_{i-1,0}) = \sum_{k=0}^{\infty} (\alpha_0 + \beta_0)^{2k} Var(\alpha_0 \log \epsilon_0) > 0$, owing to (L.2) and (L.3). Thus, we should have $\alpha + \beta = \alpha_0 + \beta_0$, which indicates that $\omega = \omega_0$ and $\alpha = \alpha_0$ owing to (L.3), so that (C.4) holds.

To establish the proposition, we need to verify that (C.2) holds. However, in the log-ACD case, (C.2) does not hold, and we directly verify that

$$x_i || \hat{\psi}_i^{-1} - \psi_i^{-1} ||_K \stackrel{e.a.s.}{\longrightarrow} 0, \ i \to \infty,$$

since this will complete the proof as seen in Theorem 1. To this end, we introduce the SRE:

(7)
$$\log \psi_{i+1} = \phi_i (\log \psi_i),$$

where

$$[\phi_i(a)](\boldsymbol{\theta}) = \omega + \alpha \log x_i + \beta a(\boldsymbol{\theta}), \quad \boldsymbol{\theta} \in K.$$

Since $\Lambda(\phi_0^{(r)}) = |\beta|^r < 1$ for all r and $\mathbb{E}\log^+ ||\phi_0(0)||_K = \mathbb{E}\log^+ \sup_{\omega,\alpha} |\omega + \alpha \log x_0| < \infty$ owing to (L.1) and (L.3), Theorem 2.8 of Straumann and Mikosch (2006) allows SRE (4.4) to admit an ergodic stationary solution

(8)
$$\log \psi_i = \sum_{k=0}^{\infty} \beta^k (\omega + \alpha \log x_{i-k}),$$

where $\log \psi_i$ is \mathcal{F}_{i-1} -measurable and $||\log \hat{\psi}_i - \log \psi_i||_K \xrightarrow{e.a.s.} 0$ as $i \to \infty$. Then, due to the fact that $\mathbb{E}\log^+ x_0 < \infty$, which is true because $\mathbb{E}\log \psi_{0,0} < \infty$ and $\mathbb{E}\epsilon_0 = 1$, we obtain $x_i ||\hat{\psi}_i^{-1} - \psi_i^{-1}||_K \xrightarrow{e.a.s.} 0$ as $i \to \infty$. This asserts the strong consistency.

Next, we prove the asymptotic normality. Obviously, (N.1) is satisfied. Instead of (N.2), we verify that $\log \psi_i$ is twice continuously differentiable on K, $(\log \psi_i)'$ and $(\log \psi_i)''$ are \mathcal{F}_{i-1} -measurable, and

(9)
$$||(\log \hat{\psi}_i)' - (\log \psi_i)'||_K \xrightarrow{e.a.s.} 0, \quad i \to \infty,$$

(10)
$$||(\frac{1}{\hat{\psi}_i})' - (\frac{1}{\psi})'||_K \xrightarrow{e.a.s.} 0.$$

Taking the first and second derivatives in θ of both the sides of

$$\log \hat{\psi}_{i+1} = \omega + \alpha \log x_i + \beta \log \hat{\psi}_i,$$

we get

$$(\log \hat{\psi}_{i+1})' = \dot{\phi}_i ((\log \psi_i)') = \beta (\log \hat{\psi}_i)' + (1, \log x_i, \log \hat{\psi}_i)^T,$$
$$(\log \hat{\psi}_{i+1})'' = \hat{\phi}_i ((\log \psi_i)'') = \beta (\log \hat{\psi}_i)'' + (0, 0, 1)^T (\log \hat{\psi}_i)' + ((\log \hat{\psi}_i)')^T (0, 0, 1).$$

Further, replacing $\log \hat{\psi}_i$ with $\log \psi_i$ and $(\log \hat{\psi}_i)'$ with $(\log \psi_i)'$, we obtain the following SREs on $\mathbf{C}(K, \mathbf{R}^3)$ and $\mathbf{C}(K, \mathbf{R}^{3\times 3})$, respectively:

$$(\log d_{i+1})' = \dot{\phi}_i ((\log d_i)') = \beta (\log d_i)' + (1, \log x_i, \log \psi_i)^T, (\log e_{i+1})'' = \ddot{\phi}_i ((\log e_i)'') = \beta (\log e_i)'' + (0, 0, 1)^T (\log \psi_i)' + ((\log \psi_i)')^T (0, 0, 1)$$

First, note that $\Lambda(\hat{\phi}_i - \dot{\phi}_i) \xrightarrow{e.a.s.} 0$ and $||\hat{\phi}_i(0) - \dot{\phi}_i(0)||_K \xrightarrow{e.a.s.} 0$ since $||\log \hat{\psi}_i - \log \psi_i||_K \xrightarrow{e.a.s.} 0$ as $i \to \infty$. Also, $\mathbb{E}||\log \psi_{i-k}||_K^{\nu} < \infty$ owing to (8) and the fact that $||\log \psi_i||_K \leq |\log \psi_{i,0}| + ||\log \psi_i - \log \psi_{i,0}||_K$, $\mathbb{E}|\log \psi_{i,0}|^{\nu} < \infty$ and $\mathbb{E}|\log \epsilon_i|^{\nu} < \infty$. Further, we have $\mathbb{E}[\log^+ ||\dot{\phi}_0(0)||_K] = \mathbb{E}[\log^+ ||(1,\log x_0,\log \psi_0)^T||_K] < \infty$ since $\mathbb{E}||\log \psi_0||_K^{\nu} < \infty$ and $\mathbb{E}|\log x_0|^{\nu} < \infty$. Hence, using Theorem 2.10 and the identical argument used in the proof of Proposition 6.1 of Straumann and Mikosch (2006) and the fact that $\mathbb{E}[\log \Lambda(\dot{\phi}_0)] \leq \log \sup_{\theta \in K} |\beta| < 0$, we can see that $\log \psi_i$ is \mathcal{F}_{i-1} -measurable and differentiable and (9) is satisfied. Manifestly, (10) holds because $(\frac{1}{\psi_i})' = -\frac{1}{\psi_i}(\log \psi_i)'$.

Next, note that since $(\log \psi_i)'$ is a linear combination of $\log x_{i-k}$ and $\log \psi_{i-k}$, $\mathbb{E}||(\log \psi_i)'||_K^{\nu} < \infty$, which implies $\mathbb{E}[\log^+ ||\ddot{\phi}_i(0)||_K] = \mathbb{E}\log^+ ||(0,0,1)^T (\log \psi_i)' + ((\log \psi_i)')^T (0,0,1)||_K < \infty$. Further, note that $\Lambda(\ddot{\phi}_i - \ddot{\phi}_i) \xrightarrow{e.a.s.} 0$ and $||\dot{\phi}_i(0) - \ddot{\phi}_i(0)||_K \xrightarrow{e.a.s.} 0$ owing to (9). In addition, $\mathbb{E}[\log \Lambda(\ddot{\phi}_0)] \leq 1$

 $\log \sup_{\theta \in K} |\beta| < 0$. Then, combining all these facts and using the identical argument used in the proof of Proposition 6.2 of Straumann and Mikosch (2006), we can conclude that $(\log \psi_i)'$ is \mathcal{F}_{i-1} -measurable and differentiable.

Concerning (N.3), note that $\mathbb{E}||(\log \psi_i)'||_K^{\nu} < \infty$ implies $\mathbb{E}||(\log \psi_i)''||_K^{\nu} < \infty$. Since ϵ_0 is independent of $\{\log \psi_0, (\log \psi_0)', (\log \psi_0)''\}, \mathbb{E}\epsilon_0^{\nu} < \infty$, and $\mathbb{E}|\psi_{0,0}|^{\nu} < \infty$, we obtain $\mathbb{E}||x_0(\frac{1}{\psi_0})''||_K^{\nu/2} < \infty$ and $\mathbb{E}||x_0(\frac{1}{\psi_0})''||_K^{\nu/2} < \infty$. Henceforth, $\mathbb{E}||l_0'||_K < \infty$, $\mathbb{E}||l_0''||_K < \infty$ and $\mathbb{E}|(\log \psi_0)'(\boldsymbol{\theta}_0)|^2 < \infty$, which asserts (N.3).

Finally, note that $(\log \psi_0)'(\boldsymbol{\theta}_0)\mathbf{x} = 0$ a.s. implies $(1, \log x_0, \log \psi_{0,0})\mathbf{x}$ a.s. for every $\mathbf{x} \in \mathbf{R}^3$, which holds if and only if $\mathbf{x} = 0$.

Combining this and all the results obtained thus far (that is, (N.1), (N.3), (9), (10), and the \mathcal{F}_{i-1} -adaptivity and twice differentiability of $\log \psi_i$), one can establish the proposition following the same lines as in Theorems 1 and 2. This completes the proof.

Proof of Proposition 2. Note that $\mathbb{E}||\psi'_0/\psi_0||_K^2 = \mathbb{E}||(\log \psi_0)'||_K^2 < \infty$. The proposition is then validated if $\mathbb{E}(\log^+ ||\psi''_0||_K) < \infty$, which, however, is difficult to show in our case. Thus, we follow another approach. Notice that $\mathbb{E}(\log^+ x_0) < \infty$. Further, it can be shown similarly to (9) that

$$||(\log \hat{\psi}_i)'' - (\log \psi_i)''||_K \stackrel{e.a.s.}{\longrightarrow} 0, \quad i \to \infty,$$

so that $||(\frac{1}{\psi_i})'' - (\frac{1}{\psi_i})''||_K \xrightarrow{e.a.s.} 0$ owing to the fact that $(\frac{1}{\psi})'' = (\frac{1}{\psi_i})^2 (\log \psi_i)' ((\log \psi_i)')^T - \frac{1}{\psi_i} (\log \psi_i)''$. Since these assert essentially the same result as stated in Lemma 2 in the Appendix, the proposition is validated.

References

Billingsley, P. (1999). Convergence of Probability Measures. John Wiley and Sons Inc, New York.

- Pfanzagl, J. (1969). On the measurability and consistency of minimum constrast estimates. *Metrika*, 14, 249-272.
- Straumann, D. and Mikosch, T. (2006). Quasi maximum likelihood estimation in conditionally heteroscedastic time series: a stochastic recurrence equations approach. Annals of Statistics, 34, 2449-2495.