
Ann Inst Stat Math (2015) 67:943–961
DOI 10.1007/s10463-014-0481-x

Change-point model selection via AIC

Yoshiyuki Ninomiya

Received: 21 April 2013 / Revised: 21 June 2014 / Published online: 24 August 2014
© The Institute of Statistical Mathematics, Tokyo 2014

Abstract Change-point problems have been studied for a long time not only because
they are needed in various fields but also because change-point models contain an
irregularity that requires an alternative to conventional asymptotic theory. The purpose
of this study is to derive the AIC for such change-point models. The penalty term of
the AIC is twice the asymptotic bias of the maximum log-likelihood, whereas it is
twice the number of parameters, 2p0, in regular models. In change-point models, it is
not twice the number of parameters, 2m +2pm , because of their irregularity, wherem
and pm are the numbers of the change-points and the other parameters, respectively. In
this study, the asymptotic bias is shown to become 6m+2pm , which is simple enough
to conduct an easy change-point model selection. Moreover, the validity of the AIC is
demonstrated using simulation studies.

Keywords Brownian motion · Functional central limit theorem · Information
criterion · Irregularity · Random walk · Structural change

1 Introduction

Model selection by a testing procedure in change-point problems, including the estima-
tion of the number of change-points, has been studied for a long time (e.g., Vostrikova
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1981; Haccou andMeelis 1988; Inclan and Tiao 1994; Bai and Perron 1998; Aue et al.
2009). This is not only because many important applications require such an approach
but also because the change-point as a parameter has an irregularity. For example,
conventional asymptotic theory does not hold for the change-point, and so a specific
theory as an alternative is needed for change-point problems (see e.g., Csörgő and
Horváth 1997).

In this study, we consider model selection by an information criterion for change-
point problems. This topic originated in the studies of Yao (1988) and Jones and
Dey (1995). They, respectively, proposed a naive Bayes information criterion (BIC,
Schwarz 1978) and a naive Akaike’s information criterion (AIC, Akaike 1973) by
ignoring the irregularity of the change-points. That is, their respective penalty terms
are (m + pm) log n and 2m + 2pm , where m, pm , and n are the number of the change-
points, the number of the other parameters, and the data size, respectively. Other than
these information criteria, information criteria obtained by omitting all penalties for
change-points have also been used (e.g., Chen andGupta 1997). The first known article
proposing an information criterion considering the irregularity of change-points is that
of Siegmund (2004). He treated a model used in mapping quantitative trait loci (QTL)
for genetic linkage analysis, which is closely related to an independent Gaussian
sequence with a change in mean, and derived a BIC from the Bayes factor of the
model. The result was generalized by Zhang and Siegmund (2007) for an independent
Gaussian sequence with multiple changes in mean. Hannart and Naveau (2012) also
derived a BIC-type criterion for a Bayesian change-point model from its Bayes factor.
In such BICs, the penalty terms are different than conventional penalty terms owing
to the irregularity of the models.

This study aims to derive the AIC for general change-point models based on the
original definition of the AIC to consider the irregularity of change-points. Themodels
are the ones usually adopted in change-point problems and are particularly different
than the model in Siegmund (2004) or Hannart and Naveau (2012) and generalizations
of the model in Zhang and Siegmund (2007). The penalty term of the AIC is twice
the asymptotic bias of the maximum log-likelihood from the expected log-likelihood,
whereas this is 2p0 in regularmodels, where p0 is the number of parameters. In Sect. 2,
we show that the penalty term for the change-point model depends on the expected
value of the maximum of a random walk with a negative drift. Furthermore, we show
that the penalty becomes 6m + 2pm (not 2m + 2pm) under the condition considered
by Csörgő and Horváth (1997) (Sect. 1.5). In Sect. 3, we demonstrate the validity of
the AIC using a simulation study.

2 Main results

2.1 Independent sequence

For an independent multivariate sequence {xi , 1 ≤ i ≤ n}, let us consider a change-
point model withm change-points k(1), . . . , k(m) whose distribution belongs to a para-
metric family. For simplicity, we consider the exponential family as the parametric
family like in Csörgő and Horváth (1997) (Sect. 1.5), that is, the probability function
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Change-point model selection 945

of xi for this model is

exp{θ ( j)TT (·) + S(·) − A(θ ( j))} when k( j−1) + 1 ≤ i ≤ k( j) (1)

for 1 ≤ j ≤ m+1, where k(0) = 0 and k(m+1) = n. Let θ∗ = (θ∗(1)T, . . . , θ∗(m+1)T)T

and k∗ = (k∗(1), . . . , k∗(m))T be the true values of θ = (θ (1)T, . . . , θ (m+1)T)T and
k = (k(1), . . . , k(m))T, and hereafter we similarly use ∗ to denote the true values of
parameters . We assume that

θ∗(1) �= θ∗(2) �= · · · �= θ∗(m+1)
, (2)

and that θ∗ and k∗ are unknown. In addition, we assume that θ∗(1), . . . , θ∗(m+1) are in
the interior of the parameter set for the model, which is included in the natural para-
meter space for the family, and that ∂2A(θ)/∂θ∂θT is strictly positive-definite in the
parameter set. These assumptions ensure the asymptotic normality for the maximum
likelihood estimator of θ (see e.g., van der Vaart 1998, Sect. 4.2). For the purpose of
the later asymptotic theory, we assume that limn→∞ k∗( j)/n = κ( j) for 1 ≤ j ≤ m,
where 0 < κ(1) < · · · < κ(m) < 1. This assumption means that the change-points are
far enough from each other for a large sample size, and this is a common assumption
in change-point analysis (see e.g., Csörgő and Horváth 1997).

Let k̂x and θ̂ x be the maximum likelihood estimators of k∗ and θ∗ based on
x = (xT1 , . . . , xTn )T , and f (x|k∗, θ∗) be the joint probability function of x. Model
selection can be approached by trying to reduce twice theKullback–Leibler divergence
(Kullback and Leibler 1951) of f ( y|k∗, θ∗) and f ( y|k̂x, θ̂ x),

2KL{ f ( y|k∗, θ∗), f ( y|k̂x, θ̂ x)} = 2E y{log f ( y|k∗, θ∗)} − 2E y{log f ( y|k̂x, θ̂ x)},

where y is a copy of x, in other words, y is distributed according to the distribution of x
and is independent of x, and E y denotes the expectation with respect to y. Because the
first term on the right-hand side does not depend on the model, we need only consider
the second term. A simple estimator of the second term is −2 log f (x|k̂x, θ̂ x), but it
is an underestimator. Then, in AIC-type information criteria, minimization of its bias
correction is considered,

−2 log f (x|k̂x, θ̂ x) + 2Ex[log f (x|k̂x, θ̂ x) − E y{log f ( y|k̂x, θ̂ x)}]
= −2 log f (x|k̂x, θ̂ x) + 2E{log f (x|k̂x, θ̂ x) − log f ( y|k̂x, θ̂ x)}
= −2 log f (x|k̂x, θ̂ x) + 2E{log f (x|k̂x, θ̂ x) − log f (x|k̂ y, θ̂ y)}
= −2 log f (x|k̂x, θ̂ x) + 2E[sup(k,θ)Lx(k, θ) − Lx{argsup(k,θ)L y(k, θ)}], (3)

where E denotes the expectation with respect to both x and y, and Lx(k, θ)

= log f (x|k, θ)−log f (x|k∗, θ∗). However, the expectation in (3) cannot be obtained
explicitly, and so we use its asymptotic evaluation in the same way as done for the
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946 Y. Ninomiya

AIC, that is,

−2 log f (x|k̂x, θ̂ x) + 2E{b(k∗, θ∗)} (4)

is considered in place of (3), where b(k∗, θ∗) is the limit to which sup(k,θ)Lx(k, θ) −
Lx{argsup(k,θ)L y(k, θ)} converges in distribution, and then we call E{b(k∗, θ∗)} an
asymptotic bias of themaximum log-likelihood. Here, we take sup(k,θ) and argsup(k,θ)

in a set of (k, θ) such that Lx(k, θ) is OP(1) or positive. If there is no change-point,
E{b(k∗, θ∗)} = E{b(θ∗)} becomes the number of different parameters in θ .

Let us define vector A′(θ∗( j)) to be ∂A(θ ( j))/∂θ ( j)|θ ( j)=θ∗( j) , B( j)
1 (θ∗) =

A(θ∗( j+1)) − A(θ∗( j)) − (θ∗( j+1) − θ∗( j))TA′(θ∗( j)), B( j)
2 (θ∗) = A(θ∗( j)) −

A(θ∗( j+1)) − (θ∗( j) − θ∗( j+1))TA′(θ∗( j+1)), and let Q( j)
k,x be

I{k<k∗( j)}
k∗( j)∑

i=k+1

[(θ∗( j+1) − θ∗( j)
)T{T (xi ) − A′(θ∗( j)

)} − B( j)
1 (θ∗)]

+ I{k>k∗( j)}
k∑

i=k∗( j)+1

[(θ∗( j) − θ∗( j+1)
)T{T (xi ) − A′(θ∗( j+1)

)} − B( j)
2 (θ∗)].

Note that B( j)
1 > 0 and B( j)

2 > 0 because of the convexity of A, and so Q( j)
k,x is a

two-sided random walk with a negative drift and origin k∗( j). We can then obtain the
following theorem, whose derivation may be found in Appendix A.

Theorem 1 Suppose that x is distributed according to the probability function (1)
and that conditions (2) are satisfied. Then, the asymptotic bias in (4) is given by

E{b(k∗, θ∗)} =
m∑

j=1

E(supkQ
( j)
k,x + Q( j)

argsupk Q
( j)
k, y,x

) + pm, (5)

where pm is the number of different parameters in θ .

We can regard E(supk Q
( j)
k,x + Q( j)

argsupk Q
( j)
k, y,x

) (1 ≤ j ≤ m) and pm as the biases

for the change-point k( j) (1 ≤ j ≤ m) and the other parameters θ , respectively.
Because an advantage of using an information criterion is the ease of its execution in
comparison with testing procedures, it is important to evaluate the asymptotic bias (5)
explicitly. In a similar approach to that by Csörgő and Horváth (1997) (Sect. 1.5), we
consider the condition

θ∗( j+1) − θ∗( j) = α
−1/2
n �

( j)
θ∗ and O(1) �= αn = o(n) (6)

for 1 ≤ j ≤ m to obtain the following theorem, where�
( j)
θ∗ is a constant vector. Under

this type of condition, the asymptotic behavior of the change-point estimator changes
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Change-point model selection 947

(see e.g., Dümbgen 1991), and we obtain the following theorem in place of Theorem
1. The derivation of this theorem may be found in Appendix B.

Theorem 2 Under the condition (6), the asymptotic bias in (4) is given by

E{b(k∗, θ∗)} = 3m + pm .

Thus, the AIC for the change-point model is given by

AIC = −2 log f (x|k̂x, θ̂ x) + 6m + 2pm . (7)

We can see that the penalty for each change-point is three times the penalty for each
of the other parameters.

Remark 1 In regularmodels, the asymptotic bias of themaximum log-likelihoodunder
a condition such as (6) is the same as the one without the condition. On the other hand,
in change-point models, as can be seen from Theorems 1 and 2, the bias under the
condition (6) is different than the one without the condition, and so it is needed for
obtaining the AIC to decide whether we assume the condition. Here, we adopt to
assume it because the condition provides an easy and explicit asymptotic bias, which
is importantwhen an information criterion is constructed, asmentioned before. Amore
significant reason is as follows. For the casewhen a structural change is clearly present,
the maximum log-likelihood for the model with the change is clearly larger than that
without the change, and so the model with the change will be selected whether or not
we use the asymptotic bias under the condition. Meanwhile, an accurate evaluation
is needed for the case when the structural change is not so large. In the light of this
notion, we assume the condition to evaluate the bias for the change-point model close
to the no change-point model.

Remark 2 Ninomiya (2005) derived the same AIC only for an independent Gaussian
sequence with changes in mean. However, the bias evaluation in Ninomiya (2005)
is only an approximation, and so we can say that the above theorems justify it theo-
retically. If we use the same approximation method as in Ninomiya (2005), which is
not theoretically justified and does not require conditions such as (6), the evaluated
bias can be obtained as in the following remark. The evaluated biases vary by the
underlying distribution of the sequence and the type of the changing parameter.

Remark 3 Let us consider approximating the random walk by a Brownian motion
with the same mean and variance as those of the random walk, that is, we replace Q( j)

k

with Vk−k∗( j) (c
( j)
1 , c( j)

2 , σ
( j)
1 , σ

( j)
2 ). Here,

Vs(c1, c2, σ1, σ2) =
{−c1|s| + σ1Ws (s ≤ 0)

−c2|s| + σ2Ws (k > 0),
(8)

c( j)
1 = B( j)

1 (θ∗), c( j)
2 = B( j)

2 (θ∗), σ
( j)
1 = {(θ∗( j) − θ∗( j+1))TA′′(θ∗( j))(θ∗( j) −

θ∗( j+1))}1/2 and σ
( j)
2 = {(θ∗( j) − θ∗( j+1))TA′′(θ∗( j+1))(θ∗( j) − θ∗( j+1))}1/2, where
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948 Y. Ninomiya

{Ws}s∈R is a two-sided standard Brownian motion with E(Ws) = 0 and Var(Ws) =
|s|, and A′′(θ∗( j)) = ∂2A(θ ( j))/∂θ ( j)∂θ ( j)T|θ ( j)=θ∗( j) . Then, we can evaluate (5) as
follows:

E{b(k∗, θ∗)} ≈
m∑

j=1

c( j)2
1 σ

( j)4
2 + c( j)

1 c( j)
2 σ

( j)2
1 σ

( j)2
2 + c( j)2

2 σ
( j)4
1

2c( j)
1 c( j)

2 (c( j)
1 σ

( j)2
2 + c( j)

2 σ
( j)2
1 )

+ pm .

The derivation can be easily obtained from the proof of Theorem 2. This result is
applicable to model selection by substituting some estimators of c( j)

1 , c( j)
2 , σ ( j)

1 , and

σ
( j)
2 for them.

Remark 4 Here, we consider the exponential family as the parametric family for
simplicity, but the AIC in (7) can be extended to a more general parametric fam-
ily under some regularity conditions satisfying the asymptotic normality of θ̂ k∗,x
and θ̂ k,x − θ̂ k∗,x = OP(||k − k∗||/n), where θ̂ k,x is the maximum likelihood

estimator of θ∗ based on x when change-points are k. Actually, defining Q( j)
k,x

by I{k<k∗( j)}
∑k∗( j)

i=k+1{gi (θ∗( j+1)) − gi (θ
∗( j))} + I{k>k∗( j)}

∑k
i=k∗( j)+1{gi (θ∗( j)) −

gi (θ
∗( j+1))} in this case, we can obtain Theorem 1, where gi (·) is the log-likelihood

function for xi . Under the condition (6), 2αn times the expectations of gi (θ∗( j+1)) −
gi (θ

∗( j)) for i ∈ [k∗( j−1) + 1, k∗( j)] and gi (θ
∗( j)) − gi (θ

∗( j+1)) for i ∈ [k∗( j) +
1, k∗( j+1)] converge to�

( j)T
θ∗ J (θ∗( j))�

( j)
θ∗ , and αn times their variances also converge

to �
( j)T
θ∗ J (θ∗( j))�

( j)
θ∗ , where J (θ∗( j)) is the Fisher information matrix at θ∗( j). From

this, letting σ ( j) = {�( j)T
θ∗ J (θ∗( j))�

( j)
θ∗ }1/2, supk Q( j)

k,x and Q( j)

argsupk Q
( j)
k, y,x

converge

to supsVs(σ
( j)2/2, σ ( j)2/2, σ ( j), σ ( j)) and Vargsups V

′
s (σ

( j)2/2,σ ( j)2/2,σ ( j),σ ( j))
(σ ( j)2/

2, σ ( j)2/2, σ ( j), σ ( j)), respectively, where Vs is the random process defined in (8)
and V ′

s is its copy. Then, we can obtain Theorem 2 also in this case.

2.2 Auto-regressive sequence

To investigatewhether the results of the previous section hold for dependent sequences,
we consider the example of a change-point model in an auto-regressive sequence. We
define this sequence by {xi , 1 ≤ i ≤ n} satisfying

xi = θ ( j)T zi + εi when k( j−1) + 1 ≤ i ≤ k( j), (9)

for 1 ≤ j ≤ m+1, where θ ( j) = (θ
( j)
1 , . . . , θ

( j)
p )T , zi = (xi−1, . . . , xi−p)

T , k(0) = 0,
and k(m+1) = n. We assume that {εi , 1 ≤ i ≤ n} is an independent Gaussian sequence
with mean 0 and unknown variance θ0, and that 1 + ∑p

h=1 θ
( j)
h ah �= 0 for all a ∈ C

such that |a| < 1. Letting θ = (θ0, θ
(1)T , . . . , θ (m+1)T )T and denoting its true value

by θ∗ = (θ∗
0 , θ∗(1)T , . . . , θ∗(m+1)T )T , we can obtain the following corollary, whose

derivation may be found in Appendix C.
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Change-point model selection 949

Corollary 1 For model (9) satisfying conditions (2), Theorem 1 holds using QAR( j)
k,x

defined by

I{k<k∗( j)}
k∗( j)∑

i=k+1

[(θ∗( j+1) − θ∗( j)
)T ziεi − {(θ∗( j+1) − θ∗( j)

)T zi }2/2]/θ∗
0

+ I{k>k∗( j)}
k∑

i=k∗( j)+1

[(θ∗( j) − θ∗( j+1)
)T ziεi − {(θ∗( j) − θ∗( j+1)

)T zi }2/2]/θ∗
0

in place of Q( j)
k,x . In addition, Theorem 2 holds under the condition (6).

By combining this result with that of the previous subsection, we can treat an
auto-regressive sequence in which both the auto-regressive coefficients θ ( j) and the
variance θ0 change.

3 Simulation study

We investigated the performance of the AIC in (7) by conducting simulations. For
comparison, we also considered the criterion proposed by Jones and Dey (1995),
which has been used in some applications (e.g., Hurrell and Trenberth 1997). This
criterion uses 2m + 2pm as the penalty term without considering the irregularity of
the change-points. We denote this naive criterion by AICnaive to distinguish it from
the AIC in (7).

Consider two simple models: an independent Gaussian sequence with one change
in variance and an auto-regressive sequence with one change in coefficient, such that

xi =
{

μ + σ (1)εi
μ + σ (2)εi

and xi =
{
a(1)xi−1 + σεi (1 ≤ i ≤ k)
a(2)xi−1 + σεi (k + 1 ≤ i ≤ n)

, (10)

where x0 = 0 and {εi , 1 ≤ i ≤ n} is an independent Gaussian sequence with
mean 0 and variance 1. The penalty terms of the AIC in (7) and AICnaive become
6 × 1 + 2 × 3 = 12 and 2 × 1 + 2 × 3 = 8, respectively, because there are one
change-point and three regular parameters. To investigate whether these penalty terms
provide a sufficiently accurate approximation for the bias of twice the maximum log-
likelihood, we evaluate them numerically for several sets of true values of parameters
and data sizes of the above model. The results are given in Table 1. We can see that
these values lie close to 12, and are certainly much closer to 12 than to 8.

To understand the influence of model misspecification, we evaluate the bias under
a misspecified model. Let us consider the first model in (10). As the distribution of
εi , we use a mixture distribution whose components are N (0, 1) andU (−√

3,
√
3) as

the true one, while N (0, 1) is assumed in the model, where we denote the continuous
uniform distribution on [a, b] byU (a, b). The results are given in Table 2. In a part of
the table, we set σ ∗(1) = σ ∗(2), which means that not only the distribution but also the
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950 Y. Ninomiya

Table 1 Bias of twice the maximum log-likelihood

n: 50 n: 100 n: 200 n: 400

First model (μ∗: 0, k∗: n/2) σ∗(1): 0.95 σ∗(2): 1.05 12.79 11.67 11.33 11.23

σ∗(1): 0.9 σ∗(2): 1.1 12.80 11.66 11.65 11.84

σ∗(1): 0.85 σ∗(2): 1.15 13.10 12.00 11.95 12.10

σ∗(1): 0.8 σ∗(2): 1.2 13.10 12.69 12.46 12.34

σ∗(1): 0.75 σ∗(2): 1.25 13.28 12.77 12.67 12.49

Second model (σ∗: 1, k∗: n/2) a∗(1): 0 a∗(2): 0.2 11.08 11.77 12.42 13.03

a∗(1): 0 a∗(2): 0.4 11.36 11.83 12.25 12.30

a∗(1): 0 a∗(2): 0.6 12.01 12.25 12.43 12.37

a∗(1): 0.2 a∗(2): 0.4 11.36 11.95 12.66 13.04

a∗(1): 0.2 a∗(2): 0.6 12.00 12.16 12.37 12.24

a∗(1): 0.2 a∗(2): 0.8 13.18 13.37 13.55 13.41

These values are obtained by Monte Carlo simulation with 10,000 repetitions using the models (10),
that is,

∑10,000
h=1 [sup(k,θ)Lx[2h−1] (k, θ) − Lx[2h−1] {argsup(k,θ)Lx[2h] (k, θ)}]/10,000, where {x[h] =

(x [h]
1 , . . . , x [h]

n ) | 1 ≤ h ≤ 20,000} are 20,000 independent sets of random samples generated using
the models (10)

Table 2 Bias of twice the maximum log-likelihood under model misspecification

n: 50 n: 100 n: 200 n: 400

σ∗(1): 1.0 σ∗(2): 1.0 ρ: 0.1 12.06 11.06 10.75 10.71

ρ: 0.3 11.08 9.95 9.61 9.56

ρ: 0.5 9.71 8.75 8.52 8.47

σ∗(1): 0.9 σ∗(2): 1.1 ρ: 0.1 12.11 11.16 11.07 11.32

ρ: 0.3 11.09 10.00 9.87 10.13

ρ: 0.5 9.78 8.94 8.79 9.02

σ∗(1): 0.8 σ∗(2): 1.2 ρ: 0.1 12.13 11.74 11.75 11.78

ρ: 0.3 11.36 10.58 10.55 10.35

ρ: 0.5 9.94 9.44 9.31 9.17

These values are obtained by Monte Carlo simulation with 10,000 repetitions using the first model in (10)
in the same way as in Table 1. As the distribution of εi in (10), a mixture distribution whose components
are N (0, 1) with weight 1 − ρ and U (−√

3,
√
3) with weight ρ is used as the true one, while N (0, 1) is

assumed in the model

number of change-points are misspecified in the model. The true bias becomes smaller
in comparison with our evaluation as the model becomes more misspecified; however,
we can say that the influence is negligible if the model is not heavily misspecified even
when the number of change-points is misspecified.

To check the performances of the AIC in (7) and AICnaive simply, we evaluate the
rate of selecting one change against no changes by the AIC and AICnaive for the data
simulated according to the models (10). The results are given in Table 3. First, let us
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Change-point model selection 951

Table 3 Rate of selecting the one change-point model versus the no change-point model by the AICnaive
and AIC in (7)

n: 50 (%) n: 100 (%) n: 200 (%) n: 400 (%)

First model (μ∗: 0, k∗: n/2) σ∗(1): 0.9 AICnaive 59.8 73.6 86.8 96.6

σ∗(2): 1.1 AIC 15.9 25.8 45.7 73.6

σ∗(1): 0.8 AICnaive 80.7 95.1 99.7 100.0

σ∗(2): 1.2 AIC 39.3 70.8 95.2 100.0

σ∗(1): 1 AICnaive 49.2 56.7 62.8 69.0

σ∗(2): 1 AIC 9.3 11.5 14.0 15.9

Second model (σ∗: 1, k∗: n/2) a∗(1): 0 AICnaive 51.1 75.6 93.8 99.6

a∗(2): 0.4 AIC 14.3 36.5 69.7 95.2

a∗(1): 0.2 AICnaive 52.5 78.2 94.9 99.8

a∗(2): 0.6 AIC 16.1 39.8 74.3 97.2

a∗(1): 0.3 AICnaive 27.6 37.1 44.8 52.3

a∗(2): 0.3 AIC 3.2 5.0 6.8 8.6

These values are obtained by Monte Carlo simulations with 10,000 repetitions using the models (10)

consider the values for the one change-point model when the data size is small, which
will be close to the no change-point model. In this case, we cannot say whether it is
better to select no changes or one change from the viewpoint of the original purpose of
the AIC because the original purpose is not to identify the true model, but to provide
a distribution close to the true one. Note that, we will show the clear superiority of
the AIC in (7) from this viewpoint in next simulation study. Next, let us consider
the values for the one change-point model when the data size is large, which will
be far from the no change-point model. In this case, one change may be desirable,
and we can see that both the AIC and AICnaive can select one change with a high
probability. Finally, let us see the values for the no change-point model. In this case,
we definitely want to select no change. However, the values for the AICnaive are too
large.

Let us compare theAIC in (7) andAICnaive undermore realistic situations. Consider
an independent exponential sequence such that

xi = λ( j)εi when k( j−1) + 1 ≤ i ≤ k( j) (11)

for 1 ≤ j ≤ m + 1, where k(0) = 0 and k(m+1) = n. We assume that εi (1 ≤ i ≤ n) is
independently distributed according to Ex(1), where we denote the exponential dis-
tribution with mean λ by Ex(λ). We consider three as the true number of the change-
points and randomly determine the true change-point k∗( j) and the true amount of
change λ∗( j+1)/λ∗( j) using uniform distributions for 1 ≤ j ≤ 3. For such sequences,
we evaluate the Kullback–Leibler divergence between the true and estimated distri-
butions and the rate of selecting an m change-points model. The results are given in
Table 4. The values by a naive BIC ( Yao 1988) are included only for comparison. We
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Table 4 Average Kullback–Leibler (K–L) divergence between the true and estimated distributions and rate
of selecting the m change-points model by the AICnaive, AIC in (7), and BIC

K–L ≤1(%) 2 (%) 3 (%) 4 (%) ≥5(%)

n: 100 ξ : 2.0 AICnaive 10.60 0.0 0.7 64.6 26.3 8.4

AIC 9.71 1.0 4.7 90.2 3.9 0.2

BIC 9.86 2.1 6.8 89.0 2.1 0.1

n: 100 ξ : 1.5 AICnaive 9.94 0.3 4.0 64.0 24.4 7.4

AIC 9.77 6.0 18.4 72.3 3.2 0.1

BIC 10.17 9.6 23.1 65.7 1.6 0.0

n: 200 ξ : 1.5 AICnaive 9.64 0.0 0.4 45.1 32.1 22.5

AIC 7.86 0.5 3.5 87.6 7.6 0.8

BIC 7.96 2.2 6.8 88.8 2.2 0.1

n: 200 ξ : 1.0 AICnaive 9.07 0.2 3.2 45.9 30.0 20.8

AIC 8.17 4.8 18.1 70.8 5.7 0.7

BIC 9.09 11.4 28.9 58.3 1.3 0.1

n: 400 ξ : 1.0 AICnaive 10.46 0.0 0.4 26.1 29.1 44.5

AIC 7.65 0.8 4.9 80.7 11.1 2.5

BIC 7.77 3.7 12.5 82.2 1.6 0.1

n: 400 ξ : 0.5 AICnaive 10.11 0.4 4.4 26.4 29.2 39.6

AIC 8.15 7.6 29.5 53.7 7.8 1.4

BIC 9.12 21.2 42.5 35.5 0.8 0.0

These values are obtained by Monte Carlo simulation with 10,000 repetitions using the model (11). The
three true change-points k∗(1), k∗(2), and k∗(3) are randomly determined using the uniform distribution
under the restriction where k∗(1), k∗(2) − k∗(1), k∗(3) − k∗(2), and n − k∗(3) are larger than 0.1n, and the
true amount of change λ∗( j+1)/λ∗( j) is a realization of 2u1, j (ξ+u2, j ) for 1 ≤ j ≤ 3, where u1, j and u2, j
are independent random variables distributed according to the discrete uniform distribution on {−1, 1} and
U (0, 1), respectively

can say that the AIC in (7) is superior to the other criteria from the viewpoint of the
original purpose of the AIC because the AIC provides a smaller average divergence
than the others in every setting. Let us examine the rates to check their performances
in more detail. The AICnaive tends to select too many change-points when compared
to the AIC, especially when the sample size is large. If the amount of change is
large, the rate of selecting three changes by the BIC is sometimes higher than that
by the AIC, while the difference is small. Otherwise, the BIC tends to select too few
change-points when compared to the AIC. Thus, we can also say from the rates that
the AIC in (7) provides reasonable model selection in comparison with the AICnaive
and BIC.

In Table 5, we evaluate such divergences and rates under model misspecification
for reference. Comparing to the case without model misspecification, every criterion
tends to select fewer change-points. This is because the true bias becomes small under
model misspecification, and so this result is consistent with that in Table 2. In addition,
even in this case, the AIC in (7) provides a smaller average divergence than the others,
and so we can say that the AIC is superior to the other criteria.
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Table 5 Average Kullback–Leibler (K–L) divergence between the true and estimated distributions and rate
of selecting them change-points model by the AICnaive, AIC in (7), and BIC under model misspecification

K–L ≤1 (%) 2 (%) 3 (%) 4 (%) ≥5 (%)

n: 200 ξ : 1.5 AICnaive 6.91 0.0 0.4 62.0 26.2 11.3

AIC 5.83 0.6 2.6 93.9 2.8 0.2

BIC 6.17 2.3 5.8 91.3 0.6 0.0

n: 200 ξ : 1.0 AICnaive 6.55 0.3 3.6 60.8 25.0 10.3

AIC 6.37 5.6 17.5 74.6 2.3 0.1

BIC 7.53 12.6 27.9 59.1 0.4 0.0

These values are obtained by Monte Carlo simulation with 10,000 repetitions using the model (11). As the
distribution of εi in (11), a mixture distribution whose components are Ex(1) with weight 0.7 and U (0, 2)
with weight 0.3 is used as the true one, while Ex(1) is assumed in the model. The three true change-points
and the true amounts of changes are randomly determined in the same way as in Table 4

4 Conclusion

Recently, various information criteria have been proposed by generalizing and modi-
fying the idea of the AIC, e.g., RIC (Foster and George 1994), DIC (Spiegelhalter et
al. 2002), FIC (Claeskens and Hjort 2003), and the AIC for the LASSO (Zou et al.
2007). For change-point models, however, there was not even a proper AIC, in spite of
a great demand of these models in various fields such as econometrics (e.g., Hsu 1979;
Hamilton 1989; Garcia and Perron 1996; Chen and Gupta 1997) and biometrics (e.g.,
Avery and Henderson 1999; Siegmund 2004; Zhang and Siegmund 2007; Ninomiya
and Yoshimoto 2008). In this study, the proper AIC for change-point models has been
derived explicitly by evaluating the asymptotic bias of the maximum log-likelihood. It
has been shown that each change-point requires 6 as the penalty in the AIC, while each
of the other parameters requires 2. We can then conduct an easy change-point model
selection. In addition, it has been shown by a simulation study that the asymptotic
evaluation approximates the bias accurately, and the model selection by the AIC is
reasonable.We, therefore, recommend the use of theAIC for applications, as described
byHurrell and Trenberth (1997) for example, which currently use the AICnaive, a naive
AIC proposed by Jones and Dey (1995).

5 Appendix: Mathematical proofs

5.1 Proof of theorem 1

Let θ̂ k,x be themaximum likelihood estimator of θ∗ based on xwhen change-points are
k = (k(1), . . . , k(m))T , i.e., θ̂ k,x = argsupθ Lx(k, θ), and let L̂x y(k) be Lx(k, θ̂ k, y).
Then, we can see that b(k∗, θ∗) in the theorems is the limit to which

supk∈K L̂xx(k) − L̂x y{argsupk∈K L̂ y y(k)}
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converges in distribution, where K is a set of k such that L̂xx(k) is OP(1) or positive,
that is, P{L̂xx(k) > −M} does not converge to 0 for some M > 0. In addition, we
use Aθ , A′

θ , A
′′
θ , and T x in place of A(θ), A′(θ), A′′(θ), and T (x) to save space. We

use this notation throughout the appendix.
Let us consider the case k − k∗ = O(1) and the case k − k∗ �= O(1), separately.

In the case k − k∗ = O(1), θ̂ k,x = θ̂ k∗,x + OP(n−1) = θ∗ + OP(n−1/2), and so we
have

log f (x|k, θ̂ k,x) − log f (x|k, θ∗)

=
m+1∑

j=1

(k( j) − k( j−1))(θ∗( j) − θ̂
( j)
k,x)

TA′′
θ∗( j) (θ

∗( j) − θ̂
( j)
k,x)/2 + oP(1)

=
m+1∑

j=1

(k∗( j) − k∗( j−1))(θ∗( j) − θ̂
( j)
k∗,x)

T A′′
θ∗( j) (θ

∗( j) − θ̂
( j)
k∗,x)/2 + oP(1)

= log f (x|k∗, θ̂ k∗,x) − log f (x|k∗, θ∗) + oP(1), (12)

where k(0) = 0 and k(m+1) = n. The first and third equalities are obtained from a

Taylor expansion, and the second one is obtained from (θ∗( j) − θ̂
( j)
k∗,x) − (θ∗( j) −

θ̂
( j)
k,x) = OP(n−1) and (k∗( j) − k∗( j−1)) − (k( j) − k( j−1)) = O(1) together with

θ∗( j) − θ̂
( j)
k,x = OP(n−1/2) and θ∗( j) − θ̂

( j)
k∗,x = OP(n−1/2). Therefore, it follows that

log f (x|k, θ̂ k,x) − log f (x|k∗, θ̂ k∗,x)

= log f (x|k, θ∗) − log f (x|k∗, θ∗) + oP(1)

=
m∑

j=1

[
I{k( j)<k∗( j)}

k∗( j)∑

i=k( j)+1

{(θ∗( j+1) − θ∗( j)
)T Txi − Aθ∗( j+1) + Aθ∗( j)}

+ I{k( j)>k∗( j)}
k( j)∑

i=k∗( j)+1

{(θ∗( j) − θ∗( j+1)
)T T xi − Aθ∗( j) + Aθ∗( j+1)}

]
+ oP(1)

=
m∑

j=1

Q( j)
k( j),x

+ oP(1) = OP(1). (13)

In addition, it holds that

log f (x|k∗, θ̂ k∗,x) − log f (x|k∗, θ∗) = χ2
pm/2 + oP(1) = OP(1), (14)

where χ2
pm is a random variable distributed according to the χ2 distribution of degree

pm . From (13) and (14), we have

L̂xx(k) = OP(1) when k − k∗ = O(1). (15)
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On the other hand, we can obtain

P{L̂xx(k) > −M} → 0 when k − k∗ �= O(1) (16)

for arbitrary M > 0, where k− k∗ �= O(1)means that |k( j) −k∗( j)| → ∞ as n → ∞
for some j . To derive it, let us consider the case 0 < k∗( j ′) − k( j ′) �= O(1) and
k( j) − k∗( j) = O(1) for j �= j ′ as an example. In this case, we have

log f (x|k, θ̂ k,x) − log f (x|k∗, θ̂ k∗,x)

=
k( j ′)∑

i=k( j ′−1)+1

{(θ̂ ( j ′)
k,x − θ̂

( j ′)
k∗,x)

T T xi − A
θ̂

( j ′)
k,x

+ A
θ̂

( j ′)
k∗,x

}

+
k∗( j ′)∑

i=k( j ′)+1

{(θ̂ ( j ′+1)
k,x − θ̂

( j ′)
k∗,x)

T T xi − A
θ̂

( j ′+1)
k,x

+ A
θ̂

( j ′)
k∗,x

}

+
k( j ′+1)∑

i=k∗( j ′)+1

{(θ̂ ( j ′+1)
k,x − θ̂

( j ′+1)
k∗,x )T T xi − A

θ̂
( j ′+1)
k,x

+ A
θ̂

( j ′+1)
k∗,x

} + OP(1)

=
k( j ′)∑

i=k( j ′−1)+1

[(θ̂ ( j ′)
k,x − θ̂

( j ′)
k∗,x)

T {Txi − A′
θ̂

( j ′)
k∗,x

} − B
θ̂

( j ′)
k,x ,θ̂

( j ′)
k∗,x

]

+
k∗( j)∑

i=k( j ′)+1

[(θ̂ ( j ′+1)
k,x − θ̂

( j ′)
k∗,x)

T {Txi − A′
θ̂

( j ′)
k∗,x

} − B
θ̂

( j ′+1)
k,x ,θ̂

( j ′)
k∗,x

]

+
k( j ′+1)∑

i=k∗( j ′)+1

[(θ̂ ( j ′+1)
k,x − θ̂

( j ′+1)
k∗,x )T {Txi − A′

θ̂
( j ′+1)
k∗,x

} − B
θ̂

( j ′+1)
k,x ,θ̂

( j ′+1)
k∗,x

] + OP(1),

(17)

where Bθ†,θ‡ = Aθ† − Aθ‡ − (θ† − θ‡)T A′
θ‡
. It holds from the central limit theorem

that
∑k( j ′)

i=k( j ′−1)+1
(θ̂

( j ′)
k,x − θ̂

( j ′)
k∗,x)

T {Txi −A′
θ̂

( j ′)
k∗,x

}+∑k∗( j)

i=k( j ′)+1
(θ̂

( j ′+1)
k,x − θ̂

( j ′)
k∗,x)

T {T xi −

A′
θ̂

( j ′)
k∗,x

} + ∑k( j ′+1)

i=k∗( j ′)+1
(θ̂

( j ′+1)
k,x − θ̂

( j ′+1)
k∗,x )T {T xi − A′

θ̂
( j ′+1)
k∗,x

} is OP{(k∗( j ′) − k( j ′))1/2}

because θ̂
( j ′)
k,x − θ̂

( j ′)
k∗,x and θ̂

( j ′+1)
k,x − θ̂

( j ′+1)
k∗,x are OP{n−1(k∗( j ′) − k( j ′))}, and it holds

that
∑k( j ′)

i=k( j ′−1)+1
B

θ̂
( j ′)
k,x ,θ̂

( j ′)
k∗,x

+∑k∗( j)

i=k( j ′)+1
B

θ̂
( j ′+1)
k,x ,θ̂

( j ′)
k∗,x

+∑k( j ′+1)

i=k∗( j ′)+1
B

θ̂
( j ′+1)
k,x ,θ̂

( j ′+1)
k∗,x

is

positive by its definition and is not oP(k∗( j ′) − k( j ′)) because θ̂
( j ′+1)
k,x − θ̂

( j ′)
k∗,x is not

oP(1). Then, it follows that

P{log f (x|k, θ̂ k,x) − log f (x|k∗, θ̂ k∗,x) > −M} → 0, (18)
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and we can say from (14) and (18) that (16) holds. Thus, from (15) and (16), we obtain
that K = {k | (k − k∗) = O(1)}, and so (13) and (14) hold. Therefore, we have

supk∈K L̂xx(k) =
m∑

j=1

supk∈K ( j)Q
( j)
k,x + χ2

pm/2 + oP(1), (19)

where K ( j) = {k( j) | k ∈ K }, and

argsupk∈K L̂ y y(k) = k̃ y + oP(1), (20)

where k̃( j)
y = argsupk∈K ( j)Q

( j)
k, y and k̃ y = (k̃(1)

y , . . . , k̃(m)
y ). Recalling that y is a

copy of x, it follows that k̃( j)
y − k∗( j) = OP(1) and θ̂

( j)

k̃ y, y
= θ̂

( j)
k∗, y + OP(n−1) =

θ∗( j) + OP(n−1/2) for all j . Using these and applying Taylor expansion, we have

log f (x|k̃ y, θ
∗) − log f (x|k̃ y, θ̂ k̃ y, y

)

= −
m+1∑

j=1

(θ̂
( j)

k̃ y, y
− θ∗( j)

)T
[ k̃( j)

y∑

i=k̃( j−1)
y +1

{T xi − A′
θ∗( j)}

]

+
m+1∑

j=1

(k̃( j)
y − k̃( j−1)

y )(θ̂
( j)

k̃ y, y
− θ∗( j)

)T A′′
θ∗( j) (θ̂

( j)

k̃ y, y
− θ∗( j)

)/2 + oP(1)

= −
m+1∑

j=1

(θ̂
( j)

k̃ y, y
− θ∗( j)

)T
[ k∗( j)∑

i=k∗( j−1)+1

{T xi − A′
θ∗( j)}

]

+
m+1∑

j=1

(k∗( j) − k∗( j−1))(θ̂
( j)

k̃ y, y
− θ∗( j)

)T A′′
θ∗( j) (θ̂

( j)

k̃ y, y
− θ∗( j)

)/2 + oP(1)

= −
m+1∑

j=1

(θ̂
( j)
k∗, y − θ∗( j)

)T
[ k∗( j)∑

i=k∗( j−1)+1

{Txi − A′
θ∗( j)}

]

+
m+1∑

j=1

(k∗( j) − k∗( j−1))(θ̂
( j)
k∗, y − θ∗( j)

)T A′′
θ∗( j) (θ̂

( j)
k∗, y − θ∗( j)

)/2 + oP(1)

=
m+1∑

j=1

N( j)N ′( j) + χ2′
pm/2 + oP(1), (21)

where k̃(0)
y = 0 and k̃(m+1)

y = n. Here, χ2′
pm is another random variable distributed

according to the χ2 distribution of degree pm , and N( j) and N ′( j) are two indepen-
dent random vectors distributed according to normal distributions N (0, A′′−1

θ∗( j) ) and
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N (0, A′′
θ∗( j) ), respectively, where 0 is a zero-vector. In addition, we obtain

log f (x|k∗, θ∗) − log f (x|k̃ y, θ
∗)

=
m∑

j=1

[
I{k̃( j)

y <k∗( j)}
k∗( j)∑

i=k̃( j)
y +1

{(θ∗( j) − θ∗( j+1)
)T T xi − Aθ∗( j) + Aθ∗( j+1)}

+ I{k̃( j)
y >k∗( j)}

k̃( j)
y∑

i=k∗( j)+1

{(θ∗( j+1) − θ∗( j)
)T Txi − Aθ∗( j+1) + Aθ∗( j)}

]
+ oP(1)

=
m∑

j=1

Q( j)

argsupk∈K ( j) Q
( j)
k, y,x

+ oP(1). (22)

From (20), (21), and (22), it follows that

−L̂x y{argsupk∈K L̂ y y(k)} = −L̂x y(k̃ y) + oP(1)

=
m∑

j=1

Q( j)

argsupk∈K ( j) Q
( j)
k, y,x

+
m+1∑

j=1

N( j)N ′( j) + χ2
pm/2 + oP(1). (23)

From (19) and (23), we can obtain the theorem.

5.2 Proof of theorem 2

To begin with, we check that (19), (20), and (23) also hold under the condition (6). Let
βn be an increasing sequence satisfying o(αn) �= βn = O(n). When k− k∗ = O(βn),
θ̂ k,x = θ̂ k∗,x + OP{n−1 ∑m

j=1(θ
∗( j+1) − θ∗( j))βn} = θ̂ k∗,x + OP(n−1αn

−1/2βn).
Using this relation, we can obtain the following in the same way as in the proof
of Theorem 1. First, we consider the case where k − k∗ = O(αn). In this case,
(12), (13), and (14) hold, and so (15) holds using k − k∗ = O(αn) in place of
k − k∗ = O(1). Next, we consider the case where 0 < k∗( j ′) − k( j ′) �= O(αn)

and k( j) − k∗( j) = O(αn) for j �= j ′ as an example. In this case, (17) holds,
∑k( j ′)

i=k( j ′−1)+1
(θ̂

( j ′)
k,x − θ̂

( j ′)
k∗,x)

T (T xi − A′
θ̂

( j ′)
k∗,x

) + ∑k∗( j)

i=k( j ′)+1
(θ̂

( j ′+1)
k,x − θ̂

( j ′)
k∗,x)

T (T xi −

A′
θ̂

( j ′)
k∗,x

) + ∑k( j ′+1)

i=k∗( j ′)+1
(θ̂

( j ′+1)
k,x − θ̂

( j ′+1)
k∗,x )T (T xi − A′

θ̂
( j ′+1)
k∗,x

) = OP{α−1/2
n (k∗( j ′) −

k( j ′))1/2} and
∑k( j ′)

i=k( j ′−1)+1
B

θ̂
( j ′)
k,x ,θ̂

( j ′)
k∗,x

+ ∑k∗( j)

i=k( j ′)+1
B

θ̂
( j ′+1)
k,x ,θ̂

( j ′)
k∗,x

+ ∑k( j ′+1)

i=k∗( j ′)+1

B
θ̂

( j ′+1)
k,x ,θ̂

( j ′+1)
k∗,x

�= oP{α−1
n (k∗( j ′) − k( j ′))}, and so we can say that (16) holds using

k − k∗ �= O(αn) in place of k − k∗ �= O(1). Thus, we obtain K = {k | (k − k∗) =
O(αn)}, and so (19), (20), (21), (22), and (23) all hold.

Thus, we consider the case k − k∗ = O(αn). Let {Ws}s∈R be a two-sided
standard Brownian motion with E(Ws) = 0 and var(Ws) = |s|, and let σ ( j) =
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{�( j)T
θ∗ A′′(θ∗( j))�

( j)
θ∗ }1/2. Under the condition (6), Q( j)

k∗( j)+[sαn ],x can be written as

I{s<0}α−1/2
n

k∗( j)∑

i=k∗( j)+[sαn ]+1

{�( j)T
θ∗ (T xi − A′

θ∗( j) )} − |s|αn Bθ∗( j+1),θ∗( j)

+ I{s>0}α−1/2
n

k∗( j)+[sαn ]∑

i=k∗( j)+1

{−�
( j)T
θ∗ (Txi − A′

θ∗( j+1) )} − |s|αn Bθ∗( j),θ∗( j+1) ,

and all of the terms�( j)T
θ∗ A′′

θ∗( j+1)�
( j)
θ∗ , 2αn Bθ∗( j+1),θ∗( j) , and2αn Bθ∗( j),θ∗( j+1) converge

to σ ( j)2. It then follows from the functional central limit theorem that Q( j)
k∗( j)+[sαn ],x

converges in distribution to Vs(σ
( j)2/2, σ ( j)2/2, σ ( j), σ ( j)), where

Vs(c1, c2, σ1, σ2) =
{−c1|s| + σ1Ws (s ≤ 0)

−c2|s| + σ2Ws (s > 0).

Therefore, we have

supk Q
( j)
k,x

d→ supsVs(σ
( j)2/2, σ ( j)2/2, σ ( j), σ ( j)) (24)

and

Q( j)

argsupk Q
( j)
k, y,x

d→ Vargsups V
′
s (σ

( j)2/2,σ ( j)2/2,σ ( j),σ ( j))
(σ ( j)2/2, σ ( j)2/2, σ ( j), σ ( j)),

(25)

where V ′
s is a copy of Vs .

For distributions about the maximum of a Brownian motion with a negative drift,
the results by Bhattacharya and Brockwell (1976) or Shepp (1979) can be used. First,
using the equality

P{sups>0(Ws − cs) > a} = exp(−2ac)

for arbitrary a, c > 0, we have

E{supsVs(c1, c2, σ1, σ2)}
=

∫ ∞

0
P{supsVs(c1, c2, σ1, σ2) > a}da

=
∫ ∞

0
[exp(−2c1a/σ 2

1 ) + exp(−2c2a/σ 2
2 ) − exp{−2(c1σ

2
2 + c2σ

2
1 )a/σ 2

1 σ 2
2 }]da

= (c21σ
4
2 + c1c2σ

2
1 σ 2

2 + c22σ
4
1 )/{2c1c2(c1σ 2

2 + c2σ
2
1 )}. (26)
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Next, we use the property that the probability function of argsupsVs(c1, c2, σ1, σ2) is

f argsupV (s|c1, c2, σ1, σ2) =
{
g(−s|c1/σ1, c2σ1/σ 2

2 ) (s < 0)
g(s|c2/σ2, c1σ2/σ 2

1 ) (s > 0),

where g(s|a1, a2) is

2a1(a1 + 2a2) exp{2a2(a1 + a2)s}�{−(a1 + 2a2)s
1/2} − 2a21�(−a1s

1/2).

Then, we have

E{Vargsups V
′
s (c1,c2,σ1,σ2)

(c1, c2, σ1, σ2)}

=
∫ ∞

0
sg(s|c1/σ1, c2σ1/σ 2

2 )c1ds +
∫ ∞

0
sg(s|c2/σ2, c1σ2/σ 2

1 )c2ds

= c2(2c1σ
2
2 + c2σ

2
1 )σ 4

1 /{2c1(c1σ 2
2 + c2σ

2
1 )2}

+ c1(2c2σ
2
1 + c1σ

2
2 )σ 4

2 /{2c2(c1σ 2
2 + c2σ

2
1 )2}

= (c21σ
4
2 + c1c2σ

2
1 σ 2

2 + c22σ
4
1 )/{2c1c2(c1σ 2

2 + c2σ
2
1 )}. (27)

Here, the second equality holds because

∫ ∞

0
tg(t |a1, a2)dt = a2(2a1 + a2)/{2a21(a1 + a2)

2}

from Stryhn (1996). By setting (c1, c2, σ1, σ2) = (σ ( j)2/2, σ ( j)2/2, σ ( j), σ ( j)) in
(26) and (27), we have

3/2 = E{supsVs(σ ( j)2/2, σ ( j)2/2, σ ( j), σ ( j))}
= E{Vargsups V

′
s (σ

( j)2/2,σ ( j)2/2,σ ( j),σ ( j))
(σ ( j)2/2, σ ( j)2/2, σ ( j), σ ( j))}. (28)

From (24), (25), and (28), we can obtain the theorem.

5.3 Proof of corollary

Similar to the independent case, when k − k∗ = O(1) without the condition (6), it
follows that θ̂ k,x = θ̂ k∗,x + OP(n−1) and
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log f (x|k, θ∗) − log f (x|k∗, θ∗)

=
m∑

j=1

[
I{k( j)<k∗( j)}

k∗( j)∑

i=k( j)+1

{(xi − θ∗( j)T zi )2 − (xi − θ∗( j+1)T zi )2}/(2θ∗
0 )

+ I{k( j)>k∗( j)}
k( j)∑

i=k∗( j)+1

{(xi − θ∗( j+1)T zi )2 − (xi − θ∗( j)T zi )2}/(2θ∗
0 )

]
+ o(1)

=
m∑

j=1

QAR( j)
k,x + o(1).

We can then easily obtain Theorem 1 in the same way.
Under the condition (6), QAR( j)

k∗+[sαn ],x can be written as

I{s<0}
[
α

−1/2
n

k∗( j)∑

i=k∗( j)+[sαn ]+1

�
( j)T
θ∗ ziεi/θ∗

0 − α−1
n

k∗( j)∑

i=k∗( j)+[sαn ]+1

(�
( j)T
θ∗ zi )2/(2θ∗

0 )
]

+ I{s>0}
[
α

−1/2
n

k∗( j)+[sαn ]∑

i=k∗( j)+1

−�
( j)T
θ∗ ziεi/θ∗

0 − α−1
n

k∗( j)+[sαn ]∑

i=k∗( j)+1

(�
( j)T
θ∗ zi )2/(2θ∗

0 )
]
.

By applying the functional central limit theorem for martingales to α
−1/2
n

∑

�
( j)T
θ∗ ziεi/θ∗

0 , applying the uniform law of large numbers to α−1
n

∑
(�

( j)T
θ∗ zi )2/(2θ∗

0 ),

and using the stationarity of x, it follows that QAR( j)
k∗+[sαn ],x converges in distribution to

{var(�( j)T
θ∗ zi )/θ∗

0 }1/2Ws − |s|var(�( j)T
θ∗ zi )/(2θ∗

0 ).

We can thus obtain Theorem 2.
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