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Abstract The partially linear additive hazards model has been proposed to study the
interaction between some covariates and an exposure variable. In this paper, we extend
it to the partially varying coefficient single-index additive hazardmodel where the high
dimension covariates are collapsed to a single index, due to practical needs. Two sets
of estimating equations were proposed to estimate the varying coefficient functions
in the linear components: the link function for the single index and the single-index
parameter vector separately. It was shown that the proposed local and global estimators
are asymptotically normal. Simulation studies were conducted to examine the finite-
sample performance of our method to compare the relative performance of our method
with existing ones. A real data analysis was used to illustrate the proposed methods.

Keywords Varying coefficient · Partially linear single-index ·Two sets of estimating
functions · Iteration · Asymptotic normality

1 Introduction

The additive (Aalen 1989; Lin and Ying 1994) and multiplicative risk (Cox 1972)
models are the two commonly used models for studying the relationship between
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risk factors and disease occurrence or death. Both the additive and multiplicative
models are motivated from applications in biology and have been studied extensively
in statistics. They together provide complementary risk analysis of covariate effects.
The additive and mutiplicative models can be extended to enhance model flexibility
by incorporating time-varying coefficients (see e.g., Cai and Sun 2003; Tian et al.
2005). Furthermore, in many applications, the covariate effects may vary with an
exposure variable. The formulation of Fan et al. (2006) characterizes the extent to
which the association varies with the level of the exposure variable and is well suited
for exploring the nonlinear interaction effects between risk factors. They used local
partial likelihood to estimate coefficient functions in multiplicative hazards model,
which contains such nonlinear effects.

The additive models are useful alternatives to the multiplicative models when
absolute rate differences are of interest. Especially, the risk differences from addi-
tive risk models offer additional survival information beyond the risk ratio, which
is particularly important in epidemiology and public health study (Breslow and Day
1980, 1987). Various forms of additive models have been studied, including fully
nonparametric, partially linear semiparametric models and partially linear varying
coefficients models (Huffer andMcKeague 1991; McKeague and Sasieni 1994; Yin et
al. 2008). To characterize the varying covariate effects in the additive hazard models,
Yin et al. (2008) proposed the following partially linear varying coefficient additive
model:

λ(t |Z,X, V (t)) = λ0(t) + β(V (t))�Z(t) + g(V (t)) + X(t)�γ,

where V (t) is the exposure variable, bothZ(t) andX(t) are covariate vectors, of which
Z(t) may interact nonlinearly with the exposure variable V (t), λ0(t) is the baseline
hazard function, β(V (t)) characterizes the nonlinear interaction between Z(t) and
V (t), g(V (t)) represents the main effect of V (t) and γ is an unknown parameter
vector.

However, in many biomedical studies, the covariate effects may be much more
complex than linear effect and new challenges arise in assessing nonlinear effects. This
motivates us to consider the extension of the above model to the following partially
varying coefficient single-index additive hazards model (PVCSIAHM):

λ(t |Z(t),X(t), V (t)) = λ0(t) + β(V (t))�Z(t) + g(V (t)) + ω(X(t)�γ ), (1)

with β(·), g(·) and ω(·) being unknown functions. For example, in medical studies,
Z(t) may represent the treatment, V (t) represents the biomarker value and X(t) a
vector of explanatory variables such as a vector of age and other variables. Then, the
capability of a biomarker to predict the hazard of a patient to one particular treatment
over another can be represented by the above model. Besides the estimates of β(·) and
g(·), we are interested in identifying the effect of explanatory variables, in other words,
the estimates of ω(·) and γ . For ease of presentation, the dependence of covariates
on time is dropped as the methods and proofs in this paper are applicable to time-
dependent covariates. For the sake of identifiability, we assume that ‖γ ‖ = 1 and the
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Varying coefficient single-index additive hazard models 819

first component of γ is positive, and ω(0) = 0, g(0) = 0, where (0, 0) belongs to the
interior of the support of (X�γ, V ) denoted by (W1,W2).

Recall that, in regression problems, there are various estimating methods for the
partially linear single-index models (PLSIM), such as the backfitting algorithm pro-
posed by Carroll et al. (1997), the penalized spline estimation procedure proposed by
Yu and Ruppert (2002) and the minimum average variance estimation method by Xia
and Hardle (2006). However, the existing methods for PLSIM can not be applied to
model (1) directly since model (1) is a hazard regression model.

To the best of my knowledge, model (1) has not been considered in the literature.
For the model of Yin et al. (2008), they used an estimating equation to obtain local
estimators of varying coefficient functions and constant parameter vector γ , then use
a weighted average method to obtain a global estimator of the global parameter vector
γ . Comparing to the model of Yin et al. (2008), new analytic challenges arise in
assessing the single-index part and nonparametric effect of it for model (1) because
they cannot be estimated simultaneously from just one estimating function. In this
paper, we develop an iterative approach based on two sets of estimating equations to
estimate the unknown functions β(·), g(·), ω(·) and unknown single-index parameter
vector γ , respectively, in which the first estimating function is a generalization of the
method of Yin et al. (2008) to more complicated case.

This paper is organized as follows. In Sect. 2, we propose two sets of estimating
equations to estimate the unknown functions and unknown parameter vector in PVC-
SIAHM. In Sect. 3, we establish the asymptotic theories for the proposed local and
global estimators. In Sect. 4, we examine the finite sample property using simulation
studies and use a real data set to illustrate the proposed method. In Sect. 5, we give
concluding remarks. The detailed proofs are delayed in Appendix A.

2 Estimating procedures

For subject i , let Ti be the failure time andCi be the censoring time, then T̃i = Ti
∧

Ci

is the observed time. Let �i = I (Ti ≤ Ci ) be the failure indicator function. The
covariates are a p-vector Zi , a q-vector Xi and a scaler Vi . Assume that Ti and Ci are
conditionally independent given the covariates, we further assume that the observed
data {Xi ,Zi , Vi , T̃i ,�i } are independent and identically distributed for i = 1, . . . , n.

We write Ni (t) = I [T̃i ≤ t,�i = 1] and Yi (t) = I [T̃i ≥ t]. Let the filtration{Ft :
t ∈ [0, τ ]} be the data history up to time τ that is Ft = σ {Ni (s), Yi (s), 0 ≤ s ≤
t, i = 1, 2, . . . , n}. Define Mi (t) = Ni (t) − ∫ t

0 Yi (s)λ(s|Zi ,Xi , Vi ) ds. Then, Mi (t)
is aFt -martingale.

We will use local linear method to approximate the hazard function (1). Assume
β(·), g(·), ω(·) are smooth so that their first and second derivatives exist. By Taylor
expansion, we have

β(ṽ) ≈ β(v) + β̇(v)(ṽ − v),

g(ṽ) ≈ g(v) + ġ(v)(ṽ − v),

ω(X�γ ) ≈ ω(u) + ω̇(u)(X�γ − u),
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where (u, v) belongs to (W1,W2); β̇, ġ, ω̇ are the derivatives ofβ, g, ω, respectively.
Then, model (1) can be approximated by

λ(t |Z,X, V ; u, v) ≈ λ∗
0(t, u, v) + ξ(u, v)�Z∗(u, v),

where

λ∗
0(t, u, v) = λ0(t) + g(v) + ω(u),

ξ(u, v) =
(
β(v)�, β̇(v)�, ġ(v), ω̇(u)

)�,

Z∗(u, v) = (Z�,Z�(V − v), V − v,X�γ − u)�.

To estimate ξ(u, v) and γ , we develop an estimation approach with two sets of
estimating equations because ξ(u, v) and γ cannot be estimated simultaneously from
just one estimating equation due to the interaction of w(·) and γ and the fact that
ξ(u, v) is a function parameter vector and γ is a constant parameter vector. The first
estimating function, which will be defined by (2), is a local pseudoscore function,
which can only be used to obtain local estimators. The second estimating function in
(4) is also a form of pseudoscore function, but global one, and hence can be used to
define estimator for the global parameter vector γ . We need to iterate between these
two estimating functions to get the final estimates.

Define

M̄i (t) = Ni (t) −
∫ t

0
Yi (s){λ∗

0(s, u, v) + ξ�(u, v)Z∗
i (u, v)} ds

and

Z̄(t, u, v) =
∑n

i=1
K1,h1(Vi − v)K2,h2(Xi

�γ − u)Yi (t)Z∗
i (u, v)

∑n

i=1
K1,h1(Vi − v)K2,h2(Xi

�γ − u)Yi (t)
,

where K1(·) and K2(·) are kernel functions, h1 and h2 are bandwidths, and K1,h1(·) =
K1(·/h1)/h1, K2,h2(·) = K2(·/h2)/h2.

For the estimation of ξ , we propose the following local pseudoscore function

Un(ξ, γ ; u, v) = 1

n

n∑

i=1

∫ τ

0
K1,h1(Vi − v)K2,h2(Xi

�γ − u){Z∗
i (u, v)

−Z̄(t, u, v)} dM̄i (t). (2)

Given γ , we denote the solution to Un(ξ, γ ; u, v) = 0 by ξ̃ (γ, u, v) = (β̃(u, v)�,
˜̇β(u, v)�, ˜̇g(u, v), ˜̇ω(u, v))�. We can obtain an analytic form of ξ̃ (γ, u, v) as follows

ξ̃ (γ, u, v)=
[

n∑

i=1

∫ τ

0
K1,h1(Vi−v)K2,h2(Xi

�γ−u)Yi (t){Z∗
i (u, v)−Z̄(t, u, v)}⊗2 dt

]−1
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Varying coefficient single-index additive hazard models 821

×
[

n∑

i=1

∫ τ

0
K1,h1(Vi −v)K2,h2(Xi

�γ −u){Z∗
i (u, v)−Z̄(t, u, v)} dNi (t)

]

.

The above formula gives estimates β̃(u, v)�, ˜̇β(u, v)�, ˜̇g(u, v), ˜̇ω(u, v), which are
local estimates depending on both the variables u and v. To get the estimates of the
functions β(v)�, β̇(v)�, ġ(v), ω̇(u), we define

β̃(Vi ) =
∫

W2

∫

W1

I (v ≤ Vi )
1(u) ˜̇β(u, v) du dv,

g̃(Vi ) =
∫

W2

∫

W1

I (v ≤ Vi )
2(u) ˜̇g(u, v) du dv,

ω̃(Xi
�γ ) =

∫

W2

∫

W1

I (u ≤ Xi
�γ )
3(v) ˜̇ω(u, v) du dv,

and ˜̇ω(Xi
�γ ) =

∫

W2

˜̇ω(Xi
�γ, v) 
4(v) dv, respectively, (3)

where 
1(·), 
2(·), 
3(·) and 
4(·) are weight functions satisfying
∫
W1


1(u) du =
Ip×p, an identity matrix,

∫
W1


2(u) du = 1,
∫
W2


3(v) dv = 1 and
∫
W2


4(v) dv =
1. And, let

Z∗
i = (Zi

�, 1, 1)�,

ζ0i (γ ) = (β0(Vi )
�, g0(Vi ), ω0(Xi

�γ ))�,

ζ̃i (γ ) = (β̃(Vi )
�, g̃(Vi ), ω̃(Xi

�γ ))�.

Then,

ζ̃i (γ ) =
∫

W1

∫

W2

Ri (γ, u, v) ξ̃ (γ, u, v) du dv,

where β0(·), g0(·) and ω0(·) are the true values of β(·), g(·) and ω(·), respectively,
and

Ri (γ, u, v)=
⎛

⎝
0 I (v≤Vi )
1(u) 0 0
0 0 I (v≤Vi )
2(u) 0
0 0 0 I (u ≤ Xi

�γ )
3(v)

⎞

⎠

(p+2)×(2p+2)

.

We assume that γ1 > 0 and let γ (1) = (γ2, γ3, . . . , γq)� be a q − 1 dimensional
parameter vector after removing the 1st component γ1 in γ . Recall that ‖γ ‖ = 1, then

γ = γ (γ (1)) =
(
(1 − ‖γ (1)‖2)1/2, γ2, γ3, . . . , γq

)�.

This “remove one component” method for γ is also used in Yu and Ruppert (2002)
to avoid taking derivatives to the boundary points of the unit ball.
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To obtain the estimator for γ , we consider a Jacobian matrix of γ with respect to
γ (1),

Jγ (1) = ∂γ

∂γ (1)
=
(
−γ (1)/(1 − ‖γ (1)‖2)1/2, Iq−1

)�.

Define

M̃i (t) = Ni (t) −
∫ t

0
Yi (s){λ0(s) + β̃(Vi )

�Zi + g̃(Vi ) + ω̃(Xi
�γ )} ds,

and X̄(t) =
∑n

i=1
˜̇ω(Xi

�γ )Xi Yi (t)
∑n

i=1
Yi (t)

.

Then, γ can be estimated by the solution of the following equation

Ũn(γ (1)) = 1

n

n∑

i=1

∫ τ

0
Jγ (1)

�{ ˜̇ω(Xi
�γ )Xi − X̄(t)} dM̃i (t) = 0. (4)

Let the solution be γ̃ (1). This defines the estimator of γ , say γ̃ .
Given γ , we can obtain ξ̃ (γ, u, v) by solving the equation Un(ξ, γ ; u, v) = 0 and

hence obtain the estimators of β(·), g(·), ω(·) by (3), which are used to update the
estimate of γ by (4). We denote the final estimator of γ by γ̂ , the final estimator of
ξ(u, v) by ξ̂ (u, v) = ξ̃ (γ̂ , u, v).

Remark The partially varying coefficient single-index additive hazard model (PVC-
SIAHM) stems from real data analysis although it is an extension of themodel of YLZ.
We developed a two set of estimating equations approach to estimate the unknown
quantities of interest. The first equation is an analog of the estimating equation of YLZ
but more complicated because of the nonparametric part in the single-index part, while
the second equation is constructed especially for additive hazard model with single-
index based on a mean zero martingale, which is quite different from the existing
methods for single-index regression model in the literature.

3 Asymptotic properties

Let H be a (2p + 2)-diagonal matrix, with the first p elements equal to 1, the second
p elements equal to h1 and the last two elements equal to h1 and h2, respectively.
Let μ

(1)
j = ∫

u j K1(u) du, ν
(1)
j = ∫

u j K 2
1 (u) du, μ

(2)
j = ∫

u j K2(u) du, ν
(2)
j =

∫
u j K 2

2 (u) du, P(t,Z,X�γ, V ) = Pr(T̃ ≥ t |Z,X�γ, V ) and ρ(t,Z,X�γ, V ) =
P(t,Z,X�γ, V )λ(t |Z,X, V ).

For k = 0, 1, 2, define

ak(t, u, v) = E[P(t,Z, u, v)Z⊗k |X�γ0 = u, V = v] fX�γ0,V (u, v),
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Varying coefficient single-index additive hazard models 823

a∗
k (t, u, v) = E[ρ(t,Z, u, v)Z⊗k |X�γ0 = u, V = v] fX�γ0,V (u, v),

G∗
i (u, v) = H−1Z∗

i (u, v),

Ḡ(t, u, v) =
∑n

i=1
K1,h1(Vi − v)K2,h2(X

�
i γ0 − u)Yi (t)G∗

i (u, v)
∑n

i=1
K1,h1(Vi − v)K2,h2(X

�
i γ0 − u)Yi (t)

,

where fX�γ0,V (u, v) is the joint density function of (X�γ0, V ) evaluated at (u, v).

Theorem 1 Under (C1)–(C5) given in Appendix, we have

√
n(γ̂ − γ0) −→d N

(

0, J
γ

(1)
0

{D(γ
(1)
0 )}−1�(γ

(1)
0 ){D(γ

(1)
0 )}−1J�

γ
(1)
0

)

,

where γ0 is the true value of γ under model (1), γ
(1)
0 the true value of γ (1),

D(γ
(1)
0 ) =

∫ τ

0
E

[

J�
γ

(1)
0

{ ˜̇ω(X�γ0)X − X̄(t)}Y (t) ˜̇ω(X�γ0)XJγ
(1)
0

]

dt,

�(γ
(1)
0 ) =

∫ τ

0
E

{ [
J�
γ

(1)
0

{ ˜̇ω(X�γ0)X − X̄(t)}

−Q · {H · D(X�γ0, V )}−1{G∗(X�γ0, V ) − Ḡ(t,X�γ0, V )}
]⊗2

×Y (t)λ(t |Z,X, V )

}

dt,

with D(u, v) defined in (7) and

Qi =
∫ τ

0
E[J�

γ
(1)
0

{ ˜̇ω(X�γ )X − X̄(s)}Y (s)(Z∗)� R(γ0,X�
i γ0, Vi )] ds.

Theorem 2 Under (C1)–(C5) given in Appendix, we have

√
nh1h2

{
ξ̂ (u, v) − ξ0(u, v) − b̃(u, v)

}
−→d N (0, �(u, v)),

where ξ0(u, v) = (
β0(v)�, β̇0(v)�, ġ0(v), ω̇0(u)

)�
is the true value of ξ(u, v) under

model (1),

�(u, v) =
∫ τ

0
{H · D(u, v)}−1diag

(

a∗
2 (t, u, v), ν

(1)
2

(
a∗
2 (t, u, v) a∗

1 (t, u, v)

a∗
1 (t, u, v) a∗

0 (t, u, v)

)

, ν
(2)
2 a∗

0 (t, u, v)

)

{H · D(u, v)}−1dt,

b̃(u, v) = {H · D(u, v)}−1b(u, v),

with b(u, v) = 1
2h2

1μ
(1)
2 b1(u, v) + 1

2h2
2μ

(2)
2 b2(u, v) and b1(u, v), b2(u, v) defined in

(8), (9). Note that,
√

nh1h2b̃ goes to zero as n → ∞.
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To obtain consistent estimators for the asymptotic covariance matrices of γ and
ξ(u, v), we can replace D(u, v), Q(t), D(γ

(1)
0 ), �(γ

(1)
0 ) and � with their empirical

counterparts Dn(u, v), Qn(t), Dn(γ
(1)
0 ), �n(γ

(1)
0 ) and �n , respectively. The perfor-

mance of the resulting covariance matrix estimators may be unstable for finite sample
size due to the complicated expressions of the asymptotic covariance matrices. Alter-
natively, resamplingmethod such as that of Jin et al. (2001) can be used to approximate
the covariance matrices. The proofs are outlined in the Appendix.

4 Numerical studies

4.1 Simulations

We carried out two simulation studies to assess the finite sample properties of the
proposedmethod. In the first simulation study, we examine the relative performance of
the proposedmethod and the existingmethod due toYin et al. (2008) whenω(X�γ ) =
X�γ . In the second simulation study, we assess the finite-sample performance when
ω(X�γ ) is nonlinear in X�γ . The estimating method of Yin et al. (2008) is invalid in
this situation because their model is not suited for this set-up.

The failure times were generated from the partially linear single-index additive
hazard model

λ(t |Z,X, V ) = λ0(t) + β(V )�Z + g(V ) + ω(X�γ ). (5)

In the first simulation, we took λ0(t) = 0.5, β(v) = 0.5v(3 − v), g(v) =
0.2exp(v−1.5) andω(X�γ ) = X�γ , withX = (X1, X2, X3)

�, γ = (γ1, γ2, γ3)
� =

(0.5, 0.5, 0.7071)�. CovariateZwas generated from a uniform distribution Unif[0,1],
covariate V was generated from Unif[0,3], X1 from Unif[0,0.5], X2 from Unif[0,0.5],
X3 from Unif[0,0.7071]. The censoring time was taken as the minimum value of τ

and a random number generated from Unif[τ/2, 3τ/2]. We took τ = 0.86 to yield
an approximate censoring rate of 25 %. The Epanechnikov kernel function was used.

Table 1 Biases and standard deviations (SD) for γ̂ , the proposed estimators (WWZ) and the estimates of
Yin et al. (2008) (YLZ)

Estimators n γ̂1 γ̂2 γ̂3

WWZ 60 Bias 0.0157 −0.0075 −0.0060

SD 0.2848 0.3200 0.2962

YLZ Bias 0.2125 −0.0114 0.2186

SD 2.3489 2.3197 1.6770

WWZ 120 Bias 0.0270 −0.0165 −0.0081

SD 0.2547 0.3000 0.2721

YLZ Bias 0.0010 −0.0941 0.0816

SD 1.4933 1.4560 0.9042
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Varying coefficient single-index additive hazard models 825

Four hundreds simulations of sample size n = 60, 120were, respectively, ran to calcu-
late the biases, standard deviations (SD) of the proposed estimators. Yin et al. (2008)
developed estimating approach for the special case of ω(X�γ ) = X�γ as considered
here. Hence, we calculated the corresponding biases and SDs of the estimators due to
Yin et al. (2008) as a comparison.

The simulation results for the estimators of γ are presented in Table 1. In Figs.
1 and 2, we plot the curves of the estimates of β(·), g(·) and ω(·) and SDs of the
estimates of β(·), g(·) and ω(·) at 48 equally spaced points on the support of V and
20 equally spaced points on the support of X�γ , respectively. In these Tables and
Figures, ”WWZ” denotes the proposed estimator and ”YLZ” the estimator due to Yin

Fig. 1 Curves and standard deviation (SD) curves of β̂(v), ĝ(v) and ω̂(u) for n = 60
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826 X. Wang et al.

Fig. 2 Curves and standard deviation (SD) curves of β̂(v), ĝ(v) and ω̂(u) for n = 120

et al. (2008). We also compute the joint integrated mean squared errors (IMSE) (Li et
al. 2007) for β̂(·) and ĝ(·) based on 48 equally spaced points on the support of V in
Table 3.

From Table 1, we can see that our estimators of γ are comparable to those of
Yin et al. (2008) and perform better in terms of SD. A reason may be that they first
obtain a local estimate of γ from an estimating equation and then use a weighted
average of the local estimate of γ to obtain a global estimate of γ , while the pro-
posed estimating function for γ is a global one. Figures 1, 2 and Table 3 indicate
that the estimators of the two methods perform similarly especially when n = 120
as in that case the joint IMSEs for different methods are very close. Combining all
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Table 2 Biases and standard deviations (SD) for γ̂ , the proposed estimators (WWZ) and the estimates of
Yin et al. (2008) (YLZ)

Estimators n γ̂1 γ̂2 γ̂3

WWZ 60 Bias 0.0386 0.0049 −0.0326

SD 0.2849 0.3051 0.2966

YLZ 60 Bias −0.0998 −0.3506 −0.2148

SD 2.5952 2.4991 1.8109

WWZ 120 Bias −0.0021 −0.0140 0.0112

SD 0.2587 0.3030 0.2826

YLZ 120 Bias −0.2952 −0.3909 −0.3026

SD 1.5865 1.5667 1.0026

Table 3 Joint IMSEs for β̂(·) and ĝ(·)
Estimators n Simulation 1 Simulation 2

WWZ 60 17.9722 22.5195

YLZ 20.2125 23.3076

WWZ 120 6.6789 7.0908

YLZ 6.6960 7.5246

the results, we see that both the proposed estimates and those of YLZ are close to
the true values and the estimated curves are close to the true curves as sample size
increases.

In the second simulation, the failure times were generated from the partially linear
single-index additive hazard model (5) with λ0(t) = 0.5, β(v) = 1.2 + 0.5v(3 − v),
g(v) = 0.2exp(v − 1.5) and ω(X�γ ) = 0.5(X�γ )2, with X = (X1, X2, X3)

�,
γ = (γ1, γ2, γ3)

� = (0.5, 0.5, 0.7071)�. Covariate Z was generated from a uni-
form distribution Unif[0,1], covariate V was generated from Unif[0,3], X1 from
Unif[0,0.5], X2 from Unif[0,0.5], X3 from Unif[0,0.7071]. The censoring time
was taken as the minimum value of τ and a random number generated from
Unif[τ/2, 3τ/2]. We took τ = 0.86 to yield an approximate censoring rate of
25 %. Here, we also used the Epanechnikov kernel function. We run four hun-
dreds simulations of sample sizes n = 60 and 120 to calculate the biases and
SDs of the proposed estimators. In this simulation example, ω(·) is nonlinear.
We also calculated the estimators by the method of Yin et al. (2008) to see its
performance.

The simulation results of the estimators of γ are presented in Table 2. Figures
3 and 4 plot the curves of the estimates of β(·), g(·) and ω(·) and the SDs of the
estimates of β(·), g(·) and ω(·) at 48 equally spaced points on the support of V and
20 equally spaced points on the support of X�γ , respectively. Joint IMSEs for β̂(·)
and ĝ(·) at the 48 equally spaced points on the support of V are also calculated in
Table 3.
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Fig. 3 Curves and standard deviation (SD) curves of β̂(v), ĝ(v) and ω̂(u) for n = 60

From Tables 2, 3 and Figs. 3, 4, we can see that our estimates of γ are close to the
true values and the estimated curves are close to the true ones, and hence the proposed
method performs well. However, the YLZ estimates of γ are seriously biased in this
set-up. The biases of the YLZ estimates of γ are at least 10 times larger than the
proposed ones, and even 100 times larger in some cases. This suggests that YLZ
method does not define consistent estimator for γ for the case where ω(·) is not a
linear function. In Table 3, the joint IMSEs of the proposed estimates are smaller than
those of YLZ, which indicate that the proposed estimates of β(·) and g(·) are closer
to the true functions. On the whole, the proposed method outperforms that of YLZ in
this set-up.
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Varying coefficient single-index additive hazard models 829

Fig. 4 Curves and standard deviation (SD) curves of β̂(v), ĝ(v) and ω̂(u) for n = 120

4.2 Data analysis

The proposed approaches are now applied to the The National Alzheimer’s Coordi-
nating Center(NACC) and Uniform Data Set(UDS). There are 62,617 observations
in all. The study was initiated in May 2005, and patients are followed annually since
then.

The interest here is to characterize the relationship between survival and known risk
factors and determine how the genotype APOE interacts with other covariates, such
as Global CDR(CDRGLOB), Parkinsonism disorder status(PDOTHR), Incontinence-
bowel status(INCONTF) and Hypertension status(HYPERTEN). After eliminating
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Fig. 5 The estimated coefficient
functions for the NACC UDS
(real line, estimated functions;
dashed line, 95 % confidence
limit)

observations with FORMVER=1 or PACKET=F (or T) or missing covarite values, we
got approximate 100 observations. We first fitted the fully nonparametric model to the
data, and found that the estimated parameters for CDRGLOB, PDOTHR, INCONTF,
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and HYPERTEN did not change much with respect to APOE, so we considered the
following model:

λ(t |Z ,X, V ) = λ0(t) + β(V )Z + g(V ) + ω(X�γ ),

where V denotes the value of APOE, Z denotes NORMCOG value, X =
(X1, X2, X3, X4) and X1, X2, X3, X4 denote the values of CDRGLOB, PDOTHR,
INCONTF, and HYPERTEN, respectively. Gaussian kernel functions were used here.
The constant coefficients were estimated as γ̂1 = 0.6530, γ̂2 = 0.4474, γ̂3 = 0.4444,
and γ̂4 = 0.4194. The estimated functions of β(V ), g(V ) and ω(X�γ ) are plotted in
Fig. 5, and the estimates of the pointwise confidence limits are based on the resampling
method of Jin et al. (2001).

From Fig. 5, the negative estimates of β imply a higher NORCOG value associated
with a decreasedhazard and the positive estimates ofω andγ implyhigherCDRGLOB,
PDOTHR, INCONTF, and HYPERTEN values associated with an increased hazard,
which is reasonable. The estimates of g imply that differentAPOEvalues have different
influence on the hazard or the survival, some being positive while some being negative.

5 Discussion

We study a class of partially varying coefficient single-index additive hazards model.
The coefficientsmay varywith an exposure variable, thus leading to a covariate varying
structure. Also, we incorporate high-dimension explanatory covariates into a single
index. The model is very general and includes commonly used additive hazard models
as special examples, such as the model of Yin et al. (2008). An inference procedure is
proposed by solving a unified local and global estimating equation sets based on local
polynomial technique and themartingale representation. It is interesting to consider the
further extensions when the coefficients vary with many exposure variables. A single
index may be used to combine all the exposure variables through a linear function. A
thorough investigation is needed for future research.

6 Appendix

6.1 Proofs of the main results

(C1): The kernel functions K1(·) > 0 and K2(·) > 0 are bounded and symmetric
densities with compact bounded supports.
(C2): The covariates Z,X and V are bounded in [0, τ ].
(C3): The conditional density ofZ given (X�γ = u, V = v) is twice continuously
differentiable with respect to u and v. The marginal density of (X�γ = u, V = v)

evaluated at (u, v) is twice continuously differentiable with respect to (u, v) and
satisfies in f(u,v)∈(W1,W2) fX�γ,V (u, v) > 0.
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(C4): in ft∈[0,τ ],(u,v)∈(W1,W2)a0(t, u, v) > 0, thematrices D(u, v) and D(γ
(1)
0 ) are

nonsingular, �(γ
(1)
0 ) and �(u, v) are positive definite for all (u, v) ∈ (W1,W2).

(C5): h1 → 0, h2 → 0, logh1/(n1/2h1h2) → 0, nh5
1 and nh5

2 are bounded.

All of these conditions are standard in local linear estimation. Use the definitions
in Sect. 3, as well as for k=0,1,2, define

Snk(t, u, v) = 1

n

n∑

i=1

K1,h1(Vi − v)K2,h2(X
�
i γ0 − u)Yi (t)

(
G∗

i (u, v)
)⊗k,

s0(t, u, v) = a0(t, u, v),

s1(t, u, v) =
(

a1
�(t, u, v), 0�p+2

)�
,

s2(t, u, v) = diag

(

a2(t, u, v), μ
(1)
2

(
a2(t, u, v) a1(t, u, v)

a�
1 (t, u, v) a0(t, u, v)

)

, μ
(2)
2 a0(t, u, v)

)

.

Lemma 1 Under the conditions given in Appendix, we have, for k=0,1,2,

supt∈[0,τ ],(u,v)∈(W1,W2)|Snk(t, u, v) − sk(t, u, v)|
= Op

(
logh1√
nh1h2

)

+ O(h2
1) + O(h2

2).

Lemma 1 can be proved using similar arguments to that of Lemma A.1 in Lin et al.
(2008).

Proof of Theorem 1 We prove the theorem in the following four steps:
Step 1. Derivation of the expression for ξ̃ (γ0, u, v) − ξ0(u, v).
Note that

0 − Un(ξ0(u, v), γ0; u, v) = Un(ξ̃ (γ0, u, v), γ0; u, v) − Un(ξ0(u, v), γ0; u, v)

=
{
∂Un(ξ, γ0; u, v)/∂ξ |ξ=ξ0 + op(1)

}

{
ξ̃ (γ0, u, v) − ξ0(u, v)

}
.

To obtain the expression of ξ̃ (γ0, u, v) − ξ0(u, v), we obtain the expressions for
∂Un(ξ(u, v), γ0; u, v)/∂ξ(u, v)|ξ(u,v)=ξ0(u,v) and Un(ξ0(u, v), γ0; u, v) separately,
and then the asymptotic expression for ξ̃ (γ0, u, v) − ξ0(u, v).

First, we derive the expressions for ∂Un(ξ(u, v), γ0; u, v)/∂ξ(u, v)|ξ(u,v)=ξ0(u,v).
Recalling the definition ofUn(ξ(u, v), γ0; u, v) in (2), we have the following result:
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∂Un(ξ(u, v), γ0; u, v)/∂ξ(u, v)|ξ(u,v)=ξ0(u,v)

= −1

n

n∑

i=1

∫ τ

0
K1,h1(Vi −v)K2,h2(X

�
i γ0−u){Z∗

i (u, v)−Z̄(t, u, v)}⊗2Yi (t) dt

= −H⊗2 1

n

n∑

i=1

∫ τ

0
K1,h1(Vi −v)K2,h2(X

�
i γ0−u){G∗

i (u, v)−Ḡ(t, u, v)}⊗2Yi (t) dt

:= −H⊗2Dn(u, v)

= −H⊗2D(u, v) + op(1), (6)

where H and G∗
i (u, v) are defined in Sect. 3,

Dn(u, v) =1

n

n∑

i=1

∫ τ

0
K1,h1(Vi −v)K2,h2(X

�
i γ0−u){G∗

i (u, v)−Ḡ(t, u, v)}⊗2Yi (t)dt,

D(u, v) =

⎛

⎜
⎜
⎝

D11 0 0 0
0 D22 D23 0
0 D32 D33 0
0 0 0 D44

⎞

⎟
⎟
⎠ , (7)

with

D11 =
∫ τ

0

{

a2(t, u, v) − a1(t, u, v)a1(t, u, v)�

a0(t, u, v)

}

dt,

D22 = μ
(1)
2

∫ τ

0
a2(t, u, v) dt,

D23 = μ
(1)
2

∫ τ

0
a1(t, u, v) dt,

D32 = μ
(1)
2

∫ τ

0
a1(t, u, v) dt,

D33 = μ
(1)
2

∫ τ

0
a0(t, u, v) dt,

D44 = μ
(2)
2

∫ τ

0
a0(t, u, v) dt,

and ak(t, u, v), k = 0, 1, 2 defined in Sect. 3.
Second, we derive the expression for Un(ξ0(u, v), γ0; u, v).

By definition,

H−1Un(ξ0(u, v), γ0; u, v)

= 1

n

n∑

i=1

∫ τ

0
K1,h1(Vi − v)K2,h2(X

�
i γ0 − u){G∗

i (u, v) − Ḡ(t, u, v)}

×
[
dNi (t) − Yi (t){λ∗

0(t, u, v) + ξ�
0 (u, v)Z∗

i (u, v)} dt
]
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= 1

n

n∑

i=1

∫ τ

0
K1,h1(Vi − v)K2,h2(X

�
i γ0 − u){G∗

i (u, v) − Ḡ(t, u, v)} [dMi (t)

+Yi (t){λ0(t) + β(Vi )
�Zi + g(Vi ) + ω(X�

i γ0)} dt

−Yi (t){λ∗
0(t, u, v) + ξ�

0 (u, v)Z∗
i (u, v)} dt]

= 1

n

n∑

i=1

∫ τ

0
K1,h1(Vi − v)K2,h2(X

�
i γ0 − u){G∗

i (u, v) − Ḡ(t, u, v)}dMi (t)

+1

n

n∑

i=1

∫ τ

0
K1,h1(Vi − v)K2,h2(X

�
i γ0 − u)Yi (t){G∗

i (u, v) − Ḡ(t, u, v)}

×
[

{1
2
β̈(v)�Zi + 1

2
g̈(v)}(Vi − v)2 + 1

2
ω̈(u)(X�

i γ0 − u)2
]

dt

+1

n

n∑

i=1

∫ τ

0
K1,h1(Vi − v)K2,h2(X

�
i γ0 − u)Yi (t){G∗

i (u, v) − Ḡ(t, u, v)}

×
∞∑

p=3

[

{ 1
p!β

(p)(v)�Zi + 1

p!g(p)(v)}(Vi − v)p + 1

p!ω
(p)(u)(X�

i γ0 − u)p
]

dt

:= An(τ, u, v) + Bn(τ, u, v) + Cn(τ, u, v).

For Bn(τ, u, v), by Lemma 1, we obtain the following result:

Bn(τ, u, v) = 1

n

n∑

i=1

∫ τ

0
K1,h1(Vi −v)K2,h2(X

�
i γ0−u)Yi (t){G∗

i (u, v)−Ḡ(t, u, v)}

×
[{

1

2
β̈(v)�Zi + 1

2
g̈(v)

}

(Vi − v)2+ 1

2
ω̈(u)(X�

i γ0 − u)2
]

dt

= h2
1

[
1

n

n∑

i=1

∫ τ

0
K1,h1(Vi − v)K2,h2(X

�
i γ0 − u)Yi (t)

{

G∗
i (u, v) − s1(t, u, v)

s0(t, u, v)

}

×
{
1

2
β̈(v)�Zi + 1

2
g̈(v)

}(
Vi − v

h1

)2

dt

+Op

(
logh1√
nh1h2

)

+Op(h
2
1)+Op(h

2
2)

]

+ h2
2

[
1

n

n∑

i=1

∫ τ

0
K1,h1(Vi −v)

K2,h2(X
�
i γ0−u)

{

G∗
i (u, v)− s1(t, u, v)

s0(t, u, v)

}

× 1

2
ω̈(u)

(
X�

i γ0−u

h2

)2

dt

+Op

(
logh1√
nh1h2

)

+ Op(h
2
1) + Op(h

2
2)

]

= 1

2
h2
1μ

(1)
2 b1(u, v) + 1

2
h2
2μ

(2)
2 b2(u, v) + op(h

2
1) + op(h

2
2)

:= b(u, v) + op(h
2
1) + op(h

2
2),
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where Ḡ(t, u, v), μ
(1)
2 , μ

(2)
2 are defined in Sect. 3,

b1(u, v) =

⎛

⎜
⎜
⎜
⎜
⎝

∫ τ

0

{

a2(t, u, v) − a1(t, u, v)a1(t, u, v)�
a0(t, u, v)

}

dt β̈(v)

0
0
0

⎞

⎟
⎟
⎟
⎟
⎠

(2p+2)×1

+

⎛

⎜
⎜
⎜
⎝

∫ τ

0

{
a1(t, u, v) − a1(t, u, v)

a0(t, u, v)

}
dt g̈(v)

0
0
0

⎞

⎟
⎟
⎟
⎠

(2p+2)×1

, (8)

b2(u, v) =

⎛

⎜
⎜
⎜
⎝

∫ τ

0

{
a1(t, u, v) − a1(t, u, v)

a0(t, u, v)

}
dt ω̈(u)

0
0
0

⎞

⎟
⎟
⎟
⎠

(2p+2)×1

, (9)

with ak(t, u, v) being defined in Sect. 3.
Therefore,

H−1Un(ξ0(u, v), γ0; u, v) = An(τ, u, v) + Bn(τ, u, v) + Cn(τ, u, v)

= An(τ, u, v) + b(u, v) + op(h
2
1) + op(h

2
2). (10)

Finally, we can get the asymptotic expression for ξ̃ (γ0, u, v) − ξ0(u, v).
Recall that

0 − Un(ξ0(u, v), γ0; u, v) = Un(ξ̃ (γ0, u, v), γ0; u, v) − Un(ξ0(u, v), γ0; u, v)

=
{
∂Un(ξ, γ0; u, v)/∂ξ |ξ=ξ0 + op(1)

}

{
ξ̃ (γ0, u, v) − ξ0(u, v)

}
.

From (6) and (10), we have the following result:

ξ̃ (γ0, u, v) − ξ0(u, v) = {H · D(u, v)}−1{An(τ, u, v) + Bn(τ, u, v) + Cn(τ, u, v)}
= {H · D(u, v)}−1

×
[
1

n

n∑

i=1

∫ τ

0
K1,h1(Vi − v)K2,h2(X

�
i γ0 − u){G∗

i (u, v)

−Ḡ(t, u, v)}dMi (t) + b(u, v) + op(h
2
1) + op(h

2
2)

]

. (11)
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From this formula, it can be seen that

√
nh1h2

{
ξ̃ (γ0, u, v) − ξ0(u, v)

}
= Op(1). (12)

Note that
0−Ũn(γ

(1)
0 ) = Ũn(γ̂ (1))−Ũn(γ

(1)
0 ) =

{
∂Ũn(γ (1))/∂γ (1)|

γ (1)=γ
(1)
0

+ op(1)
}

(γ̂ (1)

− γ
(1)
0 ).

To prove the asymptotic normality of
√

n( ˆγ (1) − γ
(1)
0 ), it is sufficient to prove

∂Ũn(γ
(1))/∂γ (1)|

γ (1)=γ
(1)
0

convergence in probability and
√

nŨn(γ
(1)
0 ) convergence

to a normal random variable in distribution.We first obtain the asymptotic expressions
of ∂Ũn(γ

(1))/∂γ (1)|
γ (1)=γ

(1)
0

and Ũn(γ
(1)
0 ) in Step 2 and Step 3, so as to obtain the

asymptotic property of γ̂ (1) and hence the asymptotic property of γ̂ in Step 4.
Step 2. Derivation of the expression for ∂Ũn(γ (1))/∂γ (1)|

γ (1)=γ
(1)
0

.

Recalling the definition of Ũn(γ (1)) in (4), we have

∂Ũn(γ
(1))/∂γ (1)|

γ (1)=γ
(1)
0

= 1

n

n∑

i=1

∫ τ

0
∂

(

J�
γ

(1)
0

{ ˜̇ω(X�
i γ0)Xi − X̄(t)}

)/
∂γ (1)|

γ (1)=γ
(1)
0

Yi (t)

×
[
dNi (t) − Yi (t)

{
λ0(t) + β̃(Vi )

�Zi + g̃(Vi ) + ω̃(X�
i γ0)

}
dt
]

−1

n

n∑

i=1

∫ τ

0
J�
γ

(1)
0

{ ˜̇ω(X�
i γ0)Xi − X̄(t)}Yi (t) ˙̃ω(X�

i γ0)X�
i Jγ

(1)
0

dt

by(12) = −1

n

n∑

i=1

∫ τ

0
J�
γ

(1)
0

{ ˜̇ω(X�
i γ0)Xi − X̄(t)}Yi (t) ˜̇ω(X�

i γ0)X�
i Jγ

(1)
0

dt + op(1)

= −
∫ τ

0
E

[

J�
γ

(1)
0

{ ˜̇ω(X�γ0)X − X̄(t)}Y (t) ˜̇ω(X�γ0)X�J
γ

(1)
0

]

dt + op(1)

:= −D(γ
(1)
0 ) + op(1). (13)

Step 3. Derivation of the asymptotic expression for Ũn(γ
(1)
0 ).

By (11) and the definitions in Sect. 3, we have

ζ̃i (γ0) − ζi (γ0) =
∫

W1

∫

W2

Ri (γ0, u, v){ξ̃ (γ0, u, v) − ξ0(u, v)} du dv

=
∫

W1

∫

W2

Ri (γ0, u, v){H · D(u, v)}−1{An(τ, u, v)

+Bn(τ, u, v) + Cn(τ, u, v)} du dv

=
∫

W1

∫

W2

Ri (γ0, u, v){H · D(u, v)}−1
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×
[
1

n

n∑

j=1

∫ τ

0
K1,h1(Vj − v)K2,h2(X

�
j γ0 − u)

{G∗
j (u, v) − Ḡ(s, u, v)}dM j (s)

+Bn(τ, u, v) + Cn(τ, u, v)

]

du dv

= 1

n

n∑

j=1

∫ τ

0

∫

W1

∫

W2

Ri (γ0, u, v){H · D(u, v)}−1K1,h1(Vj − v)

K2,h2(X
�
j γ0 − u) × {G∗

j (u, v) − Ḡ(s, u, v)} du dv dM j (s)

= 1

n

n∑

j=1

∫ τ

0
Ri (γ0,X�

j γ0, Vj ){H · D(X�
j γ0, Vj )}−1{G∗

j (X
�
j γ0, Vj )

− Ḡ(s,X�
j γ0, Vj )} dM j (s).

This gives

Ũn(γ
(1)
0 ) = 1

n

n∑

i=1

∫ τ

0
J�
γ

(1)
0

{ ˜̇ω(X�
i γ )Xi −X̄(t)}[dNi (t)−Yi (t){λ0(t)+ζ̃�

i (γ0)Z∗
i }dt]

= 1

n

n∑

i=1

∫ τ

0
J�
γ

(1)
0

{ ˜̇ω(X�
i γ )Xi − X̄(t)}[dMi (t)

+Yi (t){λ0(t) + β(Vi )
�Zi + g(Vi ) + ω(X�

i γ0)}
−Yi (t){λ0(t) + ζ̃�

i (γ0)Z∗
i }dt]

= 1

n

n∑

i=1

∫ τ

0
J�
γ

(1)
0

{ ˜̇ω(X�
i γ )Xi − X̄(t)}[dMi (t)

−Yi (t){ζ̃�
i (γ0) − ζ�

i (γ0)}Z∗
i dt]

= 1

n

n∑

i=1

∫ τ

0
J�
γ

(1)
0

{ ˜̇ω(X�
i γ )Xi − X̄(t)} dMi (t)

− 1

n

n∑

i=1

∫ τ

0
J�
γ

(1)
0

{ ˜̇ω(X�
i γ )Xi − X̄(t)}Yi (t)(Z∗

i )
�

×
[
1

n

n∑

j=1

∫ τ

0
Ri (γ0,X�

j γ0, Vj ){H · D(X�
j γ0, Vj )}−1

×{G∗
j (X

�
j γ0, Vj ) − Ḡ(s,X�

j γ0, Vj )} dM j (s)

]

dt

= 1

n

n∑

i=1

∫ τ

0
J�
γ

(1)
0

{ ˜̇ω(X�
i γ )Xi − X̄(t)} dMi (t)

− 1

n

n∑

j=1

∫ τ

0

[
1

n

n∑

i=1

∫ τ

0
J�
γ

(1)
0

{ ˜̇ω(X�
i γ )Xi −X̄(t)}Yi (t)(Z∗

i )
� Ri (γ0,X�

j γ0, Vj ) dt

]
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×{H · D(X�
j γ0, Vj )}−1{G∗

j (X
�
j γ0, Vj ) − Ḡ(s,X�

j γ0, Vj )} dM j (s)

= 1

n

n∑

i=1

∫ τ

0
J�
γ

(1)
0

{ ˜̇ω(X�
i γ )Xi − X̄(t)} dMi (t)

− 1

n

n∑

i=1

∫ τ

0

⎡

⎣ 1

n

n∑

j=1

∫ τ

0
J�
γ

(1)
0

{ ˜̇ω(X�
j γ )X j −X̄(s)}Y j (s)(Z∗

j )
� R j (γ0,X�

i γ0, Vi )ds

⎤

⎦

×{H · D(X�
i γ0, Vi )}−1{G∗

i (X�
i γ0, Vi ) − Ḡ(t,X�

i γ0, Vi )} dMi (t).

Then,

〈√nŨn(γ
(1)
0 ),

√
nŨn(γ

(1)
0 )〉

= 1

n

n∑

i=1

∫ τ

0

{

J�
γ

(1)
0

{ ˜̇ω(X�
i γ )Xi − X̄(t)}

−
[1

n

n∑

j=1

∫ τ

0
J�
γ

(1)
0

{ ˜̇ω(X�
j γ )X j − X̄(s)}Y j (s)(Z∗

j )
� R j (γ0,X�

i γ0, Vi ) ds
]

×{H · D(X�
i γ0, Vi )}−1{G∗

i (X
�
i γ0, Vi ) − Ḡ(t,X�

i γ0, Vi )}
}⊗2

×Yi (t)λ(t |Zi ,Xi , Vi )dt

:= �n(γ
(1)
0 ) = �(γ

(1)
0 ) + op(1),

where

�(γ
(1)
0 ) =

∫ τ

0
E

{ [
J�
γ

(1)
0

{ ˜̇ω(X�γ )X − X̄(t)}

−Q · {H · D(X�γ0, V )}−1{G∗(X�γ0, V ) − Ḡ(t,X�γ0, V )}
]⊗2

×Y (t)λ(t |Z,X, V )

}

dt,

with Qi = ∫ τ

0 E[J�
γ

(1)
0

{ ˜̇ω(X�γ )X − X̄(s)}Y (s)(Z∗)� R(γ0,X�
i γ0, Vi )] ds.

By verifying, the Lindeberg condition forMartingale Central Limit Theorem holds.
We can show that,

√
nŨn(γ

(1)
0 ) −→d N

(
0, �(γ

(1)
0 )

)
. (14)

Step 4. From steps 2 and 3, we can get the asymptotic normality of γ̂ (1).
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0 − Ũn(γ
(1)
0 ) = Ũn(γ̂ (1)) − Ũn(γ

(1)
0 )

=
{
∂Ũn(γ

(1))/∂γ (1)|
γ (1)=γ

(1)
0

+ op(1)
}

(γ̂ (1) − γ
(1)
0 ).

By (13) and (14), we have

√
n
(
γ̂ (1) − γ

(1)
0

)
−→d N

(
0, {D(γ

(1)
0 )}−1�(γ

(1)
0 ){D(γ

(1)
0 )}−1

)
.

By similar arguments to that in the proof of Theorem 2 in Wang et al. (2010), we
have

√
n(γ̂ − γ0) −→d N

(

0, J
γ

(1)
0

{D(γ
(1)
0 )}−1�(γ0){D(γ

(1)
0 )}−1J�

γ
(1)
0

)

. (15)

��
Proof of Theorem 2 Using the results of Step 1–4, we can get the asymptotic property
of ξ̂ (u, v), or ξ̃ (γ̂ , u, v).

Define Dn(γ0, u, v) = ∂ξ̃ (γ, u, v)/∂γ �|γ=γ0 = D(γ0, u, v) + op(1).
Note that

√
nh1h2

{
ξ̂ (u, v) − ξ0(u, v)

}
=√nh1h2

{
ξ̃ (γ̂ , u, v) − ξ̃ (γ0, u, v)

}

+√nh1h2

{
ξ̃ (γ0, u, v) − ξ0(u, v)

}
. (16)

By (15), we have

√
nh1h2

{
ξ̃ (γ̂ , u, v) − ξ̃ (γ0, u, v)

}

= √
nh1h2

{
∂ξ̃ (γ, u, v)/∂γ |γ=γ0Jγ

(1)
0

+ op(1)
}

(γ̂ (1) − γ
(1)
0 )

= {
Dn(γ0, u, v) + op(1)

}
J
γ

(1)
0

{Dn(γ
(1)
0 )}−1

√
nh1h2Ũn(γ

(1)
0 )

= Op(
√

h1h2), (17)

By (11), we have

√
nh1h2{ξ̃ (γ0, u, v) − ξ0(u, v)}
= √

nh1h2{H · D(u, v)}−1

×
[
1

n

n∑

i=1

∫ τ

0
K1,h1(Vi − v)K2,h2(X

�
i γ0 − u){G∗

i (u, v) − Ḡ(t, u, v)}dMi (t)

+b(u, v) + op(h
2
1) + op(h

2
2)

]

. (18)
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By (16), (17) and (18), we have

√
nh1h2{ξ̂ (u, v) − ξ0(u, v)} = √

nh1h2
1

n

n∑

i=1

∫ τ

0
K1,h1(Vi − v)K2,h2(X

�
i γ0 − u)

×{H · D(u, v)}−1{G∗
i (u, v) − Ḡ(t, u, v)} dMi (t)

+√nh1h2{H · D(u, v)}−1{b(u, v) + op(h
2
1)

+op(h
2
2)} + Op(

√
h1h2)

:= Q̃n +√
nh1h2{b̃(u, v) + op(h

2
1)

+op(h
2
2)} + Op(

√
h1h2),

where b̃(u, v) = {H · D(u, v)}−1b(u, v).

Then,

〈Q̃n, Q̃n〉 = h1h2

n

n∑

i=1

∫ τ

0
K 2
1,h1(Vi − v)K 2

2,h2(X
�
i γ0 − u)

×
[
{H · D(u, v)}−1{G∗

i (u, v) − Ḡ(t, u, v)}
]⊗2

Yi (t)λ(t |Zi ,Xi , Vi )dt

:= �n(u, v)

= �(u, v) + op(1),

where

�(u, v)=
∫ τ

0
{H · D(u, v)}−1diag

(

a∗
2 (t, u, v),ν

(1)
2

(
a∗
2 (t, u, v) a∗

1 (t, u, v)

a∗
1 (t, u, v) a∗

0 (t, u, v)

)

,ν
(2)
2 a∗

0 (t, u, v)

)

{H ·D(u, v)}−1dt.

Thus,

√
nh1h2

{
ξ̂ (u, v) − ξ0(u, v) − b̃

}
−→d N (0, �(u, v)). (19)
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