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Abstract This article is concerned with the analogue of copulas for circular distrib-
utions, which we call ‘circulas’. We concentrate on one particular class of circulas,
which is pre-existing but not studied in such explicit form or detail before. This class is
appealing in many ways but does not necessarily result in especially attractive bivari-
ate circular models for arbitrary non-uniform marginals. A major exception to this is
an elegant bivariate wrapped Cauchy distribution previously proposed and developed
by two of the current authors. We look both at properties of the circulas themselves,
including their density behaviour, distribution function, and dependence measures,
and at properties of various distributions based on these circulas by transformation to
non-uniform marginal distributions. We consider inference for the latter distributions
and present two applications of them to modelling data. We concentrate mostly on the
bivariate case, but also briefly consider extension to the multivariate case.
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1 Introduction

This paper concerns the circular analogues of copulas. The latter are, of course, bivari-
ate and multivariate distributions for linear data, whose defining property is that they
have uniform univariate marginal distributions. Concentrating, until Sect. 6, on the
important bivariate case for simplicity, any bivariate distribution for linear data can be
decomposed into its copula—which contains dependence information—and its mar-
ginals. This is Sklar’s theorem. In terms of densities, a general bivariate density f on
R
2 can be written in terms of its copula density cR on (0, 1)2 and its marginal density

and distribution functions fX , fY , FX and FY , all on R, as

f (x, y) = fX (x) fY (y) cR(FX (x), FY (y)).

Joe (1997) and Nelsen (2010) are excellent introductions to this subject.
We are concerned with bivariate distributions for circular data, and especially with

the circular analogue of copulaswhichwe propose to call ‘circulas’: these are bivariate,
and later, multivariate, distributions for circular data whose marginals are circular
uniform distributions. Let C denote the circle. As above, a general bivariate circular
density f on C2—or a density on the unit torus—can be written in terms of its circula
density c on C2 and its marginal circular density and distribution functions f1, f2, F1
and F2, all on C, as

f (θ1, θ2) = 4π2 f1(θ1) f2(θ2) c(2πF1(θ1), 2πF2(θ2)). (1)

In general, the marginal distribution functions can be defined from arbitrary starting
points onC. Circulas differ from rescaled linear copulas in also requiring periodicity:

c(θ1 ± 2kπ, θ2 ± 2lπ) = c(θ1, θ2), (θ1, θ2) ∈ C
2, k, l = 1, 2, . . . .

This paper is actually concerned with one particular construction of circulas, which
can be found elsewhere (see below) but which has not previously been given a unified
explicit treatment. In the course of this paper, we will point out both its advantages
and its limitations. This circula construction is extremely simple. Let �1 follow the
circular uniform distribution. Then, for any constant angle ω, (�1+ω) (mod 2π) also
follows the circular uniform distribution. Now, let � follow a circular distribution
with density g, say, independently of �1. Then, by dint of the previous result, �2 =
(�1+�) (mod 2π) also follows the circular uniform distribution: see alsoMardia and
Jupp (1999, p. 36). It follows that (�1,�2) follows a bivariate circular distribution
with circular uniform marginals, that is, a circula. Moreover, the conditional density
of �2|�1 = θ1 is g(θ2 − θ1) which, combined with the uniform marginal distribution
of �1, means that the circula density is
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On a class of circulas 845

c1(θ1, θ2) = 1

2π
g(θ2 − θ1). (2)

A similar argument based on �2 = (� − �1) (mod 2π) yields the complementary
circula density

c−1(θ1, θ2) = 1

2π
g(θ2 + θ1) = c1(2π − θ1, θ2). (3)

The two cases can be combined as

cq(θ1, θ2) = 1

2π
g(θ2 − qθ1), (4)

where q ∈ {−1, 1} is non-random; this is the density of the joint distribution of �1
and �2 = (� + q�1) (mod 2π).

When used in (1), (4) yields

f (θ1, θ2) = 2π f1(θ1) f2(θ2) g(2π(F2(θ2) − qF1(θ1))). (5)

So, by construction, (5) hasmarginals with densities f1(θ1) and f2(θ2) and conditional
densities which can be immediately written down, e.g.

f2|1(θ2|θ1) = 2π f2(θ2) g(2π(F2(θ2) − qF1(θ1))).

We will sometimes call g the ‘binding’ density.
Such distributions for bivariate circular data can first be found in four papers in

the late 1970s: as models under which a proposed angular correlation measure is
calculated, first for g von Mises and then for general g in form (2) in Johnson and
Wehrly (1977); when g is cardioid, again in form (2), as the transition density for the
angular part of a bivariate Markov point process expressed in polar co-ordinates, in
Isham (1977); in a hybrid version of form (5)withq = 1 in Johnson andWehrly (1978),
where �1 is replaced by a linear random variable; while (5) itself appears in Wehrly
and Johnson (1980),where its role inMarkov processes is suggested,without reference
to Isham (1977), and some properties are given when g is the von Mises density. So
long ago, the term ‘copula’ was not in vogue so was not used, but the copula-like
role of (4) has been explicitly recognised in much more recent publications looking at
special cases, in both g and marginals, of (5): Shieh and Johnson (2005), Fernández-
Durán (2007), Kato (2009), Shieh et al. (2011), García-Portugués et al. (2013) and
Kato and Pewsey (2013). Alfonsi and Brigo (2005) utilise much the same ‘periodic
copula’ construction, but for use as ordinary copulas for linear data; Perlman and
Wellner (2011) ‘circular copulas’ are also ordinary copulas, derived from distributions
supported on the disc (Jones 2013). Our purpose in this paper is to give amore focussed
account of the circulas with density (4), the distributions with densities of form (5)
arising from them, and their extensions, per se.

Properties of circulas themselves constitute Sect. 2. These include their density
behaviour, distribution function, and dependence measures. We move on, in Sect. 3,
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to consider properties of various distributions based on these circulas by transformation
to non-uniform marginal distributions. In that section, the following notation will be
used for special cases of the distribution with density (5):

f1− f2−g(q, μ1, ρ1 or κ1, μ2, ρ2 or κ2, μg, ρg or κg). (6)

There, each of f1, f2 or g will be replaced by abbreviations such as wC for wrapped
Cauchy or vM for von Mises, leading to condensed descriptions such as vM–vM–
wC. The μ’s are the corresponding location parameters and the ρ’s, as mean resultant
lengths, or κ’s, in the vonMises case, are the corresponding concentration parameters.
In Sect. 3.1, disadvantages of some of these distributions will become apparent. In the
remainder of Sect. 3, we consider the distribution function and dependence measures
for these distributions, together with random variate generation. Section 4 is devoted to
maximum likelihood estimation of parameters and goodness-of-fit testing. Section 5
gives two applications of these distributions to data. In Sect. 6, consideration is given
to extending bivariate circulas to the multivariate case, and the paper closes with a
brief discussion in Sect. 7.

2 Properties of the circula with density (4)

2.1 Circula densities

If g is itself chosen to be the circular uniform density, then the circula of interest
reduces to the independence circula for which

cI (θ1, θ2) = 1

4π2 .

Otherwise, the circula densities (4) have linear contours parallel to the qπ/4, or
q × 45◦, diagonal. If the polar representation of the density g is unimodal with mode
at μg , the circula density is maximal at every point of the diagonals θ2 = μg + qθ1 ±
2πk, k = 0, 1, . . . . Let ρg denote the mean resultant length of the distribution with
density g. Then, ‘tightness’ to the diagonal is determined by the value of ρg . This is
illustrated in linearised form in Fig. 1 when g is the wrapped Cauchy density with
μg = 0. Formuch considerationofwhat happens to density contours on transformation
to non-uniform marginals, see Sect. 3.1.

2.2 Circula distribution functions

For −2π ≤ ω ≤ 4π , define

W (ω) =
∫ ω

0

∫ b

0
g(a) da db =

∫ ω

0
(ω − a)g(a)da.
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Fig. 1 Examples of cq using wrapped Cauchy g withμg = 0 a ρg = 0.9, q = 1; b ρg = 0.6, q = −1. The
dotted diagonal line in each plot identifies those (θ1, θ2) combinations for which the density is maximal.
In both cases, the contours in the corners are parts of the periodic repetitions of the central bands

Setting the origin of the circula distribution function Cq to (0, 0), we find, after a
certain amount of manipulation, that, rather beautifully,

Cq(θ1, θ2) = q

2π
{W (θ2) + W (−qθ1) − W (θ2 − qθ1)} , 0 ≤ θ1, θ2 ≤ 2π. (7)

For a derivation of (7) see the online Supplementary Material; it is straightforward to
confirm that Cq has the correct margins and ∂2Cq(θ1, θ2)/(∂θ1∂θ2) = cq(θ1, θ2) ≥ 0
given by (4).

Most non-trivial g’s do not have tractableW functions. An exception is the cardioid
density employed by Isham (1977), for which g(ω) = (2π)−1(1 + 2ρ cosω), 0 ≤
ρ ≤ 1

2 , W (ω) = (2π)−1
{ 1
2ω

2 + 2ρ(1 − cosω)
}
and

Cq(θ1, θ2) = 1

4π2 [θ1θ2 + 2qρ{1 − cos θ1 − cos θ2 + cos(θ1 − qθ2)}] .

Of course, this reduces to the independence case when ρ = 0 so that g is itself uniform
and

CI (θ1, θ2) = θ1θ2

4π2 .

The cardioid-based circula distribution functions corresponding to ρ = 1/2, q =
±1 are shown in Fig. 2a, b; the wrapped Cauchy-based circula distribution func-
tions corresponding to the circula density functions shown in Fig. 1, calculated using
one-dimensional numerical integration of the explicit wrapped Cauchy distribution
function, are shown in Fig. 2c, d, respectively.
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Fig. 2 Examples of Cq using: cardioid g with a ρ = 0.5, q = 1, b ρ = 0.5, q = −1; wrapped Cauchy g
with c ρg = 0.9, q = 1, d ρg = 0.6, q = −1

2.3 The dependence parameter

It is conceptually clear that the concentration of g controls the dependence of cq : when
g is highly concentrated, circula dependence is high; when g is more diffuse, circula

dependence is low.Themean resultant length,ρg =
√

α2
g + β2

g whereαg = Eg(cos�)

and βg = Eg(sin�), measures the concentration of g; the following paragraphs
quantify the role of ρg as the dependence parameter of cq .

We consider five pre-existing dependence measures for circular data, namely those
of Johnson and Wehrly (1977), Jupp and Mardia (1980), Rivest (1982), Fisher and
Lee (1983) and Jammalamadaka and Sarma (1988). For circulas with density cq ,
the formulae for all five come out straightforwardly. Partly following Sect. 3.8 of
Kato and Pewsey (2013) and noting that E(cos�1) = E(sin�1) = E(cos�2) =
E(sin�2) = 0 by circular uniformity, all but one of the dependence measures
depend on functions of the 2 × 2 matrices �kl = E(Xk XT

l ), k, l = 1, 2, where
X1 = (cos�1, sin�1)

T , X2 = (cos�2, sin�2)
T . Because �11 and �22 depend

only on the circular uniform marginals, it is easy to see that �11 = �22 = 1
2I2

where I2 is the 2× 2 identity matrix. Only slightly more difficult calculations involv-
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ing basic trigonometric identities and the general relation �2 = � + q�1 result
in

�12 = 1

2

(
αg βg

−qβg qαg

)
.

Afirst signed dependencemeasure for bivariate circular data is that ofRivest (1982),
ρR . For the circula with density cq , ρR = 2λ2 where λ2 denotes the smallest singular
value of�12 multiplied by sgn(det�12).Most gratifyingly, this simplifies toρR = qρg .
A second signed dependence measure is that of Fisher and Lee (1983), essentially an
analogue of Spearman’s rho. For a circula, it is given by

ρFL = det�12/
√
det�11det�22,

and so, for the circula with density cq , is

ρFL = q(α2
g + β2

g) = qρ2
g .

This result is Example 2 of Fisher and Lee (1983). A third signed dependence measure
is that of Jammalamadaka and Sarma (1988) which, for a circula, is given by their
(2.3) in slightly simplified form:

ρJ S =
∣∣∣E

(
ei(�1−�2)

)∣∣∣ −
∣∣∣E

(
ei(�1+�2)

)∣∣∣ .
For the circula with density g, ρJ S also reduces to qρg . This result is given in Sect.
2.3 of Jammalamadaka and Sarma (1988) for the special case with g von Mises.

In addition, the unsigned dependence measures of Johnson and Wehrly (1977) and
Jupp and Mardia (1980) depend on

S = �−1
11 �12�

−1
22 �T

12

which reduces to S = ρ2
gI2. Thus, Johnson and Wehrly’s dependence measure, ρJW ,

which is the square root of the largest eigenvalue of S, is ρg , as Johnson and Wehrly
(1977, Example 7.2) obtain for the case of q = 1. Also, Jupp andMardia’s dependence
measure, ρJM , which is the trace of S, is 2ρ2

g .
The key observations here, of course, are the ways in which all five dependence

measures relate to ρg , justifying its role as the dependence parameter of the circula
with density cq .

2.4 Local dependence

Justifications for the local dependence function γ f (x, y) = ∂2 log f (x, y)/∂x∂y
(Holland and Wang 1987; Jones 1996) transfer immediately to the bivariate circu-
lar case. The local dependence function is particularly simple for the class of circulas
under consideration:
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γcq (θ1, θ2) = −q(log g)′′(θ2 − qθ1).

Local dependence therefore follows the circula’s contours. For unimodal g, (log g)′′
is typically negative at and near the mode, and the local dependence function corre-
spondingly, and reasonably, shares its sign with q at and near the parts of the circula
with highest density.

If desired, another, signed, scalar dependencemeasure can be obtained by averaging
γcq with respect to the circula. The result is readily seen to be

γ = q
∫ 2π

0

{g′(φ)}2
g(φ)

dφ = q Ig, (8)

say. Since Ig , the Fisher information for location of g, is positive, like ρFL , γ has the
sign ofq. Itsmagnitude depends onρg , and notμg , and canbe expected to increasewith
increasing ρg (higher concentration ⇒ more information). For example, for cardioid
g, Ig = 1 − √

1 − 4ρ2, for wrapped Cauchy g, Ig = 2ρ2
g/(1 − ρ2

g)
2, and for von

Mises g with concentration parameter κ and mean resultant length A(κ) (Mardia and
Jupp 1999, (3.5.31)), Ig = κA(κ).

3 Properties of densities of the form (5)

3.1 Density shapes

First, if the binding density is uniform, the marginals are independent and, of course,
f (θ1, θ2) = f1(θ1) f2(θ2).
The point (μ1, μ2), where μi is the location parameter of the marginal distribution

Fi , i = 1, 2,will be of particular interest in the rest of this subsection. For clarity, con-
creteness and convenience, for non-uniform marginals, we will specifically associate
with (5) the particular circular distribution function definition

F1(θ1) =
∫ θ1

μ1

f1(φ)dφ (9)

where μ1 denotes the location parameter of f1 and μ1 ≤ θ1 ≤ μ1 +2π , and similarly
for F2. In general, it proves most convenient to specify μ1 as the mode of f1, this
coinciding with other specifications of location for symmetric unimodal distributions.
Then, F1(μ1) = F2(μ2) = 0 and the argument of g in (5) when θi = μi , i = 1, 2,
will also be zero whatever the value of q. Now, if g is maximal at μg = 0 and f1 and
f2 are maximal at μ1 and μ2, respectively, then (5) will be maximal at (μ1, μ2). Note
that Wehrly and Johnson (1980) employed the versions of F1 and F2 starting from 0
rather than μ1 and μ2.

Usingnotation (6), this is illustrated for thewC–wC–wC(q, μ1, ρ1, μ2, ρ2, μg, ρg),
vM–vM–vM(q, μ1, κ1, μ2, κ2, μg, κg) and vM–vM–wC(q, μ1, κ1, μ2, κ2, μg, ρg)

families by the first column of Fig. 3. All of the distributions portrayed in Fig. 3
have μg = 0, ρg = 0.6 and marginal distributions with equal concentration values.
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Fig. 3 Contour plots of a–c wC–wC–wC(−1, π/2, 0.6, π, 0.8, μg, 0.6), d–f vM–vM–vM
(−1, π/2, 1.509, π, 2.862, μg, 1.509), g–i vM–vM–wC(−1, π/2, 1.509, π, 2.862, μg, 0.6) densities,
with: first column, μg = 0; second column, μg = π ; third column, μg = 5. All densities shown have
ρg = 0.6. The cross in each panel identifies (μ1 = π/2, μ2 = π)

For comparison with densities with ρg = 0.3 and ρg = 0.9, see Figures S1–S3 in the
online Supplementary Material. The density in Fig. 3a is an example of the bivariate
wrapped Cauchy (bwC) distribution proposed by Kato and Pewsey (2013); see the
supplementary material of that paper for many more examples. These densities can be
proved to be unimodal, with mode at (μ1, μ2). They also have many other attractive
properties including, remarkably, wrapped Cauchy conditional distributions, in addi-
tion to the wrapped Cauchy marginal distributions and binding distribution provided
by construction.

Except for the case wC–wC–wC(q, μ1, ρ1, μ2, ρ2, 0, ρg), and vM–vM–wC
(q, μ1, κ1, μ2, κ2, 0, ρg) the distributions in Fig. 3 are bimodal. This unattractive
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feature is not marked in the wC–wC–wC (bwC) case, but can be marked in the
vM–vM–vM case, with vM–vM–wC a little less so. Nevertheless, as can be seen
in Fig. 3d for the vM–vM–vM family, for families of distributions with μg = 0 and
more than one mode, (μ1, μ2) is the major mode. Henceforth, we will refer to the
vM–vM–vM distribution as being bivariate von Mises (bvM).

So, using (9) to define the marginal distribution functions, and with the choice
μg = 0, the roles played by the parameters q, μ1, ρ1 or κ1, μ2, ρ2 or κ2 and ρg or κg
are all clear-cut. As is evident from the first column of Fig. 3, the densities obtained are
twofold symmetric when rotated (through 2π/2 = π radians) about (μ1, μ2). Indeed,
it can be shown that if f1, f2 and g are symmetric about μ1, μ2 and 0, respectively,
then density (5) is twofold symmetric when rotated about (μ1, μ2 +π), (μ1 +π,μ2)

and (μ1+π,μ2+π) as well as (μ1, μ2). The densities are not, in general, reflectively
symmetric.

Setting μg = π , instead of μg = 0, results in densities that are still twofold
symmetric when rotated about (μ1, μ2), but which, if ρg �= 0, are bimodal; (μ1, μ2)

is not one of the modes, but appears to be at a saddlepoint in between them. This is
illustrated by the second column of Fig. 3. Using choices of μg other than 0 or π

produces densities that, when ρg �= 0, are no longer twofold symmetric when rotated
about (μ1, μ2).Moreover, (μ1, μ2) is not amode nor saddlepoint, but some apparently
arbitrary point between modes (when ρg �= 0). The value of μg also determines the
orientation of asymmetry. These features are illustrated by the panels in the third
column of Fig. 3.

Figure S4 in the online Supplementary Material shows the rather unappealing den-
sities of the extensions of the bivariate von Mises distributions of Shieh and Johnson
(2005) to include q = −1. In that figure, we varyμg and κg while keeping themarginal
von Mises parameters fixed. The panels in the top row of Figure S4 are of the same
densities as those in Figure 2 of Shieh and Johnson (2005) and show that their contour
plots are insufficiently detailed to fully represent the true forms of the densities. They
also reveal that the conditionμg = μ1 −μ2 conjectured by Shieh and Johnson (2005)
does not, in fact, assure unimodality. Without going into further detail, the message
from Figure S4 is clear: bvM distributions can be unimodal, bimodal or even trimodal
(but not, we think, more than trimodal). It seems that von Mises marginals are accom-
modated in a little lessmultimodal manner by combining themwith awrapped Cauchy
binding density; i.e. through the vM–vM–wC model.

Here is another consequence for the role of (μ1, μ2) when μg = 0. Suppose that
in the bwC(q, μ1, ρ1, μ2, ρ2, 0, ρg) model, we let ρ1, ρ2 → 0. For small ρ1, ρ2, this
model is close to the circula with wrapped Cauchy g, yet (μ1, μ2) must be a point at
which the circular density is maximal; but, from Sect. 2.1, when μg = 0 the circula
density is maximal on the diagonal θ2 = qθ1. The limiting circular density is, however,
not the one with μg = 0 but the one with μg = μ2 − qμ1. This effect is illustrated in
Fig. 4. So, we see an implicit effect akin to that of taking μg �= 0 in the circula case
after all.

The above considerations lead us to a considerable preference for setting μg = 0
in model (5).
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Fig. 4 Contour plots of bwC(1, π/2, ρ1 → 0, π, ρ2 → 0, 0, ρg) densities with: a ρg = 0.6; b ρg = 0.99.
The dotted diagonal line in each plot identifies those (θ1, θ2) combinations forwhich the density ismaximal.
The cross in each panel identifies the point (π/2, π)

3.2 Distribution function in terms of circula

Provided we parallel the univariate marginal case and define

F(θ1, θ2)=
∫ θ1

μ1

∫ θ2

μ2

f (φ1, φ2)dφ2dφ1, μ1≤θ1≤μ1+2π,μ2≤θ2≤μ2+2π,

then it is easily seen that

F(θ1, θ2) = Cq(F1(θ1), F2(θ2)), μ1 ≤ θ1 ≤ μ1 + 2π,μ2 ≤ θ2 ≤ μ2 + 2π.

3.3 Dependence, global and local

The scalar dependencemeasures of Sect. 2.3 and the averaging of the local dependence
function as in Sect. 2.4 can both be applied to densities of form (5) directly. Formulae
for the bwC distribution can be found in Kato and Pewsey (2013). Alternatively, as in
the linear case, one can define the values of the dependence measures obtained from
the circula to apply to densities (5) too, providing alternative ‘margin-free’ dependence
measures for those distributions.

Regarding local dependence, we observe that patterns of signs of γ f (x, y) are
reflected in patterns of signs of γc(u, v), albeit distorted by marginal transformation.
In particular, for example, γ f (x, y) > 0 for all x, y if and only if γc(u, v) > 0 for all
0 < u, v < 1. In the ordinary copula case, this corresponds to a TP2 density; see, e.g.
Joe (1997, Sect. 2.1.5).
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3.4 Random variate generation

Random variate generation for the circula (4) is immediate using the construction
given in the Introduction: generate �1 from the circular uniform distribution, � from
the distribution with density g, and set �2 = (� + q�1) (mod 2π).

A basic algorithm for randomvariate generation from the density (5) is also immedi-
ate if marginal distributions allow generation by inversion of the distribution function:
given (�1,�2) generated from (4) as above, then �∗

1 = F−1
1 (�1/2π) (mod 2π),

�∗
2 = F−1

2 (�2/2π) (mod 2π) follow (5).
Minor modifications of this algorithm allow speedups in some situations, by avoid-

ing one of the distribution function inversions. A first version is:

Algorithm A1 simulate �∗
1 from f1 and � from g, independently;

set �∗
2 = F−1

2

{(
qF1(�∗

1) + �
2π

)
(mod 1)

}
(mod2π).

This is essentially the algorithm used by Shieh and Johnson (2005), Sect. 2.2, in the
bvM case, although we can implement this algorithmmuch more efficiently. A second
version is:

Algorithm A2 simulate �∗
2 from f2 and � from g, independently;

set �∗
1 = F−1

1

[{
q

(
F2(�∗

2) − �
2π

)}
(mod 1)

]
(mod 2π).

Examples of f1 or f2 for which these algorithms would be advantageous include
the sine-skewed wrapped Cauchy distribution (Umbach and Jammalamadaka 2009;
Abe and Pewsey 2011) and many wrapped distributions.

4 Inference

4.1 Maximum likelihood estimation

As explained in Sect. 3.1, we take μg = 0. Let τ = (τ1, τ2, τg), where τ1 is the
vector of, typically two, parameters of f1, τ2 that of f2, and τg is the concentration
parameter of g. For a random sample of size n from the distribution with density (5),
(θ1,1, θ2,1), · · · , (θ1,n, θ2,n), the log-likelihood function is given by

�(τ) = n log(2π) +
n∑

i=1

log( f1(θ1,i )) +
n∑

i=1

log( f2(θ2,i ))

+
n∑

i=1

log(g(2π(F2(θ2,i ) − qF1(θ1,i )))). (10)

In general, the first two summations in (10) will be functionally related to the third
in terms of the parameters, so there will be no closed-form solutions for the max-
imum likelihood estimates and numerical methods must be used to maximise (10).
The constant q = ±1 determines whether the dependence between �1 and �2 is
positive (q = 1) or negative (q = −1). Thus, q is a model choice indicator rather
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than a conventional parameter. In most applications, the form of any dependence,
and hence the value of q, should be obvious from a consideration of a scatter-
plot of the data. If not, (10) can be maximised twice, with q = 1 and q = −1,
respectively, and the maximised values compared to identify the maximum likelihood
solution.

Our experience of maximising (10) has been based on the use of R’s optim
function together with its L-BFGS-B implementation of the optimisation method
of Byrd et al. (1995) which allows for box constraints. The hessian argu-
ment of optim can be used to obtain a numerical approximation to the Hessian
matrix. We also employ multiple starting values in an attempt to ensure that
the global maximum likelihood solution is identified. Shieh and Johnson (2005)
and Kato and Pewsey (2013) discuss maximum likelihood based inference for
the bvM and bwC models discussed in Sect. 3.1. Their approaches can be
extended to other cases of (10) in obvious ways. Alternatively, profile log-
likelihood and parametric bootstrap methods can be used to construct confidence
intervals.

4.2 Goodness-of-fit testing

The independence of �1 = 2πF1(�∗
1) and � = 2π(F2(�∗

2) − qF1(�∗
1)) (mod 2π)

provides a means of exploring the goodness of fit of density (5) to a random sample,
(θ1,1, θ2,1), · · · , (θ1,n, θ2,n), of bivariate circular data.

Suppose, first, that, under the null hypothesis, the density is fully specified. Write
ωi = 2π(F2(θ2,i ) − qF1(θ1,i )) (mod 2π), i = 1, . . . , n. As �1 and � are indepen-
dent, if the data do come from the case of (5) specified under the null hypothesis,
then the values of {2πF1(θ1,i ), 2πG(ωi )}, i = 1, . . . , n, will be uniformly distributed
on the torus; here, G is the distribution function associated with g. Various tests for
toroidal uniformity have been proposed in the literature (see Jupp 2005, 2009, and ref-
erences therein), the simplest beingWellner’s (1979) extension of the Rayleigh test for
isotropy.

In practice, the parameters of (5) will be unknown and must be estimated from the
data. If the maximum likelihood approach of Sect. 4.1 is employed, goodness-of-fit
tests can be based instead on the values of {2π F̂1(θ1,i ), 2π Ĝ(ω̂i )}, i = 1, . . . , n,
where the hats denote evaluation at the maximum likelihood solution. Such values
can be tested for toroidal uniformity using the tests referred to in the previous para-
graph. However, the sampling distributions of those tests will no longer be the same
as under the fully specified scenario. As a generally applicable method, the p value of
a chosen test can be estimated using a parametric bootstrap approach. A large num-
ber, B, of parametric bootstrap samples of size n are simulated from the distribution
fitted to the original sample. For each such sample, the parameters of (5) are esti-
mated using maximum likelihood, resulting in tildes instead of hats, and the values of
{2π F̃1(θ1,i ), 2π G̃(ω̃i ))}, i = 1, . . . , n, and the test statistic computed. The p-value
of the test is estimated by the proportion of the (B + 1) values of the test statistic
that are at least as extreme as that for the original data. This approach incorporating
Wellner’s (1979) test is applied in the illustrative examples of the next section.
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5 Examples

5.1 Texas wind data

Kato (2009) considered a data set of n = 30 pairs of wind directions measured each
day at 6:00 and 7:00 from June 1, 2003 to June 30, 2003, in radians, at a weather
station in Texas coded as C28-1. We treat these measurements as a set of independent
bivariate data. Within pairs, one would expect the measurements to be strongly related
as the time between the two measurements is just an hour. It is, though, natural to
think of these data as a bivariate time series. However, time series plots and sample
autocorrelation functions (Fisher and Lee 1983, 1994) for the series of wind directions
at 6:00 and 7:00 separately (not shown) provide little evidence of dependence between
successive observations in the separate series. The sample autocorrelations at lag
10 for wind directions at 6:00 and lags 1 and 2 for 7:00 are significantly different
from zero, according to 95% confidence bounds obtained using 1,000 randomisations
of the original data. Nevertheless, all these autocorrelations remain very small and
arguably not practically significant; for instance, the lag 1 autocorrelation is just 0.206.
It seems therefore that the time gap of 24h between pairs of recordings makes the
assumption of independence of the pairs reasonable. A more sophisticated analysis
might allow for any slight dependence. A scatterplot of the measurements appears
in each of the panels of Fig. 5. Most of the points in the scatterplot indeed indicate
a fairly strong positive relationship between pairs of observations. One might also
contemplate potential bimodality but any suggestion of such in this small dataset is
far from conclusive. Moreover, other data and other interests might, of course, relate
to a full univariate time series of wind directions at C28-1 at all times through the day.

Tacitly assuming independence between distinct pairs of observations, Kato (2009)
fitted three six-parameter bivariate circular distributions with von Mises marginals to
these data, one of them being the bvM model with μg �= 0 and the classical definition
of the distribution function starting at zero; i.e. not (9). The other two distributions
were proposed in Kato (2009) and SenGupta (2004), respectively. Kato (2009) did not
consider formal approaches to assessing the goodness of fit of the three fitted bivariate
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Fig. 5 Contour plots for the bwC (left), bvM (centre) and vM–vM–wC (right) densities fitted using maxi-
mum likelihood to the 30 pairs of wind directions measured at 6:00 (θ1) and 7:00 (θ2) at the C28-1 Texan
weather station
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Table 1 Maximum likelihood estimates, maximised log-likelihood value (�max), and the p-value for the
bootstrap version of the goodness-of-fit test based on the use ofWellner’s (1979) test for toroidal uniformity
and B = 99 parametric bootstrap samples (pg-o-f), for the fits to the C28-1 Texan wind direction data of
the bwC, bvM and vM-vM-wC models with μg = 0, distribution function as defined in (9), and q = 1

Model μ̂1 κ̂1/ρ̂1 μ̂2 κ̂2/ρ̂2 κ̂g/ρ̂g �max pg-o-f

bwC(1, μ1, ρ1, μ2, ρ2, 0, ρg) 2.22 0.48 2.27 0.52 0.73 −64.93 0.30

bvM(1, μ1, κ1, μ2, κ2, 0, κg) 2.00 1.12 2.10 1.33 2.18 −71.13 0.03

vM–vM–wC (1, μ1, κ1, μ2, κ2, 0, ρg) 1.93 1.05 2.01 1.16 0.75 −65.99 0.02

vonMisesmodels.We fitted the bwC, bvM and vM–vM–wCmodels, withμg = 0 and
the distribution function as defined in (9), to the data. The results obtained for the three
fits are presented in Table 1. Contour plots of the fitted densities are superimposed
upon scatterplots of the data in the panels of Fig. 5. The �max and pg-o-f values indicate
that the bwC model provides the superior fit to the underlying distribution of the data.
The vM–vM–wCmodel is quite close to the bwCmodel in terms of �max but not pg-o-f;
this disparity can be explained by the vM–vM–wC density apparently overfitting by
adapting its shape too closely to the outlying points, an effect that does not withstand
bootstrapping the data. The �max value of the bwC model is also higher than those of
all three six-parameter bivariate von Mises models considered by Kato (2009).

5.2 Japanese earthquake data

In our second example, we consider data introduced by Hamada and O’Rourke (1992)
and analysed in Rivest (1997) on the pre-earthquake direction of steepest descent (�1)
and the direction of lateral ground movement (�2) before and after, respectively, an
earthquake in Noshiro, Japan. Originally, observations at 763 different locations were
recorded with a number of the lateral ground movement measurements being rounded
to 90◦ and 270◦, and a few to 0◦ and 180◦. Removing the cases with rounded θ2-values
reduces the sample size to 678. A scatterplot of the data converted to radians appears
in each of the panels of Fig. 6. The points in the scatterplot suggest that the underlying
distribution is bimodal. For geotectonic reasons, it is probably doubtful that distinct
pairs of measurements are independent. Nevertheless, here we analyse them assuming
they are independent.

We first fitted single-component bwC, bvM and vM–vM–wCmodels, with μg = 0
and the distribution function as defined in (9), to the data. The results obtained were, as
expected, inadequate. ThevM–vM–wCmodelwas identified as providing the best fit of
the three. However, visual inspection of the corresponding contour plots superimposed
on the data (not shown) suggested that none of the models provides adequate fits to
the underlying distribution of the data; the major lack of fit corresponds to θ2-values
in, roughly, the interval (2,4) radians, where a considerable amount of density seems
to occur away from the main mode in the data.

In a search for a better-fitting model, we next explored the fits of two-component
bvM, bwC and vM–vM–wCmixture models with mixing probability p as the multiple
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Fig. 6 Contour plots for the two-component bwC (left), bvM (centre) and vM–vM–wC (right) mixture
densities fitted usingmaximum likelihood to the 678 unrounded pairs of pre-earthquake direction of steepest
descent (θ1) and direction of lateral ground movement (θ2)

Table 2 Maximum likelihood estimates and maximised log-likelihood value (�max) for the fits to the
678 unrounded pairs of pre-earthquake direction of steepest descent (θ1) and direction of lateral ground
movement (θ2) values of the two-component bwC, bvM and vM–vM–wC mixture models

Model μ̂1 κ̂1/ρ̂1 μ̂2 κ̂2/ρ̂2 κ̂g/ρ̂g p̂ �max

bwC(1, μ1, ρ1, μ2, ρ2, 0, ρg)1 0.73 0.27 0.72 0.25 0.57 0.78

bwC(−1, μ1, ρ1, μ2, ρ2, 0, ρg)2 5.16 0.50 3.20 0.48 0.14 −2206.71

bvM(1, μ1, κ1, μ2, κ2, 0, κg)1 0.70 0.37 0.67 0.37 3.45 0.57

bvM(−1, μ1, κ1, μ2, κ2, 0, κg)2 6.19 0.90 2.37 0.51 0.31 −2202.71

vM–vM–wC (1, μ1, κ1, μ2, κ2, 0, ρg)1 0.53 0.51 0.52 0.50 0.59 0.79

vM–vM–wC (−1, μ1, κ1, μ2, κ2, 0, ρg)2 5.70 0.95 2.88 1.84 0.25 −2199.72

of the density for the first component. All three mixture models have a total of 11
parameters. The results obtained from fitting them are presented in Table 2. Contour
plots of the fitted densities are superimposed upon scatterplots of the data, shifted to
a linear scale on which they can be most fully appreciated, in the panels of Fig. 6.
The �max values in Table 2 identify the two-component vM–vM–wC mixture model
as providing the best fit, and a visual inspection of panel (c) of Fig. 6 suggests that it
does provide a respectable fit to the data. However, we have not been able to formally
assess the goodness-of-fit of this more complicated model. According to that fitted
model, around 80% of the data arise from a distribution centred around the location
(0.53, 0.52), i.e. almost equal individual location parameter values, with von Mises
marginals with similar low concentrations that are moderately positively correlated.
The remaining 20% arise from a second distribution, centred around the location
(5.70, 2.88) with more concentrated von Mises marginals that are weakly negatively
correlated. In the best fitting model(s), the second mode is not especially pronounced
against a non-negligible ‘background’ level, the whole reflecting a distribution of data
with a major mode together with something of a low-peaked ‘plateau’ towards the
northwest of the mode in the representations of Fig. 6.
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6 Multivariate extension

As in the linear case, the value of direct multivariate extensions of the circula is not
especially clear, given the attraction of pair copula constructions (Bedford and Cooke
2002; Kurowicka and Cooke 2006; Aas et al. 2009) to more meaningfully model
highly multivariate situations. There would appear to be no impediment to employing
the same techniques in the circula case.

Nonetheless, here is our best suggestion for a direct d-variate, d ≥ 3, exten-
sion of the circula of interest. It has d separate, and hence somewhat constrained
when d ≥ 4, dependence parameters. Start from the joint density of � and �k =
(�k + qk�) (mod 2π), k = 1, . . . , d, where �k follows density gk , k = 1, . . . , d,
independently of each other and of � which is circular uniformly distributed, and
qk ∈ {−1, 1}, k = 1, . . . , d; this is

cd+1(φ, θ1, . . . , θd) = 1

2π

d∏
k=1

gk(θk − qkφ).

By construction, this density clearly has circular uniform univariate marginals, as does
thed-dimensionalmarginal distributionof�k = (�k+qk�) (mod 2π), k = 1, . . . , d,

which has the proposed multivariate circula density

cd(θ1, . . . , θd) = 1

2π

∫ 2π

0

d∏
k=1

gk(θk − qkφ) dφ. (11)

The (k, l)th bivariate marginal of cd , k = 1, . . . , d, l = 1, . . . , d, k �= l, is the
joint distribution of

�k and �l = (qkl�k + �l − qkl�k) (mod 2π),

where qkl = qkql ∈ {−1, 1}. This has circula density of form (4) given by

1

2π
hkl(θl − qklθk),

where

hkl(ω) =
∫ 2π

0
gk(ψ)gl(ω + qklψ)dψ (12)

is the density of (�l − qkl�k) (mod 2π).
If gk is symmetric about 0 with mean resultant length ρk , k = 1, . . . , d, then

the (k, l)th marginal copula density has mean resultant length and hence dependence
parameter

ρkl = E{cos(�l − qkl�k)} = E(cos�l)E(cos�k) = ρkρl ,
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k = 1, . . . , d, l = 1, . . . , d, k �= l. This is the dependence structure to which we
referred at the start of the second paragraph of this section.

Particularly attractive versions of this construction arise when the g’s are all of the
same form and are closed under convolution, so that the h’s are of the same form
as the g’s as well. Wrapped stable distributions (Pewsey 2008) and a new family of
circular distributions due to Kato and Jones (2014) are amongst those with the required
property; both include the wrapped Cauchy distribution, and the latter the cardioid
distribution, as special cases. So, for example, a d-dimensional version of the circula
underlying a multivariate extension of the bivariate wrapped Cauchy distribution of
Kato and Pewsey (2013) would be based on gk being a wrapped Cauchy density with
location zero and mean resultant length ρk so that hkl is the wrapped Cauchy density
with location zero and mean resultant length ρkρl . In this case, the integration in (11)
can be performed explicitly and it is possible to express the density in closed form.

There is an analogy between the construction above—particularly its correlation
structure—and the one-factor Gaussian model on Rd introduced in the financial liter-
ature by Li (2000); there,Wk = ρk Z +

√
1 − ρ2

k Zk ,−1 < ρk < 1, k = 1, . . . , d, and
Z , Z1, . . . , Zd are mutually independent standard normal random variables. See, for
example, Oh and Patton (2012) and Krupskii and Joe (2013) for access to the factor
copula literature stemming from this idea. Inspired by this work, a suggestion—for
future research—is an interesting structured ‘two-factor’ multivariate extension in
which

�k =
{

(�k + qk�1) (mod 2π), k = 1, . . . , d1,
(�k + qk�2) (mod 2π), k = d1 + 1, . . . , d,

where, as before, the �k’s independently follow density gk , k = 1, . . . , d, but now
�1,�2 follow a dependent bivariate circula.

7 Discussion

In this paper, we have concentrated on a particular class of circulas not because argu-
ments for its use are entirely compelling but because, unlike the linear copula case,
attractive alternative constructions seem difficult to come by. The current class of
circulas is certainly attractive in its simplicity and tractability, but does not necessar-
ily result in especially attractive bivariate circular models for arbitrary non-uniform
marginals. A major exception to this arises in the case of wrapped Cauchy g binding
wrapped Cauchy marginals, the elegant bivariate wrapped Cauchy model of Kato and
Pewsey (2013).

We envisage using distributions based on circulas directly in unimodal situations.
Where cluster structure is apparent, as in the example of Sect. 5.2, we naturally advo-
cate usingmixtures of distributions based on circulas.A particularly important applica-
tion in which multimodal bivariate circular data arise is in understanding the structure
of proteins (see Mardia 2013). The example in Kato and Pewsey (2013) confirms
that their bwC distribution can appropriately model a component of such a mixture
distribution. Further evidence for whether there may be a role for mixtures of these

123



On a class of circulas 861

circula-based distributions as alternatives to the models currently employed (Mardia
2013, Sect. 3.3) is a question for future work.

We emphasise again that, for non-uniform marginals, it is recommended that the
location parameter of g be set to zero and that the marginal distribution functions
be defined as at (9). Given the positivity or negativity of the dependence in the data
(reflected in q = ±1), the resulting five-parameter models afford parsimony and
interpretability; like bivariate normal distributions on R

2, their parameters consist of
two location parameters, two concentration parameters and one parameter controlling
the strength of the relationship between the two variables.

Finally, extension in a direction different to that of Sect. 6 might be to ‘spher-
icas’: copulas linking spherical marginals. Rivest (1984) discussed such a class
under the name ‘O(d)-symmetric distributions’. Their densities are of the form
f (u, v) = g(uT Qv), where g is a rotationally symmetric density, u and v are d-
dimensional unit vectors and Q is a d × d orthogonal matrix. The circulas (4) with
wrapped Cauchy or von Mises binding density considered in this paper are examples
of O(2)-symmetric distributions.
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