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Abstract Change-point problems have been studied for a long time not only because
they are needed in various fields but also because change-point models contain an
irregularity that requires an alternative to conventional asymptotic theory. The purpose
of this study is to derive the AIC for such change-point models. The penalty term of
the AIC is twice the asymptotic bias of the maximum log-likelihood, whereas it is
twice the number of parameters, 2 pg, in regular models. In change-point models, it is
not twice the number of parameters, 2m + 2 p,,,, because of their irregularity, where m
and p,, are the numbers of the change-points and the other parameters, respectively. In
this study, the asymptotic bias is shown to become 6m + 2 p,,,, which is simple enough
to conduct an easy change-point model selection. Moreover, the validity of the AIC is
demonstrated using simulation studies.

Keywords Brownian motion - Functional central limit theorem - Information
criterion - Irregularity - Random walk - Structural change
1 Introduction

Model selection by a testing procedure in change-point problems, including the estima-
tion of the number of change-points, has been studied for a long time (e.g., Vostrikova
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1981; Haccou and Meelis 1988; Inclan and Tiao 1994; Bai and Perron 1998; Aue et al.
2009). This is not only because many important applications require such an approach
but also because the change-point as a parameter has an irregularity. For example,
conventional asymptotic theory does not hold for the change-point, and so a specific
theory as an alternative is needed for change-point problems (see e.g., Csorg6 and
Horvath 1997).

In this study, we consider model selection by an information criterion for change-
point problems. This topic originated in the studies of Yao (1988) and Jones and
Dey (1995). They, respectively, proposed a naive Bayes information criterion (BIC,
Schwarz 1978) and a naive Akaike’s information criterion (AIC, Akaike 1973) by
ignoring the irregularity of the change-points. That is, their respective penalty terms
are (m + py,) logn and 2m + 2 p,,,, where m, p,,, and n are the number of the change-
points, the number of the other parameters, and the data size, respectively. Other than
these information criteria, information criteria obtained by omitting all penalties for
change-points have also been used (e.g., Chen and Gupta 1997). The first known article
proposing an information criterion considering the irregularity of change-points is that
of Siegmund (2004). He treated a model used in mapping quantitative trait loci (QTL)
for genetic linkage analysis, which is closely related to an independent Gaussian
sequence with a change in mean, and derived a BIC from the Bayes factor of the
model. The result was generalized by Zhang and Siegmund (2007) for an independent
Gaussian sequence with multiple changes in mean. Hannart and Naveau (2012) also
derived a BIC-type criterion for a Bayesian change-point model from its Bayes factor.
In such BICs, the penalty terms are different than conventional penalty terms owing
to the irregularity of the models.

This study aims to derive the AIC for general change-point models based on the
original definition of the AIC to consider the irregularity of change-points. The models
are the ones usually adopted in change-point problems and are particularly different
than the model in Siegmund (2004) or Hannart and Naveau (2012) and generalizations
of the model in Zhang and Siegmund (2007). The penalty term of the AIC is twice
the asymptotic bias of the maximum log-likelihood from the expected log-likelihood,
whereas this is 2 pg in regular models, where pg is the number of parameters. In Sect. 2,
we show that the penalty term for the change-point model depends on the expected
value of the maximum of a random walk with a negative drift. Furthermore, we show
that the penalty becomes 6m + 2p,, (not 2m + 2 p,,) under the condition considered
by Csorgd and Horvath (1997) (Sect. 1.5). In Sect. 3, we demonstrate the validity of
the AIC using a simulation study.

2 Main results

2.1 Independent sequence

For an independent multivariate sequence {x;, 1 <i < n}, let us consider a change-
point model with m change-points k1, . .., k™ whose distribution belongs to a para-

metric family. For simplicity, we consider the exponential family as the parametric
family like in Csorgd and Horvath (1997) (Sect. 1.5), that is, the probability function
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of x; for this model is
exp@PTT () +8¢) — A@Y)} when kU™ 41 <i <k (1)

forl < j <m+1,wherek©@ = 0and k"D = n.Let@* = (9*VT, .. ¢*m+DT)T
and k* = (k*D, . k*™)T pe the true values of 8 = @WDT, ..., 0" TDTT and
k = (k(]), el k(’"))T, and hereafter we similarly use * to denote the true values of
parameters . We assume that

and that 8* and k* are unknown. In addition, we assume that 8*(, ..., *™*+D arein

the interior of the parameter set for the model, which is included in the natural para-
meter space for the family, and that 82A(0)/0000" is strictly positive-definite in the
parameter set. These assumptions ensure the asymptotic normality for the maximum
likelihood estimator of @ (see e.g., van der Vaart 1998, Sect. 4.2). For the purpose of
the later asymptotic theory, we assume that lim,,_, o k*() /n = W for1 < j<m,
where 0 < k() < ... < k™ < 1. This assumption means that the change-points are
far enough from each other for a large sample size, and this is a common assumption
in change point analy51s (see e.g., Csorgd and Horvéth 1997).

Let k and » be the maximum likelihood estimators of k* and #* based on
X = (xl e, ,{)T, and f(x|k*, 8*) be the joint probability function of x. Model
selection can be approached by trying to reduce twice the Kullback—Leibler divergence
(Kullback and Leibler 1951) of f(y|k*, 8*) and f(y|ky, 0x),

2KL{f (yIk*, %), f(ylky, 0x)} = 2E,{log f(ylk*, 8%)) — 2E{log f(ylkx, 0:)},

where y is a copy of x, in other words, y is distributed according to the distribution of x
and is independent of x, and £y denotes the expectation with respect to y. Because the
first term on the right-hand side does not depend on the model, we need only consider
the second term. A simple estimator of the second term is —2log f (xlkx, 0 x), but it
is an underestimator. Then, in AIC-type information criteria, minimization of its bias
correction is considered,

—2log f(x|ky. 0x) + 2Ex[log f (x|ky. 0y) — Ey{log f(ylkx. 0:))]

= —2log f(xlks, 0x) + 2E{log f (xlkx, 0x) —log f (ylkx. 6x))

= —2log f(x|ky.0y) +2E{log f (x|ky.by) — log f (x|ky. 6,)}

= —2log f(x|l:tx, éx) + 2E[sup(k’0)Lx(k, 0) — Lx{argsup(kvo)Ly(k, NHil, 3

where E denotes the expectation with respect to both x and y, and Ly(k, )
= log f(x|k,0)—log f(x|k*, 0*). However, the expectation in (3) cannot be obtained
explicitly, and so we use its asymptotic evaluation in the same way as done for the
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AIC, that is,
—21log f(xlkyz, 0y) + 2E{b(k*, 0%)} 4)

is considered in place of (3), where b(k*, 8*) is the limit to which sup( g)Lx(k,0) —
Ly{argsupy g)Ly(k, 8)} converges in distribution, and then we call E{b(k*,0%)} an
asymptotic bias of the maximum log-likelihood. Here, we take sup 4 gy and argsupy g,
in a set of (k, @) such that L (k, @) is Op(1) or positive. If there is no change-point,
E{b(k*,0*)} = E{b(#*)} becomes the number of different parameters in 6.
Let us define vector A’(0*7)) to be dA0Y))/90 gt —g+0i» ij)(ﬂ*)

A(o*(j+1)) _ A(0*(j)) _ (0*(j+1) _ 0*(j))TA’(0*(j)), Béj)(ﬂ*) — A(O*(j)) _
A@*TDY (0% — g*GFTDYT A7(9*(+Dy and fet Ql(c]))c be

jE0))
Ijepoiny D, 1O — 0T (x;) — A'(07)} - B (6%)]
i=k+1
k . . . .
+ I{k>k*(j)} Z [(0*(]) _ 0*(]+1))T{T(x,‘) _ A/(o*(J+1))} _ Bé})(a*)]
i=k*()+1

Note that ij ) > 0 and Béj ) > 0 because of the convexity of A, and so Q,((j; is a
two-sided random walk with a negative drift and origin *(/). We can then obtain the

following theorem, whose derivation may be found in Appendix A.

Theorem 1 Suppose that x is distributed according to the probability function (1)
and that conditions (2) are satisfied. Then, the asymptotic bias in (4) is given by

m
* pr\y 2 : () )
E{b(k .0 )} = o E(sukak,x + Qargsukaif;,x) + Pm, ©)

where p,, is the number of different parameters in 0.

We can regard E (supy Q,(Cj,)c + Q;Jr)gsup 09 x
k*>k,y’

for the change-point k) (1 < j < m) and the other parameters @, respectively.
Because an advantage of using an information criterion is the ease of its execution in
comparison with testing procedures, it is important to evaluate the asymptotic bias (5)
explicitly. In a similar approach to that by Csorgé and Horvath (1997) (Sect. 1.5), we
consider the condition

) (1 < j <m) and p,, as the biases

00D _ gD — o 1 PAY) and  0(1) # @, = o(n) (©6)

for 1 < j < m to obtain the following theorem, where A((){F) is a constant vector. Under
this type of condition, the asymptotic behavior of the change-point estimator changes
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(see e.g., Diimbgen 1991), and we obtain the following theorem in place of Theorem
1. The derivation of this theorem may be found in Appendix B.

Theorem 2 Under the condition (6), the asymptotic bias in (4) is given by
E{b(k*,0")} = 3m + p.
Thus, the AIC for the change-point model is given by
AIC = —2log f(x|ky,0y) + 6m + 2. )

We can see that the penalty for each change-point is three times the penalty for each
of the other parameters.

Remark 1 Inregular models, the asymptotic bias of the maximum log-likelihood under
a condition such as (6) is the same as the one without the condition. On the other hand,
in change-point models, as can be seen from Theorems 1 and 2, the bias under the
condition (6) is different than the one without the condition, and so it is needed for
obtaining the AIC to decide whether we assume the condition. Here, we adopt to
assume it because the condition provides an easy and explicit asymptotic bias, which
is important when an information criterion is constructed, as mentioned before. A more
significant reason is as follows. For the case when a structural change is clearly present,
the maximum log-likelihood for the model with the change is clearly larger than that
without the change, and so the model with the change will be selected whether or not
we use the asymptotic bias under the condition. Meanwhile, an accurate evaluation
is needed for the case when the structural change is not so large. In the light of this
notion, we assume the condition to evaluate the bias for the change-point model close
to the no change-point model.

Remark 2 Ninomiya (2005) derived the same AIC only for an independent Gaussian
sequence with changes in mean. However, the bias evaluation in Ninomiya (2005)
is only an approximation, and so we can say that the above theorems justify it theo-
retically. If we use the same approximation method as in Ninomiya (2005), which is
not theoretically justified and does not require conditions such as (6), the evaluated
bias can be obtained as in the following remark. The evaluated biases vary by the
underlying distribution of the sequence and the type of the changing parameter.

Remark 3 Let us consider approximating the random walk by a Brownian motion
with the same mean and variance as those of the random walk, that is, we replace Q,(C] )

with V() (ci‘i), céj), 01('/), 02('/)). Here,

—cils| +o1Ws (s <0)

Vs(ct, c2,01,02) = —cols| + o Wy (k > 0),

®)

ng) — Bl(j)(g*)’ ng) — Béj)(o*), Ul(j) — {(0*(]') _ 0*(j+1))TA//(0*(j))(0*(j) _
0*U+TD)1/2 and Uz(j) — ((0*) — g=UTDYT g7 (D) (g () _ g*(H+D)1/2 \here
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948 Y. Ninomiya

{Ws}ser is a two-sided standard Brownian motion with E(W;) = 0 and Var(W;) =
s|, and A”(0*)) = 82A(0(1))/80(1)80(1)TIo(,—):o*(j). Then, we can evaluate (5) as
follows:

m D2y D) DG 212 2 (4
E{b(k* 0*)}%2 1 +C1 CZ O-l +CZ l +
’ 2 DD (D2 D02 P
j=1 (c; +cy 0"

The derivation can be easily obtained from the proof of Theorem 2. This result is

applicable to model selection by substituting some estimators of ci’ ), cé’ ), l(j ) and

az(j ) for them.

Remark 4 Here, we consider the exponential family as the parametric family for
simplicity, but the AIC in (7) can be extended to a more general parametric fam-
ily under some regularity conditions satisfying the asymptotic normality of ék*’x
and O, — 04+, = Op(|lk — k*||/n), where 6, is the maximum likelihood

estimator of #* based on x when change-points are k. Actually, defining Q(] )

k<)
bY L) Stmpr1 181 O7TD) — gi(0* D)} + Ty oty Sh_ ey (81 (079) —

8i (0*(j H))} in this case, we can obtain Theorem 1, where g;(-) is the log-likgalihood
functiqn for x;. Under _the condition (6), 2y, times the expectations of g; (0*(1"’1).) —
gi(0*) fori e [k*U~D +1,k*)] and g (6*)) — g;(0*V*D) for i € [k*V) +
1, k*U+D] converge to A;QT J (%)) A‘()j*), and «,, times their variances also converge
to A;QTJ @*Y ))A( 7 where J (6*) is the Fisher information matrix at *). From

this, letting 0 ) = {A(J)TJ(O*(/))A(J)}I/2 supy Q(]) Q(])

(/) converge
argsup, Q

2 2 )2
to sup; Vs (0(1) /2 U(J) /2 U(]) J(])) and V. argsup V(e N2/2,6(1N2)2,00) (7(/))(0(]) /
2,022, 0 o)), respectively, where V; is the random process defined in (8)
and V/ is its copy. Then, we can obtain Theorem 2 also in this case.

2.2 Auto-regressive sequence

To investigate whether the results of the previous section hold for dependent sequences,
we consider the example of a change-point model in an auto-regressive sequence. We
define this sequence by {x;, 1 <i < n} satisfying

xi =0Tz, + ¢ when kU™D +1<i<kW, 9)
forl < j <m+1,where") = (Bl(j), . ..,ef,“)T,z,» = (Xi—1, ..., xi—p) k@ =0,

and kD = n. We assume that {ei, 1 <i < mn}isanindependent Gaussian sequence
with mean 0 and unknown variance 6y, and that 1 + zgzl 0,(11 gl #O0foralla € C

such that |a| < 1. Letting 8 = (6, 0(1)T, e, 0<m+1)T)T and denoting its true value
by 0% = (6, o*OT g +DTYT e can obtain the following corollary, whose
derivation may be found in Appendix C.
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Change-point model selection 949

Corollary 1 For model (9) satisfying conditions (2), Theorem 1 holds using Q,'if:(j )
defined by

()
Iy D 1O — D) g6 — (09D — 0% 212121 /6
i=k+1
F gy D, (0% =0 ) e — (0% — 0% )T 7,32 10105
i=k*(D 41

in place of Q,((‘/ ; In addition, Theorem 2 holds under the condition (6).

By combining this result with that of the previous subsection, we can treat an
auto-regressive sequence in which both the auto-regressive coefficients 0 and the
variance 6y change.

3 Simulation study

We investigated the performance of the AIC in (7) by conducting simulations. For
comparison, we also considered the criterion proposed by Jones and Dey (1995),
which has been used in some applications (e.g., Hurrell and Trenberth 1997). This
criterion uses 2m + 2p,, as the penalty term without considering the irregularity of
the change-points. We denote this naive criterion by AICpaive to distinguish it from
the AIC in (7).

Consider two simple models: an independent Gaussian sequence with one change
in variance and an auto-regressive sequence with one change in coefficient, such that

a(l)xi_l 4o (1<i<k)

aPxi_1+oe (k+1<i<n) (10

e,
xiZHM+G €i and X =

1+ o@¢

where xo = 0 and {¢;, 1 < i < n} is an independent Gaussian sequence with
mean 0 and variance 1. The penalty terms of the AIC in (7) and AIC,ive become
6x1+2x3=12and?2 x 1+ 2 x 3 = 8§, respectively, because there are one
change-point and three regular parameters. To investigate whether these penalty terms
provide a sufficiently accurate approximation for the bias of twice the maximum log-
likelihood, we evaluate them numerically for several sets of true values of parameters
and data sizes of the above model. The results are given in Table 1. We can see that
these values lie close to 12, and are certainly much closer to 12 than to 8.

To understand the influence of model misspecification, we evaluate the bias under
a misspecified model. Let us consider the first model in (10). As the distribution of
€;, we use a mixture distribution whose components are N (0, 1) and U (—«/g, \/§) as
the true one, while N (0, 1) is assumed in the model, where we denote the continuous
uniform distribution on [a, b] by U (a, b). The results are given in Table 2. In a part of
the table, we set o*(D) = 0*(2), which means that not only the distribution but also the
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950 Y. Ninomiya

Table 1 Bias of twice the maximum log-likelihood

n: 50 n: 100 n: 200 n: 400

First model (i*: 0, k*: n/2) o*:095  *@:1.05 1279  11.67 11.33 11.23
a*1:0.9 o*@: 1.1 12.80  11.66 11.65 11.84
o*1:085  o*@:1.15 1310  12.00 11.95 12.10
o*: 0.8 o*@: 12 13.10  12.69 12.46 12.34
o*D:075  *@:125 1328  12.77 12.67 12.49

Second model (o*: 1, k*: n/2)  a*1:0 a*@:0.2 11.08  11.77 12.42 13.03
a*: 0 a*@:0.4 1136  11.83 12.25 12.30
a*M: 0 a*@:0.6 1201 1225 12.43 12.37

a*M:0.2 a*@:0.4 1136 11.95 12.66 13.04
a*M:0.2 a*@:0.6 1200  12.16 12.37 12.24
a*:0.2 a*@:0.8 13.18  13.37 13.55 13.41

These values are obtained by Monte Carlo simulation with 10,000 repetitions using the models (10),
that is, 34" sup g g) L 12n-11 (k. ) — L 21 {argsup gy L 121 (k. 6)}1/10,000, where {x[/] =

(x%h], A x,[lh]) | 1 < h < 20,000} are 20,000 independent sets of random samples generated using
the models (10)

Table 2 Bias of twice the maximum log-likelihood under model misspecification

n: 50 n: 100 n: 200 n: 400

o*: 1.0 *@:1.0 0:0.1 12.06 11.06 10.75 10.71
0:0.3 11.08 9.95 9.61 9.56

0:0.5 9.71 8.75 8.52 8.47

a*M: 0.9 a*@: 1.1 p:0.1 12.11 11.16 11.07 11.32
0:03 11.09 10.00 9.87 10.13

0:0.5 9.78 8.94 8.79 9.02

o*:0.8 o*@: 1.2 0:0.1 12.13 11.74 11.75 11.78
p:0.3 11.36 10.58 10.55 10.35

0:0.5 9.94 9.44 9.31 9.17

These values are obtained by Monte Carlo simulation with 10,000 repetitions using the first model in (10)
in the same way as in Table 1. As the distribution of ¢; in (10), a mixture distribution whose components
are N (0, 1) with weight 1 — p and U (—+/3, +/3) with weight p is used as the true one, while N (0, 1) is
assumed in the model

number of change-points are misspecified in the model. The true bias becomes smaller
in comparison with our evaluation as the model becomes more misspecified; however,
we can say that the influence is negligible if the model is not heavily misspecified even
when the number of change-points is misspecified.

To check the performances of the AIC in (7) and AICaive sSimply, we evaluate the
rate of selecting one change against no changes by the AIC and AIC,;e for the data
simulated according to the models (10). The results are given in Table 3. First, let us
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Change-point model selection 951

Table 3 Rate of selecting the one change-point model versus the no change-point model by the AIC,ive
and AIC in (7)

n:50(%) n:100 (%) n:200 (%) n:400 (%)

First model (u*: 0, k*:n/2)  o*(D:0.9 AICpave 59.8 73.6 86.8 96.6
*@:1.1 AIC 15.9 25.8 45.7 73.6
o*1: 08 AlCpve 80.7 95.1 99.7 100.0
o*@:12 AIC 39.3 70.8 95.2 100.0
o*D: 1 AlChuve 49.2 56.7 62.8 69.0
o*@:1  AIC 9.3 11.5 14.0 159
Second model (o*: 1, k*: n/2) a*1:0  AlCpuve 51.1 75.6 93.8 99.6
a*@:04 AIC 143 36.5 69.7 95.2
a*D:02  AlChuve 52.5 78.2 94.9 99.8
a*@:06 AIC 16.1 39.8 743 97.2
a*D:03  AlCpve 27.6 37.1 44.8 523
a*@:03 AIC 3.2 5.0 6.8 8.6

These values are obtained by Monte Carlo simulations with 10,000 repetitions using the models (10)

consider the values for the one change-point model when the data size is small, which
will be close to the no change-point model. In this case, we cannot say whether it is
better to select no changes or one change from the viewpoint of the original purpose of
the AIC because the original purpose is not to identify the true model, but to provide
a distribution close to the true one. Note that, we will show the clear superiority of
the AIC in (7) from this viewpoint in next simulation study. Next, let us consider
the values for the one change-point model when the data size is large, which will
be far from the no change-point model. In this case, one change may be desirable,
and we can see that both the AIC and AICp,je can select one change with a high
probability. Finally, let us see the values for the no change-point model. In this case,
we definitely want to select no change. However, the values for the AIC,jye are too
large.

Letus compare the AIC in (7) and AICaive under more realistic situations. Consider
an independent exponential sequence such that

xi =2V¢  when kU7 1 <i <k (11)

forl < j <m+1, where k@ = 0and ktD = ;. We assume thate; (1 <i < n)is
independently distributed according to Ex (1), where we denote the exponential dis-
tribution with mean X by Ex(A). We consider three as the true number of the change-
points and randomly determine the true change-point k*/) and the true amount of
change A*U+D /3*() using uniform distributions for 1 < j < 3. For such sequences,
we evaluate the Kullback-Leibler divergence between the true and estimated distri-
butions and the rate of selecting an m change-points model. The results are given in
Table 4. The values by a naive BIC ( Yao 1988) are included only for comparison. We
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952 Y. Ninomiya

Table4 Average Kullback—Leibler (K-L) divergence between the true and estimated distributions and rate
of selecting the m change-points model by the AICy,jve, AIC in (7), and BIC

K-L <1(%) 2 (%) 3 (%) 4 (%) =5(%)

n:100 £:2.0  AlCaive 10.60 0.0 0.7  64.6 26.3 8.4
AIC 9.71 1.0 47 90.2 3.9 0.2
BIC 9.86 2.1 6.8  89.0 2.1 0.1
n:100 &1.5  AlChaive 9.94 0.3 40  64.0 24.4 7.4
AIC 9.77 6.0 184 723 3.2 0.1
BIC 10.17 9.6 23.1 65.7 1.6 0.0
n:200 £1.5  AlCnaive 9.64 0.0 04  45.1 32.1 2.5
AIC 7.86 0.5 35 876 7.6 0.8
BIC 7.96 2.2 6.8 888 2.2 0.1
n:200  £1.0  AlChaive 9.07 0.2 32 459 30.0 20.8
AIC 8.17 4.8 18.1 70.8 5.7 0.7
BIC 9.09 11.4 289 583 1.3 0.1
n:400  £1.0  AlChaive 10.46 0.0 04  26.1 29.1 445
AIC 7.65 0.8 49 807 11.1 2.5
BIC 7.77 37 125 82 1.6 0.1
n:400  £05  AlChaive 10.11 0.4 44 264 29.2 39.6
AIC 8.15 7.6 295 537 7.8 1.4
BIC 9.12 212 425 355 0.8 0.0

These values are obtained by Monte Carlo simulation with 10,000 repetitions using the model (11). The
three true change-points k*(]), k*(z), and k*®) are randomly determined using the uniform distribution
under the restriction where k*(1D | ¥ — px(D) 1x3) _ 1*%Q2) and n — k*3) are larger than 0.1n, and the
true amount of change k*(-f+1)/k*(-f) is a realization of 241.7 6142.7) for 1 <j <3, whereuy janduj ;
are independent random variables distributed according to the discrete uniform distribution on {—1, 1} and
U (0, 1), respectively

can say that the AIC in (7) is superior to the other criteria from the viewpoint of the
original purpose of the AIC because the AIC provides a smaller average divergence
than the others in every setting. Let us examine the rates to check their performances
in more detail. The AIC,ive tends to select too many change-points when compared
to the AIC, especially when the sample size is large. If the amount of change is
large, the rate of selecting three changes by the BIC is sometimes higher than that
by the AIC, while the difference is small. Otherwise, the BIC tends to select too few
change-points when compared to the AIC. Thus, we can also say from the rates that
the AIC in (7) provides reasonable model selection in comparison with the AICpaive
and BIC.

In Table 5, we evaluate such divergences and rates under model misspecification
for reference. Comparing to the case without model misspecification, every criterion
tends to select fewer change-points. This is because the true bias becomes small under
model misspecification, and so this result is consistent with that in Table 2. In addition,
even in this case, the AIC in (7) provides a smaller average divergence than the others,
and so we can say that the AIC is superior to the other criteria.
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Table5 Average Kullback—Leibler (K-L) divergence between the true and estimated distributions and rate
of selecting the m change-points model by the AIC,ive, AIC in (7), and BIC under model misspecification

K-L <1 (%) 2 (%) 3 (%) 4 (%) >5 (%)
n:200 £:15 AICaive 691 0.0 0.4 620 262 113
AIC 583 06 2.6 93.9 2.8 0.2
BIC 617 23 5.8 91.3 0.6 0.0
n:200 £:1.0  AlChaive 6.55 03 3.6 60.8  25.0 10.3
AIC 637 5.6 17.5 74.6 23 0.1
BIC 753 126 27.9 59.1 0.4 0.0

These values are obtained by Monte Carlo simulation with 10,000 repetitions using the model (11). As the
distribution of €; in (11), a mixture distribution whose components are Ex (1) with weight 0.7 and U (0, 2)
with weight 0.3 is used as the true one, while Ex (1) is assumed in the model. The three true change-points
and the true amounts of changes are randomly determined in the same way as in Table 4

4 Conclusion

Recently, various information criteria have been proposed by generalizing and modi-
fying the idea of the AIC, e.g., RIC (Foster and George 1994), DIC (Spiegelhalter et
al. 2002), FIC (Claeskens and Hjort 2003), and the AIC for the LASSO (Zou et al.
2007). For change-point models, however, there was not even a proper AIC, in spite of
a great demand of these models in various fields such as econometrics (e.g., Hsu 1979;
Hamilton 1989; Garcia and Perron 1996; Chen and Gupta 1997) and biometrics (e.g.,
Avery and Henderson 1999; Siegmund 2004; Zhang and Siegmund 2007; Ninomiya
and Yoshimoto 2008). In this study, the proper AIC for change-point models has been
derived explicitly by evaluating the asymptotic bias of the maximum log-likelihood. It
has been shown that each change-point requires 6 as the penalty in the AIC, while each
of the other parameters requires 2. We can then conduct an easy change-point model
selection. In addition, it has been shown by a simulation study that the asymptotic
evaluation approximates the bias accurately, and the model selection by the AIC is
reasonable. We, therefore, recommend the use of the AIC for applications, as described
by Hurrell and Trenberth (1997) for example, which currently use the AICjve, @ Naive
AIC proposed by Jones and Dey (1995).

5 Appendix: Mathematical proofs
5.1 Proof of theorem 1
Letf k.x be the maximum likelihood estimator of * based on x when change-points are

k=&D, ... k™) ie. 8 = argsupyLy(k, ), and let I:xy(k) be L, (k, ék,y).
Then, we can see that b(k™*, §*) in the theorems is the limit to which

SUPgek ixx(k) — I:xy{argsupkeK iyy(k)}
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converges in distribution, where K is a set of k such that L xx (k) is Op(1) or positive,
that is, P{ixx (k) > —M} does not converge to 0 for some M > 0. In addition, we
use Ag, Ay, Ag, and T in place of A(#), A'(9), A”(0), and T (x) to save space. We
use this notation throughout the appendix.

Let us consider the case k — k* = O(1) and the case k — k™ # O(1), separately.
In the case k — k* = O(1), ék,x = ék*,x + Op(n™") = 0* + Op(n1/?), and so we
have

log f (x|k, Og.x) — log f(x|k, 0%)
m—+1

= > D — kU= e* — él(({i)TAg*(j) ) _ 92{1)/2 +op(1)
j=1
& : Al 5 Al
= > ® D — U0y — 0 )T AY 0% — 8, /2 + op(1)
j=1
= log f (x[k*, O ) — log f (x|k*, %) + op(1), (12)

where k@ = 0 and k"1 = . The first and third equalities are obtained from a

Taylor expansion, and the second one is obtained from (0*0 ) é,((j*) ) — (0*(j ) —

670) = Op(n1) and () — kU=D) = (kU) — KU=D) = O(1) together with

0=\ — @,(cji = Op(n~'/%) and 9*) — 9;(i)x = Op(n~'/?). Therefore, it follows that

log f (x|k, Ok x) — log f(x|k*, 0= )
— log f (x|k, %) — log f(x|k*, %) + op(1)

m )
= z [1{k<j><k*u>} Z {(*U+h 0*NI'T,, — Agsii+n + Agei)}

Jj=1 i=k(D41

el
ooy D AO =8 T — Ag + Agugan)| + op(1)
i=k*(D 41
m .

= > 00}, , +or(1) = Op(1). (13)

j=1

In addition, it holds that
log f(x|k*, 9k*7x) —log f(x|k*,0%) = X127m/2 + op(1) = Op(1), (14)

where Xﬁm is a random variable distributed according to the x 2 distribution of degree
Ppm. From (13) and (14), we have

Lyx(k) = Op(1) when k—k*=0(1). 15)
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On the other hand, we can obtain
Piloc) > —M} — 0 when k—k*# 0(1) (16)
for arbitrary M > 0, where k — k* # O(1) means that [k/) —k*()| - coasn — oo

for some j. To derive it, let us consider the case 0 < k0D — kUY £ 0(1) and
kD) — k*() = O(1) for j # j’ as an example. In this case, we have

log f (x|k, O x) — log f(x|k*, 04+ )

0]
AN AU
= Z (@ =00 ) Tx, — Agin T A0 }
i:k(j,71)+l k,x k*.x
pRng}
~G'+D A
+ D> A6, — ) Ty, - Agi+n + Az }
:k(-/ )+1 k.x k*x
kU'+D
AGHD AG D
+ D> {0, =0 )Ty, - Aggrn + Asgen} + Op(D)
kU 41 kx ko
< AU AU
J J
= Z [Ofr — O ) (T, — (,) } Amé(;*’) 1
i=kU' =141 k
k()
AG'HD A
+ > (O, 0 )Ty, — Ai(,,) b= Byorn yon |
i=k(N41 k
kU'+D
'+ (Jj +1)
+ 20 (Brw =00 ) Tw = ALy} = By s + Op(D),
i=k*UD 41 k*.x ko Tk
a7
where By gt = Agt — Agt — @ —oHT A ot It holds from the central limit theorem
jael) A" (1 ) i) AGHD AU
tha tz k(;—l)_;,_l(okx ok* x) {Tx, — é(/) +Z, k(j)+1(0kx ak* x) Ty, —
JAGER)) AGHD AGHD
9% b+ 2o Ok — 0 )T, — éw s} is Op{(k*U) — kU)1/2y
k*
+1 + ./ ! .
because 0;{;){) - 0,8*) nd 0fjx - 0;(]* ) are Op{n~'(k*U) — kU))}, and it holds
XU k() JAGER))
that 30 oy @(/) o, + 2 kiha Béo D g + 24 Béu +1>’él((/*+1> is
1) A
positive by its definition and is not op(k*U) — k(") because 0 j ) 0;{]*) is not
op(1). Then, it follows that
P{log f (x|k, Bxx) — log f (x|k*, 84 ) > —M} — 0, (18)
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and we can say from (14) and (18) that (16) holds. Thus, from (15) and (16), we obtain
that K = {k | (k — k*) = O(1)}, and so (13) and (14) hold. Therefore, we have

m
supeg Lax(k) = D supexn Qi) + x5, /2 + op (1), (19)
j=1

where K/) = (k) | k € K}, and

argsupgeg Lyy (k) = ky + op(1), (20)

where IE;‘/) = argsuPgcg (i Qk y and ky = (k(l) .. ]E(m)). Recalling that y is a

copy of x, it follows that §§ — k*() = Op(1) and 0(” =0, + optn!) =

09 + Op(n~'/2) for all j. Using these and applying Taylor expansion, we have

log £ (x|ky. 0%) — log f (x|ky, 8 oy
k;j)

m+1 () )
= — Z(oléy’y _ 0*(/))T[ Z {Txi — A‘;*(j)}]
j=1 i=k V41
m+1
( ) A ( ) ;
+ z(k(j) k(/ 1))(0 J 0*(])) Ao*U) (0 ) 0*(]))/2 +op(1)
j=1
m+1 0 ' k*()
[ Z(oiéy’y _ 0*(]))T[ Z {Txi —_ A;*(j) }]
Jj=1 i=k*U=D41
+1 X
k %(j) _ %=y p D) _ gxGNT 41 oD #(j)
+ D WD =k YO — 0" AL O, — 67 /2+ 0p(D)
j=1
mel <)
; .
I Z(o _ 0*(/))T|: Z {Txi — A‘;*(j)}]
i=k*(=D 41
m—+1 . ) )
+ 3D — Y@L —0r T AT B — 07D /2 4 0p(1)
j=1
m—+1
=D NOND 4 52 12+ o0p(1), (21)
j=1

where l€§,0) = 0 and l€§,m+1) = n. Here, X[271/n is another random variable distributed
according to the x? distribution of degree p,,, and N) and N'/) are two indepen-

dent random vectors distributed according to normal distributions N (0, Ag*—(jl.)) and
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N, A 0* '.(jy)» respectively, where 0 is a zero-vector. In addition, we obtain

log f (x|k*,8%) —log f (x|ky, 6%)
k()

m
Z[ &9 <ty Z (@ —g*thTr, Agai) + Agaiin}
=1 i<k 41
,;(yj>
TG00y Z (@D —0*UNTT . — Ay + Ao*u)}] +op(1)
Y i=k*() 1
m
_ (j)
=>0 argsup,_ ) 00)x + op(1). (22)
keK

From (20), (21), and (22), it follows that

—Lyylargsupgeg Lyy(k)}) = —Lyy(ky) + op(1)
m—+1

m

_ () ) A/

= 0 + NY'N +x /24 op(1). (23)
jzl argsupcx (i) Q% Z

From (19) and (23), we can obtain the theorem.

5.2 Proof of theorem 2

To begin with, we check that (19), (20), and (23) also hold under the condition (6). Let
,6,, be an 1ncreasmg sequence satisfying o(o,) # B = O(n) When k — k* 0B,
Okx = O x + Op(n ™1 30 (0*UFD — 0*D)B) = O + Op(n~lo,"1/2B,).
Using this relation, we can obtaln the following in the same way as in the proof
of Theorem 1. First, we consider the case where k — k* = O(w,). In this case,
(12), (13), and (14) hold, and so (15) holds using k — k* = O(a,) in place of
k — k* = O(1). Next, we consider the case where 0 < k*U) — kU £ O(ay)
and k) — k*() = O(a,) for j # j’ as an example. In this case, (17) holds,

Pea) A AU R AGHD AU
Z:i=k(j/’l)+1(0k x 0k* x) (T, — A;(/ ) )+ Z, k(J/)+1(0k x ok* x) (Ty; —
k*
kG’ AGHD AGHD —-1/2
é(/) )+ 2o Ok — O ) (Tx; = Au ) = Oplan k) —
k* x k*

(]) 1/2 k(/) . ) k*(!) k(! +1)
KUO)IEY and 30 D41 B,;<f’> A + 2 =kUD 41 A(J+1) 2 + 2 —k*D 41

B()(f +1) 0(] iy FE oP{a_l(k*(f) _y ))}, and so we can say that (16) holds using
k.x

k—k* # O(an) in place of k — k* # O(1). Thus, we obtain K = {k | (k — k*) =
O ()}, and so (19), (20), (21), (22), and (23) all hold.

Thus, we consider the case k — k* = O(a,). Let {W,}ser be a two-sided
standard Brownian motion with E(W,) = 0 and var(W,) = |s|, and let c) =
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{A(])TA”(t’)*(”)A(])}l/2 Under the condition (6), Q,((Q,)+ . can be written as
K+
1{s<0}05n_1/2 Z {A(j)T(Tx,- - A;*m)} — Islan Bys(i+1) gsi)
i=k*() +[sa, 1+
k*(j)+[sot,,]
+ I{S>0}“;1/2 Z {— A(])T(Tx; - A;*(Hl))} - |5|05nt*(1'),9*(/+1>,
i=k*() 41

éj*), 20y Bys(j+1) g+(iy, and 206, By(j) g+(j+1) converge
()
kD [sa, ], x

T
andallof the terms A g™ A7 .,

to o (V2. It then follows from the functional central limit theorem that Q

converges in distribution to V, (¢ (2/2, 012 /2, ¢ o)), where

—cils| + o1 W, (s <0)

Vi(cr, c2,01,02) = [—Czlsl Y oW, (s > 0).

Therefore, we have

sup, OF) 5 sup,V, (022, 672/2, 6D 6 1) (24)

and
) d (j)2/2’ U(./')Z/z’ 0(./)’ U(./))’

. =V b ; h (O
argsup, Ql({;; x argsup, v/ (c(12/2,012/2,6(, () (
(25)

where V| is a copy of V.

For distributions about the maximum of a Brownian motion with a negative drift,
the results by Bhattacharya and Brockwell (1976) or Shepp (1979) can be used. First,
using the equality

P{sup,_o(Ws; —cs) > a} = exp(—2ac)

for arbitrary a, ¢ > 0, we have

E{sup,V(c1, c2, 01, 02)}

o
:/ P{sup, V,(c1, c2, 01, 02) > a}da
0

o
= / lexp(—2cia/o?) + exp(—2cra/03) — exp{—2(c10% + c202)a/oto}}]da
0

= (c30y + c1c20207 + c3ol) /{2c1ca(c10F + croD)). (26)
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Next, we use the property that the probability function of argsup,V,(c1, c2, 01, 02) is

2
. — 0)
argsustc’c’o_’O, g(=slc1/o1, c201/05) (s <
f (e, e2, 01, 02) g(slea/or, croa/of) (s > 0),

where g(s|ai, az) is
2ay(ay + 2a2) exp{2ax(a) + a2)syP{—(aj + 2a2)s'/*} — 2a3®(—ays'/?).
Then, we have

EtVargsup, vi(c1.c.01.02) (€15 €25 01, 02)}
o

o0
=/ Sg(s|cl/0170201/(722)01d5+/ sg(slea/o, c1o2/of)cads
0 0

= 2(2c10% 4 c202)0} /2¢1(c10F + c20D)?)
+ cl(2cz012 + clazz)af/{Zcz(clozz + 02012)2}

= (cloy + c1e20805 + 301 /{2c1c2(c105 + cr0D)). (27)

Here, the second equality holds because
> 2 2
/ 1g(tlar, ax)dt = ar(2ay + a2)/{2aj (a1 + a2)”}
0

from Stryhn (1996). By setting (ci, ¢2, 01, 02) = (6?/2,012/2, 6 o) in
(26) and (27), we have

3/2 = E{supSVS(G(j)Q/Z, G(j)2/2, cr(j), U(j))}

- - . )
= E{VargsupxVS/((,(j)z/z,U(_/)z/z,g(_i>,(,(j))(0(1) /270(1) /2,0(1),0(1))}. (28)

From (24), (25), and (28), we can obtain the theorem.

5.3 Proof of corollary

Similar to the independent case, when k — k™ = O(1) without the condition (6), it
follows that O x = 0y  + Op(n~") and
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log f(x|k,0*) —log f(x|k*,0")

m k0
. -
=> [I{k<./><k*(j)} D i =072 — (o — 07D 2 205)
Jj=1 i=k(D+1

k()

Flpoopoy > G =0Tz = — 07T 22205 | + o)
i=k*(D+1

m
AR(j
=> 0.5 o).
j=1

We can then easily obtain Theorem 1 in the same way.

Under the condition (6), QAR(j ) can be written as

k*+[sa,l,x
Ytk 1)
—-1/2 T _ AT
I(5<0) [an / > af zie /65 - oy > @y z,-)z/(zeg)]

i=k*() +[san 141 i=k*D+[s0, ]+1
K+ [sa,] k) 4 [sery]

—-1/2 )T _ NT

+ Iis>0 [an / Z _A;j*) Ziei/eg< -, ! Z (A((?{i) z,)z/(2¢9§)]

i=k*() 41 i=k* ()41

By applying the functional central limit theorem for martingales to «, 172 >
NG
and using the stationarity of x, it follows that O

zi€; /07, applying the uniform law of large numbers to o, ! Z(A;{;)Tzi )2/ (265),
AR(j)

k*-+{sa, ], CONVerges in distribution to

tvar(AgD" 20) 105112 Wy — Isivar(Agl T z0)/267).

We can thus obtain Theorem 2.
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