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Abstract Just as ARMA processes play a central role in the representation of sta-
tionary time series with discrete time parameter, (Yn)n∈Z, CARMA processes play
an analogous role in the representation of stationary time series with continuous time
parameter, (Y (t))t∈R. Lévy-driven CARMA processes permit the modelling of heavy-
tailed and asymmetric time series and incorporate both distributional and sample-path
information. In this article we provide a review of the basic theory and applications,
emphasizing developments which have occurred since the earlier review in Brockwell
(2001a, In D. N. Shanbhag and C. R. Rao (Eds.), Handbook of Statistics 19; Stochastic
Processes: Theory and Methods (pp. 249–276), Amsterdam: Elsevier).

Keywords Time series · Stationary process · CARMA process · Sampled process ·
High-frequency sampling · Inference · Prediction

1 Introduction

Continuous-time autoregressive (CAR) processes have been of interest to physicists
and engineers for many years [see e.g. Fowler (1936)]. Early papers dealing with
the properties and statistical analysis of such processes, and of the more general
continuous-time autoregressive moving average (CARMA) processes, include those
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648 P. J. Brockwell

of Doob (1944), Bartlett (1946), Phillips (1959) and Durbin (1961). In the last 10 years
there has been a resurgence of interest in these processes and in continuous-time
processes more generally, partly as a result of the very successful application of sto-
chastic differential equation models to problems in finance, particularly to the pricing
of options. The proliferation of high-frequency data, especially in fields such as finance
and turbulence, has stimulated interest also in the connections between continuous-
time processes and the discrete-time processes obtained by sampling them at high
frequencies and the possible use of continuous-time models to suggest inferential
methods for such data. Numerous examples of econometric applications of continuous-
time models are contained in the book of Bergstrom (1990). Continuous-time models
have also been utilized very successfully for the modelling of irregularly-spaced data
Jones (1981, 1985).

In this section we shall first outline some basic results from the theory of weakly
stationary processes with index set R. These depend heavily on integrals of the form∫
R

g(t − u)dξ(u) with ξ an orthogonal increment process. In subsequent sections
we shall make use of integrals of the form

∫
R

g(t − u)dL(u) where L is a Lévy
process, which has independent increments. Lévy processes are defined and discussed
at the end of this section. The use of Lévy processes rather than orthogonal increment
processes permits the study of strictly stationary processes which do not necessarily
have finite second moments and also allows investigation of their joint distributions
and sample-path properties. We begin with some definitions.

A complex-valued time series (Y (t))t∈R is said to be weakly stationary if

E |Y (t)|2 < ∞ for all t ∈ R, E(Y (t)) is independent of t , and E
[
Y (t + h)Y (t)

]

is independent of t for all h ∈ R. (Y (t) denotes the complex conjugate of Y (t)).
It is strictly stationary if the joint distribution of (Y (t1), Y (t2), . . . ,Y (tn)) is the
same as that of (Y (t1 + h), Y (t2 + h), . . . ,Y (tn + h)) for all n ∈ N, ti ∈ R, i =
1, . . . , n, and h ∈ R. We shall use the notation f̃ to denote the Fourier transform,
f̃ (ω) := ∫

R
e−iωt f (t)dt, ω ∈ R, of a square integrable function f on R. Then

f (t) = (2π)−1
∫
R

eiωt f̃ (ω)dω.
We shall consider processes defined on a probability space (�,F , P). The set of

complex-valued square-integrable random variables will be denoted by L2(�,F , P),
or more concisely by L2(P), a Hilbert space if we define the inner product of X
and Y as 〈X,Y 〉 := E(XY ). The squared norm corresponding to this inner product is
||X ||2 := 〈X, X〉 = E |X |2 and the random variables X and Y are said to be orthogonal
if 〈X,Y 〉 = 0.

An orthogonal increment process (OIP) on R is a complex-valued stochastic process
(ξ(u))u∈R such that

〈ξ(u), ξ(u)〉 < ∞, u ∈ R, (1)

〈ξ(u), 1〉 = 0, u ∈ R, (2)

〈ξ(u4)− ξ(u3), ξ(u2)− ξ(u1)〉 = 0, if(u1, u2] ∩ (u3, u4] = ∅. (3)

and
||ξ(u + δ)− ξ(u)||2 = E |ξ(u + δ)− ξ(u)|2 → 0 as δ ↓ 0. (4)
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Recent results in the theory and applications of CARMA processes 649

For each OIP (ξ(u))u∈R there is a unique non-decreasing right-continuous function
F on R, the associated distribution function (ADF), such that

F(0) = 0,

and
F(v)− F(u) = ||ξ(v)− ξ(u)||2, −∞ < u ≤ v < ∞. (5)

If ξ is an orthogonal increment process with weakly stationary increments, i.e. if
E |ξ(t + h)− ξ(t)|2 is independent of t , then

F(t) = σ 2t, for some σ > 0. (6)

The mean-square stochastic integral

The integral,

I ( f ) =
∫

R

f (u)dξ(u),

where (ξ(u))u∈R is an OIP with associated distribution function F and f ∈ L2(F), the
space of complex-valued Borel-measurable functions on R which are square integrable
with respect to F , is a linear, inner-product preserving mapping of L2(F) into L2(P).
Properties:

If f, g, fn, gn are in L2(F), f = l.i.m.n→∞ fn and g = l.i.m.n→∞gn , then

(i)
E(I ( f )) = 0. (7)

(ii)
I (a1 f + a2g) = a1 I ( f )+ a2 I (g) for all a1, a2 ∈ C. (8)

(iii)

E(I ( f )I (g)) =
∫

R

f (u)g(u)dF(u). (9)

(iv)

E(I ( fn)I (gn)) → E(I ( f )I (g)) =
∫

R

f (u)g(u)dF(u). (10)

The spectral representation of a weakly stationary process

If (ξ(u))u∈R is an OIP with associated distribution function F such that
∫
R

dF(u) <
∞, then

Y (t) :=
∫

R

eitudξ(u), t ∈ R, (11)

is a weakly stationary process which by (7) has zero mean and by (9) has autocovariance
function,
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650 P. J. Brockwell

γ (h) = E(Y (t + h)Y (t)) =
∫

R

eihudF(u), h ∈ R. (12)

A proof that every zero-mean weakly stationary process (Y (t))t∈R with γ continuous
at 0 has a representation (11) in terms of an OIP ξ whose associated distribution
function F satisfies the condition

∫
R

dF(u) < ∞ is given by Doob (1953), Theorem
4.1. F is known as the spectral distribution function of the weakly stationary process
X . If F is absolutely continuous with density f , i.e. if F(t) = ∫ t

0 f (u)du, t ∈ R,

(where
∫ t

0 := − ∫ 0
t if t < 0), then (12) becomes

γ (h) =
∫

R

eihu f (u)du. (13)

Continuous-time moving averages

If (ξ(u))u∈R is an OIP with weakly stationary increments [see (6)] with ADF, F(t) =
σ 2t, t ∈ R, and if g ∈ L2(F) then, by (7) and (9), the process,

Y (t) :=
∫

R

g(t − u)dξ(u), t ∈ R, (14)

is a weakly stationary process with zero mean and autocovariance function,

γ (h) = E(Y (t + h)Y (t)) = σ 2
∫

R

g(t + h)g(t)dt. (15)

Processes of the form (14) are known as continuous-time moving average (or CMA)
processes. By appropriate choice of the kernel function g they can be made to exhibit a
very large range of autocorrelation functions for the representation of dependent data.
From (15), the Fourier transform, γ̃ (ω) := ∫

R
e−iωhγ (h)dh is clearly

γ̃ (ω) = σ 2|g̃(ω)|2, ω ∈ R. (16)

Inversion of this Fourier transform shows that γ (h) can also be expressed as

γ (h) := σ 2

2π

∫

R

|g̃(ω)|2eiωhdω, (17)

and consequently the continuous-time moving average (14) has the spectral density,

f (ω) = σ 2

2π
|g̃(ω)|2. (18)

Conversely [see Yaglom (1987), p. 453], given a zero-mean weakly stationary
process Y with spectral density f , then any function h such that |h(ω)|2 = 2πσ−2 f (ω)
is the Fourier transform of a function g for which there exists an OIP ξ with ADF
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Recent results in the theory and applications of CARMA processes 651

(6) such that (14) holds. The function h is determined only to within multiplication
by a factor ei	(ω) where 	 is a real-valued function. Moreover the class of zero-
mean weakly stationary processes which can be represented as a one-sided moving
average of the form (14) with R replaced by R+ = [0,∞), coincides with the class of
zero-mean weakly stationary processes which have a spectral density f (ω) = F ′(ω)
satisfying the Paley–Wiener condition,

∫

R

log F ′(ω)
1 + ω2 dω > −∞. (19)

Thus the class of zero-mean weakly stationary processes representable as (14)
consists of those which have a spectral density, and the class representable as a one-
sided moving average, i.e. as (14) with R replaced by R+, consists of those which
have a spectral density F ′ satisfying (19).

The Wold–Karhunen decomposition

The general structure of continuous-time weakly stationary processes with mean-
square continuous sample-paths was treated comprehensively by Doob (1953). Sup-
pose that Y is such a process and assume (with no loss of generality) that E(Y (t)) = 0.
Then Y is said to be regular if the best (i.e. minimum mean-squared error) linear pre-
dictor of Y (t + h), h > 0, based on observations of Y (u), u ≤ t , i.e. the orthogonal
projection of Y (t + h) on the closed linear span Nt of {Y (u), u ≤ t} in L2(P) has
strictly positive mean squared error for some (and then necessarily for all) h > 0.
This is equivalent to the derivative F ′ of its spectral distribution function F satisfying
the Paley–Wiener condition (19). Assuming regularity of Y , Doob derives the best
linear predictor of Y (t + h), h > 0, based on observations of Y (u), u ≤ t . He also
establishes the Wold–Karhunen continuous-time analogue [Karhunen (1950)] of the
Wold decomposition in discrete time, namely

Y (t) = U (t)+ V (t) =
∫ ∞

0
g(t − u)dξ(u)+ V (t), (20)

where g is Lebesgue measurable, g(t) = 0 for t ≤ 0,
∫
R

|g(t)|2dt < ∞,

∫

R

g(t)eiωt dt �= 0, Im(ω) > 0, (21)

ξ is an orthogonal increment process with E |dξ(t)|2 = dt such that ξ(t2)−ξ(t1) ∈ Nt

if t1, t2 ≤ t , the process V is deterministic, i.e. V (t) ∈ N−∞(:= ∩t∈RNt ) for all t ∈ R,
and every ξ increment is orthogonal to every V (t). Condition (21) is the continuous-
time analogue of the discrete-time property of invertibility, often referred to in the
spectral domain as the minimum phase property. The best linear predictor of Y (t + h)
in terms of Y (u), u ≤ t, is then
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P(Y (t + h)|Nt ) =
∫ ∞

0
g(t − u)dξ(u)+ V (t), (22)

and the mean-squared error is

σ 2
h =

∫ h

0
|g(t)|2dt. (23)

The spectral distribution function of U is FU (t) = ∫ t
0 F ′(u)du (where

∫ t
0 := − ∫ 0

t if
t < 0) and that of V is F − FU .

The second order properties of mean-square continuous weakly stationary processes
Y are very well understood. In particular [see Yaglom (1987), pp. 163, 164] the sample-
paths have mean-square derivatives of order n if and only if the autocovariance func-
tion, γ (h) := Cov(Y (t +h), Y (t)), has a derivative of order 2n at h = 0. However the
second-order properties tell us little about the distributional and sample-path proper-
ties of Y . They are also restricted of course to processes for which E |Y (t)|2 < ∞ for
all t . In order to deal with observed time series with marginal distributions exhibiting
asymmetry or heavy tails it is natural to consider processes of the form (14) in which
the process ξ is replaced by a process with more closely specified stucture in order to
generate continuous-time models with desired sample-path properties and marginal
distributions. The natural candidates to replace ξ are the Lévy processes, whose path
structure and distributional structure have been intensively studied in recent years. See,
for example, Applebaum (2004), Bertoin (1996), Kyprianou (2006), Protter (2004),
Sato (1999).

Lévy processes

A Lévy process, L = (L(t))t∈R is a process with independent and stationary incre-
ments, continuous in probability, with sample-paths which are right-continuous with
left limits (càdlàg) and L(0) = L(0−) = 0. The most celebrated examples are Brown-
ian motion, B, for which B(t), t ≥ 0, is normally distributed with mean μt and vari-
ance σ 2t for some fixed μ ∈ R and σ > 0, and the Poisson process, N , for which
N (t), t ≥ 0, has the Poisson distribution with mean λt for some fixed λ > 0. Notice
that the processes B(t) and the centred Poisson process, N (t) − λt , like all Lévy
processes with finite second moments and zero mean, are also processes with station-
ary orthogonal increments. In fact if λ = σ 2 they have exactly the same second-order
properties, even though their sample-paths are quite different. Those of Brownian
motion are almost surely continuous while those of the process N (t)− λt are almost
surely linear with added jumps of size 1.

If L is a Lévy process the distribution of L(t), t ≥ 0, is characterized by a unique
triplet (σ 2, ν, γ ) where σ ≥ 0, γ ∈ R and ν is a measure on the Borel subsets of
R such that ν({0}) = 0 and

∫
R

min{|x |2, 1} ν(dx) < ∞. This triplet determines the
characteristic function of L(t) via the Lévy–Khintchine formula,

EeiθL(t) = exp(tζ(θ)), θ ∈ R, (24)
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where

ζ(θ) = iθγ − 1

2
θ2σ 2 +

∫

R

(eiθx − 1 − iθx1{|x |≤1}) ν(dx). (25)

The measure ν is called the Lévy measure of L and σ 2 the Gaussian variance. Con-
versely, if γ ∈ R, σ ≥ 0 and ν is a Lévy measure, then there exists a Lévy process L ,
unique up to identity in law, such that (24) and (25) hold. The triplet (σ 2, ν, γ ) is called
the characteristic triplet of the Lévy process L . The class of possible distributions for
L(1) is precisely the class of infinitely divisible distributions. For Brownian motion B
with E(B(t)) = μt and Var(B(t)) = σ 2|t |, the characteristic triplet is (σ 2, 0, μ) and
for a compound Poisson process with jump-rate λ and jump-size distribution function
F , the characteristic triplet is (0, λdF(·), ∫[−1,1] λxdF(x)).

A Lévy process L is called a subordinator if it has non-decreasing sample paths.
This happens if and only if σ 2 = 0, ν((−∞, 0)) = 0 and

∫ 1
0 x ν(dx) < ∞. Examples

of subordinators include compound Poisson processes with jump distribution concen-
trated on [0,∞), the gamma process and the inverse Gaussian process. Subordinators
play a key role in the modelling of non-negative time series (Sect. 6).

The jump of a Lévy process L at time t is defined as

�L(t) := L(t)− L(t−).

Apart from Brownian motion with drift, every Lévy process has jumps. The Lévy
measure ν(B) of a Borel set B is the expected number of jumps of L in the time
interval [0, 1] with jump (possibly negative) in the set B, i.e.

ν(B) = E
∑

0<s≤1

1B(�L(s)).

A Lévy process L has finitely many jumps in every bounded time-interval if and
only if the Lévy measure of L is finite. Every Lévy process is a semimartingale and
its quadratic variation is given by [L , L]t = σ 2t + ∑

0<s≤t
�L(s)2. See Applebaum

(2004) and Protter (2004) for further information regarding integration with respect
to semimartingales.

2 Lévy-driven CARMA processes

From now on we shall restrict attention to processes with values in R or R
m for some

positive integer m. The correlation (or second-order) theory of weakly stationary time
series with index t ∈ R was outlined in Sect. 1. In order to deal with processes which
may not have finite second moments and to incorporate distributional and sample-path
properties in the modelling of such processes, we shall replace the driving orthogonal-
increment processes ξ which appear in the continuous time moving averages (14)
by Lévy processes. The distinction between OIP-driven and Lévy-driven stationary
processes is analogous to the distinction in discrete time between weak moving aver-

123



654 P. J. Brockwell

ages of uncorrelated white noise and strong moving averages of independent white
noise.

A weak ARMA(p, q) process in discrete time [see Brockwell and Davis (1991) for
details] is a weakly stationary solution of difference equations of the form,

φ(B)Yn = θ(B)Zn, n ∈ Z, (26)

where B is the backward shift operator (i.e. for any sequence X , Bk Xn = Xn−k),
(Zn)n∈Z is a sequence of uncorrelated random variables, φ(z) is a polynomial of
degree p, θ(z) is a polynomial of degree q, and the polynomials have no common
zeroes. A strong ARMA(p, q) process is defined in the same way except that the
random variables Zn are required to be independent and identically distributed (i.i.d.)
rather than simply uncorrelated. There is then a unique strictly stationary solution
Y [see Brockwell and Lindner (2010)], if and only if φ(z) �= 0 when |z| = 1 and
E log+ |Z1| < ∞.

A natural continuous-time analogue of the difference equation (26) with i.i.d. noise
is the formal differential equation,

a(D)Y (t) = b(D)DL(t), (27)

where L is a Lévy process, D denotes differentiation with respect to t , and a(z) and
b(z) are polynomials of the form,

a(z) = z p + a1z p−1 + · · · + ap,

b(z) = b0 + b1z + · · · + bq zq ,

with bq = 1 and q < p. Since the derivatives on the right-hand side of (27) do not
exist in the usual sense, we give the equation a meaningful interpretation by rewriting
it in the state-space form,

Y (t) = bT X(t), t ∈ R, (28)

where X = (X(t))t∈R is a process with values in R
p, satisfying the stochastic differ-

ential equation,
dX(t) = AX(t) dt + ep dL(t), (29)

or equivalently

X(t) = eA(t−s)X(s)+
∫

(s,t]
eA(t−u)ep dL(u), ∀s ≤ t ∈ R, (30)

with

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−ap −ap−1 −ap−2 · · · −a1

⎤

⎥
⎥
⎥
⎥
⎥
⎦
, ep =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0
0
...

0
1

⎤

⎥
⎥
⎥
⎥
⎥
⎦
, and b =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

b0
b1
...

bp−2
bp−1

⎤

⎥
⎥
⎥
⎥
⎥
⎦
,
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where a1, . . . , ap, b0, . . . , bp−1 are real-valued coefficients satisfying bq = 1 and
b j = 0 for j > q. For p = 1 the matrix A is to be understood as A = (−a1).

Remark 1 It is easy to check that the eigenvalues of the matrix A are the same as the
zeroes of the autoregressive polynomial a(z). We shall refer throughout to a typical
zero as λ and denote its multiplicity by m(λ). Thus

∑

λ

m(λ) = p.

Path properties

The integral in (30) is a special case of integration with respect to a semimartingale as
defined in Protter (2004), Chapter 2. Since the integrand is deterministic, continuous
and of bounded variation on [s, t], we can integrate by parts to obtain the pathwise
interpretation of (30),

X(t) = eA(t−s)X(s)+
[

L(t)Ip − L(s)eA(t−s) +
∫ t

s
L(u)AeA(t−u)du

]

ep, (31)

where Ip is the p × p identity matrix. This shows, in particular, that the components
of X are continuous except possibly for the last (i.e. pth) component, which is càdlàg,
with jumps coinciding with those of the driving Lévy process L . It shows also that the
derivative of the j th component of X is the ( j + 1)th component, j = 1, . . . , p − 1.
Note however that the (p−1)th component is in general differentiable only in the sense
of having right and left derivatives since the pth component has jump discontinuities
which are the same as those of L . The general CARMA(p, q) process defined by (32) is
the linear combination, bT X, of components of X and therefore has non-differentiable
sample-paths if q = p − 1, since in that case the linear combination includes the last
component of X. (CARMA(p, q) processes with q ≥ p can be defined as generalized
random functions [Brockwell and Hannig (2010)] but we shall not consider them here).

Existence and uniqueness

Sufficient conditions for the existence of a strictly stationary solution of (28) and (30)
were obtained by Brockwell (2001b). Subsequently Brockwell and Lindner (2009),
generalizing results of Wolfe (1982) and Sato and Yamazato (1984) for the Lévy-
driven Ornstein–Uhlenbeck equation, established necessary and sufficient conditions
for the existence of a strictly stationary, not necessarily causal, solution Y = (Y (t))t∈R.
In Theorem 4.1 of that paper they also showed that there is no loss of generality in
assuming that the polynomials a(z) and b(z) have no common zeroes since if that is the
case and if Y is a solution of (28) and (30), then it also satisfies the analogous equations
corresponding to the polynomials obtained by cancelling the common factors of a(z)
and b(z). We shall therefore assume throughout that a(z) and b(z) have no common
zeroes. We shall also assume that the driving processs L is not deterministic. Under
these assumptions the strictly stationary solution of (28) and (30) is given by Theorem
3.3 of Brockwell and Lindner (2009), restated below.
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Theorem 1 Let L be a Lévy process which is not deterministic and suppose that a(·)
and b(·) have no common zeroes. Then the CARMA equations (28) and (29) have a
strictly stationary solution (Y (t))t∈R if and only if E log+ |L(1)| < ∞ and a(·) is
non-zero on the imaginary axis. In this case the solution Y is unique and is given by

Y (t) =
∫ ∞

−∞
g(t − u) dL(u), t ∈ R, (32)

where
g(t) = g1(t)1[0,∞)(t)− g2(t)1(−∞,0)(t), (33)

and the functions g1(t) and g2(t) are the sums of the residues of the function z �→
ezt b(z)/a(z) in the left and right halves of the complex plane respectively. Equivalently,

gk(t) = 1

2π i

∫

ρk

b(z)

a(z)
ezt dz, k = 1, 2, (34)

where integration is anticlockwise around the simple closed curves ρ1 and ρ2 in the
open left and right halves of the complex plane respectively, encircling the zeroes of
a(z).

Remark 2 The integrals
∫
(−∞,t] and

∫
(t,∞)

appearing when (33) is substituted in (32)
are defined as almost sure limits as T → ∞ of

∫
(−T,t] and

∫
(t,T ) respectively.

Remark 3 If a(z) has no zeroes in the right half-plane then g2 is zero and Y is said to
be causal, or more precisely a causal function of L .

Remark 4 The kernel function g can also be written as the inverse Fourier transform
in L2 of the square integrable function b(iω)/a(iω), i.e.

g(t) = 1

2π

∫

R

eiωt b(iω)

a(iω)
dω, (35)

taken to be right continuous at t = 0. The sums of residues g1(t) and g2(t) in (33) can
also be evaluated more explicitly as

g(t)=
∑

λ:�λ<0

m(λ)−1∑

k=0

cλk tkeλt 1[0,∞)(t)−
∑

λ:�λ>0

m(λ)−1∑

k=0

cλk tkeλt 1(−∞,0)(t), (36)

where the sums are over the distinct zeroes λ of a(·), m(λ) denotes the multiplicity

of λ, �λ denotes the real part of λ, and the residue,
m(λ)−1∑

k=0
cλk tkeλt , of the function

z �→ ezt b(z)/a(z) at λ is

m(λ)−1∑

k=0

cλk tkeλt = 1

(m(λ)− 1)!
[

Dm(λ)−1
z

(
(z − λ)m(λ)ezt b(z)/a(z)

)]

z=λ ,

where Dz denotes differentiation with respect to z.
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Remark 5 Canonical decomposition. If m(λ) = 1 for every λ, the kernel reduces to

g(t) =
∑

λ:�λ<0

eλt b(λ)

a′(λ)
1[0,∞)(t)−

∑

λ:�λ>0

eλt b(λ)

a′(λ)
1(−∞,0)(t), (37)

where a′(λ) is the derivative of a at λ.
The simplified form of the kernel, (37), when the zeroes, λ1, . . . , λp of the autore-

gressive polynomial a(z) all have multiplicity one implies that in this case Y is a linear
combination of (possibly complex-valued) CARMA(1, 0) processes, Y1, . . . ,Yp, i.e.

Y (t) =
p∑

r=1

α(λr )Yr (t), (38)

where

Yr (t) =
{∫

(−∞,t] eλr (t−u)dL(u), if �λr < 0,
− ∫

(t,∞)
eλr (t−u)dL(u), if �λr > 0,

and α(λr ) = b(λr )/a′(λr ), r = 1, . . . , p.

Remark 6 Matrix form of the kernel. The kernel g can also be expressed in matrix
form as follows. For the zero λ of a(z)with multiplicity m(λ), define the p-component
column-vector,

φ(λ) := [1 λ · · · λp−1]T ,

and the p × m(λ) matrix,

R(λ) = [φ(λ)φ(1)(λ) · · · φ(m(λ)−1)(λ)], (39)

where φ( j) denotes the j th derivative of φ. Labelling the distinct zeroes of a(z) as

λ1, . . . , , λr (where
r∑

i=1
m(λi ) = p), we next introduce the matrices,

T = [R(λ1) R(λ2) · · · R(λr )]. (40)

and

T −1 =

⎡

⎢
⎢
⎢
⎣

L(λ1)

L(λ2)
...

L(λr )

⎤

⎥
⎥
⎥
⎦
, (41)

where, for each j , L(λ j ) is an m(λ j )× p matrix. Then
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T −1 AT =

⎡

⎢
⎢
⎢
⎣

J (λ1) 0 · · · 0
0 J (λ2) · · · 0
...

...
. . .

...

0 0 · · · J (λr )

⎤

⎥
⎥
⎥
⎦
, (42)

where J (λ j ) is a Jordan m(λ j )× m(λ j ) block matrix with each diagonal component
equal to λ j , each superdiagonal component equal to one, and all other components
equal to zero. Noting that L(λi )R(λ j ) is the m(λ j )× m(λ j ) identity matrix if i = j ,
and zero otherwise, we see that

eAt =
r∑

i=1

R(λi )e
t J (λi )L(λi ) =

∑

i :�λi<0

+
∑

i :�λi>0

R(λi )e
t J (λi )L(λi ), (43)

where et J (λi ) is the m(λi ) × m(λi ) upper triangular matrix with ( j, k)-element
etλ j t k− j/(k − j)!, k = j . . . ,m(λi ), j = 1, . . . ,m(λi ). Correspondingly,

bT eAt ep =
∑

i :�λi<0

+
∑

i :�λi>0

bT R(λi )e
t J (λi )L(λi )ep,

where the first and second sums are the sums of the residues of the mapping z �→
ezt b(z)/a(z) at the zeroes of a(z) with negative and positive real parts respectively.
Corresponding to (36) we thus have the representation of the kernel g as

g(t) =
∑

λ:�λ<0

bT M(λ)ep1[0,∞)(t)−
∑

λ:�λ>0

bT M(λ)ep1(−∞,0), (44)

where
M(λ) := R(λ)et J (λ)L(λ). (45)

and the matrices R(λ), L(λ) and et J (λ) are readily calculated for each of the distinct
zeroes λ as described above. If all of the zeroes of a(z) have negative real parts then
the last term in (44) vanishes and, by (43), g reduces to

g(t) = bT eAt ep1[0,∞)(t). (46)

Example 1 The stationary Ornstein–Uhlenbeck process. This is the special case of
a CARMA(1, 0) process with a(z) = z − λ, λ ∈ R, and b(z) = 1. Theorem 1
implies that the process exists if and only if λ �= 0 and E log+ |L1| < ∞. Under these
conditions the process is unique and specified by (32) with

g(t) =
{

eλt 1[0,∞)(t), if λ < 0,
−eλt 1(−∞,0)(t), if λ > 0.

(47)

i.e.

Y (t) =
{∫

(−∞,t] eλ(t−u)dL(u), if λ < 0,
− ∫

(t,∞)
eλ(t−u)dL(u), if λ > 0,

(48)
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If λ < 0 the CARMA(1, 0) process Y is causal and

Y (t) =
∫

(−∞,t]
eλ(t−u)dL(u), with λ < 0. (49)

The CARMA(1, 0) process is also invertible in the sense that the increments
(L(t) − L(s))s≤t≤u are in the closed linear span of (Y (v))v≤u . This follows from
the observation that in this case Y and X are the same so that (29) can be rewritten as

dY (t) = λY (t)dt + dL(t),

or equivalently,

L(t)− L(s) = Y (t)− Y (s)− λ

∫ t

s
Y (v)dv. (50)

Recovery of the Lévy increments from the sample-path of Y

For inference concerning the nature of the driving process L of the CARMA process
defined by (32) it is important to be able to recover the increments of L from a
realization of Y as in the special case illustrated in Example 1. Provided the zeros of
the polynomial b(z) are all strictly less than zero, this can be done as indicated in the
following theorem, for a proof of which we refer to Brockwell and Lindner (2014).

Theorem 2 If the zeroes of the moving average polynomial b(z) in (27) have strictly
negative real parts then the increments of the driving Lévy process L satisfy

L(t)− L(s) = eT
p

(

X(t)− X(s)−
∫ t

s
AX(u)du

)

, t ≥ s, (51)

where the components X (0)(t), X (1)(t), . . . , X (p−1)(t), of the state-vector X(t)are
given by

X ( j)(t)=
j−q∑

k=0

κ( j−1−k)(0+)Y (k)(t)+
∫

(−∞,t)
κ( j)(t−u)Y (u)du, 0 ≤ j ≤ p−1, (52)

the superscripts denote order of differentiation, the sum is defined to be zero if j−q < 0,
and κ(t) is the sum of the residues of the mapping z �→ ezt/b(z) at the zeroes of b(z).
(If μ is a zero of b(z) with multiplicity 1 then the residue at μ is eμt/b′(μ)).

If the zeroes of the autoregressive polynomial, λ1, . . . , λp all have multiplicity 1,
the increments of the driving Lévy process can also be recovered from any one of the
component processes, Yr (t) in the canonical decomposition (38). Thus, cf. (50),

L(t)− L(s) = Yr (t)− Yr (s)− λr

∫ t

s
Yr (v)dv, r = 1, . . . , p. (53)
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Example 2 The CARMA (2,1) process. For the L-driven CARMA process Y with
autoregressive polynomial a(z) = (z − λ1)(z − λ2) = z2 + a1z + a2, and moving
average polynomial b(z) = z − μ = b0 + z, with μ = −b0 < 0, the sum of the
residues of z �→ ezt/b(z) at the zeroes of b(z) is just κ(t) = e−b0t . From (52) we
therefore obtain, for t ≥ 0,

X (0)(t) =
∫ t

−∞
e−b0(t−u)Y (u)du = e−b0t X (0)(0)+

∫ t

0
e−b0(t−u)Y (u)du

and X (1)(t) = Y (t)− b0 X (0)(t). By (51) we then have, if 0 ≤ s ≤ t ,

L(t)− L(s) = Y (t)− Y (s)+ (a1 − b0)(X
(0)(t)− X (0)(s))+ a2

∫ t

s
X (0)(u)du

where X (0) is given by (52).

Remark 7 Under the conditions of Theorem 1, the CARMA process Y defined by (32)
can be written as Y (t) = bT X(t), where X is the unique strictly stationary solution of
(30), namely

X(t) =
∫ ∞

−∞
f(t − u) dL(u), t ∈ R, (54)

where
f(t) = f1(t)1[0,∞)(t)− f2(t)1(−∞,0)(t), (55)

and f1(t) and f2(t) are equal to the sums of the residues of the mapping z �→
[1 z · · · z p−1]T ezt/a(z) in the left and right halves of the complex plane respec-
tively. They simplify, when the zeroes of a(·) have multiplicity 1, to

f1(t) =
∑

λ:�λ<0

eλt [1 λ · · · λp−1]T

a′(λ)
and f2(t) =

∑

λ:�λ>0

eλt [1 λ · · · λp−1]T

a′(λ)
,

(56)
where a′(λ) is the derivative of a at λ.

As in Remark 3, we can also write (regardless of the multiplicities of the zeroes of
a(z)),

f1(t) =
∑

λ:�λ<0

M(λ)ep and f2(t) =
∑

λ:�λ>0

M(λ)ep, (57)

where M(λ) was defined, for each distinct zero of a(z), in (45). If the zeroes of a(·)
all have negative real parts then f(t) can be expressed as

f(t) = eAt ep1[0,∞(t). (58)

In this case we can therefore write Y (t) = bT X(t) where

X(t) =
∫

(−∞,t]
eA(t−u)epdL(u). (59)
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Joint distributions

If Y is a causal CARMA process defined by (32) and the Lévy process L has the
characteristic function specified in (24) and (25) then the the cumulant generating
function of Y (t1), Y (t2), . . . ,Y (tn), (0 ≤ t1 < t2 < · · · < tn) is

ln E[exp(iθ1Y (t1)+ · · · + iθnY (tn))] =
∫ ∞

0
ζ

(
n∑

i=1

θi b′eA(ti +u)

)

epdu +
∫ t1

0
ζ

(
n∑

i=1

θi b′eA(ti −u)

)

epdu

+
∫ t2

t1
ζ

(
n∑

i=2

θi b′eA(ti −u)

)

epdu + · · · +
∫ tn

tn−1

ζ
(
θnb′eA(tn−u)

)
epdu.(60)

In particular, the marginal distribution of Y (t) has cumulant generating function,

ln E[exp(iθY (t))] =
∫ ∞

0
ζ(θb′eAuep)du. (61)

A derivation of these results can be found in Brockwell (2001b).

Example 3 Symmetric stable L . If L is a symmetric stable process, then

ln EeiθL(t) = −ct |θ |α, c > 0, 0 < α ≤ 2,

and by (61), Y (t) has the symmetric stable marginal distribution with

ln EeiθY (t) = −c|θ |α
∫ ∞

0
|b′eAuep|αdu.

Example 4 CARMA(1,0). If Y is the causal CARMA(1,0) process (49) and ln EeiθL(t)

= tζ(θ), then by (61),

κ(θ) := ln E[exp(iθY (t))] =
∫ ∞

0
ζ(θeλu)du,

from which, by a change of variable to y = θeλu in the last integral, we find that

κ(θ) = |λ|−1
∫ θ

0
y−1ζ(y)dy, (62)

which, in the special case of Example 3 reduces to κ(θ) = −c|θ |α/(α|λ|). The
result (62), or equivalently ζ(θ) = |λ|θκ ′(θ), is essentially the same as Eq. (12)
of Barndorff-Nielsen and Shephard (2001) who used it to choose the Lévy process
(i.e. ζ(θ)) required to generate a specified marginal distribution for the corresponding
CARMA(1,0) process.
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3 Second-order CARMA processes

If the driving Lévy process in (29) has the property E L(1)2 < ∞ then EY (t)2 < ∞
and the process Y is not only strictly stationary but also covariance stationary, i.e.
E(Y (t)) is independent of t and Cov(Y (t + h), Y (t)) is independent of t for all h ∈ R

and denoted by γ (h). In this section we shall examine these second order properties
and the corresponding frequency-domain properties of the process Y .

For a second-order non-deterministic Lévy process the mean and variance of L(t)
are necessarily of the form E L(t) = ξ t and Var(L(t)) = σ 2t , where ξ = E L(1) ∈ R

and σ = √
Var(L(1) > 0. We shall use ξ and σ to denote these quantities whenever

they exist. The process (L(t)− ξ t)t∈R is an OIP as defined in Sect. 1, with associated
distribution function, F(t) = σ 2t .

The expected value of Y (t) can be computed from (32) as E(Y (t)) = ξ
∫∞
−∞ g(t −

u)du. Substituting for g from (33) and (34) and integrating we obtain

EY (t) = − ξ

2π i

[∫

ρ1

+
∫

ρ2

b(z)

za(z)
dz

]

= ξResz=0

[
b(z)

za(z)

]

= ξb0

ap
. (63)

(Henceforth we shall use the notation Resz=ζ f (z) to denote the residue of the function
f at ζ ).

From (35) we see at once that the Fourier transform of the kernel g of Y is

g̃(ω) = b(iω)

a(iω)
.

Hence, by (18), Y has spectral density,

f (ω) = σ 2

2π

∣
∣
∣
∣
b(iω)

a(iω)

∣
∣
∣
∣

2

.

Substituting this expression into (13) and changing the variable of integration from ω

to z = iω gives,

γ (h) = σ 2

2π i

∫

ρ

b(z)b(−z)

a(z)a(−z)
e|h|zdz = σ 2

∑

τ :�τ<0

Resz=τ
(

b(z)b(−z)

a(z)a(−z)
ez|h|
)

, (64)

where the integration is clockwise around any simple closed curve ρ in the open left
half-plane enclosing the distinct zeroes τ of a(z)a(−z) with negative real parts.

If the process is causal the zeroes, τ , of a(z)a(−z) in the left half-plane are the
same as the zeroes, λ, of a(z) and if in addition the multiplicity, m(λ), of each of the
zeroes is one, then γ (h) takes the especially simple form,

γ (h) = σ 2
∑

λ

b(λ)b(−λ)
a′(λ)a(−λ)eλ|h|, h ∈ R. (65)
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If we are concerned only with second-order properties of Y , i.e. properties which
depend only on EY (t) and γ (·), then there is no loss of generality in assuming that
the zeroes of a(z) and b(z) all have negative real parts since, if some of them have
positive real parts, a CARMA process of the same order and with the same mean
and autocovariance function (but not in general with the same joint distributions)
is obtained by changing the sign of each zero with strictly positive real part and
multiplying L by (−1)m where m is the sum of the multiplicities of all of the zeroes
whose signs are reversed. If the driving Lévy process is Brownian motion then Y
is Gaussian and the distributional properties of Y are completely determined by its
second-order properties. More generally it is very appealing, particularly from the
point of view of simulating Y , that Y (t) should depend only on the sample-path of
L up to and including time t . Moreover, by Theorem 2, if the zeroes of b(z) all have
negative real parts the process is invertible, i.e. the increments (L(t) − L(s))s≤t≤u

are in the closed linear span of (Y (v))v≤u . For these reasons we shall assume for the
remainder of this section that the zeroes of a(z) and b(z) all have negative real parts.

Under these conditions the general expression (64) for the autocovariance function
of Y can also be expressed neatly in the matrix form,

γ (h) = b′Cov(X(t + h),X(t))b, (66)

where, from (59), we see that

Cov(X(t + h),X(t)) = σ 2eAhΣ, h ≥ 0, (67)

with

Σ =
∫ ∞

0
eAt epe′

peA′t dt.

The matrix σ 2Σ is clearly the covariance matrix of X(t). Since the j th component of
X(t) is the ( j − 1)th mean square derivative of the first component, and since the first
component is the CARMA(p, 0) process obtained by setting b(z) = 1 in the definition
of Y , the components σ 2Σi, j have the form

σ 2Σi, j =
{
(−1)i+1κ(i+ j−2)(0), if (i + j) is even,
0, otherwise,

(68)

where κ( j)(0) denotes the j th derivative at 0 of the autocovariance function of the first
component of X which, from (64), is

κ(h) = σ 2
∑

λ

Resz=λ
ez|h|

a(z)a(−z)
,
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and the sum, as usual, is over the distinct zeroes of a(z) (which, as we are assuming,
all have negative real parts). Thus

κ( j)(0) = σ 2
∑

λ

Resz=λ
z j

a(z)a(−z)
, (69)

and, if the zeroes of a(z) all have multiplicity one,

κ( j)(0) = σ 2
∑

λ

λ j

a′(λ)a(−λ) .

Calculation of the matrix σ 2Σ can easily be carried out using (68) and (69) or by
observing that the matrix M := Σ−1 = [mi, j ]p

i, j=1 has the very simple representation
[Arato (1982)],

mi, j =
⎧
⎨

⎩
2

∞∑
k=0
(−1)kap−i−kap− j+1+k, if (i + j) is even,

0, otherwise,
(70)

where a0 := 1 and a j := 0 if j < 0 or j > p. Finally from (66) and (67) we obtain
the matrix representation of the autocovariance function γ of Y ,

γ (h) = σ 2b′eA|h|Σb, h ∈ R. (71)

Remark 8 Although, from a second-order point of view, one cannot distinguish
between a causal and a non-causal process with parameters such that the second-order
properties are the same, the distributional and sample-path properties of the causal and
non-causal processes can be quite different. We return to this issue in Sect. 10 where
we discuss non-causal processes in more detail.

4 Relating continuous-time and discrete-time ARMA processes

The discrete-time analogue of a Lévy-driven CARMA process is the ARMA process
driven by i.i.d. noise. The ARMA(p, q) process with autoregressive coefficients
φ1, . . . , φp and moving average coefficients θ1, . . . , θq , driven by the i.i.d. sequence
(Zn)n∈Z, is a strictly stationary solution of the difference equations,

φ(B)Yn = θ(B)Zn, (72)

where B is the backward shift operator, i.e. B j Yn = Yn− j , and φ(z), θ(z) are the
autoregressive and moving average polynomials,

φ(z) = 1 − φ1z − · · · − φpz p
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and

θ(z) = 1 + θ1z + · · · + θq zq ,

respectively. Brockwell and Lindner (2010) established the following existence and
uniqueness theorem for strictly stationary solutions of (72).

Theorem 3 Suppose that (Zn)n∈Z is a non-deterministic independent white noise
sequence. Then the ARMA equation (72) admits a strictly stationary solution (Yn)n∈Z

if and only if

(i) E log+ |Z1| < ∞ and all singularities of θ(z)/φ(z) on the unit circle are remov-
able, i.e. if φ(z) has a zero ζ of multiplicity m on the unit circle, then ζ is a zero
of θ(z) of multiplicity at least m,
or

(ii) all singularities of θ(z)/φ(z) in C are removable.
If (i) or (ii) above holds, then a strictly stationary solution of (72) is given by

Yn =
∞∑

k=−∞
ψk Zn−k, n ∈ Z, (73)

where

∞∑

k=−∞
ψk zk = 	(z)

�(z)
, 1 − δ < |z| < 1 + δ for some δ ∈ (0, 1),

is the Laurent expansion of 	(z)/�(z). The sum in (73) converges absolutely
almost surely.
If� does not have a zero on the unit circle, then (73) is the unique strictly stationary
solution of (72).

Remark 9 The sequence (ψn)n∈Z of Laurent coefficients is the discrete-time analogue
of the kernel (g(t))t∈R in Theorem 1. The coefficient ψn can be expressed as

ψn = 1

2π i

∮
z−n−1 θ(z)

φ(z)
dz, (74)

where the integral is anticlockwise around the unit circle. Equivalently [cf. (33)]

ψn = ψ(1)n 1[0,∞)(n)− ψ(2)n 1(−∞,0)(n), (75)

where ψ(1)n and ψ(2)n are the sums of the residues of z �→ z−n−1θ(z)/φ(z) in the
exterior and interior of the unit disc respectively, the former including the residue
at infinity which is non-zero if 0 ≤ n ≤ q − p and zero for all non-negative n if
p > q. (Recall that the residue at infinity of a meromorphic function f is defined as
Resz=0

[−z−2 f (z−1)
])

.
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If Y is the CARMA(p, q) process (32) with q = p − 1, a(z) = ∏p
j=1(z − λ j ),

b(z) =∏q
j=1(z − μ j ) and kernel g, and if (Un�)n∈Z is the ARMA(p, q) process on

the discrete time grid {n�, n ∈ Z} with φ(z) =∏p
j=1(1 − eλ j�z), θ(z) =∏q

j=1(1 −
eμ j�z) and some driving i.i.d. sequence (Zn)n∈Z such that E log+ |Z1| < ∞, then it
is straightforward to check, by making the change of variable w = (1 − z)/� in (74)
that

lim
�→0

ψ[t/�] = 1

2π i

∫ i∞

−i∞
ezt b(z)

a(z)
dz = g(t), (76)

i.e. that the kernel of (Un�)n∈Z at lag [t/�], the integer part of t/�, converges, as the
grid spacing� → 0, to the kernel of Y at lag t . One can thus approximate the kernel of
Y , for small �, using that of the discrete-time process (Un�)n∈Z as indicated in (76).
We shall return to this issue in connection with the sampling of CARMA processes
discussed in Sect. 7. The ARMA process (Un�)n∈Z introduced in this paragraph should
not however be confused with the sampled process (Y�n := Y (n�))n∈Z obtained by
sampling Y at the grid points n�, n ∈ Z.

5 Integrated CARMA processes

The fractionally integrated process, FICARMA(p, d, q), d ∈ (0, 1/2)

The fractionally integrated discrete-time ARMA(p, d, q) process (with d ∈ (0, 0.5)
driven by a finite variance, zero mean, uncorrelated sequence of random variables,
(Zn)n∈Z, was introduced by Granger and Joyeux (1980) and Hosking (1981) as a
weakly stationary solution of the difference equations [cf. (72)]

φ(B)Yn = θ(B)(1 − B)−d Zn, (77)

where (1 − B)−d :=
∞∑
j=0

β j B j and β j = �(d + j)/[�(d)�( j + 1)]. The sequence

(βn)n∈N0 is the fractional summation kernel of order d.
Hosking (1981) showed that a sufficient condition for the existence of a weakly

stationary solution is that d < 1/2 and φ(z) has no zero on the unit circle. It is now
well-known [see e.g. Brockwell and Davis (1991), Theorem 13.2.2] that if φ and θ
have no common zeroes and if φ(z) �= 0 for all z such that |z| = 1, then there is a
unique purely non-deterministic stationary solution given by

Yn =
∞∑

j=−∞
ζ j (1 − B)−d Zn− j ,
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where
∞∑

j=−∞
ζ j z j is the Laurent expansion of θ(z)/φ(z), valid for |1−|z|| sufficiently

small. The solution can also be written as the mean-square convergent sum,

Yn =
∞∑

j=−∞
ψ j Zn− j , (78)

where the sequence (ψn)n∈Z is the convolution of the ARMA kernel (ζn)n∈Z and the
fractional summation kernel (βn)n∈N0 . If we make the stronger assumption that the
driving noise sequence (Zn)n∈Z is i.i.d. then the sum (78) is absolutely convergent
with probability one if E |Z0|1/(1−d) < ∞. [See Kokoszka and Taqqu (1995) and
Vollenbröker (2012)].

Motivated by the form of the kernel in (78), Brockwell (2004) and Brockwell and
Marquardt (2005) defined a fractionally integrated continuous-time ARMA (denoted
FICARMA) process, driven by the second-order zero-mean Lévy process L , as the
strictly (and covariance) stationary process,

Yd(t) =
∫

(−∞,∞)

gd(t − u)dL(u), d ∈ (0, 0.5), (79)

where gd is the convolution of the CARMA kernel g in (33) with the Riemann-Liouville
fractional integration kernel,

h(t) = td−1

�(d)
1[0,∞)(t), (80)

i.e.

gd(t) =
∫

[0,∞)

g(t − u)
ud−1

�(d)
du, t ∈ R. (81)

It is sufficient to assume in the definition (79) that a(z) has no zeroes on the imaginary
axis. Brockwell and Marquardt (2005) made the stronger assumption that the zeroes
of a(z) all have strictly negative real parts, in which case Y is a causal function of L .
Under the additional assumption that the zeroes of a(z) all have multiplicity one, they
also derived explicit expressions, in terms of the confluent hypergeometric function of
the first kind, for the kernel gd and the autocovariance function γd of the process Yd .
They found interesting parallels between the asymptotic behaviour of both the kernel
and the autocovariance functions of the continuous- and discrete-time fractionally
integrated processes. For the CARMA(p, d, q) process,

gd(t) ∼ td−1

�(d)

b(0)

a(0)
as t → ∞,

γd(h) ∼ h2d−1 Var(L(1))�(1 − 2d)

�(d)�(1 − d)

[
b(0)

a(0)

]2

as h → ∞,
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while for the ARMA(p, d, q) process (77) [see Beran (1994)],

ψ j ∼ jd−1

�(d)

θ(1)

φ(1)
as j → ∞,

γY (h) ∼ h2d−1 Var(Z0)�(1 − 2d)

�(d)�(1 − d)

[
θ(1)

φ(1)

]2

as h → ∞.

The power, as opposed to exponential, decay of their kernel and autocovariance func-
tions is what distinguishes the fractionally integrated CARMA/ARMA processes from
their CARMA/ARMA counterparts.

Remark 10 A fractionally integrated Gaussian CARMA process was introduced by
Comte and Renault (1996) as a CARMA process driven by fractionally integrated
Brownian motion. An analogous approach in which fractional Brownian motion was
replaced by a fractional Lévy motion was taken by Marquardt (2006). This approach
opens the door to a much larger class of long-memory continuous-time moving average
processes.

Remark 11 The connection between the kernels of the CARMA process and the cor-
responding fractionally integrated process can be seen by comparing the CARMA
kernel (35) with the FICARMA kernel,

gd(t) = 1

2π

∫

R

eiωt (iω)−d b(iω)

a(iω)
dω, t ∈ R. (82)

Remark 12 It is crucial, in the definition (79) of the second-order fractionally inte-
grated CARMA process, that E L(1) = 0. If E L(1) = μ �= 0 then the integral (79) is
not defined.

Remark 13 A heavy-tailed fractionally integrated process can be defined by (79)
provided E L(1)1/1−d < ∞. This is the analogue of the corresponding condition
E |Z0|1/1−d for the existence of the heavy-tailed discrete-time fractionally-integrated
ARMA process.

The integrated process ICARMA(p, d, q), d ∈ N

The d-fold integrated CARMA process with d ∈ N is the non-stationary process
defined by

Yd(t) =
∫ t

0

∫ ud−1

0
· · ·
∫ u1

0
Y (u) du du1 . . . dud−1

=
∫ t

0

(t − u)d−1

�(d)
Y (u)du, d ∈ N, (83)

where Y is a CARMA(p, q) process and td−1

�(d) is the d-fold integration kernel intro-
duced (for d ∈ (0, 1/2)) in (81).
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The integral on the right of (83) can be evaluated explicitly as follows. From (29)
we see at once that

∫ t

0
X(u)du = A−1[X(t)− X(0)− ep L(t)]. (84)

Iterating (84) (d − 1) times gives the d-fold integral,

Xd(t) =
∫ t

0

(t − u)d−1

�(d)
X(u)du

= A−d

⎡

⎣X(t)−
d−1∑

j=0

A j

j !
(

t j X(0)−
∫ t

0
(t − u) j dL(u) ep

)
⎤

⎦ , (85)

where, from (59), X(t) = ∫
(−∞,t] eA(t−u)epdL(u), and from (28),

Yd(t) = bT Xd(t). (86)

Example 5 The integrated stationary Ornstein–Uhlenbeck process. For the causal sta-
tionary Ornstein–Uhlenbeck process,

Y (t) =
∫

(−∞,t]
eλ(t−u)dL(u), λ < 0,

the process and the state vector are the same and so from (85) with d = 1 we find at
once that the integrated process Y1 is given by

Y1(t) = λ−1[Y (t)− Y (0)− L(t)], t ≥ 0. (87)

This process has been studied in detail by Barndorff-Nielsen and Shephard (2003). The
canonical decomposition (38), in conjunction with (87), gives the following simple
expression for the integrated process Y1 when Y is a causal CARMA process with
distinct autoregressive zeroes:

Y1(t) =
∑

λ

λ−1α(λ)[Y (λ)(t)− Y (λ)(0)− L(t)],

where the sum is over the zeroes of a(z), the coefficients α(λ) are defined as in (38)
and Y (λ) is the CARMA(1, 0) process,

Y (λ) =
∫

(−∞,t]
eλ(t−u)dL(u).
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6 Non-negative CARMA processes

CARMA processes with a non-negative kernel, driven by a non-decreasing Lévy
process constitute a useful and very general class of stationary, non-negative
continuous-time processes which have been used, in particular, for the modelling
of stochastic volatility.

In financial econometrics a Lévy-driven CAR(1) (or stationary Ornstein–Uhlenbeck)
process was used by Barndorff-Nielsen and Shephard (2001) to represent the spot
volatility V (t) in their celebrated model,

dX∗(t) = (μ+ βV (t))dt +√V (t)dW (t), (88)

for the logarithm, X∗(t), of the price of an asset at time t . In this model μ and β are
constants, W is standard Brownian motion and the volatility process V is a stationary
causal non-negative Lévy-driven Ornstein–Uhlenbeck process, independent of W ,
satisfying

dV (t)− λV (t)dt = dL(t), λ < 0,

i.e.

V (t) =
∫ t

−∞
exp(λ(t − u))dL(u). (89)

Since the kernel function g(t) = eλt is non-negative, the volatility process will be non-
negative (as required) if the Lévy process L has non-decreasing sample-paths. Lévy
processes with this property are known as subordinators. An example is the gamma
process, whose increments over any interval of length t have a gamma distribution
with probability density (�(αt))−1βαxαt−1e−βx 1[0,∞)(t) for some α > 0 and β > 0.

In financial econometrics it is normally assumed that V has finite second moments.
The mean and autocovariance function of V are then, from (63) and (65), EV (t) =
ξ/|λ| and γ (h) = σ 2eλ|h|/(2|λ|). The dependence structure implied by this auto-
covariance function is more restrictive than one would like for modelling purposes
and so Barndorff-Nielsen and Shephard (2002) proposed the use of superpositions of
Ornstein–Uhlenbeck processes in order to expand the class of achievable autocovari-
ance functions. However a considerably larger class can be achieved by replacing the
Ornstein–Uhlenbeck process, (89) by a subordinator-driven causal CARMA process
with non-negative kernel. Conditions on the defining polynomials a(z) and b(z) under
which the kernel is non-negative were given by Tsai and Chan (2005) and, in the spe-
cial case of the CARMA(2,1) process by Brockwell and Davis (2001). Even with these
restrictions, the class of achievable autocovariance functions is large and includes in
particular non-monotone functions.

Simulation of Lévy-driven CARMA stochastic volatility models was considered
by Todorov and Tauchen (2006). Brockwell et al. (2011) considered estimation
for subordinator-driven non-negative CARMA(p, q) processes based on uniformly-
spaced observations. They also considered the problem of recovering the increments
of the driving subordinator from closely-spaced observations of the CARMA process
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and found that for the DM/US$ exchange rate, from December 1st, 1986, through June
30th, 1999, a gamma-driven CARMA(2,1) process fitted the daily realized volatility
series reasonably well.

Brockwell and Lindner (2013) considered parameter estimation for a causal
subordinator-driven CARMA(p, q)model for the spot volatility process V by showing
that for any fixed � > 0, the �-integrated volatility sequence,

I�n :=
∫ n�

(n−1)�
V (t)dt, n ∈ Z, (90)

satisfies the discrete-time ARMA equations

φ(B)I�n = Un, n ∈ Z, (91)

where B is the backward shift operator (B j Yn := Yn− j ), φ(z) is the polynomial,

φ(z) =
∏

λ

(1 − eλ�z)m(λ),

the product is over the distinct zeroes of the autoregressive polynomial a(z), and
(Un)n∈Z is a p-dependent sequence which can be expressed as a moving average,

Un = EU0 + θ(B)Zn,

where θ(z) is a polynomial of the form,

θ(z) = 1 + θ1z + · · · + θpz p,

(Zn)n∈Z is an uncorrelated (but not necessarily independent) zero-mean white
noise sequence, and EU0 = �φ(1)ξb0/ap. This implies that (I�n )n∈Z is a weak
ARMA(p, q) process with q ≤ p. In the case p = 1 this was already well-known
[Barndorff-Nielsen and Shephard (2001)], however the autocorrelation function of the
ARMA(1,1) model is restricted for lags h greater than zero to functions of the form
cφh

1 , c, φ1 > 0. The purpose of introducing the finite variance CARMA(p, q) model
for spot volatility was to escape from this restriction in order to obtain a more realistic
representation of integrated volatility as estimated in practice by the so-called realized
volatility, which we shall denote by R�. The time-interval� is usually one day and the
realized volatility is typically calculated from observations of the asset price at 30-min
intervals. Andersen et al. (2003) consider the forecasting of realized volatility based
on high-frequency data, indicating that for the daily realized volatility of exchange
rates, 30-min data achieves a reasonable compromise between high-frequency and the
interference effect of market microstructure. Excellent accounts of realized volatility
with many references are given by Andersen and Benzoni (2009) and Mykland and
Zhang (2012).

Parameter estimation for V was carried out by searching numerically for the coeffi-
cients of a causal and invertible CARMA model which minimizes the sum of squares
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of the linear one-step prediction errors, when the corresponding weak ARMA model
for I� is applied to the data R�. The sum of squares of the one-step linear prediction
errors can be calculated directly as a function of the CARMA parameters and mini-
mized numerically. Under mild conditions this procedure leads to strongly consistent
estimators of the CARMA coefficients.

Using these estimates, we can simulate the spot volatility process V and the corre-
sponding�-integrated volatility I� using a variety of driving subordinators. Choosing
the mean and variance of the driving subordinators so as to match the sample mean
and variance of the realized volatility process V�, we can then compare the empiri-
cal marginal distribution of the simulated integrated volatility series with that of V�.
Application of this technique to the DM/US$ daily realized volatility series gave a
remarkably good fit to the empirical marginal distribution of daily realized volatil-
ity using the least squares CARMA(2,1) spot volatility model driven by a gamma
subordinator with appropriately chosen EL(1) and VarL(1).

7 Sampling and embedding

Since continuous-time realizations are rarely if ever observed, it is important to under-
stand the nature of the processes obtained when a continuous-time stationary process
is sampled, in particular when it is sampled at uniformly-spaced times {n�, n ∈ Z}.

From Brockwell and Lindner (2009) (Lemma 2.1) we know that if Y is the causal
CARMA process (32), then the sampled process (Y�n := Y (n�))n∈Z satisfies the
discrete-time equations,

φ(B)Y�n = Un, n ∈ Z, (92)

where B is the backward shift operator (B j Y�n := Y�n− j ), φ(z) is the same polynomial
as in (91), i.e.

φ(z) =
∏

λ

(1 − eλ�z)m(λ), (93)

and (Un)n∈Z is a (p − 1)-dependent sequence which can be writen explicitly as

Un = bT
p−1∑

r=0

r∑

j=0

d j e
(r− j)A�Rn−r , n ∈ Z, (94)

where d j is the coefficient of z j in φ(z), j = 0, . . . , p, and

Rn =
∫ n�

(n−1)�
eA(n�−u)ep d L(u), n ∈ Z.

If E L(1)2 < ∞ and E L(1) = ξ then, since the sequence U in (92) is (p − 1)-
dependent, the mean-corrected sampled series (Y�n −ξb0/ap)n∈Z satisfies the ARMA
equations,

φ(B)(Y�n − ξb0/ap) = θ(B)Zn, (95)
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where φ(·) is the polynomial defined in (93) and θ(z) is a polynomial of the form,

θ(z) =
p−1∏

j=1

(1 − ζ j z), (96)

with |ζ j | < 1 for all j , and (Zn)n∈Z an uncorrelated (but not necessarily independent)
zero-mean white noise sequence with finite variance σ 2

�. The Wold representation of
Y�n − ξb0/ap is then

Y�n − ξb0/ap = ψ(B)Zn (97)

where

ψ(z) = θ(z)/φ(z), |z| ≤ 1.

Since the AR polynomial in (92) is known exactly, in order to study the second-
order properties of the sampled process Y�, we shall focus attention on the moving
average component θ(B)Zn , and in particular on the polynomial θ(·) and the white-
noise variance σ 2

�. The spectral density f� of Y� is well-known [see e.g. Bloomfield
(2000)] to be related to that of Y by

f�(ω) = 1

�

∞∑

k=−∞
fY

(
ω + 2kπ

�

)

, ω ∈ [−π, π ],

but for our purposes it will be more convenient to express f� as

f�(ω) = 1

2π

∞∑

k=−∞
e−inωγ (n�), − π ≤ ω ≤ π. (98)

where the function γ was specified in (64). Hence

f�(ω) = σ 2

2π

∑

λ

Resz=λ
[

b(z)b(−z)

a(z)a(−z)
· sinh(�z)

cosω − cosh(�z)

]

, π ≤ ω ≤ π. (99)

where the sum is over the distinct zeroes of a(z) which, as we are assuming, all lie in
the open left half of the complex plane.

From (95) and the definition ofφ the spectral density of the moving average θ(B)Zn

is given by
fM A(ω) = ψ(ω) f�(ω), − π ≤ ω ≤ π, (100)

where

ψ(ω) =
∣
∣
∣
∣
∣

∏

λ

(1 − eiω+λ�)
∣
∣
∣
∣
∣

2

= 2pe−a1�

p∏

j=1

(cosh(λ j�)− cos(ω)),
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and λ1, . . . , λp are the (not necessarily distinct) zeroes of a(·). But we know, from
(95) and (96), that

fM A(ω) = σ 2
�

2π

p−1∏

j=1

∣
∣
∣1 − ζ j e

−iω
∣
∣
∣
2
. (101)

The determination of σ 2
� and θ(·), or equivalently ζ1, . . . , ζp−1, thus boils down to

the factorization of the polynomial (100). Explicit solution of this problem for fixed
positive� is not possible in general, however the asymptotic behaviour of σ 2

� and the
coefficients ζ j as � → 0 can be derived as shown below.

High-frequency sampling when E L(1)2 < ∞

Assuming that the process Y is both causal and invertible, we can write the autore-
gressive and moving average polynomials defining Y as

a(z) =
p∏

i=1

(z − λi ) and b(z) =
q∏

i=1

(z − μi )

where �λi < 0, i = 1, . . . , p and �μi ≤ 0, i = 1, . . . , q. Now let

β(x) := Resz=0
z−2(p−q) sinh(z)

cosh(z)− 1 + x
= 1

(2(p − q)− 1)!x p−q

p−q−1∏

i=1

(x − ξi ),

(102)

and define

η(ξi ) = ξi − 1 ±
√
(ξ − 1)2 − 1, i = 1, . . . , p − q − 1, (103)

where the sign is chosen so that |η(ξ)| < 1.
It was shown by Brockwell et al. (2013) that, as � → 0, the zeroes of the spectral

density, fM A(ω), π ≤ ω ≤ π , of θ(B)Zn in (95) occur where

cos(ω) = 1 − ξ j (1 + o(1)), j = 1, . . . , p − q − 1,

and

cos(ω) = 1 + μ2
j�

2

2
(1 + o(1)), j = 1, . . . , q.

The invertible moving average polynomial is therefore given by (96) with

ζ j = −η(ξ j )+ o(1), j = 1, . . . , p − q − 1,
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and

ζp−q−1+ j = 1 + μ j�+ o(�), j = 1, . . . , q.

From the asymptotic form of fM A(ω) as � → 0 it was also found that the variance
σ 2
� of Zn satisfies

σ 2
� = �2(p−q)−1σ 2

[2(p − q)− 1]!∏p−q−1
i=1 η(ξi )

(1 + o(1)),

where σ 2 is the variance of L(1). Applying these asymptotic results to the Wold
representation (97) of the sampled process, Brockwell et al. (2013), assuming that
the zeroes of a(z) all have multiplicity one, derived the asymptotic behaviour of the
Wold coefficientsψ�k of the sampled process Y� and used them to show the pointwise
convergence, as � → 0, of the function

g�(t) :=
∞∑

j=0

σ�√
�
ψ�j 1[ j�,( j+1)�)(t) (104)

to σg (or to g if L is standardized so that Var(L1) = 1), where g is the kernel
of the CARMA process Y . They then used a non-parametric estimator of g�(t) to
estimate g(t), showing for Gaussian CARMA processes that, if n is the number of
observations and�(n) is the sampling interval, the estimator is consistent as n → ∞
provided �(n) → 0 in such a way that n�(n) → ∞. Under stronger restrictions on
the rates, the estimator is also asymptotically normal with variance depending on g.
The estimator was used by Brockwell et al. (2013) in their analysis of the extremely
high-frequency (5000 Hz) Brookhaven turbulent windspeed data. A spectral approach
to estimation based on high-frequency samples from a CARMA process has been
taken by Fasen and Fuchs (2013).

Embedding

We have seen at the beginning of this section that if Y is a causal Lévy-driven
CARMA(p, q) process the sampled sequence (Y�n )n∈Z is a strictly stationary process
satisfying (92) and that if E L(1)2 < ∞ it satisfies the ARMA(p, p − 1) equations
(95) driven by an uncorrelated (but not in general i.i.d.) white noise sequence. It may
also satisfy ARMA equations of lower order if the polynomials φ(z) and θ(z) have
common factors. Determination of the parameters of the moving average term θ(B)Zn

and the variance of Zn in (95) requires factorization of the spectral density (100). This
factorization cannot be done analytically except in very simple cases but algorithms
exist for doing it numerically.

The fact that the regularly sampled process is an ARMA process suggests the
possibility of estimating parameters for the continuous-time process by estimating
the ARMA parameters of the sampled process and determining a corresponding
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continuous-time ARMA process. This technique was first used by Phillips (1959).
It raises the question of whether, for a given ARMA process (Xn)n∈Z, there exists a
CARMA process Y whose sampled sequence (Y (n))n∈Z has the same autocovariance
function as the sequence X and if so, is the process Y unique. The answer to both
questions is no. It was shown by Brockwell and Brockwell (1999) that if the mov-
ing average polynomial of the ARMA process has a zero on the unit circle then its
autocovariance function cannot be that of any regularly sampled CARMA process.
When a suitable CARMA process can be found it may or may not be unique and
the possible non-uniqueness gives rise to the so-called problem of aliassing. This is
illustrated by Example 5 in Brockwell (2001a) which demonstrates that, depending
on the ARMA process there may be zero, one, some finite number or infinitely many
CARMA processes Y for which the autocovariance function of (Y (n))n∈Z matches
that of the specified ARMA process. There have been many studies of these and
related questions but there is still no simple criterion, in terms of ARMA parameters,
for deciding whether or not embedding is possible or determining the one or more
CARMA processes in which the embedding can be made. A recent paper (Thornton
and Chambers (2013)) provides a good list of references on this topic and characterizes
the ARMA processes which can be embedded in a CARMA(2, 1) process.

8 Inference for CARMA processes

When observations of the second-order CARMA process defined by (28) and (30)
with E(L(1)) = ξ and Var(L(1)) = σ 2 are available at the possibly irregularly-
spaced times t1, . . . , tN , the corresponding state-vectors and observations at those
times are immediately found to satisfy the equations,

Y (ti ) = bT X(ti ) (105)

and

X(ti ) = eA(ti −ti−1)X(ti−1)+
∫ ti

ti−1

eA(t−ti−1)epdL(t), (106)

where X(t1) has the distribution of
∫∞

0 eAuedL(u). The observation equation (105)
and state equation (106) are in precisely the form required for application of the
discrete-time Kalman recursions [see e.g. Brockwell and Davis (1991)] in order to
compute numerically the best one-step linear predictors of Y (t1), . . . , Y (tN ), their
mean-squared errors, and hence the Gaussian likelihood of the observations in terms
of the coefficients {a j , 1 ≤ j ≤ p; b j , 0 ≤ j < q} and the parameters ξ and
σ of L . Jones (1981) used this representation, together with numerical maximiza-
tion of the calculated Gaussian likelihood, to compute maximum Gaussian likelihood
estimates of the parameters for time series with irregularly spaced data. A similar
approach was used in a more general setting by Bergstrom (1985). If the observa-
tions are uniformly spaced, an alternative approach due to Phillips (1959) is to fit
a discrete-time ARMA model to the observations and then to determine a CARMA
process in which the discrete-time process can be embedded. (Recalling the results
of Sect. 7 however, it may be the case that there is no CARMA process in which the
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fitted ARMA process can be embedded). In the general case it is also important to
make inferences about the driving process L in the general case when it might not be
Gaussian.

For a CAR(p) process observed continuously on the time interval [0, T ], Hyndman
(1993) derived continuous-time analogues of the discrete-time Yule-Walker equations
for estimating the coefficients. For a Gaussian CARMA process observed continu-
ously on [0, T ], the exact likelihood function was determined by Pham-Dinh (1977),
who also gave a computational algorithm for computing approximate maximum likeli-
hood estimators of the parameters which are asymptotically normal and efficient. The
determination of the exact likelihood, conditional on the initial state vector X(0), can
also be carried out for non-linear Gaussian CAR(p) processes and maximum condi-
tional likelihood estimators expressed in terms of stochastic integrals [see Brockwell
et al. (2007b), where this method of estimation is applied to threshold CAR processes
observed at closely spaced times, using sums to approximate the stochastic integrals
involved].

For general Lévy-driven CARMA processes, estimation procedures which provide
information concerning the driving process L are less well-developed. One approach,
when E(L(1)2) < ∞, is to estimate the parameters {a j , 1 ≤ j ≤ p; b j , 0 ≤ j < q}
by using the Kalman recursions applied to (105) and (106) either to maximize the
Gaussian likelihood or to minimize the sum of squares of the one-step prediction
errors. If the observations had been made continuously on [0, T ], these estimates could
be used with Theorem 2 to estimate, for any observed or assumed X(0), a realization
of L on [0, T ]. The increments of this estimated realization could then be examined
and a driving Lévy process chosen whose increments are compatible with the incre-
ments of the realization. In practice the CARMA process is not observed continuously
but, if the observations are closely-spaced, a discretized version of this procedure
can be used as in Brockwell et al. (2007a), where it was applied to subordinator-
deriven stationary Ornstein–Uhlenbeck processes. Inference for such processes has
also been investigated by Jongbloed et al. (2005). Inference for second-order non-
negative subordinator-driven CARMA processes was carried out in Brockwell et al.
(2011). For detailed analyses of the recovery of the Lévy increments from a CARMA
process observed at discrete times see Brockwell and Schlemm (2013) and Ferrazzano
and Fuchs (2013), and for the use of the increments in bootstrapping CAR processes
see Brockwell et al. (2014). For stable CARMA processes with exponent α ∈ (0, 2),
E(L(1)2) = ∞, however it was found by Garcia et al. (2011) that estimation of the
coefficients of a stable CARMA(2,1) process from observations at regular intervals
could be satisfactorily achieved by treating the CARMA process as a second-order
processs, estimating the coefficients of the sampled ARMA(2,1) process by standard
second-order techniques, and transforming the estimated ARMA coefficents into cor-
responding CARMA coefficients.

9 Prediction of causal invertible CARMA processes

For regular weakly stationary processes Y with zero mean and zero deterministic
component (this class includes all second-order zero-mean CARMA processes) the
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minimum mean-squared error linear predictor of Y (h), h > 0, based on observation
of {Y (s), s ≤ 0} is given by (22) where g is the causal invertible kernel in the Wold-
Karhunen representation of Y .

If Y is the L-driven CARMA process defined by (28) and (29) with E L(1) = 0,
Var(L(1)) = σ 2 < ∞, and the zeroes of a(z) and b(z) all in the open left half-plane,
then from (32) it has the representation

Y (t) =
∫

(−∞,t]
g1(t − u)dL(u), (107)

where the kernel g1 was defined in Theorem 1. Noting, by (51), (52) and (107), that
the closed linear span N0 of {Y (s), s ≤ 0} is the same as the closed linear span of the
increments {L(v)− L(u), u < v ≤ 0}, the minimum mean-squared error predictor of
Y (h) in N0 is the orthogonal projection,

P(Y (h)|N0) =
∫

(−∞,0]
g1(h − u)dL(u), (108)

with mean-squared error

σ 2
h =

∫ h

0
g1(t)

2dt. (109)

To express (108) directly in terms of {Y (s), s ≤ 0} rather than {L(s), s ≤ 0} we
multiply (29) on the left by eT

p to obtain

dL(u) = eT
p [dX(u)− AX(u)du] ,

where X(t) was expressed in terms of Y in (52).

Example 6 CARMA(2,1). For the L-driven CARMA(2, 1) process with E L(1) = 0,
Var(L(1)) = σ 2 < ∞,

a(z) = z2 + a1z + a2 = (z − λ1)(z − λ2), �λi < 0, i = 1, 2,

and

b(z) = z + b0, b0 > 0,

we find, using the preceding arguments, that P(Y (h)|N0), h > 0, is given by (108)
with

dL(u) = dY (u)+ (a1 − b0)Y (u)du + a(−b0)

[∫ u

−∞
e−b0(u−v)Y (v)dv

]

du.

In practice a complete realization of {Y (s), s ≤ 0} is never available, but never-
theless the predictor (108) and its mean squared error (109) provide a useful bench-
mark against which the performance of other estimators such as P[Y (h)|Y (n�), n =
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0,−1,−2, . . .], � > 0, can be assessed. Brockwell and Lindner (2014) con-
sider a variety of predictors including the latter and the conditional expectations
E[Y (h)|Y (s),−∞ < s ≤ 0], E[Y (h)|Y (s),−M ≤ s ≤ 0] when they exist. In
particular they show that, if E(L(1)2) < ∞, the minimum mean-squared error pre-
dictor, E[Y (h)|Y (s),−∞ < s ≤ 0], is the same as the minimum mean-squared error
linear predictor (108).

10 Non-causal CARMA processes

The kernel function g of a CARMA(p, q) process Y whose autoregressive and moving
average zeroes all fall in the open left half of the complex plane has the property that
g(t) = 0 for t < 0. It also has a jump discontinuity at t = 0 if and only if q = p − 1,
and in this case the jump discontinuity is of size one. This reflects the fact that the
sample-paths of such a process are continuous if q < p − 1 and have the same
discontinuities as the driving Lévy process L if q = p − 1. The kernel function is
the continuous-time analogue of the impulse response function in discrete time in the
sense that g(t) is the contribution to Y (t + T ) from a jump in the driving process of
size one at time T .

It has already been pointed out that the autocovariance structure of the CARMA
process is unchanged by reversing the signs of the zeroes of a(z) ad b(z). However
the sample-path properties of the original and modified processes will be different
because the kernel g will change.

For example the causal CAR(2) process Y with a(z) = (z − λ)2, λ < 0, has the
kernel function [from (33)],

g(t) = te−|λ|t 1[0,∞)(t), (110)

and autocorrelation function,

ρ(h) = e−|λh|(1 + |λh|). (111)

On the other hand the non-causal CAR(2) process Ync, with a(z) = z2 − λ2, has the
same autocorrelation function but kernel

gnc(t) = − 1

2|λ|e−|λt |, t ∈ R,

indicating that the sample paths, unlike those of Y , exhibit an instantaneous response
to a jump in the driving process since gnc(0−) = gnc(0+) = − 1

2|λ| �= 0.
Modelling with non-causal CARMA processes is a relatively unexplored area.

Schnurr and Woerner (2011) have used the non-causal CAR(2) process 2λYnc, with
kernel e−|λt |, t ∈ R, to obtain substantially improved fits to high-frequency finan-
cial data than are obtainable using the causal stationary Ornstein–Uhlenbeck process
with a(z) = z − λ and kernel e−|λt |1[0,∞)(t). They refer to the process 2λYnc as
the well-balanced Ornstein–Uhlenbeck process. Its autocorrelation function at lag h
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is given by (111), as compared with e−|λh| for the corresponding causal stationary
Ornstein–Uhlenbeck process.

11 Non-linear CARMA processes

A family of non-linear Gaussian continuous-time autoregressive models which
includes CTAR(p) (continuous-time threshold autoregressive) processes of order p
was discussed in Brockwell (2001a). For closely-spaced data Brockwell et al. (2007b)
developed an estimation technique based on the exact likelihood of the continuous
time process conditional on the initial state-vector, approximating the stochastic inte-
grals which appear in the maximum likelihood parameter estimators by approximating
sums.

12 Continuous-time GARCH processes

Another important class of non-linear models related to CARMA processes is the
COGARCH family. The COGARCH(1, 1) process was introduced by Klüppelberg et
al. (2004) as a continuous-time analogue of the celebrated discrete-time GARCH(1,1)
model for stochastic volatility of Bollerslev (1986).

Given an i.i.d. sequence (εn)n∈N0 and constants β > 0, λ1, . . . , λq ≥ 0 and
δ1, . . . , δp ≥ 0 with q ∈ N and p ∈ N0 and λq > 0, a GARCH(q, p) process
(Yn)n∈N0 with volatility process (Vn)n∈N0 is defined by the equations,

Yn = √Vn εn, n ∈ N0, (112)

Vn = β +
q∑

i=1

λi Y
2
n−i +

p∑

j=1

δ j Vn− j , n ≥ max{p, q}, (113)

with Vn independent of (εn+h)h∈N0 and non-negative for every n ∈ N0. For p = 0 the
process is the ARCH(q) process of Engle (1982).

The COGARCH(1,1) process was defined by Klüppelberg et al. (2004) as follows.
Given a driving Lévy process M = (M(t))t≥0 with nonzero Lévy measure, indepen-
dent of a starting random variable V (0) ≥ 0, and constants β, δ > 0 and λ ≥ 0, the
COGARCH(1,1) process (G(t))t≥0 with volatility process (V (t))t≥0 is specified by
the equations,

G(0) = 0, dG(t) = √V (t−) dM(t), t ≥ 0,

where

V (t) =
(

β

∫ t

0
eξ(s−) ds + V (0)

)

e−ξ(t), t ≥ 0,
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and ξ = (ξ(t))t≥0 is defined by

ξ(t) := −t log δ −
∑

0<s≤t

log(1 + λδ−1(�Ms)
2), t ≥ 0,

where �Ms := M(s)− M(s−). The volatility process satisfies the stochastic differ-
ential equation,

dV (t) = V (t−)d(t log δ + λδ−1[M,M](d)t )+ βdt, t ≥ 0,

where [M,M](d)t = ∑

0<s≤t
(�Ms)

2 denotes the discrete part of the quadratic variation

of M . A multivariate extension of the COGARCH(1,1) process has been obtained by
Stelzer (2010).

Necessary and sufficient conditions for the existence of a strictly stationary volatility
process were obtained by Klüppelberg et al. (2004) and, under certain assumptions,
they showed that non-overlapping increments of the corresponding process G are
uncorrelated, while the autocorrelation function of ((Grh − Gr(h−1))

2)h∈N is that of
an ARMA(1,1) process for any r > 0. Zero correlation between the increments of G
and serial correlation between the squared increments are two of the so-called stylized
facts of empirical financial time series.

Various techniques for estimation of COGARCH(1,1) processes have been devel-
oped. Haug et al. (2007) use a generalized method of moments based on observations
G(0),G(1),G(2), . . . ,G(n). They show that their estimators are strongly consistent
and under further moment assumptions, asymptotically normal. Other proposed esti-
mation methods include the pseudo-maximum likelihood estimator of Maller et al.
(2008), which they use to fit a COGARCH(1,1) model to the ASX200 index of the
Australian Stock exchange, and the Markov Chain Monte Carlo estimator of Müller
(2010).

The COGARCH(q, p) process of Brockwell et al. (2006) was introduced with the
aim of allowing a wider range of autocorrelation structures for the volatility process
than permitted by the COGARCH(1,1) model. From (112) and (113) we see that
the volatility (Vn) of a GARCH(q, p) process can be regarded as a “self-exciting”
ARMA(p, q − 1) process driven by (Vn−1ε

2
n−1) together with the “mean correction”

β. This motivated the definition of the volatility process (V (t))t≥0 of a continuous-
time GARCH(q, p) process as a “self-exciting mean corrected” CARMA(p, q − 1)
process driven by an appropriate noise term. More precisely, let M = (M(t))t≥0
be a Lévy process with nonzero Lévy measure. With p, q ∈ N such that q ≤ p,
a1, . . . , ap, b0, . . . , bp−1 ∈ R, β > 0, ap �= 0, bq−1 = 1 and bq = . . . = bp−1 = 0,
define the p × p-matrix A and the vectors b, ep ∈ R

p as in (28) and (29). Define the
volatility process (V (t))t≥0 with parameters A, b, β and driving Lévy process M by

V (t) = β + b′X(t), t ≥ 0,
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where the state process X = (X(t))t≥0 is the unique solution of the stochastic differ-
ential equation

dX(t) = AX(t−) dt + epV (t−) d[M,M](d)t

= AX(t−) dt + ep(β + b′X(t−)) d[M,M](d)t ,

with initial value X(0), independent of M . If the process (V (t))t≥0 is non-negative
almost surely, then G = (G(t))t≥0, defined by

G(0) = 0, dG(t) = √V (t−) dM(t),

is a COGARCH (q, p) process with parameters A, b, β and driving Lévy process M .
It can be shown that for p = q = 1 this definition is equivalent to the earlier

definition of the COGARCH(1,1) process. Brockwell et al. (2006) give sufficient
conditions for the existence of a strictly stationary solution (Vt )t≥0 and its positivity,
and show that (Vt )t≥0 has the same autocorrelation structure as a CARMA(p, q − 1)
process. Under suitable conditions it is further shown that non-overlapping increments
of G are uncorrelated, while their squares are not. More precisely,

Cov((Gt − Gt−r )
2, (Gt+h − Gt+h−r )

2) = b′e(A+E M2
1 eb′)h Hr , h ≥ r > 0,

where Hr ∈ C
p is independent of h.

13 Conclusions

The theory and applications of CARMA processes have expanded rapidly in the
12 years since the overview given in Brockwell (2001a) and even since the more recent
financially oriented review in Brockwell (2009). The present review has attempted to
provide the basic theory of Lévy-driven CARMA and related processes, taking into
account the results which have appeared in the last few years. These include the basic
existence and uniqueness theorem, inference based on recovery of the driving Lévy
process from high-frequency data, the use of non-causal models and a number of
applications in the study of financial time series and turbulence. To these applications
should also be added reference to the CARMA interest rate model (Andresen et al.
2012), the application of stable CARMA processes to futures pricing in electricity
markets (Benth et al. 2013) and applications to signal extraction (McElroy 2013). The
potential for further applications, with the proliferation of high-frequency data in so
many fields, and further theoretical developments, particularly with respect to multi-
variate models (Marquardt and Stelzer 2007), nonlinear models, non-causal modelling,
sampling and embedding remains broad and challenging.
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