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Abstract The local powers of some tests under the presence of a parameter vector, ω
say, that is orthogonal to the remaining parameters are studied in this paper. We show
that some of the coefficients that define the local powers of the tests remain unchanged
regardless of whether ω is known or needs to be estimated, whereas the others can
be written as the sum of two terms, the first of which being the corresponding term
obtained as if ω were known, and the second, an additional term yielded by the fact
that ω is unknown. We apply our general result in the class of nonlinear mixed-effects
models and compare the local powers of the tests in this class of models.

Keywords Asymptotic expansions · Gradient test · Likelihood ratio test ·
Nonlinear mixed-effects models · Score test · Wald test

1 Introduction

The most common tests in parametric models are the likelihood ratio (LR), Wald, and
Rao score tests (Wilks 1938; Wald 1943; Rao 1948). These tests are widely used in
areas such as economics, biology, and engineering, among others, since exact tests
are not always available. A new criterion for testing hypotheses, referred to as the
gradient statistic, was proposed in Terrell (2002), which shares the same first order
asymptotic properties with the LR, Wald and score statistics. An advantage of the
gradient statistic over theWald and score statistics is that it does not involve knowledge
of the information matrix, neither expected nor observed.
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Let �(θ), Uθ = ∂�(θ)/∂θ and K θ = E(UθU�
θ ) be the log-likelihood function

for the parameter vector θ = (θ1, . . . , θk)
� of dimension k, the score vector and

the Fisher information matrix, respectively. Consider the partition θ = (β�,ω�)�,
where β = (β1, . . . , βp)

� and ω = (ωp+1, . . . , ωk)
� are vectors of dimensions p

and k − p, respectively. Let β = (β�
1 ,β�

2 )�, where the dimensions of β1 and β2
are q and p − q, respectively. Suppose the interest lies in testing the composite null
hypothesis H0 : β2 = β20 against the two-sided alternative hypothesis Ha : β2 �=
β20, where β20 is a specified vector of dimension p − q, and β1 and ω act as vectors
of nuisance parameters. From the partition of θ , we have the corresponding partitions:
Uθ = (U�

β1
,U�

β2
,U�

ω )�,

K θ =
[
Kβ Kβω

Kωβ Kω

]
, Kβ =

[
K 11 K 12

K 21 K 22

]
, K−1

β =
[
K 11 K 12

K 21 K 22

]
.

In this paper, we shall assume that β is globally orthogonal to ω in the sense of
Cox and Reid (1987). In other words, the Fisher information matrix for θ and its
inverse are block-diagonal: K θ = diag{Kβ , Kω} and K−1

θ = diag{K−1
β , K−1

ω }. There
are numerous statistical models like the nonlinear mixed-effects model (NLMM) for
which global orthogonality holds. We will show an interesting decomposition of the
n−1/2 term of the expansions of the nonnull distribution functions of the LR, Wald,
score and gradient statistics.

The LR,Wald, Rao score and gradient statistics for testingH0 versusHa are defined
by SLR = 2

[
�(β̂1, β̂2, ω̂) − �(β̃1,β20, ω̃)

]
, SW = (β̂2 − β20)

�(K̂
22

)−1(β̂2 − β20),

SR = Ũ
�
β2
K̃

22
Ũβ2

and ST = Ũ
�
β2

(β̂2−β20), respectively. Here, θ̂ = (β̂
�
1 , β̂

�
2 , ω̂�)�

and θ̃ = (β̃
�
1 ,β�

20, ω̃
�)� denote the unrestricted and restricted (underH0) maximum

likelihood estimators of θ = (β�
1 ,β�

2 ,ω�)�, respectively, K̂ 22 = K 22(̂θ), K̃
22 =

K 22(̃θ) and Ũβ2
= Uβ2

(̃θ). The null hypothesis is rejected for a given nominal
level, γ say, if the test statistic exceeds the upper 100(1 − γ )% quantile of the χ2

p−q

distribution, denoted by χ2
p−q(γ ).

One of the aims of this paper is to study the local powers of the LR, Wald, score
and gradient tests for testing the null hypothesisH0 : β2 = β20 (under a sequence of
local alternatives) in general continuous parametricmodels, when global orthogonality
between β andω holds. The nonnull distribution function of the statistic Si under local
alternatives for testing H0 : β2 = β20 takes the form

Pr(Si ≤ x) = Gp−q,λ(x) +
3∑
j=0

bi jG p−q+2 j,λ(x) + O(n−1), i = LR,W,R,T,

(1)

where Gν,λ(x) is the cumulative distribution function of a non-central chi-square
variate with ν degrees of freedom and an appropriate non-centrality parameter λ.
Clearly, the local powers (up to order O(n−1/2)) of the four corresponding tests are
given by Πi = 1 − Pr(Si ≤ x), where x is replaced by χ2

p−q(γ ). The coefficients
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bi j (i = LR,W,R,T and j = 0, 1, 2, 3) and λ are given in Hayakawa (1975), Harris
and Peers (1980) and Lemonte and Ferrari (2012a). See also Mukerjee (1993) and
Kakizawa (2012).

Firstly, we will show that the coefficients bi2 and bi3 (for i = LR,W,R,T) in
(1) remain unchanged regardless of whether ω is known or needs to be estimated,
whereas the coefficients bi1 (for i = LR,W,R,T) can be written as the sum of two
terms, the first of which being the corresponding term obtained as if ω were known,
and the second, an additional term yielded by the fact that ω is unknown. A sufficient
condition under which this additional term is zero will be given. Second, we will
apply the general result in the class of NLMMs. In particular, we derive closed-form
expressions in matrix notation for the coefficients that define the nonnull asymptotic
expansions of these statistics in this class of models.

2 Main result

In order to describe our main result, we shall assume that the local alternative hypoth-
esis is Han : β2 = β20 + ε, where ε = (εq+1, . . . , εp)

� is of order O(n−1/2). We
define the quantities

ε∗ =
⎡
⎢⎣
K−1

11 K 12

−I p−q

0k−p,p−q

⎤
⎥⎦ ε, A = (ars)r,s=1,...,k =

[
Aβ 0p,k−p

0k−p,p K−1
ω

]
,

Aβ =
[

K−1
11 0q,p−q

0p−q,q 0p−q,p−q

]
, M = (mrs)r,s=1,...,k =

[
Mβ 0p,k−p

0k−p,p 0k−p,k−p

]
,

where Mβ = K−1
β − Aβ , and I z and 0h,u denote an identity matrix of order z and

a h × u matrix of zeros, respectively. In the following, we use the standard notation
for the log-likelihood derivatives: Ur = ∂�(θ)/∂θr , Urs = ∂2�(θ)/∂θr∂θs , Urst =
∂3�(θ)/∂θr∂θs∂θt etc. for r, s, t = 1, . . . , k. Then, we write κrs = E(Urs), κrst =
E(Urst ), κr,st = E(UrUst ), κr,s,t = E(UrUsUt ), etc. All moments κ’s refer to a total
over the sample and are, in general, of order O(n).

In what follows, assume that the indices r , s and t vary from 1 to p (i.e. on the
elements of the parameter vector β) and the indices R and S vary from p + 1 to k
(i.e. on the elements of the parameter vector ω). We arrive, after long and tedious
algebraic manipulations, at the following general result.

Theorem 1 Let θ = (β�
1 ,β�

2 ,ω�)� be the parameter vector of dimension k, where
the dimensions of β1 and β2 are q and p − q, respectively, and ω is a (k − p)-
dimensional vector of parameters. Assume that β = (β�

1 ,β�
2 )� and ω are globally

orthogonal. The nonnull asymptotic expansions of the distribution functions of the LR,
Wald, score and gradient statistics for testing the null hypothesisH0 : β2 = β20 under
a sequence of local alternatives are given by (1) with λ = ε�(K 22 − K 21K

−1
11 K 12)ε,

bLR1 = b0LR1 + ξ , bW1 = b0W1 + ξ , bR1 = b0R1 + ξ , bT1 = b0T1 + ξ , bLR3 = 0,
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bLR2 = bR3 = −1

6

p∑
r,s,t=1

κr,s,tε
∗
r ε∗

s ε
∗
t , bW3 = −2bT3 = 1

6

p∑
r,s,t=1

κrstε
∗
r ε∗

s ε
∗
t ,

bW2 = 1

2

p∑
r,s,t=1

κr,stε
∗
r ε∗

s ε
∗
t + 1

2

p∑
r,s,t=1

κrstmrsε
∗
t , bR2 = −1

2

p∑
r,s,t=1

κr,s,tmrsε
∗
t ,

bT2 = −1

4

p∑
r,s,t=1

κrstmrsε
∗
t + 1

4

p∑
r,s,t=1

(κrst + 2κr,st )ε
∗
r ε∗

s ε
∗
t ,

b0LR1 = −1

6

p∑
r,s,t=1

(κrst − 2κr,s,t )ε
∗
r ε∗

s ε
∗
t − 1

2

p∑
r,s,t=1

(κrst + 2κr,st )arsε
∗
t

−1

2

p∑
r=q+1

p∑
s,t=1

(κrst + κr,st )εrε
∗
s ε

∗
t ,

b0W1 = −1

2

p∑
r,s,t=1

(κrst + 2κr,st )ε
∗
r ε∗

s ε
∗
t +

p∑
r,s,t=1

κr,stmrsε
∗
t

−1

2

p∑
r,s,t=1

(κrst + 2κr,st )κ
r,sε∗

t − 1

2

p∑
r=q+1

p∑
s,t=1

(κrst + κr,st )εrε
∗
s ε

∗
t ,

b0R1 = −1

6

p∑
r,s,t=1

(κrst − 2κr,s,t )ε
∗
r ε∗

s ε
∗
t + 1

2

p∑
r,s,t=1

κr,s,tmrsε
∗
t

−1

2

p∑
r,s,t=1

(κrst + 2κr,st )arsε
∗
t − 1

2

p∑
r=q+1

p∑
s,t=1

(κrst + κr,st )εrε
∗
s ε

∗
t ,

b0T1 = 1

4

p∑
r,s,t=1

κrstκ
r,sε∗

t − 1

2

p∑
r,s,t=1

(κrst + 2κr,st )ε
∗
r ε∗

s ε
∗
t

−1

4

p∑
r,s,t=1

(4κr,st + 3κrst )arsε
∗
t − 1

2

p∑
r=q+1

p∑
s,t=1

(κrst + κr,st )εrε
∗
s ε

∗
t ,

where K−1
β = (κr,s)r,s=1,...,p, and

ξ = 1

2

p∑
t=1

k∑
R,S=p+1

κRStκ
R,Sε∗

t , (2)

with K−1
ω = (κ R,S)R,S=p+1,...,k , κRSt = E(∂3�(θ)/∂ωR∂ωS∂βt ), and bi0 = −(bi1 +

bi2 + bi3), for i = LR,W,R,T.

Proof The proof is provided in Appendix. ��
Remark 1 As pointed out by an anonymous referee, the finding for the SLR, SW and
SR statistics in Theorem 1 has been discussed by Eguchi (1991), who adopts the
differential geometric framework. Additionally, the local power function (1) for the
SLR, SW, SR, and ST statistics can be described in terms of C∗ function as given in
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On local power properties of the LR, Wald, score and gradient 889

Kakizawa (2012, § 3); see alsoMukerjee (1993). It should be noticed that ξ in Theorem
1 can be found for a broad class of asymptotic chi-squared tests, which includes the LR,
Wald, score and gradient tests, in Kakizawa (2012). Finally, Theorem 1 generalizes
the results of Lemonte and Ferrari (2012b), which holds only for the scalar nuisance
parameter case.

From Theorem 1, notice that b0i1 (i = LR,W,R,T) and bi j (i = LR,W,R,T and
j = 2, 3) represent the contribution of the parameter vector β to the local powers of
the LR, Wald, score and gradient tests for testing the null hypothesis H0 : β2 = β20,
since these expressions are only obtained over the components of β, i.e. as if ω were
known. On the other hand, the quantity ξ , which depends on the moments involving
β and ω, can be regarded as the contribution of the parameter vector ω to the local
powers of the LR, Wald, score and gradient tests when it is unknown, that is, when it
needs to be estimated. It is interesting to note that the contribution yielded by the fact
that ω is unknown is the same for the four tests. Additionally, the contribution of the
parameter vector ω to the local powers of the tests only appears in the coefficient bi1
(i = LR,W,R,T) and, of course, in bi0 (i = LR,W,R,T).

Theorem 1 has a practical application when the goal is to obtain explicit formulas
to the nonnull distribution functions of any of the four test statistics for special models
in which orthogonality holds. It suggests that the coefficients bi j ’s should be obtained
as if the orthogonal parameter vector ω were known, and the extra contribution due
to the estimation of ω should be obtained from (2). We will use this general result to
derive explicit formulas for the nonnull distribution functions of the LR, Wald, score
and gradient statistics in the class of NLMMs.

Now, let Π0
i and Πi , for i = LR,W,R,T, be the local powers (ignoring terms of

order smaller than n−1/2) of the test that uses the statistic Si when ω is known and
when ω is unknown, respectively. It is well known that

Gm,λ(x) − Gm+2,λ(x) = 2gm+2,λ(x), (3)

where gν,λ(x) is the probability density function of a non-central chi-square variate
with ν degrees of freedom and non-centrality parameter λ. We can then write Πi −
Π0

i = z ξ for i = LR,W,R,T, where z = 2gp−q+2,λ(x) > 0 and x is replaced
by χ2

p−q(γ ). Therefore, the difference between the local powers can be zero, or it
can increase or decrease when ω needs to be estimated, depending on the sign of the
components of ε. If κRSt = 0 for t = 1, . . . , p and R, S = p + 1, . . . , k, we have
ξ = 0 and hence the nonnull asymptotic expansions up to order O(n−1/2) for the
nonnull distribution functions of the LR, Wald, score and gradient statistics do not
change when the parameter vector ω, which is globally orthogonal to the remaining
parameters, is included in the model specification.

3 Nonlinear mixed-effects model

The NLMM can be expressed as

yi = f i (X i ,β) + Zi bi + εi , i = 1, . . . , N , (4)
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890 A. J. Lemonte

where yi = (yi1, . . . , yini )
� is a ni×1 vector of responses on the i th experimental unit,

β = (β1, . . . , βp)
� is a p-vector of fixed effects parameters, bi = (bi1, . . . , bim)� is a

m-vector of random effects, X i = (xi1, . . . , xini )
� with xi j = (xi j1, . . . , xi jp)� and

Zi = (zi1, . . . , zini )
� with zi j = (zi j1, . . . , zi jm)� are ni×p and ni×m knownmatri-

ces of full rank, respectively, εi = (εi1, . . . , εini )
� is a ni ×1 random (within-subject)

vector of measurement errors, and f i (X i ,β) = ( fi1(X i ,β), . . . , fini (X i ,β))� is a
ni ×1 vector of nonlinear functions of β. It is often assumed that bi ∼ Nm(0m, G) and
εi ∼ Nni (0ni , Ri ) for i = 1, . . . , N , with bi and εi independent (for i = 1, . . . , N ),
where G = G(τ ) and Ri = Ri (φ) are m × m and ni × ni positive definite matri-
ces whose elements are expressed as functions of vectors of covariance parameters
τ = (τ1, . . . , τc1)

� and φ = (φ1, . . . , φc2)
� of dimensions c1 × 1 and c2 × 2, respec-

tively, not functionally related to β. Here, 0u denotes a u-dimensional vector of zeros.
A hierarchical formulation is behind the model (4) when it is assumed that yi |bi ∼

Nni ( f i (X i ,β) + Zi bi , Ri ), bi ∼ Nm(0m, G) and εi ∼ Nni (0ni , Ri ), with bi and εi
independent (for i = 1, . . . , N ). So, the joint distribution of ( y�

i , b�
i )� becomes

(
yi
bi

)
∼ Nni+m

((
f i (X i ,β)

0m

)
,

[
ZiGZ�

i + Ri ZiG

GZ�
i G

])
.

Hence, classical inference may be based on the likelihood function of the marginal
model yi ∼ Nni ( f i (X i ,β),Σ i ), where Σ i = ZiGZ�

i + Ri . Let n = ∑N
i=1 ni .

Model (4) can be written in matrix form as Y = f (X,β) + Zb + ε, where Y =
( y�

1 , . . . , y�
N )� is a n×1 vector, X = (X�

1 , . . . , X�
N )� is a n× p matrix, f (X,β) =

( f 1(X1,β)�, . . . , f N (XN ,β)�)� is a n×1 vector of nonlinear functions of β, Z is a
n×Nm block-diagonal matrix given by Z = diag{Z1, . . . , ZN }, b = (b�

1 , . . . , b�
N )�

is a Nm-vector and ε = (ε�
1 , . . . , ε�

N )� is n × 1. Thus, b ∼ NNm(0Nm, IN ⊗
G) and ε ∼ Nn(0n, R), where R is a n × n block-diagonal matrix given by R =
diag{R1, . . . , RN }, and “⊗” denotes the Kronecker product. It is also possible to
express the model (4) as Y = f (X,β) + e, where e = Zb + ε ∼ Nn(0n,Σ),
Σ = Σ(ω) = Z(IN ⊗ G)Z� + R and ω = (τ�,φ�)� is a (c1 + c2) × 1 vector of
unknown parameters.

Let μ = f (X,β) and u = Y −μ. The log-likelihood function for θ = (β�,ω�)�
can be expressed as �(θ) = −(n/2) log(2π) − (1/2) log |Σ | − (1/2)tr{Σ−1uu�},
where |Σ | denotes the determinant of the matrix Σ , and tr{·} is the trace opera-
tor. Some additional notation is in order. Let dr = ∂μ/∂βr , drs = ∂2μ/∂βr∂βs ,
Σ̇ R = ∂Σ/∂ωR , with r, s = 1, . . . , p, and R = 1, . . . , c1 + c2. Also, define
D = [d1, . . . , d p] and V = [vec{Σ̇1}, . . . , vec{Σ̇c1+c2}], where vec{·} is the vec
operator, which transforms a matrix into a vector by stacking the columns of the
matrix one underneath the other. Let

F =
[
D

V

]
, H =

[
Σ 0n,n2

0n2,n 2(Σ ⊗ Σ)

]−1

, v =
(

u

−vec{Σ − uu�}

)
.

So, after some straightforward matrix algebra, the score function and the Fisher infor-
mation matrix for θ can be written, respectively, as Uθ = F�Hv and K θ = F�HF.
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The maximum likelihood estimator θ̂ = (β̂
�
, ω̂�)� of θ = (β�,ω�)� satisfies the

equation Uθ |θ=θ̂ = 0k , with k = p+ c1 + c2. The Fisher scoring method can be used
to estimate θ by iteratively solving (F(w)�H(w)F(w))θ (w+1) = F(w)�H (w)v∗(w),
where v∗(w) = F(w)θ (w) + v(w) and w = 0, 1, . . . is the iteration counter. Each loop,
through the above iterative scheme, consists of an iterative re-weighted least squares
algorithm to optimize the log-likelihood �(θ). A recent discussion about estimation in
NLMMs can be found in Meza et al. (2012).

4 Nonnull asymptotic expansions in NLMMs

In what follows, we shall consider the LR, Wald, Rao score and gradient statistics
for testing a composite null hypothesis on the fixed effects in the class of NLMMs,
i.e. tests on the parameter vector β. Tests on the variance components (i.e. on the
parameter vector ω = (τ�,φ�)�) will not be the subject of this paper. The reader
is referred to Nobre et al. (2013) and references therein for tests on the variance
components. The null hypothesis of interest is H0 : β2 = β20, which will be
tested against the alternative hypothesis Ha : β2 �= β20, where β = (β�

1 ,β�
2 )�

with β1 = (β1, . . . , βq)
� and β2 = (βq+1, . . . , βp)

�. Here, β20 is a fixed col-
umn vector of dimension p − q, and β1 and ω act as nuisance parameter vec-

tors. Let θ̂ = (β̂
�
1 , β̂

�
2 , ω̂�)� and θ̃ = (β̃

�
1 ,β�

20, ω̃
�)� be the unrestricted and

restricted (underH0) maximum likelihood estimators of θ = (β�
1 ,β�

2 ,ω�)�, respec-
tively. The LR, Wald, score and gradient statistics for testing H0 are defined by

SLR = log(|Σ̃ ||Σ̂ |−1)+ tr{Σ̃−1
ũũ� − Σ̂

−1
ûû�}, SW = (β̂2 −β20)

� D̂
�
2 Σ̂

−1
( D̂2 −

D̂1Υ̂ )(β̂2 − β20), SR = ũ�Σ̃
−1

D̃2[ D̃�
2 Σ̃

−1
( D̃2 − D̃1Υ̃ )]−1 D̃

�
2 Σ̃

−1
ũ and ST =

ũ�Σ̃
−1

D̃2(β̂2 − β20), respectively, where Υ = (D�
1 Σ−1D1)

−1D�
1 Σ−1D2 and

D = [
D1 D2

]
, D1 being n × q and D2 being n × (p − q). Also, tildes and hats

indicate evaluation at the restricted and unrestricted maximum likelihood estimates,
respectively.

We assume the local alternative hypothesis Han : β2 = β20 + ε, where ε =
β2 − β20 = (εq+1, . . . , εp)

� is of order O(n−1/2). From Theorem 1 and after some
algebra, it can be shown that ξ = 0 and therefore the nonnull distribution functions (up
to order O(n−1/2)) of the four statistics do not change when the parameter vector ω =
(τ�,φ�)� is included in the model specification. Let λ = ε�D�

2 Σ−1(D2 − D1Υ )ε.
The coefficients bi j ’s that define the nonnull expansions are obtained from Theorem 1
and, after extensive algebra, they can be expressed in matrix notation as follows:
bLR2 = bLR3 = bR2 = bR3 = 0, bW3 = −(1/2)tr{Σ−1Φ(ε∗ ⊗ I p)ε∗ε∗�D�},
bT3 = −(1/2)bW3,

bLR1 = bR1 = 1

2
tr{Σ−1Φ(ε∗ ⊗ I p)ε∗ε∗�D�}

+ tr{Σ−1Φ(2)(ε
∗ ⊗ I p−q)εε

∗�D�}
+ 1

2
tr{Σ−1Δ(1)vec{(D�

1 Σ−1D1)
−1}ε∗�D�},
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892 A. J. Lemonte

bW1 = 1

2
tr{Σ−1Φ(ε∗ ⊗ I p)ε∗ε∗�D�}

+ tr{Σ−1Φ(ε∗ ⊗ I p)(D�Σ−1D)−1D�}
− tr{Σ−1Φ(1)(ε

∗ ⊗ Iq)(D�
1 Σ−1D1)

−1D�
1 }

+ 1

2
tr{Σ−1Φvec{(D�Σ−1D)−1}ε∗�D�}

+ tr{Σ−1Φ(2)(ε
∗ ⊗ I p−q)εε

∗�D�},
bW2 = 1

2
tr{Σ−1Φ(ε∗ ⊗ I p)ε∗ε∗�D�}

− 1

2
tr{Σ−1Φvec{(D�Σ−1D)−1}ε∗�D�}

− tr{Σ−1Φ(ε∗ ⊗ I p)(D�Σ−1D)−1D�}
+ 1

2
tr{Σ−1Δ(1)vec{(D�

1 Σ−1D1)
−1}ε∗�D�}

+ tr{Σ−1Φ(1)(ε
∗ ⊗ Iq)(D�

1 Σ−1D1)
−1D�

1 },
bT1 = −1

4
tr{Σ−1Φvec{(D�Σ−1D)−1}ε∗�D�}

− 1

2
tr{Σ−1Φ(ε∗ ⊗ I p)(D�Σ−1D)−1D�}

+ 1

2
tr{Σ−1Φ(ε∗ ⊗ I p)ε∗ε∗�D�}

+ 3

4
tr{Σ−1Δ(1)vec{(D�

1 Σ−1D1)
−1}ε∗�D�}

+ 1

2
tr{Σ−1Φ(1)(ε

∗ ⊗ Iq)(D�
1 Σ−1D1)

−1D�
1 }

+ tr{Σ−1Φ(2)(ε
∗ ⊗ I p−q)εε

∗�D�},
bT2 = 1

4
tr{Σ−1Φvec{(D�Σ−1D)−1}ε∗�D�}

+ 1

2
tr{Σ−1Φ(ε∗ ⊗ I p)(D�Σ−1D)−1D�}

− 1

4
tr{Σ−1Δ(1)vec{(D�

1 Σ−1D1)
−1}ε∗�D�}

− 1

2
tr{Σ−1Φ(1)(ε

∗ ⊗ Iq)(D�
1 Σ−1D1)

−1D�
1 }

− 1

4
tr{Σ−1Φ(ε∗ ⊗ I p)ε∗ε∗�D�},

where ε∗ = [
D�
2 Σ−1D1(D�

1 Σ−1D1)
−1 − I p−q

]�
ε, Φr = [Φ(1)

r ,Φ
(2)
r ],

Φ
(1)
r = [d1r , . . . , dqr ], Φ

(2)
r = [d(q+1)r , . . . , d pr ], Δ(1) = [Φ(1)

1 , . . . ,Φ
(1)
q ], Φ =

[Φ(1),Φ(2)], Φ(1) = [Φ1, . . . ,Φq ] and Φ(2) = [Φq+1, . . . ,Φ p], with r = 1, . . . , p.
The coefficients bi0 are obtained from bi0 = −(bi1 + bi2 + bi3) for i = LR,W,R,T.
The bi j ’s are of order O(n−1/2) and all quantities except ε are evaluated under the

123



On local power properties of the LR, Wald, score and gradient 893

null hypothesisH0. The detailed derivation of the above expressions is long and very
tedious, and hence will be omitted to save space.

A brief commentary on the coefficients that define the nonnull asymptotic expan-
sions of the distribution functions of the LR, Wald, score and gradient statistics in
NLMMs is in order. Note that they depend heavily on the derivative matrix D. They
also involve the second derivative of the (possibly nonlinear) function f i (X i ;β).
Additionally, they depend on the variance-covariance matrix Σ through its inverse.
Unfortunately, they are not easy to interpret in generality and provide no indication
as to what structural aspects of the model contribute significantly to their magnitude.
The matrix Φr (r = 1, . . . , p) may be considered as the amount of nonlinearity in the
LR, Wald, score and gradient statistics induced by the (possibly nonlinear) function
f i (X i ;β), since it vanishes for linear models. It is interesting to note that bLR j = bR j

( j = 0, 1, 2, 3) and hence the nonnull asymptotic expansions of the distribution func-
tions of the LR and score statistics (up to order O(n−1/2)) are equal; see alsoKakizawa
(2012) with κr,s,t = 0 for r, s, t = 1, . . . , p.

Next, we shall compare the local powers of the rival tests based on the general
nonnull asymptotic expansions derived above for testing the null hypothesis H0 :
β2 = β20 in the class of NLMMs. LetΠi be the power function, up to order O(n−1/2),
of the test that uses the statistic Si for i = LR,W,R,T. We have

Πi − Πl =
3∑
j=0

(bl j − bi j )Gp−q+2 j,λ(x), i �= l, (5)

where x is replaced by χ2
p−q(γ ). From (3) and (5), after some algebra, it follows that

ΠLR − ΠW = ΠR − ΠW = −2[ϑ1gp−q+4,λ(x) + ϑ2gp−q+6,λ(x)],
ΠLR − ΠT = ΠR − ΠT = ϑ1gp−q+4,λ(x) + ϑ2gp−q+6,λ(x), (6)

ΠW − ΠT = 3[ϑ1gp−q+4,λ(x) + ϑ2gp−q+6,λ(x)],

where ϑ2 = −(1/2)tr{Σ−1Φ(ε∗ ⊗ I p)ε∗ε∗�D�} and

ϑ1 = −tr{Σ−1Φ(ε∗ ⊗ I p)(D�Σ−1D)−1D�}
+ tr{Σ−1Φ(1)(ε

∗ ⊗ Iq)(D�
1 Σ−1D1)

−1D�
1 }

− 1

2
tr{Σ−1Φvec{(D�Σ−1D)−1}ε∗�D�}

+ 1

2
tr{Σ−1Δ(1)vec{(D�

1 Σ−1D1)
−1}ε∗�D�}.

As earlier noted, we arrive at the following general conclusions from equations (6).
We have that ΠLR = ΠR and hence the LR and score tests have the same local power
(up to order O(n−1/2)) for testing hypotheses on the fixed effects in NLMMs. Also, if
ϑ1 ≥ 0 and ϑ2 ≥ 0 with ϑ1+ϑ2 > 0, we haveΠW > ΠLR = ΠR > ΠT. On the other
hand, if ϑ1 ≤ 0 and ϑ2 ≤ 0 with ϑ1 + ϑ2 < 0, we have ΠT > ΠLR = ΠR > ΠW.
For the linear mixed model, we have that ΠLR = ΠW = ΠR = ΠT, as expected.
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The general conclusions above are very interesting and can be used to choose the most
powerful test tomake inference on the fixed effects parameters in the class of NLMMs;
that is, if ϑ1 ≥ 0 and ϑ2 ≥ 0 with ϑ1 + ϑ2 > 0, then the Wald test will be the most
powerful test, on the other hand, the gradient test will be the most powerful test if
ϑ1 ≤ 0 and ϑ2 ≤ 0 with ϑ1+ϑ2 < 0. It should be noticed that these conditions can be
easily verified numerically in practical applications after fitting the NLMM to the data.

Appendix: Proof of Theorem 1

We provide the sketch of the proof for the LR statistic, since for the other ones (Harris
and Peers 1980; Lemonte and Ferrari 2012a) the proof is obtained in a similar fashion.
With the abuse of notation, let r, s, t = 1, . . . , k, where k is the total number of
parameters. FromHayakawa (1975), we have that bLR3 = 0, bLR0 = −(bLR1+bLR2+
bLR3), bLR2 = −(1/6)

∑k
r,s,t=1 κr,s,tε

∗
r ε∗

s ε
∗
t and bLR1 = −(1/6)

∑k
r,s,t=1(κrst −

2κr,s,t )ε∗
r ε∗

s ε
∗
t − (1/2)

∑k
r,s,t=1(κrst + 2κr,st )arsε∗

t − (1/2)
∑p

r=q+1

∑k
s,t=1(κrst +

κr,st )εrε
∗
s ε

∗
t . First, note that

bLR2 = −1

6

p∑
r,s,t=1

κr,s,tε
∗
r ε∗

s ε
∗
t ,

since ε∗
r = ε∗

s = ε∗
t = 0 for r, s, t = p + 1, . . . , k. Also,

−1

6

k∑
r,s,t=1

(κrst − 2κr,s,t )ε
∗
r ε∗

s ε
∗
t = −1

6

p∑
r,s,t=1

(κrst − 2κr,s,t )ε
∗
r ε∗

s ε
∗
t ,

−1

2

p∑
r=q+1

k∑
s,t=1

(κrst + κr,st )εrε
∗
s ε

∗
t = −1

2

p∑
r=q+1

p∑
s,t=1

(κrst + κr,st )εrε
∗
s ε

∗
t ,

−1

2

k∑
r,s,t=1

(κrst + 2κr,st )arsε
∗
t = −1

2

p∑
t=1

k∑
r,s=1

(κrst + 2κr,st )arsε
∗
t .

We have that ars = 0 for r = 1, . . . , p and s = p + 1, . . . , k, and ars = 0 for
r = p + 1, . . . , k and s = 1, . . . , p. Also, ars = κr,s for r, s = p + 1, . . . , k. Hence,

−1

2

p∑
t=1

k∑
r,s=1

(κrst + 2κr,st )arsε
∗
t = −1

2

p∑
r,s,t=1

(κrst + 2κr,st )arsε
∗
t

− 1

2

p∑
t=1

k∑
r,s=p+1

(κrst + 2κr,st )κ
r,sε∗

t .

Now, according to the notation of Theorem 1, it follows that

ξ = −1

2

p∑
t=1

k∑
r,s=p+1

(κrst + 2κr,st )κ
r,sε∗

t = −1

2

p∑
t=1

k∑
R,S=p+1

(κRSt + 2κR,St )κ
R,Sε∗

t ,
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where κR,St = E[(∂�(θ)/∂ωR)(∂2�(θ)/∂ωS∂βt )]. By using the Bartlett identity
κR,St = κ

(R)
St − κRSt for t = 1, . . . , p and R, S = p + 1, . . . , k, where κ

(R)
St =

∂κSt/∂ωR , we have κR,St = −κRSt since the orthogonality between β and ω implies
that κSt = 0. Therefore, we can express

ξ = 1

2

p∑
t=1

k∑
R,S=p+1

κRStκ
R,Sε∗

t ,

thus bLR1 = b0LR1 + ξ .
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