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Abstract Consider Bayesian variable selection in normal linear regression models
based on Zellner’s g-prior. We study theoretical properties of this method when the
sample size n grows and consider the cases when the number of regressors, p is fixed
and when it grows with n. We first consider the situation where the true model is not
in the model space and prove under mild conditions that the method is consistent and
“loss efficient” in appropriate sense. We then consider the case when the true model
is in the model space and prove that the posterior probability of the true model goes
to one as n goes to infinity. “Loss efficiency” is also proved in this situation. We give
explicit conditions on the rate of growth of g, possibly depending on that of p as n
grows, for our results to hold. This helps in making recommendations for the choice
of g.
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964 M. Mukhopadhayay et al.

1 Introduction

One of the very popular ways to model dependence between a response variable and
explanatory or predictor variables in a given problem is through the linear regression
model. In such a case, choosing from a set of candidate models is equivalent to the
problem of variable selection. This problem has been widely studied in the literature
and arises in myriad applications, see, for example, Shao (1997), George (2000) and
Miller (2001) and the references therein.

We consider the regression problem with response variable y and a set of potential
predictor variables x1, x2, . . . , xp . Let yn = (y1, y2, . . . , yn)′ be a vector of observa-
tions on the response variable and Xn = (

x1, x2, . . . , xp
)
be an n × p design matrix.

Here xi is an n × 1 vector of observations on the i th regressor xi and the j th com-
ponent of xi is associated with y j , i = 1, . . . , p, j = 1, . . . , n. We assume, without
loss of generality, that the columns of Xn have been centered so that 1′

nxi = 0 for all
i where 1n is a vector of 1’s of length n. Let μn denote E(yn|Xn) and assume

yn ∼ Nn

(
μn, σ

2 In
)

,

where σ 2 is unknown and In is the n×n identity matrix.We are interested in capturing
the functional relationship, if any, between μn and Xn .

We restrict our search within the class of normal linear models under which μn
may be expressed as

μn = 1nβ0 + Xnβ, (1)

where β0 is an intercept and β = (β1, β2, . . . , βp)
′ is a vector of regression

coefficients. Our problem is to select a subset of the potential predictor variables
x1, x2, . . . , xp . Thus, we have a model selection problem and our model space,
denoted by A, may be indexed by α, where each α consists of a subset of size
p(α) (1 ≤ p(α) ≤ p) of {1, 2, . . . , p}, indicating which regressors are included in
the model. The model Mα corresponding to α ∈ A may be expressed as a sub-model
of (1),

Mα : μn = 1nβ0 + Xnαβα, (2)

where the interceptβ0 is common to allmodels,Xnα is a sub-matrix ofXn consisting of
the p(α) columns specified by α and βα is the p(α)-dimensional vector of regression
coefficients.

Bayesian model selection requires specification of prior distribution of the para-
meters θα = (β0,βα, σ 2) ∈ �α under each model Mα and prior probabilities p(Mα)

of the models. Let p(yn|θα, Mα) denote the density of yn given θα under Mα and
p(θα|Mα) denote the prior density of θα under Mα . Then the posterior probability of
the model Mα , α ∈ A, is given by

p(Mα|yn) = p(Mα)mα(yn)∑
α∈A p(Mα)mα(yn)

, (3)

where mα(yn) =
∫

p(yn|θα, Mα)p(θα|Mα)dθα (4)
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Variable selection based on g-prior 965

is the marginal density of yn under Mα . In this paper, we consider the model selection
procedure that selects the model with highest posterior probability.

A very popular conventional prior for the parameters βα is the conjugate g-prior
due to Zellner (1986) given in (6). In the present scenario, β0 and σ 2 may be regarded
as parameters common to all the models and the suggested default priors are

p(β0, σ
2|Mα) = 1

σ 2 (5)

βα|β0, σ
2, Mα ∼ Np(α)(0, gσ 2(X′

nαXnα)−1) (6)

for some g > 0 [see, for example, (Liang et al. 2008, Section 2.1)].
Amajor advantage of Zellner’s g-prior is the availability of closed-form expressions

of the marginal likelihoods mα(yn) and the resulting computational efficiency. It may
be noted that the prior covariance matrix is related to the Fisher information matrix in
the linear model. This prior and its variants have been widely used in the literature in
linear models; see, for example, Zellner (1986), Chaturvedi et al. (1997), Fernández
et al. (2001), Consonni and Veronese (2008), Krishna et al. (2009) and Bornn et al.
(2010).

It has been shown in George and Foster (2000) that g in the g-prior can be prop-
erly calibrated so that model selection using the g-prior is equivalent to that using
the Akaike information criterion (AIC) or Bayesian information criterion (BIC) or
the risk information criterion (RIC). There have been many suggestions regarding
the proper choice of g based on various considerations, see, for example, the unit
information prior of (Kass and Wasserman 1995) taking g = n, Benchmark prior
of (Fernández et al. 2001) taking g = max(n, p2) and choices of g coming out
of local and global empirical Bayes estimation of g (see, e.g., Liang et al. 2008,
Section 2.4).

In this paper, we study the performance of the Bayesian variable selection method
based on g-prior when n is large. We consider a general setting which simultaneously
allows the potential number of regressors p to remain fixed or grow with n. We also
consider both the cases when the “true” model lies in the model space and when it
does not. The main objective of the present work is to find conditions under which the
model selection rule based on g-prior has some natural desirable properties. We have
been able to come up with sufficient conditions under which such properties hold true.
We use these results and simulations to make a recommendation for a suitable choice
of g.

We first consider in Sect. 2 the case when the “true” model is not in the space of
models from which we are selecting one. We refer to this as the “model false” case.
This is the more realistic situation, the true model not being one of the entertained
models. We are not aware of any work related to g-prior that considers the “model
false” case. We first show in Sect. 2.1 that the method based on g-prior chooses the
model which asymptotically minimizes the distance from the unknown true model, for
some appropriate measure of distance between models [see (Chakrabarti and Ghosh
2006), for a related work]. We define this property as consistency in the “model false”
case. This property is shown to hold for a wide range of choices of g and p. Following
Li (1987) and Shao (1997), we next show in Sect. 2.2 that the method based on g-
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966 M. Mukhopadhayay et al.

prior has another optimality property which we call “Loss Efficiency” as in Shao
(1997). As in Li (1987) and Shao (1997), we consider as our evaluation criterion the
average squared error deviation between the true and estimated regression function,
given by Ln(α) = n−1

∥∥μn − μ̂n(α)
∥∥2, where μ̂n(α) is the chosen estimator of the

true regression function μn when model Mα is selected. We show in Sect. 2.2 that
for common choices of μ̂n(α), the ratio of Ln(α̂) and minα∈A Ln(α) goes to 1 in
probability as n → ∞ when Mα̂ is the model chosen by the method under study. This
property is referred to as “Loss Efficiency”.

In this paper, we are mainly concerned with normal linear models and also in the
“model false” case, we assume that yn is normally distributed. However, in Sects. 2.1.1
and 2.2.1 we make a modest attempt to study consistency and loss efficiency under a
particular setup for the case when the true distribution is not normal.

In Sect. 3, we consider the “model true” case, that is, the case where the true model
is one of the entertained models. We show in Sect. 3.1 that the posterior probability
of the true model goes to one as n → ∞ if one uses the g-prior. We call this property
model selection consistency following Liang et al. (2008). We find explicit conditions
on the rate of growth of g, depending on that of p, as n grows, under which the result
holds. In Sect. 3.2, we also show “loss efficiency” of the model selection procedure
based on g-prior in the “model true” case.

Model selection consistency for g-prior was studied, among others, by Fernández
et al. (2001) for the case when p is fixed. Shang and Clayton (2011) considered the
case when p grows with n and proved consistency for a prior that can be related
to the g-prior in some particular cases. Liang et al. (2008) studied model selection
consistency for mixtures of g-priors for the case when p is fixed.

In Sect. 4, we present simulation results which demonstrate that our theoretical
results on loss efficiency and consistency can be greatly relied on even for moder-
ate sample sizes compared to the model dimension p. Along with different possible
choices of n and p, we also consider different choices of g to understand its role in
the performance of the method.

Section 5 presents a discussion on the choice of g in the model selection procedure
under study. The arguments based on our theoretical results and simulations lead to a
recommendation for choice of g in this section.

In Sect. 6, we summarize our results and include some related discussions. Scope
of future research is also explored.

Proofs of all the main results, except Theorems 1 and 6 are given in the Appendix
(Sect. 7) and those of some other results are given in the supplementary file.

2 The “Model False” case

In this section, we consider the case when the true model is not in the model space
{Mα, α ∈ A} fromwhich we are selecting one. This is referred to as the “model false”
case and is indeed the case in almost all practical situations.

We consider the situation where yn may be assumed to be normally distributed but
the true regression function μn is not expressible as a linear combination of some of
the columns of Xn as stated in (2).
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Given the priors (5) and (6), the marginal likelihood under the model Mα , α ∈ A ,
is given by

mα(yn) = �(n − 1)/2

π(n−1)/2
√
n (1 + g)p(α)/2

×
[

(1 − a)

n∑

i=1

(yi − y)2 + ay′
n(In − Pn(α))yn

]−(n−1)/2

(7)

where a = g/(1 + g) and Pn(α) = Znα

[
Z′
nαZnα

]−1 Z′
nα is the projection matrix

onto the span of Znα = [1n,Xnα] , α ∈ A. If g = gn varies with n, we write
an = gn/(1 + gn). The model selection rule is to choose the model Mα with highest
posterior probability, that is, we choose the model Mα for which p(Mα)mα(yn) is the
largest among all α ∈ A. We note that maximizing p(Mα)mα(yn) with respect to α

is equivalent to minimizing

Ψ (α) = [p(Mα)]−2/(n−1) (1 + g)p(α)/(n−1)

×
[

(1 − a)

n∑

i=1

(yi − y)2 + ay′
n(In − Pn(α))yn

]

. (8)

In this section, we show that under certain conditions, the above model selection
procedure asymptotically performs as well as an Oracle. By an Oracle we mean an
imaginary model selection procedure which behaves optimally in some sense using
the knowledge of the true regression function which is not known to us.

We now state the assumptions under which we prove the results. Throughout this
paper we assume

(A.1) μ′
nμn = O(n) as n → ∞.

For the case when p is fixed, we assume

(A.2) lim
n→∞

min
α∈A

1

n
μ′
n(In − Pn(α))μn > 	 for some constant 	 > 0.

For the case when p = pn grows with n, we replace assumption (A.2) by
(A.2)* lim

n→∞
ns min

α∈A
μ′
n(In − Pn(α))μn/n > δ for some constants δ > 0 and 0 ≤

s < 1.
In this case, we also assume

(A.3) The prior probabilities p(Mα)’s satisfy max
α,α′∈A

p(Mα)/p(Mα′) ≤ en
β

for

some β < (1 − s) where s is as in (A.2)*.

Remark 1 Assumption (A.1) holds if theμi ’s are of comparablemagnitude and they do
not grow too fast with i . This holds, for example, when the sequence {μ1, μ2, . . . , μn}
is bounded.

Bayarri et al. (2012) describe (A.2) as a key assumption for consistent model
selection under which the models are differentiated in some sense; see also Shao
(1997, p. 225), Fernández et al. (2001) and Liang et al. (2008, p. 416) who make this
assumption when p is fixed. Assumption (A.2)* seems to us to be a natural extension
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968 M. Mukhopadhayay et al.

of assumption (A.2) for the case when p grows with n. Assumption (A.3) is satisfied
for a very large class of probabilities on the model space.

2.1 Consistency

We show that the model selection procedure under study chooses a model that is, in
some asymptotic sense, closest to the unknown true model among all the models in
the model spaceA. We define this properly as consistency in the “model false” case.
Below, we will consider the Kullback–Leibler distance between two probability dis-
tributions. The Kullback–Leibler distance between the true distribution N (μn, σ

2 In)
and the distribution N (1nβ0 + Xnαβα, σ 2 In) under Mα is

1

2σ 2

(
μn − 1nβ0 − Xnαβα

)′ (
μn − 1nβ0 − Xnαβα

)
.

We define the distance Dn(α) between the true distribution and the model Mα as the
minimum of the above distance with respect to (β0,βα) which is given by

Dn(α) = 1

2σ 2

∥∥μn − Pn(α)μn

∥∥2 = 1

2σ 2μ′
n(In − Pn(α))μn . (9)

One would naturally like to choose a model Mα which is as close as possible to the
true distribution, that is, for which Dn(α) = minα∈A Dn(α). Obviously, one could
find the model Mα for which Dn(α) is minimized if the true distribution were known,
which is never the case. We prove here that if Mα̂ is the model chosen by our model
selection rule, then as n → ∞,

Dn(α̂)

minα∈A Dn(α)

p−→ 1. (10)

In the “model false” case, we say that the model selection rule is consistent if (10)
holds.

We now state our result.

Theorem 1 Consider the model selection rule based on the priors (5) and (6) that
chooses a model with the highest posterior probability and let Mα̂ be the model chosen
by this rule. Let g=gn =knr for r ≥ 0 and k > 0. Then we have the following results.

(a) If p, the total number of predictors, is fixed, then under assumptions (A.1) and
(A.2), (10) holds.

(b) Suppose that p = pn grows with n. Assume that pn = O(nb) for 0 < b < 1,
(A.1) and (A.3) holds and (A.2)* holds with s < (1 − b)/2. Then (10) holds.

Let en = yn − μn . The following lemma will be used to prove the theorem.

Lemma 1 Under assumption (A.1), we have as n → ∞,

(a) maxα∈A
∣∣μ′

n(In − Pn(α))en
∣∣ /n = Op

(√
pn/n

)
, and

(b) maxα∈A e′
n Pn(α)en/n = Op (pn/n) .
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Variable selection based on g-prior 969

The proof of Lemma 1 is given in the Appendix.

Proof of Theorem 1. We first derive results for the case when p = pn , p(α) = pn(α),
α ∈ A and g = gn may vary with n. This also includes the case with fixed p, p(α)

and g.
We note that

y′
n(In − Pn(α))yn

= (
μn + en

)′
(In − Pn(α))

(
μn + en

)

= 2μ′
nen + e′

nen + 2σ 2Dn(α) − 2μ′
n Pn(α)en − e′

n Pn(α)en (11)

and therefore, Ψ (α), given by (8), can be expressed as

Ψ (α) = [p(Mα)]−2/(n−1) (1 + gn)
pn(α)/(n−1)

×
[
Cn + 2anσ

2Dn(α) + 2anμ
′
n(In − Pn(α))en − ane′

n Pn(α)en
]

= [p(Mα)]−2/(n−1) (1 + gn)
pn(α)/(n−1)

[
Cn + 2anσ

2Dn(α)(1 + ξn(α))
]
,

(12)

where Cn = (1 − an)
∑n

i=1(yi − y)2 + ane′
nen , Dn(α) is as defined in (9) and

ξn(α) = 2μ′
n(In − Pn(α))en − e′

n Pn(α)en
2σ 2Dn(α)

. (13)

We shall show below that
max

α
|ξn(α)| p−→ 0. (14)

As Ψ (α̂) ≤ Ψ (α) for all α ∈ A, from (12) we have, with probability tending to one
uniformly in α ∈ A,

Dn(α̂)

Dn(α)
≤ Cn(bnα − 1)

2anσ 2Dn(α)(1 + ξn(α̂))
+ (1 + ξn(α))

(1 + ξn(α̂))
bnα

and therefore,

1 ≤ Dn(α̂)

minα Dn(α)
≤ Cn/n

2anσ 2(1 − ξn)
× max

α

n(bnα − 1)

Dn(α)
+ 1 + ξn

1 − ξn
× max

α
bnα, (15)

where ξn = maxα |ξn(α)| and

bnα =
(
p(Mα)

p(Mα̂)

)−2/(n−1)

(1 + gn)
(pn(α)−pn(α̂))/(n−1). (16)

We can now prove that

Cn = Op(n) (17)
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970 M. Mukhopadhayay et al.

and max
α

|n(bnα − 1)| ≤ 2(pn log(1 + gn) + 2 logC0n)

× exp {(pn log(1 + gn) + 2 logC0n)/(n − 1)} , (18)

where C0n = maxα,α′∈A p(Mα)/p(Mα′). The calculations that lead to (17) and (18)
are given in the Appendix. Also,

| log(max
α

bnα)| ≤ max
α

| log(bnα)| ≤ 1

(n − 1)

[
pn log(1 + gn) + 2 log(C0n)

]
. (19)

We now prove part (a) of the theorem. If pn = p is fixed, by assumption (A.2),

min
α

Dn(α) >
n	

2σ 2 (20)

for all sufficiently large n, and C0n is a fixed finite number. Therefore, from (18),

max
α

n(bnα − 1)

Dn(α)

p−→ 0. (21)

From (19),

max
α

bnα
p−→ 1. (22)

Now, from (13) and (20),

max
α

|ξn(α)| ≤ 2

n	
max

α
|μ′

n(In − Pn(α))en| + 1

n	
max

α
e′
n Pn(α)en

and hence by Lemma 1, (14) holds. Part (a) of the theorem now follows from (14),
(15), (17), (21) and (22).

For part (b), we note that by assumption (A.2)*,

min
α

Dn(α) >
δn1−s

2σ 2 (23)

for all sufficiently large n and by assumption (A.3), C0n ≤enβ
for some

β < (1 − s). Therefore from (18), for p = pn = O(nb) with (1 − b)/2 > s,
the convergence (21) holds. Obviously, the convergence (22) also holds. From (13)
and (23),

max
α

|ξn(α)| ≤ 2

δn1−s
max

α
|μ′

n(In − Pn(α))en| + 1

δn1−s
max

α
e′
n Pn(α)en

and hence by Lemma 1, (14) holds. Part (b) of the theorem now follows from (14),
(15), (17), (21) and (22). 
�
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2.1.1 The case when the true model is not normal

In this paper, we are mainly concerned with normal linear models and also in
the case when the true model is not in the model space considered, assume that
yn is normally distributed. This is a commonly used assumption for a wide vari-
ety of data. The consistency result proved above in this section is based on this
assumption.

A natural question is what can be said regarding consistency if the unknown true
distribution of yn is not normal.We do not try to study this problem in its full generality
in this paper. We make a modest attempt and give a proof of consistency for this case
under the setup of Li (1987) and Shao (1997) for variable selection in linear regression
models where the truth is not necessarily normal. We state below the result obtained
by us. The proof is given in the supplementary file.

Let the true distribution of yn has a density f . It can be easily seen that theKullback–
Leibler distance between the true distribution given by the density f and the distrib-
ution N

(
1nβ0 + Xnαβα, σ 2 In

)
under Mα is equal to

∫
f (yn) log f (yn) dyn + n

2

(
1 + log σ 2

)

+ 1

σ 2

(
μn − 1nβ0 − Xnαβα

)′ (
μn − 1nβ0 − Xnαβα

)
.

Then, the distance D∗
n(α) between the true model f and the model Mα , obtained by

minimizing the above with respect to (β0,βα) is given by

D∗
n(α) =

∫
f (yn) log f (yn) dyn + n

2

(
1 + log σ 2

)
+ Dn(α), (24)

where Dn(α) is as given in (9).
We note that the first two terms in the right hand side of (24) is free of α and

therefore, minimizing D∗
n(α) with respect to α is equivalent to minimizing Dn(α)

with respect to α. We prove that under certain assumptions

Dn(α̂)

minα∈A Dn(α)

p−→ 1 (25)

as n → ∞, where Mα̂ is the model chosen by the model selection rule based on g
prior and treat this as our definition of consistency of the model selection rule.

We prove our results under the following assumption made by Li (1987) and Shao
(1997) while proving asymptotic validity of various linear model selection procedures
when the true model is not necessarily normal. It is assumed that

∑

α∈A

1

[nRn(α)]m
→ 0 (26)
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972 M. Mukhopadhayay et al.

as n → ∞, for some positive integer m for which E
(
e4m1

)
< ∞ where A is the

class of models considered and for α ∈ A, Rn(α) = E [Ln(α)] and nLn(α) =
‖μn − Pn(α)yn‖2.

The result that is obtained can be stated as follows.

Theorem 2 Consider the setup of Theorem 1 and consider a class of models not
containing the true model for which (26) holds. Then under the conditions of Theorem
1, (25) holds.

The proof of Theorem 2 is given in the supplementary file.

2.2 Loss efficiency

In this section, we prove “loss efficiency” of the model selection procedure using
g-prior currently under study. The concept of “loss efficiency” [(Li 1987) and (Shao
1997)] has been briefly described in the Sect. 1. As in Li (1987) and Shao (1997), we
consider as our evaluation criterion the average squared error deviation between the
true and estimated regression function, given by

Ln(α) = 1

n

∥∥μn − μ̂n(α)
∥∥2 , (27)

where μ̂n(α) is the chosen estimator of the true regression function μn when model
Mα is selected. We consider two estimators—the Bayes estimator for the g-prior and
the least squares estimator which is also the Bayes estimator for the standard non-
informative priors (considered, for example, in Chakrabarti and Samanta (2008)). If
μn were known, one could find the model αL

n which minimizes Ln(α) for each yn .
This model will be called the Oracle model since it is based on the unknown truth
μn and it cannot be achieved in practice. We show that for both the above choices of
μ̂n(α),

Ln(α̂)

minα∈A Ln(α)

p−→ 1 as n → ∞ (28)

if Mα̂ is the model chosen by the method based on g-prior. Thus the g-prior method
is shown to perform equivalently to an Oracle asymptotically. We first consider in
Theorem 3, the case when μn is estimated by the Bayes estimator under the selected
model Mα̂ .

Theorem 3 Consider model selection rule under study as in Theorem 1 and let Mα̂

be the model selected by this rule. Let g = gn = knr for r > 0 and k > 0 and μ̂n(α)

be the Bayes estimator of μn under model Mα . Then we have the following:

(a) For p fixed, under the same assumptions as in Theorem 1 (a), α̂ satisfies (28).
(b) Suppose now p = pn grows with n. Then under the same assumptions as in

Theorem 1 (b), α̂ satisfies (28) provided r > s.

The proof of Theorem 3 is given in the Appendix.
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Remark 2 When one uses μ̂n(α) as the least squares estimator of μn under model α,
the proof of Theorem 3 can be suitably adapted to accommodate this case and (28)
can be shown to hold under this situation as well. A proof is given in the Appendix
after the proof of Theorem 3.

2.2.1 The case when the true model is not normal

As mentioned in Sect. 2.1.1, we do not try to study this problem in its full generality
for this case in the present paper. We give a proof of loss efficiency under the setup of
Li (1987) and Shao (1997) and under their assumption stated in (26). For simplicity
in presentation, we consider only the case where Ln(α) is as defined in (27) with
μ̂n(α) = Pn(α)yn , the least squares estimate of μn .

Our result can be stated as follows.

Theorem 4 Consider the setup of Theorem 3 with μ̂n(α) = Pn(α)yn and consider a
classA of models not containing the true model for which (26) holds. Then under the
conditions of Theorem 3, (28) holds.

The proof of Theorem 4 is given in the supplementary file.

3 The “Model True” case

In this section, we assume that the true model is in the model space and prove that the
model selection procedure based on g-prior is consistent in appropriate sense. We also
prove “loss efficiency” as described in the Introduction. We assume that under each
model Mα , βα is a pn(α)-dimensional vector of non-zero regression coefficients. This
ensures that there is exactly one true model in the model space.

3.1 Model selection consistency

Let Mαc , αc ∈ A be the true model. The posterior probability of Mαc , given by (3)
can be expressed as

p(Mαc |yn) =
⎛

⎝1 +
∑

α∈A,α �=αc

p(Mα)

p(Mαc )
× mα(yn)

mαc (yn)

⎞

⎠

−1

. (29)

We will show, under suitable conditions, that for the priors (5) and (6),

p(Mαc |yn)
p−→ 1 (30)

under themodelMαc . This is known asmodel selection consistencywhich also implies
that the truemodelMαc is selectedwith probability tending to one.Wedivide themodel
space into two parts,

A1 = {α ∈ A : Mα ⊃ Mαc , α �= αc}, and A2 = {α ∈ A : α /∈ A1, α �= αc}.
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We make the following assumptions, which are analogous versions of assumptions
(A2) and (A2)* of Sect. 2 in the “model true” case, replacing A by A2.

For the case when p is fixed, we assume

(B.2) limn→∞ minα∈A2 μ′
n(In − Pn(α))μn/n > 	 for some constant 	 >0.

For the case when p = pn grows with n, we replace assumption (B.2) by
(B.2)* limn→∞ ns minα∈A2 μ′

n(In − Pn(α))μn/n > δ for some constants δ > 0
and 0 ≤ s < 1.
We will prove the following result.

Theorem 5 Consider the priors (5) and (6) and let g = gn = knr for r > 0, k > 0.
Then we have the following results.

(a) If p is fixed, then under assumptions (A.1) and (B.2), (30) holds under the true
model Mαc .

(b) Suppose that p = pn grows with n. Assume that pn = O(nb) for
0 < b < 1, r > 4b, (A.1) holds, (B.2)* holds with s < (1 − b)/2, and

max
α,α′∈A

p(Mα)/p(Mα′) ≤ k0n
b0 for some k0 > 0 and 0 < b0 < (r − 4b)/2.

(31)
Then (30) holds under the true model Mαc .

The proof of Theorem 5 is given in the Appendix.

Remark 3 It is interesting to note that a “very small” choice of g = gn may actually
lead to inconsistency in the “model true” case. Consider for example, the situation
when the true model is the null model, MN , under which μn = 1nβ0 and all the
candidate models are given equal probability. It has been shown in the supplementary
file that

∑
α∈A1

mα(yn)/mαc(yn) cannot converge to zero in probability if one chooses
gn = knr with r ≤ 2b when pn = nb, 0 < b < 1. This implies, vide (29), that for
model selection consistency in the “model true” case it is necessary to choose gn = knr

with r > 2b, k > 0 (if pn = nb, 0 < b < 1).

Remark 4 This is worth noting that “too big” a g = gn may also lead to inconsistency
in the “model true” case. Consider in this case, the situation where the truemodel is the
fullmodel,MF . It has beenproved in the supplementaryfile that if pn = nb, 0 < b < 1
then by choosing gn > Dn/pn , for some appropriately selected D (> 1), one can
conclude that p(Mαc |yn) does not converge to 1 in probability.

3.2 Loss efficiency

We now prove “loss efficiency” of the model selection procedure based on g-prior
in the “model true” case. We first consider the case when μn is estimated by the
Bayes estimator under the selected model. Indeed, we prove a result stronger than loss
efficiency as stated below.
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Theorem 6 Consider the model selection rule under study as in Theorem 1 and let
Mα̂ be the model selected by this rule. Let μ̂n(α) be the Bayes estimator of μn for the
g-prior under model Mα . Then under the conditions of Theorem 5, we have

Ln(α̂) = min
α∈A

Ln(α)

with probability tending to one.

Proof As shown in the Appendix [see (36)], for all α ∈ A ,

nLn(α) = Cn + an(2 − an)μ
′
n(In − Pn(α))μn + a2ne

′
n Pn(α)en

−2an(1 − an)μ
′
n Pn(α)en, (32)

where

Cn = (1 − an)
2μ′

nμn + (1 − a2n)ny
2 − 2(1 − an)y

n∑

i=1

μi + 2an(1 − an)y1′
nyn .

Let Mαc , αc ∈ A, be the true model and A1 and A2 be the subspaces of the model
spaceA, as defined at the beginning of Sect. 3.1. We shall prove that with probability
tending to one,

min
α∈Ai

Ln(α) > Ln(αc) for all i = 1, 2. (33)

As Pn(α)μn = μn for all α ∈ A1 ∪ {αc}, from (32), we have for all α ∈ A1 ∪ {αc},

nLn(α) = Cn + a2ne
′
n Pn(α)en − 2an(1 − an)μ

′
nen . (34)

Therefore, for all α ∈ A1,

nLn(α) − nLn(αc) = a2ne
′
n(Pn(α) − Pn(αc))en

which implies

min
α∈A1

nLn(α) − nLn(αc) = a2n min
α∈A1

e′
n(Pn(α) − Pn(αc))en . (35)

Since for all α ∈ A1, (Pn(α) − Pn(αc)) is also a projection matrix,
e′
n (Pn(α) − Pn(αc)) en/σ 2 follows a χ2 distribution and therefore, by (35), the result
(33) holds for i = 1 with probability one.

We now prove (33) for i = 2. From (32) and (34) we have for α ∈ A2,

nLn(α) − nLn(αc) = an(2 − an)μ
′
n(In − Pn(α))μn + a2ne

′
n Pn(α)en

−a2ne
′
n Pn(αc)en + 2an(1 − an)μ

′
n(In − Pn(α))en
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and therefore,

min
α∈A2

Ln(α) − Ln(αc)

≥ an(2 − an) min
α∈A2

1

n
μ′
n(In − Pn(α))μn − a2n

1

n
e′
n Pn(αc)en

−2an(1 − an) max
α∈A2

1

n

∣∣μ′
n(In − Pn(α))en

∣∣ .

The result (33) with i = 2 now follows from Lemma 1 by assumption (B.2) (for the
case with fixed p) or (B.2)* (for the case when p = pn grows with n).

As α̂ = αc with probability tending to one from Theorem 5, the result now follows
from (33). 
�

When one uses μ̂n(α) as the least squares estimator of μn under the model α,
Theorem 3.2 can be proved using similar arguments. In this case, μ̂n(α) = Pn(α)yn
and

nLn(α) = μ′
n (In − Pn(α))μn + e′

n Pn(α)en .

Therefore for all α ∈ A1,

min
α∈A1

nLn(α) − nLn(αc) = min
α∈A1

e′
n (Pn(α) − Pn(αc)) en

and for all α ∈ A2,

min
α∈A2

Ln(α) − Ln(αc) ≥ min
α∈A2

1

n
μ′
n (In − Pn(α))μn − 1

n
e′
n Pn(αc)en .

The result now follows by arguments similar to those used in the proof of Theorem
3.2.

4 Simulation results

In this section, we present some simulation results to demonstrate the performance of
the model selection procedure under study. We perform the simulation under both the
scenarios when the true model is in the model space and when it is not. We consider
sample sizes (n) varying from moderate to large, compared to the model dimension
p and also allow p to grow from small to large. In each of these cases, we consider
different choices of g to understand its role in the performance of the method. In
the simulation results presented, the properties of loss efficiency and consistency are
demonstrated satisfactorily most of the time even for moderate sample sizes. Below
we describe our scheme of simulation and discuss the results obtained.

For both the “model false” and “model true” cases, we consider n = 50, 100 and
150. We denote by p the total number of available regressors from which the selection
is made so that the full design matrix [1n,Xn], with the column of 1’s for the intercept,
is of dimension n× (p+ 1). For the “model true” case, we take different choices of p

123



Variable selection based on g-prior 977

such that p + 1 ≤ n. For “model false” case, we take different choices of p such that
p + 1 is strictly less than n. For each combination of n and p, four different choices
of g are considered, viz., g = √

n, n, p2, and n2. Note that the choice of g = n
was recommended by Kass and Wasserman (1995) and the choice of g = p2 was
recommended by Foster and George (1994). Fernández et al. (2001) recommended
use of g = max(n, p2). We take g = √

n to see how the method performs for a
relatively small g. The arguments for considering g = n2 are given in Sect. 5.

We first describe the simulation scheme for the “model true” case. For each
combination of (n, p), we generate n values of each of the p regressor vari-
ables x1, x2, . . . , xp and this gives the design matrix Xn . We choose p numbers
νi , i = 1, . . . , p and generate the n values of the i th regressor xi from an N (νi , 1)
distribution, i = 1, . . . , p. We assume that the n values of the i th regressor are com-
ing from a homogeneous population. To fix a “true” model, we choose its dimension
p(αc) and then choose the p(αc) non-zero regression coefficients β j ’s, the intercept
β0 in the true model and also a value for the error variance σ 2. The p(αc) columns of
the design matrix Xnαc for the true model are chosen at random from the p columns
of Xn . We use two schemes to select the values of νi ’s, p(αc), β j ’s and σ . In Scheme
1, we select νi ’s at random from a normal distribution, νi ∼ N (10, 10), and thus
making the possible range of the x values very wide. In Scheme 2, (ν1, . . . , νp) is
chosen as a random permutation of (0.2, 0.4, . . . , 0.2× p). The dimension of the true
model p(αc) is chosen as [2p/3] in Scheme 1 and [p/2] in Scheme 2. The p(αc)

non-zero regression coefficients β j ’s and the intercept β0 in the true model are ran-
domly chosen from a uniform distribution over (−10, 10) in Scheme 1, and from the
set {−0.2, 0.4, . . . , (−1)p0.2p} in Scheme 2. In Scheme 1, we take σ = 3 and in
Scheme 2, we take σ = 1.

After choosing the dimension p(αc), the coefficients
(
β0,βαc

)
, the error vari-

ance σ 2 of the true model and the design matrix Xn , we generate data yn follow-
ing Nn

(
1nβ0 + Xnαcβαc

, σ 2 In
)
. Having obtained the data, we compute the posterior

probability of the true model using the g-prior for several choices of g as indicated
in the second paragraph of this section. We also find the model Mα̂ selected by the
method based on g-prior (by finding the model with highest posterior probability) and
calculate the loss ratio, Ln(α̂)/minα∈A Ln(α), for each choice of g. It needs to be
mentioned that for exact calculation of posterior probability of any model, the mar-
ginal densities of the data (mα(yn)) for all the candidate models α ∈ A are needed.
It is possible to do this for small p (p + 1 = 10) but for large p (p + 1 = 30, 50),
this becomes quite infeasible. Therefore, for such cases we take resort to Markov
Chain Monte Carlo simulation techniques to approximate the posterior probabilities,
whereby computation of marginal densities can be restricted only to themodels visited
by the chain. To simulate from the relevant Markov chain, we have used the Gibbs
sampling algorithm. The sampling scheme and the method of computation of pos-
terior probabilities are completely described in Chipman et al. (2001, Section 3.5).
For the simulation, we have generated a Markov chain of length 20000 of which the
first 10000 have been used as burn-in. For the cases p + 1 = 30 and 50, the quantity
minα∈A Ln(α) is approximated by taking the minimum of Ln(α) over the models
visited by the chain.
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For each combination of (n, p), each of the choices of g and each of the two
schemes, we repeat the above for 100 times fixing the chosen values of νi ’s, p(αc),β j ’s
and σ . Themean and standard deviation of the posterior probabilities of the truemodel
and those of the loss ratios are presented in the upper halves of Table 1 (for Scheme 1)
and Table 2 (for Scheme 2). In the tables these measures are denoted by “Post. prob.
mean”, “Post. prob. s.d.”, “Loss ratio mean” and “Loss ratio s.d.”, respectively.

For “model false” case, the n × p design matrix Xn is generated as described
above but the true regression μn is generated in a different manner.We consider a
basis of the orthogonal complement of the column space of the full design matrix
[1n,Xn]. Then, we choose k1 columns of the design matrix and k2 basis vectors
of the orthogonal complement to generate the true regression μn by taking linear
combination of them with randomly chosen non-zero coefficients. The coefficients
are selected in the same way as the regression coefficients and intercept are selected
above in the “model true” case using two schemes. We choose k1 and k2 as k1 =
[2p/3] and k2 = min ((n − p), [p/3]) for Scheme 1 and as k1 = [p/2] and k2 =
min ((n − p), [p/2]) for Scheme 2. Once the truth μn is fixed, we generate the data
yn following Nn

(
μn, σ

2 In
)
. We now select the model Mα̂ using the method based

on g-prior and calculate the distance ratio, Dn
(
α̂
)
/minα∈A Dn (α), and loss ratio

Ln(α̂)/minα∈A Ln(α), where Dn(α) and Ln(α) are as in (9) and (27), respectively.
Again, as in the “model true” case, for each combination of (n, p), each of the choices
of g and each of the two schemes, we repeat the above for 100 times and obtain 100
loss ratios and distance ratios. The mean and standard deviation of these 100 values
are presented in the lower halves of Table 1 (for Scheme 1) and Table 2 (for Scheme
2). In the tables these measures are denoted by “Dist. ratio mean”, “Dist. ratio s.d.”,
“Loss ratiomean” and “Loss ratio s.d.”, respectively. Note that the case n = p+1 does
not fall in the “model false” case as anyμn can be generated by the p+1 = n columns
of [1n,Xn], and therefore, the corresponding blocks in the tables are left blank.

Figures in the upper halves of Tables 1 and 2 show how the posterior probabilities
of true models increase and how the loss ratios (described above) decrease to one as
the sample size n increases in the “model true” case. We observe that, in “model true”
case, the choice of g = n2 gives substantially better results than the other choices of
g. The posterior probabilities for this choice of g are significantly larger than those
for the other choices of g in all the cases, except for the case p + 1 = 30, n = 100
in Scheme 2. However, for larger n (n = 150) with p + 1 = 30 in Scheme 2, g = n2

performs better than the other choices. Figures in the lower halves of the tables show
how the distance ratios and the loss ratios (as described above) decrease to one as
the sample size n increases in the “model false” case. For the “model false” case, the
choice of g = n2 seems to perform the best with little exception for Scheme 1. For
Scheme 2, some of the smaller choices of g perform slightly better. However, as n
increases, the differences in their performance become small.

5 On the choice of g

A crucial ingredient of the model selection mechanism studied in this paper is the
choice of hyper-parameter g in the prior for the regression parameter vector βα given
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in (6). The results we obtain through theoretical investigations and simulations help
us understand which choices of g lead to good performance of the model selection
procedure. The theoretical investigations are done in the asymptotic framework since
it makes many things more transparent. We treat both the cases when the number of
potential regressors (p) remains fixed and when it grows with sample size n such that
p = O(nb) as n → ∞ where 0 < b < 1.

We first discuss the case when p is fixed. There have been several recommendations
in the literature on the choice of g in this case. A thorough study is made by Fernández
et al. (2001) in the “model true” case and they recommend use of g = max(n, p2). The
resulting prior is called “benchmark prior” and this recommendation is well accepted
in the literature. Therefore, our main focus in this section lies in the choice of g when p
grows with n. Before we discuss this in detail, we would like to mention that we have
also studied the “model false” case in the fixed-p scenario. It may be observed (vide
Theorems 1 and 3) that in this case the choice of g for ensuring good performance can
be very flexible. In particular, the choice of g = max(n, p2), as in Fernández et al.
(2001), ensures both consistency and loss efficiency. Therefore, this choice is suitable
for both the “model false” and “model true” cases when p is fixed.

We now discuss the case when p grows with n. We first summarize our findings
from our theoretical investigations. It is very pleasing to note (vide Theorem 1) that
this method is consistent for the “model false” case for any choice of g such that
g = gn = knr for some r ≥ 0 and k > 0. This also includes the situations when g
does not vary with n. It follows from the proof of Theorem 3 that for loss efficiency
in “model false” case, we need to make g grow to infinity with n. However, from the
statement of the theorem it also follows that it is sufficient to choose g = gn = knr ,
r ≥ 1/2, k > 0 to achieve loss efficiency. This comes from the observation that we
need r > s and s < (1 − b)/2 (where 0 < b < 1) for Theorem 3 to hold.

For the “model true” case, we show that choosing g = gn = knr with k > 0 and
r > 4b is sufficient to ensure both consistency and loss efficiency (vide Theorems
5 and 6). However, as observed in Remark 3, it is also necessary that we must have
r > 2b for consistency in the “model true” case as r ≤ 2b leads to inconsistency.

It is clear from the discussion above that it is advisable to choose a g which is not
“too small”. In particular, a choice of g = nr with some r > max(4b, 1/2) ensures
good performance on the whole. This takes care of both the “model false” and “model
true” cases and follows from the above discussions of these two cases. A natural
question now is how large a g should be chosen. It may be noted that making g large
arbitrarily makes the priors on βα’s arbitrarily vague in the sense that most compact
subsets of the parameter space gets nearly zero probability. Such priors are not usually
recommended in themodel selection literature. See in this context Bayarri et al. (2012).
It may be recalled from Remark 4, that a choice of gn of the form gn = Dn/pn for
some appropriately chosen constant D > 1, leads to inconsistency in the “model true”
case. This supports the common wisdom of not having “too large” a g.

We now make some final remarks on the choice of g based on the above theoretical
inputs and also the simulation results reported in Sect. 4. In practice, we have a data
at hand with some fixed n and p, and we may apply our theoretical results (on choice
of g) for the scenario “p grows with n” if the n and p for our given data are both large
enough. If indeed this is the case,wewill typically also have p at least as large as n1/2−δ
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984 M. Mukhopadhayay et al.

for some small positive δ and then p can be thought of as O(nb) for any b ≥ 1/2− δ

for some small δ. For example, if n is 100 and p is between 30 and 50, it does not seem
right to take p = O(nb) with b = 1/2 − 	 with 	 not small. Since our theoretical
results show that by taking g = nr with r > 4b one can achieve consistency, in view
of the above observation it appears that g = n2 might be a reasonable choice. In
principle, one could try larger choices of g. But one would not want to use larger g if
g = n2 itself gives good enough results since too large a g is not necessarily a good
idea as discussed above. We have simulation results taking g = √

n, n and n2. For the
“model true” case the choice of g = n2 gives clearly the best results. For the “model
false” case, the performance with g = n2 is very satisfactory for large n (compared to
p) although it may not always be the best performing choice of g. Even when g = n2

does not give the best results, the difference in its performance compared to the best
one is quite negligible. Combining all these facts we feel comfortable in using g = n2

as the preferred choice of g when p and n are both large.

6 Concluding remarks

In this paper, we have studied theoretical properties of the method of model selection
based on g-prior when the sample size grows. The g-prior has been one of the most
popular priors in use for the normal linear regression model and the motivation of the
paper is to study under what conditions this popular method gives desirable results.We
have studied the properties in the asymptotic framework since it makes many things
more transparent. We have first shown that in a situation where the true model is not
one of the candidate models, this model selection procedure selects a model that is
in a sense closest to the true model. Also, the ratio of the loss incurred in estimating
the unknown regression function under the selected model and the loss of an Oracle
tends to one. These results have been proved under appropriate conditions on the rate
of growth of g as n grows and for both the cases when the number p of potential
predictors remains fixed with n and when p = O(nb) for some 0 < b < 1. We do
not know of any work related to g priors that considers the “model false” case and
we have shown efficacy of the method based on g-prior with respect to two natural
criteria. We think these two criteria, namely, the ability to choose the candidate model
closest to the truth and the ability to estimate the unknown regression as well as an
Oracle should be considered as desirable criteria that a model selection rule should
satisfy in the “model false” case. In this context, it may be remarked that Bayarri et
al. (2012) suggested several other desirable criteria for model selection procedures. In
the “model true” case, we have been able to come up with precise conditions on the
growth of g = gn → ∞ depending on that of p = pn → ∞ such that the posterior
probability of the true model goes to 1 as n → ∞. This, in particular, implies that the
true model is chosen with probability tending to one. We have also derived conditions
for attaining the Oracle loss asymptotically in this scenario. The specifications of the
rate of growth of g in the “model false” and “model true” cases when p grows with
n helps in making useful recommendations for appropriate choice of g. From our
theoretical investigations it turns out that a choice of g = knr with r > max{4b, 1/2}
ensures desirable performance in both the “model false” and “model true” scenarios.
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Variable selection based on g-prior 985

It has been argued in Section 5 that from practical considerations a choice of g = n2

should be a reasonable one and this choice has been substantiated in the simulation
studies presented in the paper. It needs special mention that we have been able to prove
the fact that the true model is chosen with probability tending to one even in the case
when the null model (i.e., model with only the intercept term) is the truth. A result of
this nature is likely to be a useful addition to the literature.

This paper is an attempt to clarify the role of choice of g in variable selection
using Zellner’s g-prior when the sample size grows. It has been observed in Liang et
al. (2008) that the use of g-prior in the fixed sample size scenario can lead to certain
undesirable inference,which are referred to as paradoxes. The first of them, namely, the
Bartlett paradox is observed when g → ∞ while n and p remain fixed. The paradox
lies in the fact that this method always favors the null model over other models even
if it is not the truth when g → ∞. It is to be noted that such a phenomenon occurs not
only for a g-prior but also for other proper priors if we let the spread of the prior go
to infinity. In our asymptotic framework, we have shown that the Bartlett paradox can
be avoided in the sense that the true model will be selected with probability tending to
one irrespective of whether the truth is the null model or a non-null model, provided
g → ∞ at some proper rate depending on the behavior of p as n → ∞. It may
thus be inferred that g should be allowed to go to infinity only when n → ∞. The
second paradox mentioned in Liang et al. (2008), namely, the Information paradox,
loses much of its relevance when n is large since the Bayes factor in question goes to
an extremely large number even for moderately large n, if n − p is also moderately
large and g is bounded away from zero.

We have considered the case when all the 2pn models are allowed in the model
space. This is not to suggest that one should always consider this model space. In
fact, when pn is large, this may lead to serious computational issues and one probably
would need something like a stochastic search and Monte Carlo simulation to find the
model with the highest value of the criterion p(Mα)mα(yn). It would be interesting
to see how the results obtained here would modify if one selects from a much smaller
subset of the class of all possible models, for example, a specific nested sequence of
models where α varies among {1}, {1, 2}, {1, 2, 3}, …, {1, 2, …, p}.

The method based on g-prior cannot be applied directly in situations where p ≥ n.
It is applicable when p < n andwe have simulation results even for the case p = n−1.
For the case when p ≥ n, there has been recent attempt by Maruyama and George
(2011) to generalize the g-prior. However, they have not studied consistency in this
setup and it remains an open problem worth studying.

It is worth investigating the issues of consistency and loss efficiency in the “model
false” case for the local and global empirical Bayes choices of g and also for mixtures
of g-priors (see, for example, Liang et al. 2008). It is also important to study model
selection consistency formixtures of g-priors for the casewhen p growswith n. Model
selection using mixtures of g-priors necessitates calculation of marginal likelihood
whichmay not have analytically tractable form. Standard approximations, like Laplace
approximation, become very challenging when pn → ∞ since one needs to show that
the error in approximation is uniformly small over the class of all candidate models.
Another problem is the choice of themixture from thewide class ofmixtures available.
All these are important issues which will be addressed in our future work.
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7 Appendix

We present below proofs of some of the results presented in Sects. 2 and 3.

Proof of Lemma 1 (a) Let Unα = μ′
n(In − Pn(α))en/

√
σ 2μ′

n(In − Pn(α))μn . As
Unα ∼ N (0, 1), using the property of N (0, 1) , we have for t > 0

P

(
max
α∈A

|Unα| > t

)
≤
∑

α∈A
P (|Unα| > t) ≤ c02

pn e− t2
4

for some constant c0 > 0. Then for c > 0

P

(
max
α∈A

|Unα|/√pn > c

)
≤ c02

pn e−c2 pn
4

which goes to zero as n → ∞ for appropriately chosen c. Thus max
α∈A

|Unα| =
Op(

√
pn). As μ′

n(In − Pn(α))μn ≤ μ′
nμn , by assumption (A.1), the result follows.

(b) Let Vnα = e′
n Pn(α)en/σ 2. As Vnα ∼ χ2

pn(α), using the Markov inequality and

the moment generating function of χ2 distribution we have for 0 < λ < 1
2 and t > 0,

P

(
max
α∈A

e′
n Pn(α)en > t

)
≤
∑

α∈A
P

(
Vnα >

t

σ 2

)

≤
∑

α∈A
P(eλVnα > eλt/σ 2

)

≤ e−λt/σ 2
(

2√
1 − 2λ

)pn
.

Thus for c > 0,

P

(
max
α∈A

e′
n Pn(α)en

pn
> c

)
≤ e−λCpn/σ 2

(
2√

1 − 2λ

)pn

which goes to zero as n → ∞ for appropriately chosen λ and c and the result follows.

�

Proof of (17) and (18) We have

Cn/n = (1 − an)
n∑

i=1

(yi − y)2/n + an

n∑

i=1

e2i /n,

where
∑n

i=1 e
2
i /n

p−→ σ 2.
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Now E(
∑n

i=1 y
2
i /n) = ∑n

i=1 μ2
i /n + σ 2 and therefore,

P

(
n∑

i=1

y2i /n > k

)

=
(

n∑

i=1

μ2
i /n + σ 2

)

/k → 0 as k → ∞.

This implies
∑n

i=1 y
2
i /n = Op(1) and hence

∑n
i=1(yi − y)2/n = Op(1). Thus (17)

is proved.
Now from (16),

bnα = elog bnα

= exp

{
pn(α) − pn(α̂)

n − 1
log(1 + gn) − 2

n − 1
log

(
p(Mα)

p(Mα̂)

)}
.

Therefore, by the mean value theorem,

bnα = 1 +
{
pn(α) − pn(α̂)

n − 1
log(1 + gn) − 2

n − 1
log

(
p(Mα)

p(Mα̂)

)}
eUn ,

where Un lies between 0 and (pn(α) − pn(α̂)) log(1 + gn)/(n − 1) − 2 log(p(Mα)/

p(Mα̂))/(n − 1). Then we have

max
α

|n(bnα−1)|≤2
[
pn log(1+gn) + 2 logC0n

]
exp

{
pn log(1+gn) + 2 logC0n

n − 1

}

and (18) is proved. 
�

Proof of Theorem 3. We first note that nLn(α) = ‖μn − μ̂n(α)‖2 for any fixed α,
where μ̂n(α) = 1nβ̂0 + anXnαβ̂α = (1 − an)1n y + an Pn(α)yn . We also recall the
definition of Ψ (α) as in (8). The proof hinges upon first establishing a relationship
between Ψ (α) and nLn(α). Towards that, we first observe that

nLn(α) = ‖μn − an Pn(α)yn − (1 − an)1n y‖2
= (

μn − an Pn(α)yn
)′ (

μn − an Pn(α)yn
)+ (1 − an)

2ny2

−2(1 − an)y1′
n

(
μn − an Pn(α)yn

)

where

(
μn − an Pn(α)yn

)′ (
μn − an Pn(α)yn

)

= μ′
n(In − Pn(α))μn + a2ne

′
n Pn(α)en + (1 − an)

2μ′
n Pn(α)μn

−2an(1 − an)μ
′
n Pn(α)en .

(
Putting yn = μn + en

)
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Therefore,

nLn(α) = μ′
nμn − an(2 − an)μ

′
n Pn(α)μn − 2an(1 − an)μn ′Pn(α)en

+ a2ne
′
n Pn(α)en + (1 − an)

2ny2 − 2(1 − an)y
n∑

i=1

μi

+ 2an(1 − an)y1′
nyn, (36)

as 1′
n Pn(α) = 1′

n . Then from (11) we have

any′
n(In − Pn(α))yn − 1

(2 − an)
nLn(α)

= 2anμ
′
nen + ane′

nen − (1 − an)2

2 − an
μ′
nμn + (1 − an)

2ny2 − 2(1 − an)y
n∑

i=1

μi

− 2an
2 − an

μ′
n Pn(α)en − 2an

2 − an
e′
n Pn(α)en − 2an(1 − an)

2 − an
ny2

and therefore,

(1 − an)
n∑

i=1

(yi − y)2 + any′
n(In − Pn(α))yn

= C ′
n + 2an

(2 − an)
μ′
n(In − Pn(α))en − 2an

(2 − an)
e′
n Pn(α)en + 1

(2 − an)
nLn(α),

(37)

where

C ′
n = (1 − an)

n∑

i=1

(yi − y)2 + 2an(1 − an)

(2 − an)
μ′
nen + ane′

nen − (1 − an)2

(2 − an)
μ′
nμn

+ (1 − an)
2ny2 − 2(1 − an)y

n∑

i=1

μi − 2an(1 − an)

(2 − an)
ny2. (38)

It follows from (8) and (37) that

Ψ (α) = [p(Mα)]−2/(n−1)(1 + gn)
pn(α)/(n−1)

[
C ′
n + 1

(2 − an)
nLn(α)(1 + ξn(α))

]
,

where

ξn(α) = 2anμ′
n(In − Pn(α))en − 2ane′

n Pn(α)en
nLn(α)

. (39)

The proof now proceeds along the lines of proof of Theorem 1, proving similar results
in terms of nLn(α) ( in place of Dn(α) as in Theorem 1). Towards that, we first note
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that for all α ∈ A, by following similar arguments as in proving (15) for Theorem 1,
we have

1 ≤ Ln(α̂)

minα∈A Ln(α)

≤ C ′
n/n

(1 − ξn)/(2 − an)
× max

α

n(bnα − 1)

nLn(α)
+ 1 + ξn

1 − ξn
× max

α
bnα, (40)

where ξn = maxα |ξn(α)| and bnα is as given in (16).
To prove (28), it therefore suffices to show that the right hand side of the inequality

in (40) converges to 1 in probability for both the cases when p is fixed and when
p = pn varies with n. This in turn can be proved by showing that

C ′
n = Op(n), (41)

ξn
p−→ 0, (42)

max
α

n(bn,α − 1)

nLn(α)

p−→ 0, (43)

and max
α

bnα → 1 (44)

as n → ∞. First note that (44) has already been proved while proving Theorem 1
under both the cases when p is fixed and when p = pn grows with n.

To prove (41), recall the definition of C ′
n as in (38). From (17), the first and third

terms in (38) are of order Op(n). By assumption (A.1), μ′
nμn = O(n),

∑n
i=1 μi/n =

O(1) and μ′
nen/n

p−→ 0. As shown in the proof of (17),
∑n

i=1 y
2
i /n = Op(1) which

implies y2 = Op(1) and y = Op(1). As an is either fixed or an → 1, all these imply
(41). This proof covers both the cases when p is fixed and when p = pn grows with
n.

Now we prove (42) and (43). From (39) we have,

max
α

|ξn(α)| ≤ 2an
n

maxα

∣∣μ′
n(In − Pn(α))en

∣∣

minα Ln(α)
+ 2an

n

(
e′
n Pn(α)en

)

minα Ln(α)
. (45)

The proof of (42) will be complete by showing that under the assumptions of Theorem
3, for some constant δ0 > 0,

min
α

Ln(α) ≥ δ0

ns
(46)

with probability tending to one as n → ∞, where s = 0 in case p = pn remains fixed
as n → ∞ and s ∈ [0, (1 − b)/2

)
in case p = pn → ∞ as n → ∞. This is so since

(46) and the fact that 0 < an ≤ 1 together imply that with probability tending to one,
the right hand side of (45) is bounded above by

2maxα

∣∣μ′
n(In − Pn(α))en

∣∣ /n
δ0/ns

+ 2maxα

(
e′
n Pn(α)en

)
/n

δ0/ns
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and by Lemma 1 the above expression is

Op(
√
pn/n)

δ0/s
+ Op(pn/n)

δ0/s
.

This tends to zero in probability when p is constant and s = 0 and when p = pn =
O
(
nb
)
with 0 < b < 1 and s ∈ [0, (1 − b)/2

)
.

Let us now prove (46). Note that from (36) we have

Ln(α) = 1

n
μ′
n(In − Pn(α))μn + (1 − an)

2 1

n
μ′
n Pn(α)μn + a2n

1

n
e′
n Pn(α)en

+ (1 − a2n)y
2 + 2an(1 − an)

1

n
μ′
n(In − Pn(α))en − 2an(1 − an)

1

n
μ′
nen

− 2(1 − an)y
1

n

n∑

i=1

μi + 2an(1 − an)ny
2.

Now note that by taking δ′
0 = min (	, δ) where 	 and δ are as in assumptions (A.2)

and (A.2)* respectively,

min
α∈A

1

n
μ′
n(In − Pn(α))μn >

δ′
0

ns

for all sufficiently large n, where s = 0 in case of fixed p and s ∈ [
0, (1 − b)/2

)

when p varies with n. Observe now that the second, third, fourth and eighth terms in
the above expression for Ln(α) are always non-negative. From Lemma 1,

max
α

∣
∣∣∣2an(1 − an)

1

n
μ′
n(In − Pn(α))en

∣
∣∣∣ = Op

(√
pn
n

)
= op

(
n−s)

both in the case p = pn is fixed and s= 0 and in the case p = pn = O(nb), 0 < b < 1

and s < (1 − b)/2. Also, as (1 − an) = (1 + gn)−1 = Op(n−r ),μ′
nen/n

p−→ 0, y =
Op(1), μ = Op(1) and s < r , the sixth and seventh terms are of order Op(n−r ) and
hence of the order op(n−s).

Combining all these facts, one immediately gets (46) by taking δ0 = δ′
0/2.

The assertion (43) follows from (18), (46) and assumption (A.3), by noting that

∣∣∣
∣max

α

n(bnα − 1)

nLn(α)

∣∣∣
∣ ≤ maxα |n(bnα − 1)|

minα nLn(α)
.

The result now follows from (40)–(44). This proof covers the situation under parts (a)
and (b) of the theorem. 
�
Proof of (28) for the least squares estimator. We describe how the above proof of
Theorem 3 can be suitably adapted to deal with the case when one uses μ̂n(α)

as the least squares estimator of μn under model α and (28) can be shown to
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hold under this situation as well. We note that μ̂n(α) = Pn(α)yn and therefore,
nLn(α) = ‖μn − μ̂n(α)‖2 = ‖μn − Pn(α)yn‖2. A little algebra then shows that

(1 − an)
n∑

i=1

(yi − y)2 + any′
n(In − Pn(α))yn = C ′

n + annLn(α)(1 + ξn(α)),

where C ′
n = (1 − an)

n∑

i=1

(yi − y)2 + ane′
nen

and ξn(α) = 2μ′
n(In − Pn(α))en − 2e′

n Pn(α)en
nLn(α)

.

Therefore,

Ψ (α) = (p(Mα))−2/(n−1) (1 + gn)
pn(α)/(n−1) (C ′

n + annLn(α)(1 + ξn(α))
)
.

Using similar arguments as in proving (40), one can then show that for all α ∈ A,

1 ≤ Ln(α̂)

minα∈A Ln(α)
≤ C ′

n/n

an(1 − ξn)
× max

α

n(bnα − 1)

nLn(α)
+ 1 + ξn

1 − ξn
× max

α
bnα,

where ξn = max
α

|ξn(α)| and bnα is as in the proof of Theorem 2.3. The desired result

follows by observing that (41) through (44) continue to hold when one replaces the
definitions of C ′

n , ξn(α) and Ln(α) used there with the corresponding ones written
above in this particular case. The proof of (44) remains completely unchanged while
those of (41) through (43) are only routine modifications of the corresponding proofs
obtained above. The relatively simple details are left to the reader. 
�
Proof of Theorem 5. We first consider the following lemma.

Lemma 2 Consider the setup of Theorem 5. Then for any R > 2, with probability
tending to one,

max
α∈A1

e′
n(Pn(α) − Pn(αc))en
σ 2(pn(α) − pn(αc))

≤ R log pn . (47)

The proof of the Lemma 2 is given after the proof of Theorem 5.

Main Proof of Theorem 5. We shall prove that

∑

α∈Ai

p(Mα)mα(yn)
p(Mαc )mαc(yn)

p−→ 0, i = 1, 2. (48)

Then the result will follow from (29) and (48).
Let MN denote the null model under which μn = 1nβ0. We will consider the two

cases Mαc �= MN and Mαc = MN separately. Also, we will prove part (b) of the
theorem and then make a remark on the proof of part (a).
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Case 1: Mαc �= MN

Let us first prove (48) with i = 2. From (7) and (11), we have for α ∈ A2,

mα(yn)
mαc(yn)

= (1 + gn)
(pn(αc)−pn(α))/2

×
[
1 + anμ′

n(In − Pn(α))μn/nCn +Unα

1 − ane′
n Pn(αc)en/nCn

]−(n−1)/2

, (49)

where Cn = (1 − an)
∑

(yi − y)2/n + ane′
nen/n (50)

and Unα = an
(
2e′

n(In − Pn(α))μn − e′
n Pn(α)en

)
/nCn . (51)

Note that an → 1 and
∑

(yi − y)2/n = Op(1) (see the proof of (17) in the Appendix)
and therefore,

Cn
p−→ σ 2. (52)

Then by assumption (B.2)*,

min
α∈A2

an
nCn

μ′
n(In − Pn(α))μn >

c1
ns

(53)

with probability tending to one for some constant c1 > 0 and by Lemma 1

max
α∈A2

∣∣
∣∣
2an
nCn

e′
n(In − Pn(α))μn

∣∣
∣∣ = Op

(√
pn
n

)
(54)

and max
α∈A2

an
nCn

e′
n Pn(α)en = Op

( pn
n

)
(55)

with probability tending to one. As (1−b)/2 < s, from (49), (51), (53), (54) and (55)
it follows that for all α ∈ A2,

mα(yn)
mαc (yn)

≤ (1 + gn)
pn/2

(
1 + δ0

ns

)−(n−1)/2

for some δ0 > 0, not depending on α. Then by assumption (31), we have with proba-
bility tending to one

∑

α∈A2

p(Mα)mα(yn)
p(Mαc )mαc (yn)

≤ 2pn k0n
b0(1 + gn)

pn/2
(
1 + δ0

ns

)−(n−1)/2

(56)

which goes to zero as b < (1 − s). To see this, note that logarithm of the right hand
side of (56) is equal to

pn log 2 + log k0 + b0 log n + pn
2

log(1 + knr ) − (n − 1)

2
× δ0

ns
× 1

ξn
,
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where ξn lies between 1 and 1 + δ0/ns and pn = O(nb). The value of the above
expression goes to −∞. Thus (48) is proved with i = 2.

We now prove (48) with i = 1. We have borrowed some ideas used in the proof of
Theorem 2.2 of Shang and Clayton (2011) for proving (59) below. As Pn(α)μn = μn
for all α ∈ A1, from (7) and (11) we have for all α ∈ A1,

mα(yn)
mαc (yn)

= 1

(1 + gn)(pn(α)−pn(αc))/2
×
[
nCn − ane′

n Pn(α)en
nCn − ane′

n Pn(αc)en

]−(n−1)/2

= 1

(1 + gn)(pn(α)−pn(αc))/2
×
[
1 − e′

n(Pn(α) − Pn(αc))en
nCn/an − e′

n Pn(αc)en

]−(n−1)/2

;
(57)

where Cn is as defined above in (50). Note that e′
n Pn(αc)en/n

p−→ 0 and therefore,
from (52)

1

n

(
n

an
Cn − e′

n Pn(αc)en

)
p−→ σ 2 (58)

which implies that for any 0 < δ1 < 1,
(
nCn/an − e′

n Pn(αc)en
)
/n > σ 2(1 − δ1)

with probability tending to one.
Also, consider the following inequality,

(1 − x) ≥ e−x/(1−δ1) for 0 < x < δ1 < 1.

Now, using the above inequality along with (57), (58), Lemma 2 and assumption
(31), we have with probability tending to one, for any R > 2 and any 0 < δ1 < 1,

∑

α∈A1

p(Mα)mα(yn)
p(Mαc )mαc(yn)

≤
∑

α∈A1

k0nb0

(
√
1 + gn)pn(α)−pn(αc)

[
1 − e′

n(Pn(α) − Pn(αc))en
nσ 2(1 − δ1)

]−(n−1)/2

≤
∑

α∈A1

k0nb0

(
√
1 + gn)pn(α)−pn(αc)

[
1 − R(pn(α) − pn(αc)) log pn

n(1 − δ1)

]−(n−1)/2

≤
∑

α∈A1

k0nb0

(
√
1 + gn)pn(α)−pn(αc)

exp

[
R(pn(α) − pn(αc)) log pn

2(1 − δ1)2

]

=
∑

α∈A1

k0nb0

(
√
1 + gn)pn(α)−pn(αc)

p
[
R(pn(α)−pn(αc))/2(1−δ1)

2
]

n
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= k0n
b0

pn−pn(αc)∑

q=1

(
pn − pn(αc)

q

)(
pR/2(1−δ1)

2

n√
1 + gn

)q

=
⎡

⎣

(

1 + pR/2(1−δ1)
2

n√
1 + gn

)pn−pn(αc)

− 1

⎤

⎦ k0n
b0 . (59)

Using the mean value theorem, the last expression in (59) can be shown to be bounded
above by

k0n
b0 pn R/2(1−δ1)

2

√
1 + gn

pn

(

1 + pn R/2(1−δ1)
2

√
1 + gn

)pn

. (60)

As pn = O(nb) and gn = knr ,

(
1 + pn

R/2(1−δ1)
2
/
√
1 + gn

)pn → 1 (61)

if r/2 − Rb/2(1 − δ1)
2 > b

that is, if r/b > 2 + R/(1 − δ1)
2. (62)

Also,

k0n
b0 pn pn

R/2(1−δ1)
2
/
√
1 + gn → 0 (63)

if

b0 < r/2 − b − Rb/2(1 − δ1)
2 =

[
r − b

(
2 + R/(1 − δ1)

2
)]

/2. (64)

Under the assumptions of the theorem, r > 4b and b0 < (r −4b)/2 . As 2+ R/(1−
δ1)

2 → 4 when R ↓ 2 and δ1 ↓ 0, there exist R > 2 and 0 < δ1 < 1 such that (62)
and (64) hold and hence (61) and (63) hold. Then from (59) and (60) with these R and
δ1, (48) follows with i = 1. This completes the proof of part (b) of the theorem for
Case 1, that is, when Mαc �= MN .

In order to prove part (a) of the theorem it is enough to prove that for each fixed
α ∈ A, α �= αc,

p(Mα)mα(yn)
p(Mαc )mαc (yn)

p−→ 0.

The proof is much easier and is essentially contained in the above proof where we use
assumption (B.2)* with s = 0 which is the same as assumption (B.2).

Case 2: Mαc = MN

In this case A2 is empty and therefore, we need to prove (48) only for A1. Under
the null model μn = 1nβ0 , yn = 1nβ0+en and Pn(αc) = 1n[1′

n1n]−11′
n . Therefore,

Pn(αc)yn = 1n y and y′
n(In − Pn(αc))yn = ∑n

i=1(yi − y)2 . As 1′
n Pn(α) = 1′

n , for
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α ∈ A1 , y′
n(In − Pn(α))yn = e′

nen − e′
n Pn(α)en . Then from (7), for α ∈ A1 we

have

mα(yn)
mαc (yn)

= 1

(1 + gn)pn(α)/2

×
[

(1−an)
∑n

i=1(yi −y)2+ane′
nen − ane′

n Pn(α)en∑n
i=(yi −y)2

]−(n−1)/2

.

As e′
nen =

n∑

i=1

(yi − β0)
2 ≥

n∑

i=1

(yi − y)2,

that is, (1 − an)
n∑

i=1

(yi − y)2 + ane′
nen ≥

n∑

i=1

(yi − y)2,

we have

mα(yn)
mαc (yn)

≤ 1

(1 + gn)pn(α)/2

[
1 − e′

n Pn(α)en
(1 − an)

∑n
i=1(yi − y)2/an + e′

nen

]−(n−1)/2

.

(65)

Noting that (

(1 − an)
n∑

i=1

(yi − y)2/an + e′
nen

)

/n
p−→ σ 2 (66)

and comparing (65) and (66) with (57) and (58), one can see that the rest of the proof
of the result in this case is exactly similar to that in Case 1. 
�
Proof of Lemma 2. As Pn(α) − Pn(αc) is a projection matrix for α ∈ A1,

1

σ 2 e
′
n(Pn(α) − Pn(αc))en ∼ χ2

pn(α)−pn(αc).

Let Y ∼ χ2
γ . Then for any R > 0 and any 0 < δ < 1,

P (Y > Rγ log(pn))

=
∫ ∞

Rγ log(pn)

1

2γ /2�(γ /2)
e−y/2yγ /2−1dy

=
∫ ∞

Rγ log(pn)

1

2γ /2�(γ /2)
e−y(1−δ+δ)/2yγ /2−1dy

≤ 1

δγ/2 e
−Rγ (1−δ) log(pn)/2

∫ ∞

Rγ log(pn)

δγ /2

2γ /2�(γ /2)
e−yδ/2yγ /2−1dy

≤ 1

δγ/2 e
−Rγ (1−δ) log(pn)/2

∫ ∞

0

δγ/2

2γ /2�(γ /2)
e−yδ/2yγ /2−1dy

= 1

δγ/2 pn
− Rγ (1−δ)

2 .
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Using this result we have

P

(
max
α∈A1

e′
n(Pn(α) − Pn(αc))en
σ 2(pn(α) − pn(αc))

> R log(pn)

)

≤
∑

α∈A1

P

(
e′
n(Pn(α) − Pn(αc))en
σ 2(pn(α) − pn(αc))

> R log(pn)

)

=
∑

α∈A1

P

(
e′
n(Pn(α) − Pn(αc))en

σ 2 > R(pn(α) − pn(αc)) log(pn)

)

≤
∑

α∈A1

pn
−R(pn(α)−pn(αc))(1−δ)/2/δ(pn(α)−pn(αc))/2

=
(pn−pn(αc))∑

q=1

(
pn − pn(αc)

q

)(
1√

δ pR(1−δ)/2
n

)q

=
(

1 + 1√
δ pR(1−δ)/2

n

)(pn−pn(αc))

− 1. (67)

As pn = O(nb), b > 0, the above expression goes to zero if R(1 − δ)b/2 > b, that
is, if R > 2/(1− δ). If R > 2, there exits 0 < δ < 1 such that R > 2/(1− δ). Using
(67) with these R and δ, we have the result. 
�
Acknowledgments We are thankful to the associate editor and the referees for their very useful comments
and suggestions that helped us improve the paper.
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