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Abstract The classical BGW process assumes first order dependence, whereas many
real life datasets exhibit a second or higher order dependence. Further, in some sit-
uations, there is a need for a model which allows for simultaneous reproduction by
a parent and its offspring. This paper proposes a second order branching process
model to accommodate such situations and discusses its probabilistic properties such
as extinction probability and limiting behaviour of the generation sizes. Estimation
of offspring means and growth rate are also discussed. This model is further used to
model the swine flu data for Pune, India, and La-Gloria, Mexico.

Keywords Almost sure convergence ·Extinction probability ·Generating functions ·
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1 Introduction

Branching processes have conventionally been used to model the spread of an infec-
tious disease. The individuals who get infected from a person are supposed to be
the offspring of that person. The classical Bienayme–Galton–Watson (BGW) model
assumes that an individual can reproduce only once during its lifetime and then dies.
This assumption is violated if the period of infectiousness is more than one time unit
(see, for example, Sparks et al. 2010). This phenomenon is observed in the Swine Flu
data, consisting of number of cases tested positive, on each day in Pune city, in India
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in 2009. When we model this dataset using time series approach, AR(2) model gives
a better fit than AR(1) model, as discussed in Kanade and Rajarshi (2010).

This observation motivated us to propose a second order branching process (SOBP)
model to fit such type of data. In more general terms, we propose a model, where an
individual can produce offspring more than once, and simultaneous reproduction by
an individual and its offspring is allowed. It is to be noted that this feature is not
included in an age-dependent branching process and hence a higher order branching
process is different from the classical age-dependent branching process. Thus, in a
pth order branching process, an individual at nth generation can be an offspring of an
individual from any of the p previous generations. It will be a suitable model in case
of the spread of rumour and also in case of network marketing.

In this paper, to avoid complexity of notations, we restrict to SOBP. In Sect. 2, we
define SOBP and study its probabilistic properties. Section 3 discusses the long term
behaviour of the process in the supercritical case, Sect. 4 briefly reports the estimation
of parameters of SOBP and Sect. 5 presents the simulation and data analysis results.

2 Second order branching process model

In SOBP, we assume that an individual reproduces at age 1 and also at age 2 and then
dies. Hence, if Zn is the number of offspring born at nth generation and Z0 = 1, i.e.
the process starts with one ancestor, we define,

Z1 = ξ1(0) , Zn =
Zn−1∑

i=1

ξi (n − 1) +
Zn−2∑

j=1

ψ j (n − 2) ; ∀ n ≥ 2 , (1)

where, ξi (n − 1) is a random variable indicating the number of offspring produced at
time n by i th individual in (n − 1)st generation and ψ j (n − 2) is a random variable
indicating the number of offspring produced at time n by j th individual in (n − 2)nd
generation.We assume that {ξi (n−1)} and {ψ j (n−2)} are two independent sequences,
each being a sequence of nonnegative integer valued independent and identically dis-
tributed random variables with P[ξi (n − 1) = r ] = pr , for r = 0, 1, 2, . . . , ∀ i, n and
P[ψ j (n − 2) = s] = qs , for s = 0, 1, 2, . . . , ∀ j, n. The process {Zn, n ≥ 0} is then
defined as SOBP. By definition of Zn in Eq. (1), it follows that the process is a second
order Markov chain with state space {0, 1, 2, . . .}. If Vn = (Zn, Zn+1), {Vn, n ≥ 1}
forms a first order Markov chain with (0,0) as an absorbing state. Furthermore, for
p0 > 0, q0 > 0, P[Vn+2 = (0, 0)|Vn = (i, j)] = qi0 p

j
0q

j
0 > 0, implying that the

states other than (0, 0) are transient. Thus, SOBP is not ergodic. Suppose that μ1, μ2
are the means and σ 2

1 , σ 2
2 are the variances of ξi (n−1) andψ j (n−2) respectively. We

may view this process as a two-type process {(Zn, Zn−1), n ≥ 1}. Type I individuals
are the individuals of age 0 and type II individuals are those of age 1. Each type I
individual produces exactly one offspring of type II and on an average μ1 offspring
of type I and each type II individual produces on an average μ2 offspring of type I
and no offspring of type II. The mean matrix (Athreya and Ney 1972, p.184) of the
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two-type process is given by

[
μ1 1
μ2 0

]
.

Probabilistic properties of SOBP can be obtained from the properties of a two-type
branching process. But, we have adopted a more direct approach as is evident from
the following sections.

2.1 Generating function and probability of extinction

Suppose that P(s) and Q(s) are the probability generating functions (pgfs) and hξ (t)
and hψ(t) denote the cumulant generating functions (cgfs) of ξi (n − 1) and ψ j (n −
2) respectively, with p0 �= 0, q0 �= 0. To ensure strict convexity of the function
P(s)Q(s), we need any one of the following three conditions to hold:

(i) p0 + p1 < 1 (ii) q0 + q1 < 1 (iii) p1q1 > 0 . (2)

The following theorem gives the expression for the pgf (cgf) of Zn , in terms of the
pgfs (cgfs) of the two offspring distributions.

Theorem 1 The pgf Rn(s) of Zn is given by Rn(s) = P[Rn−1(s)]Q[Rn−2(s)]. Fur-
ther, if gn(t) is the cgf of Zn, then, gn(t) = hξ (gn−1(t)) + hψ(gn−2(t)).

Proof It is easy to see that, R0(s) = s, R1(s) = P(s),

R2(s) = P(R1(s))Q(R0(s)). Similarly, Z3 =
Z2∑
i=1

ξi (2) +
Z1∑
j=1

ψ j (1) yields

R3(s) = E
[
(Q(s))Z1E

{
(P(s))Z2 |Z1, Z0

}] = Q[R1(s)]P [R2(s)] . Thus, in gen-
eral,

Rn(s) = P
[
Rn−1(s)

]
Q

[
Rn−2(s)

]
. (3)

Putting s = e−t , in (3), we get,

E(e−t Zn ) = E

[{
E

(
e−t Zn−1

)}ξ1(0)
]
E

[{
E

(
e−t Zn−2

)}ψ1(0)
]

.

From the definition of the cgf, E(e−t Zn−1) = e−gn−1(t). Therefore, we have,
E(e−t Zn ) = E[e−gn−1(t)ξ1(0)]E[e−gn−2(t)ψ1(0)]. Taking log on both the sides of the
above equation and multiplying by −1, we get,

gn(t) = hξ (gn−1(t)) + hψ (gn−2(t)) . ��

As discussed earlier, (0, 0) is the absorbing state. Therefore, a second order branch-
ing process will become extinct if and only if Zn−1 = 0, Zn = 0 for some n.
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Theorem 2 (i) The probability of ultimate extinction is the smallest nonnegative solu-
tion of P(s)Q(s) = s. (ii) The extinction probability is 1 if μ1 + μ2 ≤ 1, while it is
less than 1, if μ1 + μ2 > 1.

Proof As noted earlier, if the state of the SOBP is denoted by Vn = (Zn, Zn+1), then
{Vn} forms a first order Markov chain. Let Tn(s1, s2) be the pgf of Vn . Then,

T0(s1, s2) = E
(
sZ0
1 sZ1

2

)
= s1E

(
sZ1
2

)
= s1P(s2).

T1(s1, s2) = E
(
sZ1
1 sZ2

2

)
= E

[
sZ1
1 E

(
sZ2
2 |F1

)]
= E

[
sZ1
1 (P(s2))

Z1 Q(s2)
]

= P [T0(s1, s2)] Q(s2).

Similarly, we have

T2(s1, s2) = E
[
sZ2
1 sZ3

2

]
= E

[
sZ2
1 E

(
sZ3
2 |F2

)]

= E
[
sZ2
1 (P(s2))

Z2 (Q(s2))
Z1

]

= E
[
(T0(s1, s2))

Z2 (Q(s2))
Z1

]

= E
[
(Q(s2))

Z1 (P[T0(s1, s2)])Z1 Q[T0(s1, s2)]
]

= P[T1 (s1, s2)]Q[T0(s1, s2)] .

Thus, in general we have,

Tn(s1, s2) = P
[
Tn−1(s1, s2)

]
Q

[
Tn−2(s1, s2)

]
. (4)

In the bivariate setup, extinction corresponds to the visit to state (0, 0). Let πn be the
probability that the process has become extinct at or before the nth generation. Note
that P[Zn = 0, Zn+1 = 0|Zn−1 = j, Zn = 0] = q j

0 . Thus,

πn = P
[
Zn = 0, Zn−1 = 0

]

=
∞∑

j=0

P
[
Zn = 0, Zn+1 = 0|Zn−1 = j, Zn = 0

]
P(Zn−1 = j, Zn = 0)

=
∞∑

j=0

q j
0 P (Zn−1 = j, Zn = 0) . (5)
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But, the second factor in the summation can be written as,

P(Zn−1 = j, Zn = 0)

=
∞∑

i=0

P
[
Zn−1 = j, Zn = 0|Zn−2 = i, Zn−1 = j

]
P (Zn−2 = i, Zn−1 = j)

=
∞∑

i=0

qi0 p
j
0 P (Zn−2 = i, Zn−1 = j) . (6)

Substituting from (6) in (5), we get,

πn =
∞∑

j=0

∞∑

i=0

qi0(p0q0)
j P (Zn−2 = i, Zn−1 = j) = Tn−2(q0, p0q0) . (7)

Substituting from (4) in (7), we get,

πn = Tn−2(q0, p0q0) = P
[
Tn−3(q0, p0q0)

]
Q

[
Tn−4(q0, p0q0)

]

= P
[
πn−1

]
Q

[
πn−2

]
.

The sequence πn is nondecreasing and bounded above by 1. Hence, its limit π exists.
Since P(s) and Q(s) are continuous, taking limit on the both the sides of the above
equation, we get that the extinction probability π is the solution to the equation
P(π)Q(π) = π. In view of conditions in (2), we get P(s)Q(s) to be strictly increas-
ing and strictly convex. Thus, proceeding on the similar lines as in the case of first
order branching process (FOBP) (cf. Guttorp 1991, p.8), we get extinction probability
to be the smallest nonnegative solution of the equation P(s)Q(s) = s . Note that, the
derivative of P(s)Q(s), evaluated at s = 1 isμ1+μ2. Thus, the extinction probability
is 1 if μ1 + μ2 ≤ 1 and it is less than one, when μ1 + μ2 > 1. This completes the
proof. ��

Consequently, as in FOBP, we classify SOBP in three types as follows:

(i) subcritical case: μ1 + μ2 < 1,
(ii) critical case: μ1 + μ2 = 1 and
(iii) supercritical case: μ1 + μ2 > 1.

3 Long run behaviour

3.1 Stability of the process in the supercritical case

To study the long run behaviour of a SOBP in the supercritical case, we first need to
compute the moments of the generation sizes. The expected number of new births at
any given time point is computed using Eq. (1) as,

E[Zn] = μ1E[Zn−1] + μ2E[Zn−2] , ∀ n ≥ 2 . (8)
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Using the theory of difference equations, we get,

E[Zn] = an+1 − bn+1

2n(a − b)
=

n∑

j=0

an− j b j

2n
=

( a
2

)n

1 − ( b
a

)
[
1 −

(
b

a

)n+1
]

,

where a = μ1 +
√

μ2
1 + 4μ2 and b = μ1 −

√
μ2
1 + 4μ2.

From Eq. (1), and the fact that the sequences {ξi (n − 1)} and {ψ j (n − 2)} are
independent, we get,

V (Z1) = σ 2
1 , V (Zn|Fn−1) = σ 2

1 Zn−1 + σ 2
2 Zn−2, ∀ n ≥ 2 . (9)

From Eqs. (8) and (9),

V [Zn] = σ 2
1 E[Zn−1] + σ 2

2 E[Zn−2] + μ2
1V [Zn−1] + μ2

2V [Zn−2]
+ 2μ1μ2Cov(Zn−1, Zn−2) .

To compute variances without computing covariances, we use, R′′
n (1) obtained from

Theorem 1, in V (Zn) = R′′
n (1) + E(Zn) − [E(Zn)]2, to get,

V [Zn+1] = σ 2
1 [E(Zn)]2 + σ 2

2 [E(Zn−1)]2 + μ1V (Zn) + μ2V (Zn−1) .

Solving this difference equation by induction, we get the variance of Zn as,

V (Zn) = σ 2
1

[
E(Zn−1) +

n−2∑

i=0

E(Zn−2−i )(E(Zi+1))
2

]

+σ 2
2

[
n−2∑

i=0

E(Zn−2−i )(E(Zi ))
2

]
.

Thus the moments of the generation sizes are exactly same as those in case of sec-
ond order branching process with continuous state space. Hence, if we define a new
sequence Wn = Zn/E(Zn), using the results in Kashikar and Deshmukh (2012), we
obtain the following result.

Theorem 3 In the supercritical SOBP, there exists a random variable W, such that
Wn → W, almost surely as well as in quadratic mean and if φ(s) and Λ(s) are the
cgf and pgf of W respectively, then, with ρ = a/2, we have

φ
(
ρ2s

)
= hξ (φ(ρs)) + hψ(φ(s)) and

Λ
(
sρ2

)
= P

(
sρ

)
Q(s).

Further, the sequence {Zn/ρ
n} converges almost surely to a random variable W ′ =

a
a−bW.
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Also, using the formula for ρ, we have,

μ1

ρ
+ μ2

ρ2 = 1. (10)

3.2 Extinction: explosion theorem

For proving the extinction–explosion theorem, we need the following properties of
pgf. Let X be any random variable and P(s) be its pgf.

Property 1 log P(t)
log t is increasing in t.

Proof Let h(s) be the cgf of X . We know that h(s)/s is decreasing in s. Thus,
− log E(e−sX )

s is decreasing in s. Let e−s = t . Thus, 0 < t < 1 and s = − log t .
Further, we get,

h(s)

s
= − log E(t X )

− log t
= log P(t)

log t
.

Let s1 and s2 be two real numbers and t1 = e−s1 and t2 = e−s2 . s1 < s2 implies t1 > t2.
Using this and the above mentioned property of cgf, we get that log P(t)/ log t is an
increasing function of t . ��
Property 2 lim

t→0

log P(t)
log t = a and lim

t→1

log P(t)
log t = μ, where a is the first point of increase

of distribution of X and μ is the mean of X.

Proof Using the same substitution as in Property 1, we get

lim
t→0

log P(t)

log t
= lim

s→∞
h(s)

s
= a.

By L’Hospital’s rule,

lim
t→1

log P(t)

log t
= lim

t→1

t P ′(t)
P(t)

= μ. ��

Property 3 sμ ≤ P(s) ≤ sa.

Proof Combining Properties 1 and 2, we get,

a ≤ log P(t)

log t
≤ μ.

Since t is between 0 and 1, this gives,

a log t ≥ log P(t) ≥ μ log t,

which gives the desired result. ��
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To study the limiting behaviour of the generation sizes, we define a new sequence,
Yn = Zn + f (s0)Zn−1, n ≥ 1 where s0 is the smallest nonnegative solution to the
equation P(s)Q(s) = s, with Y0 = 1. We define, f (s0) as,

f (s0) = log Q(s0)

log s0
0 < s0 < 1

= lim
s→s0

log Q(s)

log s
s0 = 1 or s0 = 0 (11)

Let Jn(s) be the pgf of Yn . Then, J0(s) = E(sY0) = s.

J1(s) = E
(
sY1

)
= E

(
s(Z1+ f (s0))

)
= s f (s0)E

(
sZ1

)
= s f (s0)P(s),

J2(s) = E
(
sY2

)
= E

(
s(Z2+ f (s0)Z1)

)
= E

[
s f (s0)Z1E

{
sZ2 |F1

}]

= E
[
s f (s0)Z1(P(s))Z1Q(s)

]
= E

[(
s f (s0)P(s)

)Z1
Q(s)

]
= Q(s)P(J1(s)).

Continuing similarly, we get,

Jn(s) = P (Jn−1(s)) Q (Jn−2(s)) . (12)

To establish the extinction–explosion theorem, we study the limiting behaviour of
the sequence {Jn(s)} which is presented in the next theorem. Let a1 and a2 be the first
points of increase of ξ1 and ψ1 respectively.

Theorem 4 lim
n→∞ Jn(s) = π for all s ∈ (0, 1). Furthermore, either of the following

three holds:

(a) P(s)Q(s) < s for all s ∈ (0, 1), and lim
n→∞ Jn(s) = 0.

(b) There exists an s0 ∈ (0, 1) such that P(s0)Q(s0) = s0 and lim
n→∞ Jn(s) = s0.

(c) P(s)Q(s) > s for all s ∈ (0, 1), and lim
n→∞ Jn(s) = 1.

Proof Due to convexity of P(s)Q(s) and the fact that lim
s→1

P(s)Q(s) = 1, we note

that the three cases mentioned above are exclusive and exhaustive.
Case I: P(s)Q(s) < s for all s in (0, 1)
By the convexity of P(s)Q(s), the smallest solution to the equation P(s)Q(s) = s is
zero.Hence, s0 = 0. Thus, using the definition of f (s0) and theProperty 2, f (s0) = a2.
In this case, the extinction probability is zero. Therefore, at least one of p0 and q0 is
zero and hence at least one of the a1 and a2 is strictly greater than zero, i.e. greater
than or equal to 1 as ξ1(1) and ψ1(1) are integer valued. Thus, a1 + a2 ≥ 1.

J1(s) = sa2 P(s) ≤ sa1+a2 ≤ s = J0(s),

J2(s) = P[J1(s)]Q(s) ≤ P(s)sa2 = J1(s).
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Thus, by induction, we get the sequence {Jn(s)} to be nonincreasing in n for every s
and hence its limit J (s) exists. From Eq. (12), using the continuity of pgfs, it follows
that J (s) satisfies the equation P(s)Q(s) = s. Hence, J (s) = 0 = π, ∀ s ∈ (0, 1).
Case II: There exists s0 ∈ (0, 1), such that P(s0)Q(s0) = s0
Due to convexity of P(s)Q(s), P(s)Q(s) > s for s < s0 and P(s)Q(s) < s for
s > s0.

Case (a): s < s0

log J1(s) = log[s f (s0)P(s)] = f (s0) log s + log P(s)

= log Q(s0)

log s0
log s + log P(s) =

[
1 − log P(s0)

log s0

]
log s + log P(s)

≥
[
1 − log P(s)

log s

]
log s + log P(s) = log s = log J0(s),

log J2(s) = log P[J1(s)] + log Q(s) ≥ log P(s) + log Q(s0)

log s0
log s = log J1(s).

Case (b): s > s0

log J1(s) = log[s f (s0)P(s)] = f (s0) log s + log P(s) = log Q(s0)

log s0
log s + log P(s)

=
[
1 − log P(s0)

log s0

]
log s + log P(s) ≤

[
1 − log P(s)

log s

]
log s + log P(s)

= log s = log J0(s),

log J2(s) = log P[J1(s)] + log Q(s) ≤ log P(s) + log Q(s0)

log s0
log s = log J1(s).

Using induction in both the cases, and the fact that the limit J (s) satisfies Eq. (12),
we get that Jn(s) increases to s0 for s < s0 and it decreases to s0 for s > s0. In this
case, using the basic branching property and the fact that P(s0)Q(s0) = s0, we have,

E
[
sYn0

∣∣∣Fn−1

]
= E

[
sZn+ f (s0)Zn−1
0 |Fn−1

]

= s f (s0)Zn−1
0 (P(s0))

Zn−1(Q(s0))
Zn−2 .

Taking log on the right hand side of the above equation, we get,

f (s0)Zn−1 log s0 + Zn−1 log P(s0) + Zn−2 log Q(s0)

= Zn−1 log Q(s0) + Zn−1 log P(s0) + Zn−2 log Q(s0)

= Zn−1 log s0 + Zn−2 log Q(s0)

= Zn−1 log s0 + Zn−2 f (s0) log s0

= log sYn−1
0 .
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Thus, {sYn0 } is a bounded martingale and hence it converges almost surely to some

random variable X∞(s0) ∈ [0, 1] as n → ∞, i.e. Yn
a.s.→ log(X∞(s0))

log s0
. Hence, using the

convergence of the corresponding pgfs, we have,

E

[
s

(
log X∞
log s0

)]
= lim

n→∞ Jn(s) = s0 if s ∈ (0,∞).

This gives,

P

(
log X∞
log s0

= 0

)
= 1 − P

(
log X∞
log s0

= ∞
)

= s0

which yields, π = P(X∞(s0) = 1) = s0.
Case III: P(s)Q(s) > s for all s in (0, 1)
In this case, the smallest solution to the equation P(s)Q(s) = s is 1. Hence, s0 = 1.
Thus, we have f (s0) = μ2 and hence, Yn = Zn +μ2Zn−1. In this case, the extinction
probability is 1. Therefore, μ1 + μ2 ≤ 1.

J1(s) = sμ2 P(s) ≥ sμ1+μ2 ≥ s = J0(s),

J2(s) = P[J1(s)]Q(s) ≥ P(s)sμ2 = J1(s).

Thus, proceeding in the similar manner as in Case I, we get the limit of Jn(s) to be 1.
Furthermore, we have, π = 1 and hence, lim

n→∞ Jn(s) = π .

E(Yn|Fn−1) = E(Zn + μ2Zn−1|Fn−1)

= (μ1 + μ2)Zn−1 + μ2Zn−2

≤ Zn−1 + μ2Zn−2

= Yn−1.

Thus, the sequence {Yn} forms a nonnegative supermartingale and hence it converges
almost surely to Y as n → ∞. But, we know that limn→∞ Jn(s) = 1. Thus, the
continuity of pgf gives, P(Y = 0) = 1. This completes the proof. ��

From Theorem 4, we know that limn→∞ Jn(s) = π for all s ∈ (0,∞). By the

continuity of pgfs, this means that Yn
d→ Y , where Y is a random variable with

distribution P(Y = 0) = 1 − P(Y = ∞) = π . The following extinction–explosion
theorem extends this to the almost sure convergence.

Theorem 5 Yn converges almost surely to a random variable Y such that,

P(Y = 0) = 1 − P(Y = ∞).
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Second Order Branching Process 567

Proof When π > 0, i.e. in Case II and III of Theorem 4, we have already established
that the convergence of Yn to Y is almost sure. In Case I, we have, since a1 + a2 ≥ 1,

Yn = Zn + a2Zn−1 ≥ a1Zn−1 + a2Zn−2 + a2Zn−1 ≥ Zn−1 + a2Zn−2 = Yn−1.

Thus, the sequence {Yn} is monotone increasing and converges almost surely. But,
using Theorem 4, we get that Yn converges in distribution to a random variable Y such
that P[Y = ∞] = 1 − π = 1. Thus, Yn converges to ∞ almost surely. ��

4 Estimation

In this section, we discuss estimation of the offspring means and the growth rate from
the generation sizes {Z0, Z1, . . . , Zn} by various methods and study their limiting
behaviour in the supercritical case, on the non-extinction path (W > 0).

4.1 Conditional least squares estimation

From Eq. (1), it follows that E(Zt |Ft−1) = μ1Zt−1 + μ2Zt−2, where Ft−1 =
σ {Z0, Z1, . . . , Zt−1}. This representation suggests the conditional least squares (CLS)
method given byKlimko andNelson (1978) for the estimation ofμ1 andμ2. It involves
minimizing the error sum of squares, Sn = ∑n

t=2(Zt − E(Zt |Ft−1))
2. Thus, the CLS

equations are,

n∑

t=2

(Zt − μ1Zt−1 − μ2Zt−2)Zt−i = 0 for i = 1, 2. (13)

Solving these equations, we get,

μ̂1 =
(∑

Z2
t−2

) (∑
Zt Zt−1

) − (∑
Zt Zt−2

) (∑
Zt−1Zt−2

)

(∑
Z2
t−2

) (∑
Z2
t−1

) − (∑
Zt−1Zt−2

)2 ,

μ̂2 =
(∑

Z2
t−1

) (∑
Zt Zt−2

) − (∑
Zt Zt−1

) (∑
Zt−1Zt−2

)

(∑
Z2
t−2

) (∑
Z2
t−1

) − (∑
Zt−1Zt−2

)2 . (14)

The matrix of second derivatives of Sn , when multiplied by a norming constant or
random variables, converges to a singular matrix. Hence the conditions required for
the strong consistency of these estimators (Klimko and Nelson 1978) are not satisfied.
But these are sufficient conditions only. Hence, we proceed to the direct evaluation of
the limits. If we define Ai j as, Ai j = ∑

(Zt−i Zt− j ), i, j = 0, 1, 2, using the result

Zn/ρ
n a.s.→ W ′ = a

a−bW and Toeplitz lemma, we get,

Ai j∑
ρ2t−i− j

a.s.→ lim

[
Zt−i Zt− j

ρt−iρt− j

]
= W ′2.
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But,
∑n

t=2 ρ2t−i− j = ρ−(i+ j) ∑n
t=2 ρ2t = ρ−(i+ j) ρ4(ρ2(n−1)−1)

ρ2−1
. Thus, by defining

Kn = ρ4(ρ2(n−1)−1)
ρ2−1

, we get,

Ai j/Kn
a.s.→ ρ−(i+ j)W ′2, i = 0, 1, 2, j = 0, 1, 2. (15)

Consequently, both the numerator and the denominator of each of μ̂1 and μ̂2, converge
almost surely to zero. To investigate further, suppose that L1i , L2i are the liminfs and
L1s, L2s are the limsups of μ̂1 and μ̂2 respectively. Dividing the first estimating
equation in (13) by Kn and using the results regarding liminf and limsup, we get,

lim inf
A01

Kn
≤ lim sup μ̂1

A11

Kn
+ lim inf μ̂2

A12

Kn
≤ lim sup

[
μ̂1

A11

Kn
+ μ̂2

A12

Kn

]
.

This gives,W ′2 ≤ W ′2 L1s
ρ

+W ′2 L2i
ρ2 ≤ W ′2. Thus, we have, L1s

ρ
+ L2i

ρ2 = 1. Similarly,

by reversing the roles of limsup and liminf, we get another identity as, L1i
ρ

+ L2s
ρ2 = 1.

This implies that the limsup and liminf of both the estimators are finite and hence,
using these two identities, we get,

L1s − L1i = L2s − L2i

ρ
.

The second equation in (13) yields the same equation. Thus, we can not determine the
values of limsups and liminfs uniquely. Therefore, the CLS estimators have indeter-
minate limits.

4.2 Maximum likelihood estimation

Suppose that ξi (n − 1) and ψ j (n − 2) are Poisson with parameters μ1 and μ2 respec-
tively. By the additive property of the Poisson distribution, the conditional distribution
of (Zt |Ft−1) is Poisson with parameter μ1Zt−1 +μ2Zt−2. Therefore, conditioned on
Z0 and Z1 the likelihood can be written as,

L(μ1, μ2) =
n∏

t=2

e−(μ1Zt−1+μ2Zt−2) (μ1Zt−1 + μ2Zt−2)
Zt

Zt ! .

The likelihood equations for the estimation of μ1 and μ2 are,

n∑

t=2

Zt Zt−1

μ1Zt−1 + μ2Zt−2
=

n∑

t=2

Zt−1 and
n∑

t=2

Zt Zt−2

μ1Zt−1 + μ2Zt−2
=

n∑

t=2

Zt−2.

These can also be written as,

n∑
t=2

(Zt−μ1Zt−1−μ2Zt−2)Zt−1
μ1Zt−1+μ2Zt−2

= 0
n∑

t=2

(Zt−μ1Zt−1−μ2Zt−2)Zt−2
μ1Zt−1+μ2Zt−2

= 0. (16)
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Suppose the almost sure limits of μ̂1 and μ̂2 exist and are denoted by θ1 and θ2
respectively. Consider, for i = 0, 1, 2 and j = 0, 1, 2,

Bi j =
∑ Zt−i Zt− j

μ̂1Zt−1 + μ̂2Zt−2
=

∑ [
Zt−i Zt− j

θ1Zt−1 + θ2Zt−2

(
θ1Zt−1 + θ2Zt−2

μ̂1Zt−1 + μ̂2Zt−2

)]
.

Using the fact that Zn/ρ
n a.s.→ W ′, we get,

θ1Zt−1 + θ2Zt−2

μ̂1Zt−1 + μ̂2Zt−2
= θ1Zt−1 + θ2Zt−2

ρt−1

ρt−1

μ̂1Zt−1 + μ̂2Zt−2

a.s.→ θ1W ′ + θ2W ′
ρ

θ1W ′ + θ2W ′
ρ

= 1.

Furthermore,

∑ Zt−i Zt− j
θ1Zt−1+θ2Zt−2∑
ρt−i− j+1

a.s.→ lim

[
Zt−i Zt− j

ρt−iρt− j

(
ρt−1

θ1Zt−1 + θ2Zt−2

)]
= ρW ′

θ1ρ + θ2
.

If we define, K ′
n = ρ2(θ1ρ+θ2)(ρ

n−1−1)
ρ−1 , we have using the above two results that,

Bi j
K ′
n

a.s.→ W ′ρ−(i+ j). (17)

Using this result in both the equations in (16), we get the identity

θ1

ρ
+ θ2

ρ2 = 1.

As both the likelihood equations lead to the same equation, the unique values of θ1
and θ2 cannot be computed. It is interesting to note that, from (10), (μ1, μ2) is one
of the possible value of (θ1, θ2). Thus, maximum likelihood estimation also does not
produce consistent estimators.

Further investigation leads to the fact that Corr(Zn, Zn+1) → 1, as n → ∞. This
may be the reason for indeterminate limits of μ̂1 and μ̂2.

4.3 Ridge type adjustment

To address this problem of indeterminate limits, we slightly modify the estimating
equations on the lines of ridge regression. The new estimating equations are,

A01 = μ1A11(1 + λ) + μ2A12 and A02 = μ1A12 + μ2A22(1 + λ)

where, the ridge parameter λ is a nonzero constant. The new estimates of μ1 and μ2
are,

μ̂r1 = A22A01(1 + λ) − A02A12

A22A11(1 + λ)2 − (A12)2
and μ̂r2 = A11A02(1 + λ) − A01A12

A22A11(1 + λ)2 − (A12)2
.
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Using Eq. (15), we get μ̂r1
a.s.→ ρ

2+λ
and μ̂r2

a.s.→ ρ2

2+λ
. Similar adjustment in the

likelihood equations for Poisson offspring gives the following equations:

B01 = μ̂1B11(1 + λ) + μ̂2B12, B02 = μ̂1B12 + μ̂2B22(1 + λ). (18)

Dividing these equations by K ′
n and using Eq. (17), we get the two equations as,

1 = θ1
ρ

(1 + λ) + θ2
ρ2 , 1 = θ1

ρ
+ θ2

ρ2 (1 + λ).

Solving these equations simultaneously, we get the values of θ1 and θ2 as
ρ

2+λ
and ρ2

2+λ
respectively. Thus, ridge type adjustment in the estimating equations as well as in the
likelihood equations gives similar results, and does not lead to consistent estimators
of μ1 and μ2.

4.4 Growth rate

We know that Zn
ρn

a.s.→ W ′. Thus, ρ plays the role of growth rate for the second order
branching process. Its estimation is therefore of interest. Following two functions of
the generation sizes are proposed as the estimators for this growth rate:

(i) ρ̄ = Zn

Zn−1
, if Zn−1 > 0 (ii) ρ̂ =

∑n
t=1 Zt∑n

t=1 Zt−1
.

Consistency of these estimators, follows immediately, using the fact that Zn
ρn

a.s.→ W ′
and Toeplitz lemma. In fact, using Toeplitz lemma, it can be shown that any estimator
of the type

∑
t
Zt−i/

∑
t
Zt−i−1 or

∑
t
Zt−i Zt−i−1/

∑
t
Z2
t−i−1, for i = 1, 2, . . . , n − 1

converges to ρ almost surely.

5 Simulations and data analysis

Simulations are carried out by taking offspring distributions as Geometric, Binomial
and Poisson with μ1 = 0.7 and μ2 = 0.4. This gives ρ = 1.0728. In case of
Binomial(m, p) distribution, m is taken to be 3. In Tables 1 and 2 titles of the type
“Binomial–Geometric” indicate that the offspring distribution at lag 1 is Binomial and
offspring distribution at lag 2 is Geometric. Number of generations n is taken to be 10,
with Z0 = 1 and the number of samples drawn is 5,000. Table 1 presents the means of
estimates of μ1 and μ2, obtained using optimal estimating equations and conditional
least squares along with their estimated Mean Squared Errors (MSE). In most of the
cases, estimating functions give the best estimates. Table 2 gives various estimates

of growth rates and their MSE’s. The estimates are denoted by, ρ̂1 =
∑

Zt∑
Zt−1

, ρ̂2 =
∑

Zt Zt−1∑
Z2
t−1

and ρ̂3 =
∑

Zt−1Zt−2∑
Z2
t−2

. From the values of the estimated means and MSE’s of

the estimates, it can be seen that ρ̂1 performs better compared to the other estimates.
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Table 1 Estimates by various methods for n = 10

Method Poisson–Poisson Geometric–Poisson

Mean MSE Mean MSE

Optimal estimating equations μ1 0.7530 0.0818 1.1082 0.3887

μ2 0.6878 0.1922 0.5697 0.1722

Conditional least squares μ1 0.6034 0.1302 0.5879 0.1508

μ2 0.4725 0.1875 0.4757 0.2046

Method Binomial–Binomial Binomial–Geometric

Mean MSE Mean MSE

Optimal estimating equations μ1 0.6775 0.0352 0.3179 0.2000

μ2 0.6671 0.1173 1.0936 0.5628

Conditional least squares μ1 0.5949 0.1252 0.5938 0.1265

μ2 0.4846 0.1692 0.4945 0.1909

Method Geometric–Geometric Poisson–Binomial

Mean MSE Mean MSE

Optimal estimating equations μ1 0.8111 0.2764 0.9075 0.0800

μ2 0.9503 0.6867 0.3998 0.0309

Conditional least squares μ1 0.5894 0.1408 0.5924 0.1294

μ2 0.4835 0.2137 0.4840 0.1806

Table 2 Estimates of growth rate for n=10

Poisson–Poisson Binomial–Binomial Geometric–Geometric

Mean MSE Mean MSE Mean MSE

ρ̂1 1.1191 0.0200 1.1116 0.0171 1.1371 0.0279

ρ̂2 0.9114 0.0806 0.9241 0.0710 0.8786 0.1090

ρ̂3 0.9094 0.0860 0.9182 0.0783 0.8802 0.1169

Geometric–Poisson Binomial–Geometric Poisson–Binomial

Mean MSE Mean MSE Mean MSE

ρ̂1 1.1277 0.0265 1.1236 0.0192 1.1154 0.0202

ρ̂2 0.8677 0.1207 0.9249 0.0680 0.9098 0.0828

ρ̂3 0.8658 0.1311 0.9284 0.0736 0.9057 0.0897

Next we apply the SOBPmodel to the swine flu data. The data consist of number of
cases tested positive on each day in Pune, India and La-Gloria, Mexico. For Pune, the
data are recorded from July, 15 to August, 4, 2009. In case of La-Gloria, the data are
recorded from March, 9 to April, 13, 2009. Pune dataset is from Kanade and Rajarshi
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Table 3 Estimates for swine flu data

Method Pune data La-Gloria data

μ̂1 μ̂2 ρ̂ μ̂1 μ̂2 ρ̂

Conditional least squares 0.3212 0.5858 0.9426 0.4480 0.4092 0.9018

MLE (Poisson) 0.4704 0.6187 1.0562 0.4656 0.5566 1.0143

Growth rate 1.0563 1.0069

Vaccination required 5% 1%

(2010), whereas La-Gloria dataset is taken from Fraser et al. (2009). We model both
the datasets using SOBP and obtain the estimates of μ1, μ2 and ρ.

Maximum Likelihood estimates are computed assuming both the offspring distrib-
utions to be Poisson. For Pune data, by both the methods, we get μ̂2 greater than μ̂1,
suggesting that the rate of infection is more on day 2 of the infection than on day 1.
From Table 3, it can be seen that for Pune data, maximum likelihood method gives the
sum of the estimates of μ1 and μ2 to be greater than 1. Also, the estimator of growth
rates (ρ̂1) are greater than 1 for both the datasets. This indicates that both the processes
are supercritical in nature and there is a positive probability that the epidemic will not
die out unless some efforts are taken to curb its spread. In Pune as well as in Mexico,
respective governments took some measures such as closing down the educational
institutes, theatres, malls etc. which are justified, by our findings. The proportion of
vaccination (ν) required to guarantee the elimination of the disease is computed using
the result ν ≥ 1 − 1/ρ, which is proved using arguments similar to those in Becker
(1976).
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