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Abstract We consider the problem of estimating the location of a change point θ0 in
a regression model. Most change point models studied so far were based on regression
functions with a jump. However, we focus on regression functions, which are contin-
uous at θ0. The degree of smoothness q0 has to be estimated as well. We investigate
the consistency with increasing sample size n of the least squares estimates (θ̂n, q̂n)
of (θ0, q0). It turns out that the rates of convergence of θ̂n depend on q0: for q0 greater
than 1/2 we have a rate of

√
n and the asymptotic normality property; for q0 less than

1/2 the rate is n1/(2q0+1) and the change point estimator converges to a maximizer of
a Gaussian process; for q0 equal to 1/2 the rate is

√
n · ln(n). Interestingly, in the last

case the limiting distribution is also normal.

Keywords Regression · Change points · M-estimates · Rate of consistency ·
Asymptotic distribution

1 Introduction

The problem to estimate the location of a change point in a regression model has
been studied in the literature to some extent, see, among others, Hinkley (1971), Feder
(1975), Müller (1992), Bai (1997), Csörgö and Horváth (1997), Müller and Song
(1997), Rukhin and Vajda (1997), Müller and Stadtmüller (1999), Hušková (1999,
2001), Dempfle and Stute (2002), Koul et al. (2003) and Lan et al. (2009) and the
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cited references therein. In most cases locating a jump discontinuity is considered and
properties of the estimators are studied. Müller (1992) investigates the problem of
estimating a jump change point in the derivative of some order ν ≥ 0 of the regression
function. His change point estimators are based on one-sided kernels. This includes
the case of continuous regression functions with a change in the derivative at some
point whichwe call smooth change point. In a number of applications onewould rather
model a smooth change point than a jump in the regression function. In particular, in
the recently published article by Lan et al. (2009) the plotted dataset would suggest to
fit a regression function with a smooth change instead of the proposed jump model.
Hušková (1999, 2001) considers a least squares type estimator of the parameters in
a location models with gradual changes in a fixed design setup. Here we focus on a
similar approach in a random design regression model.

Let for n ∈ N the observations (X,Y ), (X1,Y1), . . . , (Xn,Yn) be i.i.d. R2-valued
random variables. We assume that the distribution of X is absolutely continuous with
a density function dX , which is uniformly bounded on the unit interval [0, 1]. Further
we assume that the response variables Yi are given by the following regression model
with an unknown change point θ0 ∈ [0, 1), an unknown exponent q0 ∈ (0,∞) and an
unknown nuisance parameter vector a0 ∈ Rd

Yi = fθ0,q0,a0(Xi ) + εi , 1 ≤ i ≤ n, n ∈ N.

For (θ, q, a) ∈ [0, 1]× [0,∞)×Rd the regression function fθ,q,a : R → R is given
by

fθ,q,a(x) := g(x, a) + h(x, a) · (x − θ)q1(θ,1](x),

where 1A is the indicator function of a set A and the functions g : Rd+1 → R and
h : Rd+1 → R are two times continuously differentiable. For example, g can be a
polynomial and h a constant factor. Let ε, ε1, . . . , εn for n ∈ N be i.i.d. real-valued
random variables. We assume that E(ε|X) = 0 a.s. and that the random variable ε is
suitably integrable.

We will study here the limit behavior of the least squares estimators for (θ0, q0)
and analyze the influence of the exponent on the estimation of the change point. The
treatment of the nuisance parameter we defer to a forthcoming publication. There it
can be shown, that the estimation of the nuisance parameter vector a0 has no influence
on the rate of convergence of the least squares estimator for (θ0, q0). To reduce the
complexity, we assume here that the nuisance parameter a0 is known. In this case
without limiting the generality we can assume that g ≡ 0 and h ≡ 1, hence we look
at regression functions

fθ,q(x) := (x − θ)q1(θ,1](x).

To make sure that the parameters are identifiable, we assume that

P(X ∈ (θ0, 1)) > 0. (1)
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Smooth change point estimation in regression models 597

We consider the least squares error for any possible change point and any exponent.
For (θ, q) ∈ [0, 1] × [0,∞) and n ∈ N we define

Mn(θ, q) := −1

n

n∑

i=1

(Yi − fθ,q(Xi ))
2.

For n ∈ N our estimator is defined as the maximizing point of Mn :

(θ̂n, q̂n) := argmax
(θ,q)∈[0,1]×[0,∞)

Mn(θ, q).

Observe that Mn(θ, q) = M̃n(θ, q) − 1
n

∑n
i=1 ε2i , where

M̃n(θ, q) := 1

n

n∑

i=1

mθ,q(εi , Xi ),

mθ,q(ε, x) := −2ε( fθ0,q0(x) − fθ,q(x)) − ( fθ0,q0(x) − fθ,q(x))
2. (2)

It follows that Mn and M̃n have the same maximizers. To analyze the asymptotic
behavior of our estimator, we use the theory of M-estimators and empirical processes.
For a fuller treatment we refer, for example, to Van der Vaart and Wellner (1996), Van
der Vaart (1998), Van de Geer (2000) or Kosorok (2008).

Several authors consider the case, where q0 is known. The case of two straight
lines, i.e. q0 = 1, has been studied before, see for example Hinkley (1971) and Feder
(1975). The case that q0 = 0, i.e. the regression function has a jump at θ0, can be found
for example in Kosorok (2008, Chap. 14.5.1), whereas the case that q0 > 2, i.e. the
regression function is twice differentiable at θ0, has been considered by Rukhin and
Vajda (1997) in a fixed design model. In these cases the rates of convergence of θ̂n are
known (under suitable conditions) to be n for q0 = 0 and

√
n for q0 > 2, respectively.

In Döring and Jensen (2010) we have considered the problem in a fixed design model
with equidistant design points. In the jump case it was shown that the rate is n and
that the asymptotic distribution is that of a maximizer of a certain two-sided random
walk. For 1 < q0 ≤ 2 we proved that the rate is

√
n.

The obvious question what happens between these cases, i.e. for 0 < q0 < 1,
has not been answered for the random design so far. We will show in our paper that
with α := min{2q0 + 1, 2} for q0 	= 1/2 the rate of convergence of the change
point estimator is n1/α . Surprisingly, we have found for q0 = 1/2 a different rate,
namely

√
n ln n. This rate is in a sense monotone in q0 and continuous in q0 = 0,

but discontinuous in q0 = 1/2. Also, concerning the asymptotic distribution of the
suitably scaled sequence θ̂n the point q0 = 1/2 plays the role of a transition point:
for q0 ≥ 1/2 the asymptotic distribution is normal, whereas for 0 < q0 < 1/2 the
asymptotic distribution is that of a maximizer of a certain Gaussian process.

Hušková (1999, 2001) considers the problem in a fixed design model with equidis-
tant design points. Therein, a least squares type estimator, where the change point
is searched on a grid, is proposed and studied for 0 ≤ q0 ≤ 1. It turns out that the
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asymptotic behavior in the fixed design of Huškovás estimator is the same as in a
random design setup of our estimator. The methods used to prove these similar results
are completely different. In Hušková (2001) the extension to the case q0 = 0 was
obtained by a certain localization method.

Several authors studied smooth changes in other contexts. For example, Aue and
Steinebach (2002) discuss an extension of Huškovás approach to certain stochastic
processes. Ibragimov and Has’minskii (1981, Chap. 6) considered an estimator for a
singularity z of a density function f with

f (x) = p(x)(z − x)α1(−∞,z)(x) + q(x)(x − z)α1[z,∞)(x),

where p and q are continuous functions and α ∈ (0, 1) is the order of singularity.
Their proposed estimator for the singularity shows a similar asymptotic behavior as
our estimator for the change point. Wang (1995) dealt with the detection of a sharp
cusp in a white noise model. Therein the regression function f satisfies the so-called
α-cusp property | f (x0 + h) − f (x0)| ≥ K |h|α with positive constants K and α. This
is the two-sided version of the cusp property, which is similar to the one-sided cusp
property, that our regression function satisfies. Wang (1995) used a nonparametric
approach by wavelets to estimate the sharp cusp.

The paper is organized as follows. In Sect. 2 we show consistency and in Sect. 3 we
consider the rates of convergence of our estimator. In Sect. 4 the asymptotic distribution
of the sequence of estimators is characterized. Section 5 contains numerical results. In
Sect. 6 some conclusions are given. For improved readability all proofs of the lemmas
are moved to the appendix.

2 Consistency

We prove that our estimators (θ̂n, q̂n) are strongly consistent. For 1 ≤ i ≤ n the
random variables εi and Xi are i.i.d. and E(ε|X) = 0 a.s., hence

E(M̃n(θ, q)) = E(mθ,q(ε, X)) = −E(( fθ0,q0(X) − fθ,q(X))2) =: M̃(θ, q).

Note that the functions fθ,q are integrable. By (1) it follows that the deterministic
function M̃ : [0, 1] × [0,∞) → R has a unique maximizer at (θ0, q0). By definition
our estimator (θ̂n, q̂n) is a maximizer of M̃n . We use the Glivenko–Cantelli theorem
to show that M̃n converges for n → ∞ uniformly to M̃ .

Lemma 1 Let E(|ε||X) < C a.s. for some C > 0. Then

lim
n→∞ sup

(θ,q)∈[0,1]×[0,∞)

|M̃n(θ, q) − M̃(θ, q)| = 0 a.s.

By a corresponding argmax theorem we can transfer this convergence to the maximiz-
ing points.
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Smooth change point estimation in regression models 599

Theorem 1 Let E(|ε||X) < C a.s. for some C > 0. Then

lim
n→∞ (θ̂n, q̂n) → (θ0, q0) a.s.

Proof We need to check whether all assumptions of the well-known argmax theorem
are satisfied. Let δ > 0 and (θn, qn)n∈N be a sequence with (θn, qn) ∈ ([0, 1] ×
[0,∞)) \ ([θ0 − δ, θ0 + δ] × [q0 − δ, q0 + δ]). Since the function fθ,q is monotone
in θ and in q, it follows that

lim inf
n→∞ M̃(θn, qn) ≤ max{M̃(θ0 − δ, q0 + δ), M̃(θ0 + δ, q0 − δ)} < M̃(θ0, q0).

The definition of our estimator yields M̃n(θ̂n, q̂n) = sup(θ,q)∈[0,1]×[0,∞) M̃n(θ, q)

directly and by Lemma 1 we get limn→∞ sup(θ,q)∈[0,1]×[0,∞)|M̃n(θ, q)− M̃(θ, q)| =
0 a.s. Hence all assumptions of Theorem 2.12 in Kosorok (2008) are satisfied and the
assertion follows. 
�

The assumption that the random variable X follows a distribution with a uniformly
bounded density function can be relaxed. In the proof of Lemma 1 we only use that a
constant C̃ > 0 exists for all 0 ≤ θ1 < θ2 ≤ 1 and for all 0 ≤ q1 < q2 < ∞ with

E( fθ1,q1(X) − fθ2,q2(X)) ≤ C̃(θ2 − θ1 + q2 − q1).

Lemma 1 is also valid in the jump case, i.e. q0 = 0. But to identify the change
point and to get that the deterministic function M̃ has a unique maximizer, one
has to assume instead of P(X ∈ (θ0, 1)) > 0 that P(X ∈ [θ0 − η, θ0)) > 0 and
P(X ∈ [θ0, θ0 + η)) > 0 for any η > 0.

Misspecification. If one chooses the exponent in advance and estimates only the
change point, then the least square estimator is not consistent for q 	= q0. More
precisely, let

θ̂n(q) := argmax
θ∈[0,1]

Mn(θ, q).

Also in this case the deterministic function M̃ has a unique maximizer

θ̃ (q) := argmax
θ∈[0,1]

M̃(θ, q).

We have that θ̃ (q) 	= θ0 for q 	= q0 and that θ̃ (q0) = θ0. By the same arguments as in
the proofs of Lemma 1 and Theorem 1 it follows that limn→∞ θ̂n(q) → θ̃ (q) P-a.s.
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3 Rate of convergence

From now on we additionally assume that:

inf
x∈[θ0,1]

dX (x) > C0 for some constant C0 > 0, (3)

E(ε2|X) < C1a.s. for some constant C1 > 0. (4)

We are going to show that
√
n(q̂n−q0) = OP (1) and that the sequence θ̂n is consistent

at a rate which depends on q0. We will show that rn(θ̂n − θ0) = OP (1) as n → ∞,
where the sequence (rn)n∈N is defined by

rn :=
⎧
⎨

⎩

n1/(2q0+1) 0 ≤ q0 < 1/2
(n ln(n))1/2 q0 = 1/2
n1/2 1/2 < q0.

For that purpose we define for q ≥ 0 the functions gq : [0, (1 − θ0)/
√
e] → R for

x > 0 by

gq(x) :=
⎧
⎨

⎩

x (2q+1)/2 0 ≤ q ≤ 1/2
x(ln(1 − θ0) − ln(x))1/2 q = 1/2
x 1/2 < q,

and gq(0) = 0. Observe that dq(x, y) := gq(min{|x − y|, (1− θ0)/
√
e }) is a metric.

Let the function g−1
q be the inverse function of gq , which exists since gq is continuous

and strictly increasing. Let H(θ0, q0, δ) be a δ-environment of (θ0, q0):

H(θ0, q0, δ) := {(θ, q) ∈ [0, 1] × [0,∞) : g2q0(|θ − θ0|) + (q − q0)
2 < δ2}.

Lemma 2 Let the Assumption (3) be satisfied. Then constants δ > 0 and C > 0 exist
such that for all (θ, q) ∈ H(θ0, q0, δ)

E(mθ,q(ε, X) − mθ0,q0(ε, X)) ≤ −C(g2q0(|θ − θ0|) + (q − q0)
2).

The next lemma provides an inequality, which is the main step, to get the rate of
convergence.

Lemma 3 Let the Assumption (4) be satisfied. Then there exists a constant C > 0
such that for all 0 < δ < min{gq0((1 − θ0)/

√
e), q0/2}

E

(
sup

(θ,q)∈H(θ0,q0,δ)

∣∣∣
1√
n

n∑

i=1

(mθ,q(εi , Xi ) − E(mθ,q(εi , Xi )))

∣∣∣

)
≤ Cδ.

The next theorem states that rn(θ̂n − θ0) is stochastically bounded.
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Smooth change point estimation in regression models 601

Theorem 2 Let the assumptions (3) and (4) are satisfied. Then for q0 > 0

rn(θ̂n − θ0) = Op(1) and
√
n(q̂n − q0) = Op(1) as n → ∞.

Proof The crucial part of the proof is to show that all assumptions of a corre-
sponding rate of convergence theorem are satisfied. The condition (14.2) of The-
orem 14.4 in Kosorok (2008) is satisfied by Lemma 2. The condition (14.3) with
the functions φn(δ) = δ follows by Lemma 3. The sequence θ̂n is consistent by
Theorem 1 and by the definition of θ̂n it follows that (1/n)

∑n
i=1 m θ̂n ,q̂n

(εi , Xi ) ≥
(1/n)

∑n
i=1 mθ0,q0(εi , Xi ). Therefore, by Theorem 14.4 in Kosorok (2008) we have

that
√
n(gq0(|θ̂n − θ0|) + |q̂n − q0|) = Op(1). For q0 	= 1/2 it follows obviously that

rn(θ̂n − θ0) = Op(1). For q0 = 1/2 we get

lim
x→∞ lim sup

n→∞
P(

√
n ln(n)|θ̂n − θ0| > x)

≤ lim
x→∞ lim sup

n→∞
P

(
x√

n ln(n)
< |θ̂n − θ0| <

1 − θ0√
e

)
+ P

(
1 − θ0√

e
≤ |θ̂n − θ0|

)

= lim
x→∞ lim sup

n→∞
P

(
g1/2

(
x√

n ln(n)

)
< g1/2(|θ̂n − θ0|) < g1/2

(
1 − θ0√

e

))

= lim
x→∞ lim sup

n→∞
P

(
x

(
ln(1 − θ0) − ln(x) + ln(

√
n ln(n))

ln(n)

)1/2

<
√
ng1/2(|θ̂n − θ0|) <

√
ng1/2

(
1 − θ0√

e

))

≤ lim
x→∞ lim sup

n→∞
P(x/

√
2 <

√
ng1/2(|θ̂n − θ0|)) = 0.


�
The case q0 = 0, i.e. the regression function has a jump at θ , can be found for

example in Kosorok (2008, Chap. 14.5.1). Therein it was shown by the same method
that rn = n for q0 = 0. Hence for fixed n the rate rn as a function of the power q0 is
right continuous at q0 = 0, but rn is discontinuous at q0 = 1/2.

4 Convergence in distribution

In this section we additionally assume that:

the density dX of the random variable X is continuous at θ0, (5)

E(ε2) < ∞ and the random variables ε and X are uncorrelated. (6)

We next show that (rn(θ̂n − θ0),
√
n(q̂n − q0)) converges for n → ∞ in distribution

to a maximizer of a Gaussian process. In particular for q0 ≥ 1/2 our estimator is
asymptotically normal. Let θ(s) := θ0 + sr−1

n and q(t) := q0 + tn−1/2. For that
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602 M. Döring, U. Jensen

purpose we define a sequence of stochastic processes (Zn)n∈N with Zn = {Zn(s, t) :
(s, t) ∈ R2} by

Zn(s, t) := nM̃n(θ(s), q(t))

for (s, t) ∈ [−rnθ0, rn(1− θ0)] × [−√
nq0,∞) and Zn(s, t) < 0 otherwise. Observe

that (rn(θ̂n − θ0),
√
n(q̂n − q0)) is a maximizer of the process Zn for n ∈ N. We

show that the sequence Zn converges for n → ∞ to a Gaussian process Z in some
sense. Subsequently, we can transfer this convergence to the maximizing points by a
continuous mapping theorem for the argmax functional. In the following we assume
that θ0 ∈ (0, 1). Later on we will come back to the case of θ0 = 0.

Similar to the regression function we define for (s, t) ∈ R2 the function f̃s,t : R →
R by f̃s,t (y) := yt1(0,∞)(y) − (y − s)t1(s,∞)(y). For q > 0 we define the following
constants

a11(q) :=

⎧
⎪⎪⎨

⎪⎪⎩

dX (θ0)

∫ ∞

−∞
f̃ 21,q(y) dy 0 < q < 1/2

dX (θ0)/8 q = 1/2
E(q2(X − θ0)

2q−21(θ0,1](X)) 1/2 < q < ∞
a12(q) :=

{
0 0 < q ≤ 1/2
E(q(X − θ0)

2q−1(− ln(X − θ0))1(θ0,1](X)) 1/2 < q < ∞
a22(q) := E((X − θ0)

2q(ln(X − θ0))
21(θ0,1](X)).

We define the symmetric 2 × 2 matrix A(q) by A(q)i j := ai j (q). We begin to show
that the sequence of the mean value functions (E(Zn))n∈N converges uniformly. Let
the function z : R2 → R defined by

z(s, t) :=
{−a11(q0) · |s|2q0+1 − a22(q0) · t2 0 < q0 < 1/2

−(s, t) · A(q0) · (s, t)T 1/2 ≤ q0 < ∞.

Lemma 4 Let the assumption (5) be satisfied and let θ0 ∈ (0, 1). Then we have for
all δ̃ > 0 that

lim
n→∞ sup

(s,t)∈[−δ̃,δ̃]×[−δ̃,δ̃]
|E(Zn(s, t)) − z(s, t)| = 0.

Next we look at the covariance function. Let the function K : R4 → R be defined
by K ((s1, t1), (s2, t2))

:= 4E(ε2)

⎧
⎨

⎩
dX (θ0)

∫ ∞

−∞
f̃s1,q0(y) f̃s2,q0(y) dy + a22(q0)t1t2 0 < q0 < 1/2

(s1, t1) · A(q0) · (s2, t2)T 1/2 ≤ q0 < ∞.
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Lemma 5 Let the assumptions (5) and (6) are satisfied and let θ0 ∈ (0, 1). Then we
have for all (s, t) ∈ R2 that

lim
n→∞ E((Zn(s1, t1) − E(Zn(s1, t1)))(Zn(s2, t2) − E(Zn(s2, t2))))

= K ((s1, t1), (s2, t2)).

Let Z = {Z(s, t) : (s, t) ∈ R2} for θ0 ∈ (0, 1) be a continuous Gaussian process
with the mean value function z and the covariance function K . We will denote by
Xn � X that a sequence of random elements (Xn)n∈N converges in distribution to
a random element X as n → ∞. The following Lemma states that the sequence of
processes (Zn)n∈N converges in distribution to the Gaussian process Z on each closed
interval.

Lemma 6 Let the assumptions (5) and (6) are satisfied and let θ0 ∈ (0, 1). Then we
have for all δ̃ > 0 that

{Zn(s, t) : (s, t) ∈ [−δ̃, δ̃]2} � {Z(s, t) : (s, t) ∈ [−δ̃, δ̃]2} as n → ∞.

The case θ0 = 0 can be handled in much the same way. For θ0 = 0 we define the
stochastic processes (Zn)n∈N and Z only on the index set [0,∞). Then the assertions
of the Lemmas 4, 5 and 6 remain true. We can now formulate one of our main results.

Theorem 3 Let the assumptions (3), (5) and (6) are satisfied. Then:

(i) The trajectories of Z possess a unique maximizer (τ, κ) almost surely.
(ii)

(rn(θ̂n − θ0),
√
n(q̂n − q0)) � (τ, κ) as n → ∞.

Proof Since E(Z(s, t)) → −∞ as |s| + |t | → ∞, the process Z has a maximizer
a.s. We have for 0 < q0 < 1/2 that

Var(Z(s1, t1) − Z(s2, t2)) = 4E(ε2)

(
dX (θ0)

∫ ∞

−∞
( f̃s1,q0(y) − f̃s2,q0(y))

2 dy

+a22(q0)(t1 − t2)
2
)

,

for q = 1/2 that

Var(Z(s1, t1) − Z(s2, t2)) = 4E(ε2)(dX (θ0)(s1 − s2)
2 + a22(1/2)(t1 − t2)

2),

and for q > 1/2 that

Var(Z(s1, t1) − Z(s2, t2)) = 4E(ε2)·
E((q0(X − θ0)

q0−1(s1 − s2) − (x − θ0)
q0 ln(X − θ0)(t1 − t2))

21(θ0,1](X)).
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604 M. Döring, U. Jensen

Hence Var(Z(s1, t1)−Z(s2, t2)) 	= 0 for all (s1, t1) 	= (s2, t2). Thus the first assertion
follows by Lemma 2.6 of Kim and Pollard (1990). For the proof of the second assertion
we use a continuous mapping theorem for the argmax functional. By Theorem 2 it
follows that the sequence (rn(θ̂n − θ0),

√
n(q̂n − q0)) is uniformly tight. By Lemma 6

we have for all compact sets K ⊂ R that

{Zn(t) : t ∈ K } � {Z(t) : t ∈ K } as n → ∞.

Therefore, all conditions of Theorem 3.2.2 in Van der Vaart and Wellner (1996) are
satisfied, which proves the theorem:

(rn(θ̂n − θ0),
√
n(q̂n − q0)) = argmax

(s,t)∈R2
Zn(s, t) � argmax

(s,t)∈R2
Z(s, t) = (τ, κ).


�
An important consequence of the last theorem is that the rate rn is the optimal rate

of convergence. Observe that Var(Z(s, t)) = −4E(ε2) E(Z(s, t)). This allows us
to compute the distribution of the random variable (τ, κ) for q0 ≥ 1/2. Since A(q0)
is a positive definite and symmetric matrix, its inverse matrix A(q0)−1 and its square
root B(q0) exist, i.e. A(q0) = B(q0) · B(q0)T . Let N1 and N2 be two independent
and standard normally distributed random variables. Then we have for q0 ≥ 1/2 the
following representation of the distribution of the process Z :

Z(s, t) = −(s, t) · A(q0) · (s, t)T +
√
4E(ε2) · (s, t) · B(q0) · (N1, N2)

T

= −
(
(s, t) · B(q0) −

√
E(ε2) · (N1, N2)

)

·
(

(s, t) · B(q0) −
√
E(ε2) · (N1, N2)

)T

+ E(ε2) · (N1, N2) · (N1, N2)
T

≤ E(ε2) · (N1, N2) · (N1, N2)
T = Z

(√
E(ε2) · (N1, N2) · B(q0)

−1
)

, (7)

where the equalities hold in distribution. Hence the process Z has a unique maximizer√
E(ε2) · (N1, N2) · B(q0)−1, which gives us the following result.

Theorem 4 Let the assumptions (3), (5) and (6) be satisfied. Then for n → ∞:

( √
n(θ̂n − θ0)√
n(q̂n − q0)

)
�

(
τ

κ

)
∼ N

((
0
0

)
, E(ε2) · A(q0)

−1
)

1/2 < q0 < ∞
τ and κ are independent 0 < q0 ≤ 1/2

√
n(q̂n − q0) � κ ∼ N

(
0,

E(ε2)

a22(q0)

)
0 < q0 ≤ 1/2

√
n ln(n)(θ̂n − θ0) � τ ∼ N

(
0,

8E(ε2)

dX (θ0)

)
q0 = 1/2
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Fig. 1 Histogram for n2/3(θ̂n − 0.2) left, and
√
n(q̂n − 0.25) right, with (θ0, q0) = (0.2, 0.25)

n1/(2q0+1)(θ̂n − θ0) � τ = argmax
s∈R

Z(s, 0) 0 < q0 < 1/2,

where the equality holds in distribution.

Proof The first assertion follows by (7). For 0 < q0 ≤ 1/2 we can decompose
the process Z(s, t) = Z(s, 0) + Z(0, t), hence the random variables τ and κ are
independent. Analysis similar to (7) gives the other assertions. 
�

5 Numerical results

For 0 < q0 < 1/2 we have only a representation of the limit distribution of
n1/(2q0+1)(θ̂n − θ0) as a unique maximizer of a Gaussian process. With the statis-
tic software SAS we have simulated this distribution, where we have chosen X as
uniformly distributed on the unit interval, ε as normally distributed with E(ε) = 0
and E(ε2) = 0.000001 and n = 1,000. We have chosen a small variance E(ε2),
since the focus of this simulation is to show the type of the limit distribution of
our estimator, rather than to study the influence of the variance. In Fig. 1 two his-
tograms are displayed for 1,000 estimations of n2/3(θ̂n − 0.2) and

√
n(q̂n − 0.25)

with (θ0, q0) = (0.2, 0.25). The line represents an estimated density for a normal
distribution. Apparently n2/3(θ̂n − 0.2) does not follow a normal distribution.

In comparison to Fig. 1 in Fig. 2 two histograms are displayed for 1,000 estimations
of

√
n(θ̂n − 0.2) and

√
n(q̂n − 1.5) with (θ0, q0) = (0.2, 1.5). In this case both

asymptotic distributions are normal since q0 > 1/2.
The variation of the dependence structure is shown in Fig. 3. One can clearly

recognize that for q0 = 1.5 the estimators θ̂n and q̂n are dependent.
Further we have tested for normality of the change point estimator, where we

simulated and estimated 200 times θ̂n with X as uniformly distributed on the unit
interval, ε as normally distributed with E(ε) = 0 and E(ε2) = 0.000 001 and n =
1,000. In Table 1 the test values and the p values are given for the Shapiro–Wilk
test and for the Kolmogorov–Smirnov test for several choices of (θ0, q0). As to be
expected the simulations yield that the limit distribution of n1/(2q0+1)(θ̂n − θ0) is not
normal for 0 < q0 < 1/2.
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Fig. 2 Histogram for
√
n(θ̂n − 0.2) left, and

√
n(q̂n − 1.5) right, with (θ0, q0) = (0.2, 1.5)

Fig. 3 Scatter plot for (θ̂n , q̂n) with (θ0, q0) = (0.2, 0.25) left, and with (θ0, q0) = (0.2, 1.5) right

Table 1 Tests for normality of rn(θ̂n − θ0)

θ0 q0 Shapiro–Wilk Kolmogorov–Smirnov

Test value p value Test value p value

0.8 0.25 ≈0.917808 <0.0001 ≈0.127415 <0.01

0.8 0.4 ≈0.970939 ≈0.0004 ≈0.090642 <0.01

0.8 0.6 ≈0.994188 ≈0.6286 ≈0.055055 ≈0.1428

0.8 1 ≈0.996312 ≈0.9154 ≈0.030766 >0.15

0.2 0.25 ≈0.958407 <0.0001 ≈0.108736 <0.01

0.2 0.4 ≈0.964585 <0.0001 ≈0.087246 <0.01

0.2 0.6 ≈0.992458 ≈0.3930 ≈0.041445 >0.15

0.2 1 ≈0.995179 ≈0.7759 ≈0.043467 >0.15

As a real-life example, we have applied our model to the weight/height charts (y in
pounds/inch) as a function of the age (x in months) from 72 boys in the pre-school age,
see Gallant (1987, p. 143/144), Dufner et al. (2004, p. 98–102). We use the slightly
enlarged model
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Fig. 4 Weight/height charts (y)
as a function of the age (x)

y = a1 + a2 · x + a3 · (θ − x)q · 1[0,θ)(x),

where a1, a2, a3, θ and q are unknown parameters. As above we remark that the
estimation of the additional parameters a1, a2 and a3 does not influence the rate of
convergence of the estimates θ̂n and q̂n . By the least squares method we get the
estimated regression function

y = 0.7308 + 0.0039 · x − 0.0002 · (15.06 − x)2.833 · 1[0, 15.06)(x).

That means the estimated value of the change point is θ̂ = 15.06 and of the exponent
is q̂ = 2.833. The data and the estimated regression function are plotted in Fig. 4.

6 Conclusions

We have shown that our least squares estimator for the change point and the exponent
is for q0 ≥ 1/2 asymptotically normal. The variance of the limit distribution depends
on (θ0, q0) and can be estimated consistently by a plug-in method for q0 ≥ 1/2.
For example, the quantiles of the limit distribution could be used for the construction
of confidence intervals. For 0 < q0 < 1/2 we have only a representation of the
limit distribution as a unique maximizer of a Gaussian process. In the jump case,
i.e. q0 = 0, it turns out that n(θ̂n − θ0) converges to a maximizer of a two-sided
random walk, see Kosorok (2008, Chap 14.5.1) for more details. An open problem is
the derivation of an explicit representation of the limit distribution of the change point
estimator for 0 ≤ q0 < 1/2. Some simulations suggest that the limit distribution is not
normal.

In comparison with Hušková (2001) we get the same structure of the limit distribu-
tion. But in our case the quantities ai j (q0) are different compared to the more involved
representation in Hušková (2001). If we assume that X is uniformly distributed on the
unit interval, which comes the closest to the model of Hušková (2001), then we get in
our model the following representations:
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a11(q) :=

⎧
⎪⎪⎨

⎪⎪⎩

∫ ∞

−∞
f̃ 21,q(y) dy 0 < q < 1/2

1/8 q = 1/2
q2

2q−1 · (1 − θ0)
2q−1 1/2 < q < ∞

a12(q) :=
{
0 0 < q ≤ 1/2
1
2 · (− ln(1 − θ0) + 1/2q) · (1 − θ0)

2q 1/2 < q < ∞
a22(q) := 1

2q + 1
·
(

(ln(1 − θ0) − 1

2q + 1
)2 + 1

(2q + 1)2

)
· (1 − θ0)

2q+1.

It turns out that compared to the fixed design model of Hušková (2001) we obtain in
our random design model a different covariance matrix of the asymptotic distribution
of the least squares estimators.

Future work is to consider a more complex regression function

fθ (x) = g(x)(θ − x)p1[0,θ)(x) + h(x)(x − θ)q1[θ,1](x),

where g and h are twice continuously differentiable unknown functions defined on
[0, 1]. Such models were considered in a different context, see for example Ibragimov
and Has’minskii (1981, Chap. 6). If one assumes that g and h belong to a parametric
family of functions, then it is in a forthcoming paper shown that under suitable con-
ditions the least squares estimators of the additional parameters are asymptotically
normal.

Appendix

Proof of Lemma 1 Let the setM of functions mθ,q : R2 → R, see (2),

mθ,q(e, x) := −2e( fθ0,q0(x) − fθ,q(x)) − ( fθ0,q0(x) − fθ,q(x))
2,

be defined by

M := {mθ,q : (θ, q) ∈ [0, 1] × [0,∞)}.

Thus we have the following representation.

sup
(θ,q)∈[0,1]×[0,∞)

|M̃n(θ, q) − M̃(θ, q)| = sup
m∈M

∣∣∣∣∣(1/n)

n∑

i=1

m(εi , Xi ) − Em(ε, X)

∣∣∣∣∣ .

For η > 0 let N[ ](η,M , L1) be the bracketing number of the class of functions M
related to the L1-norm, i.e. ‖m‖L1 = E(|m(ε, X)|), for details see Van der Vaart
(1998, Chap. 19). We will show that the bracketing number N[ ](η,M , L1) of the
class M is finite for any η > 0, hence M is a Glivenko–Cantelli class by Theorem
19.4 in Van der Vaart (1998) and the assertion follows.
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Let 0 ≤ θ1 < θ2 ≤ 1 and 0 ≤ q1 < q2 < ∞ and fix e and x . Then the function
m·,·(e, x) : [θ1, θ2] × [q1, q2] → R has at least one minimizer (θ, q) and one

maximizer (θ, q). Since fθ,q is nonnegative and decreasing in θ and in q we have
by (2) that

sup
(θ,q)∈[θ1,θ2]×[q1,q2]

mθ,q(e, x) − inf
(θ,q)∈[θ1,θ2]×[q1,q2]

mθ,q(e, x)

= −2e( fθ0,q0(x) − fθ,q(x)) − ( fθ0,q0(x) − fθ,q(x))
2

+ 2e( fθ0,q0(x) − fθ,q(x)) + ( fθ0,q0(x) − fθ,q(x))
2

= (2e + 2 fθ0,q0(x) − fθ,q(x) − fθ,q(x)) · ( fθ,q(x) − fθ,q(x))

≤ |(2e + 2 fθ0,q0(x) − fθ,q(x) − fθ,q(x)| · |( fθ,q(x) − fθ,q(x)|
≤ |2e + 2|( fθ1,q1(x) − fθ2,q2(x)). (8)

Since the density dX of the distribution X is uniformly bounded on the unit interval
and by E(|ε||X) < C a.s. it follows that

E

(
sup

(θ,q)∈[θ1,θ2]×[q1,q2]
mθ,q(ε, X) − inf

(θ,q)∈[θ1,θ2]×[q1,q2]
mθ,q(ε, X)

)

≤ C̃
∫ 1

0
( fθ1,q1(x) − fθ2,q2(x))dX (x)dx

≤ C̃

(∫ 1

θ1

(x − θ1)
q1dx −

∫ 1

θ2

(x − θ2)
q2dx

)

≤ C̃((1−θ1)
q1+1/(q1+1)−(1−θ2)

q2+1/(q2+1)) ≤ C̃(θ2−θ1+q2−q1),

where C̃ is a positive generic constant. The last inequality follows by the convexity
of the function (1− θ)q+1/(q + 1). Using standard methods it follows for any η > 0
that N[ ](η,M , L1) ≤ C̃/η2 < ∞. 
�

We present two technical lemmas, which give us a lower and an upper bound
of certain integrals. Let h1(q) := q and for k ∈ N \ {1} let hk(q) := (q/k!)∏k

i=2(i − 1 − q). By Taylor’s expansion we have

−(x − θ2)
q = −(x − θ1)

q +
∞∑

k=1

hk(q)(θ2 − θ1)
k(x − θ1)

q−k . (9)

This representation will be useful for the calculation of some integrals. Observe that
hk(q) ≥ 0 for q ≤ 1 and, setting x = θ2 in (9), that

∑∞
k=1 hk(q) = 1.

Lemma 7 For 0 < c < 1 there exists a positive constant C > 0, such that
for all 0 ≤ θ1 < θ2 < 1 − c
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∫ 1

θ2

( fθ1,q(x) − fθ2,q(x))
2 dx ≥ C

⎧
⎨

⎩

(θ2 − θ1)
2q+1 0 < q < 1/2

(θ2 − θ1)
2 ln

( 1−θ1
θ2−θ1

)
q = 1/2

(θ2 − θ1)
2 1/2 < q.

Proof For 0 < q ≤ 1/2 by (9) we have that

∫ 1

θ2

( fθ1,q(x) − fθ2,q(x))
2 dx

=
∑

(k,l)∈N2

hk(q)hl(q)(θ2 − θ1)
k+l

∫ 1

θ2

(x − θ1)
2q−k−l dx

≥
∑

(k,l)=(1,1)

hk(q)hl(q)(θ2 − θ1)
k+l

∫ 1

θ2

(x − θ1)
2q−k−l dx

= q2(θ2 − θ1)
2
∫ 1

θ2

(x − θ1)
2q−2 dx,

where the inequality holds true, since hk(q) > 0. Hence for 0 < q < 1/2

∫ 1

θ2

( fθ1,q(x) − fθ2,q(x))
2 dx ≥ q2

(θ2 − θ1)
2q+1

1 − 2q

(
1 −

(
θ2 − θ1

1 − θ1

)1−2q
)

≥ q2
(θ2 − θ1)

2q+1

1 − 2q
(1 − (1 − c)1−2q) ≥ C(θ2 − θ1)

2q+1.

For q = 1/2 we have that

∫ 1

θ2

( fθ1,q(x) − fθ2,q(x))
2 dx ≥ (θ2 − θ1)

2

4
ln

(
1 − θ1

θ2 − θ1

)
.

For 1
2 < q it follows by the mean value theorem with θ1 < ξ < θ2 < 1 − c

∫ 1

θ2

( fθ1,q(x) − fθ2,q(x))
2 dx = (θ2 − θ1)

2
∫ 1

θ2

q2(x − ξ)2q−2 dx

≥ (θ2 − θ1)
2

{∫ 1
1−c q

2(x − 1 + c)2q−2 dx q ≥ 1∫ 1
1−c q

2 dx 1
2 < q < 1

}
≥ C(θ2 − θ1)

2.


�
Lemma 8 There exists a positive constant C > 0, such that for all 0 ≤ θ1 < θ2 < 1

∫ 1

0
( fθ1,q(x) − fθ2,q(x))

2 dx ≤ C

⎧
⎨

⎩

(θ2 − θ1)
2q+1 0 < q < 1/2

(θ2 − θ1)
2 ln

( 1−θ0
θ2−θ1

)
q = 1/2

(θ2 − θ1)
2 1/2 < q,
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where in the case of q = 1/2 it is additionally assumed that θ2 − θ1 < 1 − θ0. For
q = 1/2 the constant C may depend on θ0.

Proof Similar to the proof of Lemma 7 by (9) we have that

∫ 1

0
( fθ1,q(x) − fθ2,q(x))

2 dx =
∫ θ2

θ1

(x − θ1)
2qdx

+
∫ 1

θ2

((x − θ1)
q − (x − θ2)

q)2 dx

= 1

2q + 1
(θ2 − θ1)

2q+1

+
∑

(k,l)∈N2

hk(q)hl(q)(θ2 − θ1)
k+l

∫ 1

θ2

(x − θ1)
2q−k−l dx .

For 0 ≤ q < 1/2 we have that 2q + 1 < 2, hence by
∑∞

k=1 hk(q) = 1

∫ 1

0
( fθ1,q(x) − fθ2,q(x))

2 dx = (θ2 − θ1)
2q+1

2q + 1

+
∑

(k,l)∈N2

hk(q)hl(q)(θ2 − θ1)
k+l

2q + 1 − k − l
((1 − θ1)

2q+1−k−l − (θ2 − θ1)
2q+1−k−l)

=(θ2−θ1)
2q+1

⎛

⎝ 1

2q+1
+

∑

(k,l)∈N2

hk(q)hl(q)

k+l−(2q+1)

(
1−

(
θ2−θ1

1−θ1

)k+l−(2q+1)
)⎞

⎠

≤ C(θ2 − θ1)
2q+1.

For q = 1/2 we get similarly

∫ 1

0
( fθ1,1/2(x) − fθ2,1/2(x))

2 dx = (θ2 − θ1)
2

2
+ (θ2 − θ1)

2

4
ln

(
1 − θ1

θ2 − θ1

)

+
∑

(k,l)∈N2

k+l>2

hk(q)hl(q)(θ2 − θ1)
2

2 − k − l

(
1 −

(
θ2 − θ1

1 − θ1

)k+l−2
)

≤ C(θ2 − θ1)
2 ln

(
1 − θ0

θ2 − θ1

)
.

For 1/2 < q we have (θ2 − θ1)
2q+1 < (θ2 − θ1)

2 and it follows by the mean value
theorem with θ1 < ξ < θ2
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∫ 1

0
( fθ1,q(x) − fθ2,q(x))

2 dx = (θ2 − θ1)
2q+1

2q + 1
+ (θ2 − θ1)

2
∫ 1

θ2

q2(x − ξ)2q−2 dx

≤ (θ2 − θ1)
2q+1

2q + 1
+ (θ2 − θ1)

2

{
q2 q ≥ 1∫ 1
θ2
q2(x − θ2)

2q−2 dx 1
2 < q < 1

}

≤ C(θ2 − θ1)
2.


�

Proof of Lemma 2 δ > 0 can be chosen such that for all (θ, q) ∈ H(θ0, q0, δ) we
have that θ < 1− δ. Let a ∨ b = max{a, b}. By the mean value theorem, where θ̃ is a
point between θ0 and θ , q̃ is a point between q0 and q and by Lemma 7 we have that

E(mθ,q(ε, X) − mθ0,q0(ε, X)) = −
∫ 1

0
( fθ0,q0(x) − fθ,q(x))

2dX (x) dx

≤ −C0

∫ 1

θ0∨θ

( fθ0,q0(x) − fθ,q(x))
2 dx

= −C0

∫ 1

θ0∨θ

( fθ0,q0(x) − fθ,q0(x) − (q − q0) fθ,q̃(x) ln(x − θ))2 dx

= −C0

∫ 1

θ0∨θ

( fθ0,q0(x)− fθ,q0(x))
2 dx−C0(q−q0)

2
∫ 1

θ0∨θ

( fθ,q̃(x) ln(x−θ))2 dx

− 2C0(θ − θ0)(q − q0)
∫ 1

θ0∨θ

(−q0(x − θ̃ )q0−1(x − θ)q̃ ln(x − θ)) dx

≤ −C2(g
2
q0(|θ − θ0|) + (q − q0)

2) − C3(θ − θ0)(q − q0),

where C2 > 0 and C3 > 0. For (θ − θ0)(q − q0) > 0 the assertion follows directly.
For 0 < q0 < 1/2 and (θ − θ0)(q − q0) < 0 and since (θ, q) ∈ H(θ0, q0, δ) we can
choose δ small, such that

−C3(θ − θ0)(q − q0) = C3 · ( gq0(|θ − θ0|) )2/(2q0+1) · |q − q0|
≤ (C3/2) · δ2/(2q0+1)−1 · (g2q0(|θ − θ0|) + (q − q0)

2)

≤ (C2/2) · (g2q0(|θ − θ0|) + (q − q0)
2).

By the same arguments the assertion holds true for q0 = 1/2 and (θ −θ0)(q−q0) < 0.
For q0 > 1/2 the assertion follows by a second-order Taylor expansion. 
�

Proof of Lemma 3 For 0 < δ < min{gq0((1 − θ0)/
√
e ), q0/2} let δ̄ := g−1

q0 (δ), then
by the first-order Taylor expansion in q
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E

(
sup

(θ,q)∈H(θ0,q0,δ)

∣∣∣∣∣
1√
n

n∑

i=1

(mθ,q(εi , Xi ) − E(mθ,q(εi , Xi )))

∣∣∣∣∣

)

≤ E

(
sup

θ∈[θ0−δ̄,θ0+δ̄]∩[0,1]

∣∣∣∣∣
1√
n

n∑

i=1

(mθ,q0(εi , Xi ) − E(mθ,q0(εi , Xi )))

∣∣∣∣∣

)

+δ · E
(

sup
(θ,q)∈H(θ0,q0,δ)

∣∣∣∣∣
1√
n

n∑

i=1

(m̃θ,q(εi , Xi ) − E(m̃θ,q(εi , Xi )))

∣∣∣∣∣

)
:

= E1 + δE2,

where

m̃θ,q(e, x) := 2 · (e + fθ0,q0(x) − fθ,q(x)) · fθ,q(x) · ln(x − θ).

We only state the case for E1. By the same method we have that E2 < ∞. LetMδ be
the following class of measurable functions:

Mδ := {mθ,q0 : θ ∈ [θ0 − δ̄, θ0 + δ̄] ∩ [0, 1]}. (10)

Further let Mδ : R2 → R be a measurable function defined by

Mδ(e, x) := |2e + 2|( fθ0−δ̄,q0(x) − fθ0+δ̄,q0(x)).

Similar to (8) we have that Mδ is an envelope function of the classMδ , i.e. |m(e, x)| ≤
Mδ(e, x) for all x ∈ R, e ∈ R and for all m ∈ Mδ . For η > 0 let N[ ](η,Mδ, L2)

be the bracketing number of the class of functions Mδ related to the L2-norm, i.e.
‖m‖2L2

= E(|m(ε, X)|2). Let C̃ be a positive generic constant. By Corollary 19.35 in
Van der Vaart (1998) it follows that

E1 ≤ C̃
∫ ‖Mδ‖L2
0

(max{1, ln(N[ ](η,Mδ, L2))})1/2dη.

Since the density dX of the distribution X is uniformly bounded on the unit interval,
by (8) and E(ε2|X) < C a.s. it follows for 0 ≤ θ1 < θ2 < 1 that

E

⎛

⎝
∣∣∣∣∣ sup
θ1≤θ≤θ2

mθ,q0(ε, X) − inf
θ1≤θ≤θ2

mθ,q0(ε, X)

∣∣∣∣∣

2
⎞

⎠

≤ E(|2ε + 2|2( fθ1,q0(X) − fθ2,q0(X))2)

≤ C̃
∫ 1

0
( fθ1,q0(x) − fθ2,q0(x))

2dx ≤ C̃g2q0(θ2 − θ1),
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where the last inequality follows by Lemma 8. Using standard methods it follows that

‖Mδ‖L2 ≤ C̃gq0(2δ̄) (11)

N[ ](η,Mδ, L2) ≤ [2δ̄/g−1
q0 (C̃−1η)] + 1 for anyη > 0,

where [x] := max{k ∈ Z : k ≤ x}. Let η̄ := g−1
q0 (C̃−1η), then

∫ ‖Mδ‖L2
0

(max{1, ln(N[ ](η,Mδ, L2))})1/2dη

≤
∫ C̃gq0 (2δ̄)

0
(max{1, ln([2δ̄/g−1

q0 (C̃−1η)] + 1)})1/2dη

= C̃
∫ 2δ̄

0
(max{1, ln([2δ̄/η̄] + 1)})1/2 g′

q0(η̄)dη̄

= C̃

(∫ δ̄

0
((ln([2δ̄/η̄] + 1))1/2 g′

q0(η̄)) dη̄ + gq0(2δ̄) − δ

)
=: Aq0 .

For q0 ∈ (0, 1/2) it follows

Aq0 ≤ C̃

(∫ δ̄

0
((2δ̄/η̄)1/2η̄(2q0−1)/2) dη̄ + (2δ2/(2q0+1))(2q0+1)/2 − δ

)
≤ C̃δ.

The same conclusion can be drawn for q0 > 1/2. For q0 = 1/2 we get

A1/2 ≤ C̃

(∫ δ̄

0
((ln(2δ̄/η̄))1/2(ln((1 − θ0)/η̄))1/2) dη̄

+2δ̄(ln((1 − θ0)/2δ̄))
1/2 − δ

)
≤ C̃(δ̄ − δ̄ ln(δ̄) + δ) ≤ C̃δ.


�
Proof of Lemma 4 For δ̃ > 0 there exists an n0, such that, for all n ≥ n0, we have
that [−δ̃, δ̃]2 ⊆ [−rnθ0, rn(1−θ0)]×[−√

nq0,∞). For 0 < s ≤ δ̃ by the mean value
theorem and (9) we have that

E(Zn(s, t)) = −nE(( fθ0,q0(X) − fθ(s),q(t)(X))2)

= −nE

(
( fθ0,q0(X) − fθ(s),q0(X) − t√

n
fθ(s),q̃(t)(X) ln(X − θ(s)))2

)

= −nE((X − θ0)
2q01(θ0,θ(s)](X))

−n
∑

(k,l)∈N2

hk(q0)hl(q0)(θ(s) − θ0)
k+l E((X − θ0)

2q0−k−l1(θ(s),1](X))

+2q0nst√
nrn

E((X − θ̃ (s))q0−1(X − θ(s))q̃(t) ln(X − θ(s))1(θ(s),1](X))
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−t2E((X − θ(s))2q̃(t)(ln(X − θ(s)))21(θ(s),1](X))

=: b1,n(s) + b2,n(s) + b3,n(s, t) + b4,n(s, t),

where θ̃ (s) is a point between θ0 and θ(s) and q̃(t) is a point between q0 and q(t).
Since fθ(s),q(t)(X) is continuous in s and t and by limn→∞

√
n/rn = 1(1/2,∞)(q0) we

have that

sup
(s,t)∈[0,δ̃]×[−δ̃,δ̃]

|b3,n(s, t) − 2a12(q0)st | → 0 as n → ∞

sup
(s,t)∈[0,δ̃]×[−δ̃,δ̃]

|b4,n(s, t) − a22(q0)t
2| → 0 as n → ∞.

For b1,n(s) + b2,n(s) we have to distinguish three cases:
1. q0 > 1/2: we have θ(s) = θ0 + s/

√
n and

sup
0≤s≤δ̃

|b1,n(s) + b2,n(s) − a11(q0)s
2| ≤ sup

0≤s≤δ̃

nE((X − θ0)
2q01(θ0,θ(s)](X))

+ sup
0≤s≤δ̃

E(s2q20 (X − θ0)
2q0−21(θ0,θ(s)](X))

+ sup
0≤s≤δ̃

n
∑

(k,l)∈N2\{(1,1)}
hk(q0)hl(q0)(s/

√
n)k+l E((X − θ0)

2q0−k−l1(θ(s),1](X))

=: An + Bn + Cn .

Let C̃ be a generic positive constant. Since the density of X is bounded, it follows that

An ≤ nE((X − θ0)
2q01(θ0,θ(δ̃)](X))

≤ C̃n
∫ θ(δ̃)

θ0

(x − θ0)
2q0 dx = C̃n(δ̃/

√
n)2q0+1 → 0 as n → ∞. (12)

By similar arguments we have that limn→∞ Bn = 0.

Cn ≤ sup
0≤s≤δ̃

C̃n
∑

(k,l)∈N2\{(1,1)}
hk(q0)hl(q0)(s/

√
n)k+l

∫ 1

θ(s)
(x − θ0)

2q0−k−l dx

≤ C̃n

( ∑

(k,l)∈N2\{(1,1)}
k+l<2q0+1

(hk(q0)hl(q0)/(2q0 + 1 − k − l))(δ̃/
√
n)k+l

+
∑

(k,l)∈N2\{(1,1)}
k+l>2q0+1

(hk(q0)hl(q0)/(k + l − 2q0 − 1))(δ̃/
√
n)2q0+1
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+
∑

(k,l)∈N2\{(1,1)}
k+l=2q0+1

hk(q0)hl(q0)(δ̃/
√
n)2q0+1 ln(

√
n/δ̃)

)
→ 0 as n → ∞.

(13)

2. q0 = 1/2: we have θ(s) = θ0 + s/
√
n ln(n) and

sup
0≤s≤δ̃

|b1,n(s) + b2,n(s) − a11(1/2)s
2| ≤ sup

0≤s≤δ̃

nE((X − θ0)1(θ0,θ(s)](X))

+ sup
0≤s≤δ̃

| s2

4 ln(n)
E((X−θ0)

−11(θ(s),1](X))− dX (θ0)

8
s2|

+ sup
0≤s≤δ̃

n
∑

(k,l)∈N2\{(1,1)}
hk(q0)hl(q0)(s/

√
n ln(n))k+l E((X − θ0)

1−k−l1(θ(s),1](X))

=: Dn + En + Fn .

Analysis similar to that in (12) and (13) shows limn→∞ Dn = limn→∞ Fn = 0. Since
the function dX is continuous at θ0, it follows that

En ≤(dX (θ0)/4) sup
0≤s≤δ̃

∣∣∣∣
s2

ln(n)
ln

(
1 − θ0

θ(s) − θ0

)
− s2

2

∣∣∣∣

+ sup
0≤s≤δ̃

∣∣∣∣
s2

4 ln(n)

∫ 1

θ(s)

dX (x) − dX (θ0)

x − θ0
dx

∣∣∣∣ → 0 as n → ∞.

3. 0 < q0 < 1/2: for 0 < s ≤ δ̃ we have by the substitution y = (x − θ0)rn/s that

−b1,n(s) − b2,n(s) = n

(∫ θ(s)

θ0

(x − θ0)
2q0dX (x) dx

+
∫ 1

θ(s)
((x − θ0)

q0 − (x − θ(s))q0)2dX (x) dx

)

= s2q0+1
(∫ 1

0
y2q0dX (θ0 + ysr−1

n ) dy

+
∫ (1−θ0)rn/s

1
(yq0 − (y − 1)q0)2dX (θ0 + ysr−1

n ) dy

)
.

By the dominated convergence theorem it follows, since the function dX is continuous
at θ0, that

sup
0≤s≤δ̃

|b1,n(s) + b2,n(s) − a11(q0)|s|2q0+1|

≤ sup
0≤s≤δ̃

∣∣∣∣
∫ 1

0
y2q0(dX (θ0) − dX (θ0 + ysr−1

n )) dy

∣∣∣∣
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+ sup
0≤s≤δ̃

∣∣∣∣∣

∫ (1−θ0)rn/s

1
(yq0 − (y − 1)q0)2(dX (θ0) − dX (θ0 + ysr−1

n )) dy

∣∣∣∣∣

+ sup
0≤s≤δ̃

∣∣∣∣
∫ ∞

(1−θ0)rn
(yq0 − (y − 1)q0)2dX (θ0) dy

∣∣∣∣ → 0 as n → ∞.

The same conclusion can be drawn for −δ̃ < s < 0. 
�

Proof of Lemma 5 The proof is similar to the proof of the previous Lemma 4 and
therefore is omitted for the sake of brevity. 
�

Proof of Lemma 6 Wewill show that Zn−E(Zn) converge to a tightGaussian process.
Similar to (10) we define for n ∈ N and for δ̃ > 0 a class of measurable functions
Mn,δ̃ by

Mn,δ̃ :=
{√

nmθ,q : (θ, q) ∈ ([θ(−δ̃), θ(δ̃)] ∩ [0, 1])×([q(−δ̃), q(δ̃)] ∩ [0,∞))
}

.

Observe that the measurable function Mn,δ̃ : R2 → R defined by

Mn,δ̃(e, x) := √
n|2e + 2|

(
fθ(−δ̃),q(−δ̃)(x) − fθ(δ̃),q(δ̃)(x)

)

is an envelope function of the class Mn,δ̃ and observe that

Zn(s, t) − E(Zn(s, t)) = 1√
n

n∑

i=1

√
nmθ(s),q(t)(εi , Xi ) − E

(√
nmθ(s),q(t)(ε, X)

)
.

For η > 0 let N[ ](η,Mn,δ̃, L2) be the bracketing number of the class of functions
Mn,δ̃ related to the L2-norm. Further let (δn)n∈N be a sequence with limn→∞ δn = 0.

Let C̃ be a generic positive constant. Analysis similar to that in the proof of Lemma 3,
Eq. (11) gives

N[ ](η,Mn,δ̃, L2) ≤ C̃([2δ̃r−1
n /g−1

q0 (n−1η)] + 1) for any η > 0,

lim
n→∞

∫ δn

0
(max{1, ln(N[ ](η,Mn,δ̃, L2))})1/2dη = 0.

Let (s1, t1), (s2, t2) ∈ [−δ̃, δ̃]2 with |s1 − s2| + |t1 − t2| < δn . Then we have that
mθ(s1),q(t1) ∈ Mn,δ̃ and mθ(s2),q(t2) ∈ Mn,δ̃ . Further let s̃1 = min{s1, s2}, s̃2 =
max{s1, s2}, t̃1 = min{t1, t2} and t̃2 = max{t1, t2}. By (8) and by Lemma 8 it follows
that
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lim
n→∞ E((

√
nmθ(s1),q(t1)(ε, X) − √

nmθ(s2),q(t2)(ε, X))2)

≤ lim
n→∞ C̃nE(ε2)E(( fθ(s̃1),q(t̃1)(X) − fθ(s̃2),q(t̃2)(X))2)

≤ lim
n→∞ C̃nE(ε2)(E(( fθ(s̃1),q(t̃1)(X) − fθ(s̃1),q(t̃2)(X))2)

+ E(( fθ(s̃1),q(t̃2(X) − fθ(s̃2),q(t̃2)(X))2))

≤ lim
n→∞ C̃ E(ε2)n(((t2 − t1)/

√
n)2 + g2q(t̃2)

((s2 − s1)/rn))

≤ lim
n→∞ C̃ E(ε2)(δ2n + ng2q(t̃2)

(δn/rn)) = 0. (14)

Next we show that the envelope function Mn,δ̃ satisfies the Lindeberg condition. Sim-

ilar to (14) we have that E(M2
n,δ̃

(ε, X)) = O(1) as n → ∞. By (9) we have for
η > 0

1(η
√
n,∞)(Mn,δ̃(ε, X))

= 1(η,∞)(|2ε + 2|(X − θ(−δ̃))q(−δ̃)) 1(θ(−δ̃),θ(δ̃)](X)

+ 1(η,∞)(|2ε + 2|((X − θ(−δ̃))q(−δ̃) − (X − θ(δ̃))q(δ̃))) 1(θ(δ̃),1](X)

≤ 1(η,∞)(|2ε + 2|(2δ̃r−1
n )q(−δ̃)) + 1(η,∞)(|2ε + 2|(2δ̃r−1

n )min{q(−δ̃),1}).

Hence

E(Mn,δ̃(ε, X) 1(η
√
n,∞)(Mn,δ̃(ε, X)))

≤ C̃ E(ε2 1(η,∞)(|ε|(δ̃r−1
n )min{q(−δ̃),1}))

· E(n( fθ(−δ̃),q(−δ̃)(ε, X) − fθ(δ̃),q(δ̃)(ε, X))2) → 0 as n → ∞.

The sequence of the covariance functions converges pointwise by Lemma 5. Thus all
assumptions of Theorem 19.28 inVan der Vaart (1998) are fulfilled, hence for all δ̃ > 0
we have that {Zn(s, t)−E(Zn(s, t)) : (s, t) ∈ [−δ̃, δ̃]2} converges to a tight Gaussian
process. The trajectories of the limit process are continuous by Lemma 18.15 in Van
der Vaart (1998). The assertion follows by Lemma 4 and by the Lemma of Slutsky. 
�
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