On a class of circulas: copulas for circular distributions

M.C. Jones \cdot Arthur Pewsey \cdot Shogo Kato

SUPPLEMENTARY MATERIAL

This supplementary material consists of a derivation of formula (2.1) followed by four figures, each referred to in the main text.

Derivation of (2.1)

The circula distribution function C_q can be expressed as

$$C_q(\theta_1, \theta_2) = \int_0^{\theta_1} \int_0^{\theta_2} c_q(t_1, t_2) dt_2 dt_1 = \frac{1}{2\pi} \int_0^{\theta_1} \int_0^{\theta_2} g(t_2 - qt_1) dt_2 dt_1.$$

Consider the case when q = 1. Putting $a = t_2 - t_1$ and $b = t_1$, it follows that

$$C_1(\theta_1, \theta_2) = \frac{1}{2\pi} \int_0^{\theta_1} \int_{-b}^{\theta_2 - b} g(a) \, da \, db.$$

The double integral in this equation can be decomposed as

$$\int_0^{\theta_1} \int_{-b}^{\theta_2 - b} = \int_0^{\theta_1} \int_{-b}^0 + \int_0^{\theta_1} \int_0^{\theta_2 - b} . \tag{1}$$

The first double integral on the right-hand side of (1) is

$$\int_0^{\theta_1} \int_{-b}^0 g(a) \, da \, db = -\int_0^{\theta_1} \int_0^{-b} g(a) \, da \, db = \int_0^{-\theta_1} \int_0^{b'} g(a) \, da \, db' = W(-\theta_1),$$

the change-of-variable in the second equality being b' = -b. The second double integral on the right-hand side of (1) can be expressed as

$$\int_{0}^{\theta_{1}} \int_{0}^{\theta_{2}-b} g(a) \, da \, db = -\int_{\theta_{2}}^{\theta_{2}-\theta_{1}} \int_{0}^{b''} g(a) \, da \, db''
= -\left(\int_{\theta_{2}}^{0} + \int_{0}^{\theta_{2}-\theta_{1}}\right) \int_{0}^{b''} g(a) \, da \, db''
= W(\theta_{2}) - W(\theta_{2} - \theta_{1}),$$

where $b'' = \theta_2 - b$. Therefore we have

$$C_1(\theta_1, \theta_2) = \frac{1}{2\pi} \{ W(\theta_2) + W(-\theta_1) - W(\theta_2 - \theta_1) \}.$$

The case when q = -1 can be dealt with in a similar manner.

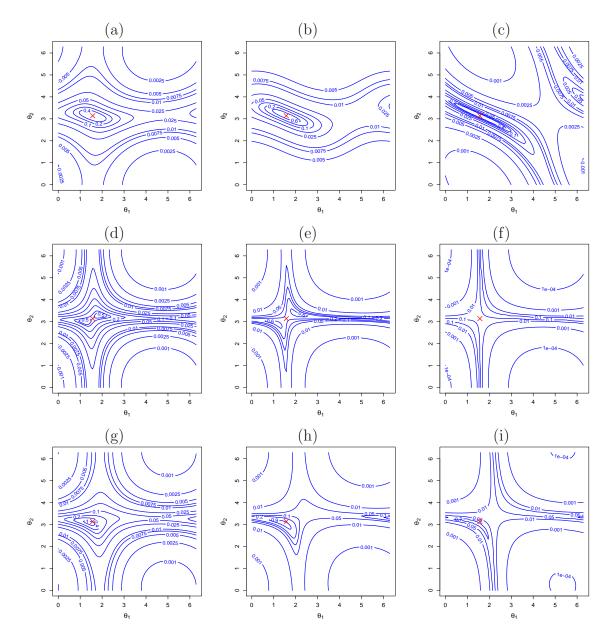


Figure S1: Contour plots of wC-wC-wC($-1,\pi/2,0.6,\pi,0.8,\mu_g,\rho_g$) densities with: first row, $\mu_g=0$; second row, $\mu_g=\pi$; third row, $\mu_g=5$. From left to right, the columns correspond to: $\rho_g=0.3,\,\rho_g=0.6$ and $\rho_g=0.9$. The cross in each panel identifies $(\mu_1=\pi/2,\mu_2=\pi)$.

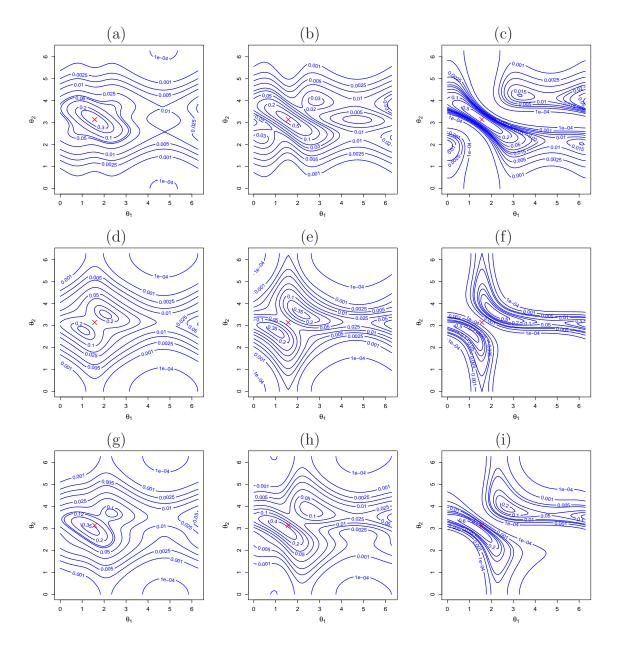


Figure S2: Contour plots of vM-vM($-1,\pi/2,1.509,\pi,2.862,\mu_g,\kappa_g$) densities with: first row, $\mu_g=0$; second row, $\mu_g=\pi$; third row, $\mu_g=5$. From left to right, the columns correspond to: $\kappa_g=0.629~(\rho_g=0.3),~\kappa_g=1.509~(\rho_g=0.6)$ and $\kappa_g=5.291~(\rho_g=0.9)$. The cross in each panel identifies $(\mu_1=\pi/2,\mu_2=\pi)$.

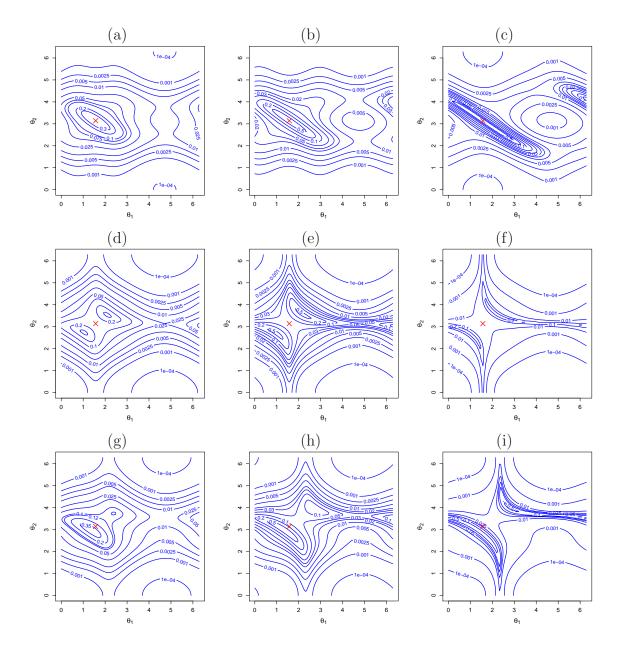


Figure S3: Contour plots of vM-vM-wC($-1,\pi/2,1.509,\pi,2.862,\mu_g,\rho_g$) densities with: first row, $\mu_g=0$; second row, $\mu_g=\pi$; third row, $\mu_g=5$. From left to right, the columns correspond to: $\rho_g=0.3,\ \rho_g=0.6$ and $\rho_g=0.9$. The cross in each panel identifies ($\mu_1=\pi/2,\mu_2=\pi$).

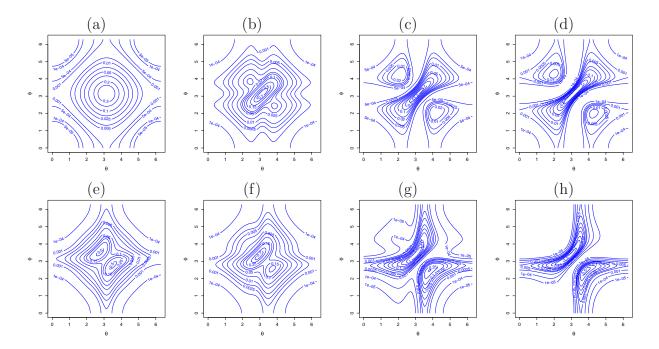


Figure S4: Contour plots of vM-vM-vM $(1, \pi, 3, \pi, 3, \mu_g, \kappa_g)$ densities. In the top row, $\mu_g = 0$ and: (a) $\kappa_g = 0$; (b) $\kappa_g = 1$; (c) $\kappa_g = 4$; (d) $\kappa_g = 7$. In the bottom row: (e) $\mu_g = \pi$ and $\kappa_g = 1$; (f) $\mu_g = 3\pi/2$ and $\kappa_g = 1$; (g) $\mu_g = 3\pi/2$ and $\kappa_g = 4$; (h) $\mu_g = 3\pi/2$ and $\kappa_g = 7$.