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Abstract In this article, we propose a new test for additivity in nonparametric quan-
tile regression with a high-dimensional predictor. Asymptotic normality of the corre-
sponding test statistic (after appropriate standardization) is established under the null
hypothesis, local and fixed alternatives. We also propose a bootstrap procedure which
can be used to improve the approximation of the nominal level for moderate sample
sizes. The methodology is also illustrated by means of a small simulation study, and
a data example is analyzed.

Keywords Nonparametric regression · Quantile regression · Bootstrap ·
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1 Introduction

Quantile regression was introduced by Koenker and Bassett (1978) as a complement
to least squares estimation (LSE) or maximum likelihood estimation (MLE) and leads
to far-reaching extensions of “classical” regression analysis by estimating families of
conditional quantile surfaces, which describe the relation between a one-dimensional
response y and a high-dimensional predictor x . Since its introduction, it has found
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great attraction in mathematical and applied statistics because of its ease of interpre-
tation and robustness, which yields attractive applications in such important areas as
medicine, economics, engineering and environmental modeling. The interested reader
is referred to the recent monograph of Koenker (2005). Many authors consider para-
metric quantile regression models but in the last two decades nonparametric methods
for estimating conditional quantiles have also been discussed intensively. Most of the
literature refers to models with a univariate predictor [see e.g., Yu and Jones (1997,
1998), Dette and Volgushev (2008) and Chernozhukov et al. (2010)]. While from
a theoretical point of view, there is no difficulty to generalize this methodology to
high-dimensional covariates, it is well known that in practical applications such non-
parametric methods suffer from the curse of dimensionality and therefore do not yield
precise estimates of conditional quantile surfaces for reasonable sample sizes. A com-
mon approach in nonparametric statistics to deal with this problem is to postulate
an additive nonparametric model, which allows the estimation of the regression with
one-dimensional rates. In classical regression (estimating the conditional expectation
of the response given in the predictor), this methodology has found considerable inter-
est in the literature [see Linton and Nielsen (1995), Mammen et al. (1999), Carroll
et al. (2002), Hengartner and Sperlich (2005), Nielsen and Sperlich (2005), among
others]. In quantile regression, nonparametric models of this type have only been dis-
cussed more recently. Doksum and Koo (2000) suggest a spline estimate and Gooijer
and Zerom (2003) introduce a marginal integration estimate of an additive quantile
regression model. Horowitz and Lee (2005) propose a two-step procedure, which fits a
parametric model in the first step (with increasing dimension) for each coordinate and
smooth it in a second step by the local polynomial technique. Yu and Lu (2004) and
Lee and Mammen (2010) suggest backfitting methods for additive quantile regression
estimation, while Dette and Scheder (2011) combine marginal integration techniques
with monotone rearrangements [see Dette et al. (2006)] for the construction of addi-
tive estimates. Although these methods estimate the unknown quantile regression with
the optimal (one-dimensional) rate if the assumption of an additive model is correct,
they are generally inconsistent if the quantile regression is not additive. In this case
the corresponding statistics usually estimate a “best approximation” of the unknown
regression by an additive quantile regression model, but the difference between the
“true” curve and its best approximation can be substantial. For this reason, it is of
some importance to investigate by a statistical test if the hypothesis of an additive
quantile regression is satisfied. In the context of modeling the conditional expectation,
this problem has found considerable interest in the literature [see for example Eubank
et al. (1995), Gozalo and Linton (2001), Dette and von Lieres und Wilkau (2001),
Derbort et al. (2002) or Abramovich et al. (2009), among others]. On the other hand,
to the best knowledge of the authors, tests for the hypothesis of an additive quantile
regression model have not been considered so far in the literature, and the purpose
of the present paper is to propose and analyze such a procedure for this problem. In
Sect. 2 we introduce the basic notation and an additive estimate of the conditional
quantile curve. The test statistic for the problem of additive quantile regression uses
the residuals from this additive fit and is introduced in Sect. 3, where we also study the
main asymptotic properties. In particular, we prove weak convergence of an appro-
priately standardized version of the test statistic under the null hypothesis and fixed
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alternatives with different rates corresponding to both cases. In Sect. 4 we present a
small simulation study to illustrate the finite sample properties of a bootstrap version
of the proposed test. We also investigate a data example testing if the hypothesis of
an additive quantile regression is satisfied. Finally, all proofs and some of the more
technical details in the proofs are deferred to Appendices A, B and C.

2 Preliminaries: an additive estimator

Consider a sequenceof independent, identically distributedobservations (X1,Y1), . . . ,
(Xn,Yn) where X j = (X j1, . . . , X jd)

T denotes a d—dimensional random vari-
able with density f and fi is the marginal density of the i th component X ji of X j

(i = 1, . . . , d). Throughout this paper we denote by F(y|x) the conditional distribu-
tion function of Y1 given X1 = x = (x1, . . . , xd)T and by Q(τ |x) = F−1(y|x) the
corresponding conditional quantile function. In the following, we fix some quantile
τ ∈ (0, 1) and are interested in the problem of testing the hypothesis of additivity

H0 : Q(τ |x) = Q(τ |x1, . . . , xd) =
d∑

k=1

Qk(τ |xk) + c(τ ) (1)

for some constant c(τ ) and functions Qk(τ |xk) (k = 1, . . . , d). Note that the quantities
in (1) are not uniquely determined and tomake these identifiablewe assume throughout
this paper the conditions

E[Qk(τ |X jk)] = 0, k = 1, . . . , d, j = 1, . . . , n.

For the construction of a test for the hypothesis (1) let Q̂add denote an additive estimate
of the quantile regression function Q (for fixed τ ), which will be specified later. We
propose the statistic

Tn = 1

n(n − 1)

n∑

i=1

n∑

j �=i

Lg
(
Xi − X j

)
R̂i R̂ jπ(Xi )π(X j ). (2)

Here the random variables R̂i are defined by

R̂i = I
{
Yi ≤ Q̂−i

add(τ |Xi )
}

− τ, (3)

π is a positive weight function and the function Lg is given by

Lg(Xi − X j ) = 1

gd
L

(
Xi − X j

g

)
, (4)

where L denotes a d-dimensional kernel function and g is a bandwidth (note that one
might use different bandwidths for each covariable, which is not reflected in our nota-
tion). Throughout this paper we use the notation â and â−i corresponding to estimates
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from the full sample {(X j ,Y j )| j = 1, . . . , n} and the sample without the i th observa-
tion, respectively. Thus the statistic Q̂−i

add(τ |x) in (3) denotes the additive (nonparamet-
ric) estimate of the quantile regression from the sample without the i th observation.
Similarly, Q̂−i, j

add and Q̂−i, j,k
add denote the corresponding estimators without the i th and

j th and the i th, j th and kth observation, respectively. Various additive quantile regres-
sion estimates have been proposed by Gooijer and Zerom (2003),Yu and Lu (2004),
Horowitz and Lee (2005), Lee and Mammen (2010) and Dette and Scheder (2011).

Note that statistics of the type (4) have been introduced by Zheng (1996) in the
context of testing for a specific parametric form in nonparametric regression, and
since their introduction have found considerable interest in the context of goodness-
of-fit tests [see Dette and von Lieres und Wilkau (2001) or Zhang and Dette (2004)
among others]. An important advantage of the statistic Tn compared to other methods
is that its normalized version is asymptotically unbiased [see Dette and von Lieres
und Wilkau (2001)]. In the following section, we will study the asymptotic properties
of the test statistic under the null hypothesis of additivity, local alternatives and fixed
alternatives. In particular, we prove weak convergence of a standardized version of
the statistic Tn defined in (2) with different rates corresponding to the null hypothesis
and fixed alternatives. For this discussion which is deferred to Sect. 3 we therefore
recall the definition of an additive quantile regression estimate which has recently been
introduced byDette andScheder (2011) andwill be used throughout this paper for a test
of an additive quantile regression. Following Dette and Scheder (2011) we denote by

F̂l(y|x) =
∑n

i=1 K1,h1(xl − Xil)K2,H (xl − Xil)I {Yi ≤ y}
∑n

i=1 K1,h1(xl − Xil)K2,H (xl − Xil)
(5)

the Nadaraya Watson estimate of the conditional distribution function where
for l = 1, . . . , d, xl ∈ R

d−1 denotes the vector containing the components
x1, . . . , xl−1, xl+1, . . . , xd of the vector x = (x1, . . . , xd)T ∈ R

d . In (5) the func-
tions K1 and K2 are one-dimensional and (d − 1)-dimensional kernels, respectively,
h1 is a one-dimensional bandwidth and H = diag(h2, . . . , hd) a (d − 1)-dimensional
non-singular and diagonal (bandwidth) matrix and we use the notation

K1,h1(x1) = 1

h1
K1(h

−1
1 x1),

K2,H (x̃) = 1

det(H)
K2
(
H−1 x̃

)
.

We emphasize that the statistics F̂l differ for different values of l. More precisely, the
index l determines the component of the predictor x (namely xl ), which is used in
the kernel K1 while the remaining components xl = (x1, . . . , xl−1, xl+1, . . . , xd) are
used in K2. Nevertheless all statistics F̂l estimate the conditional distribution func-
tion consistently (under appropriate assumptions). Moreover, for different values of
l = 1, . . . , d different bandwidths h1 = h1,l , H = diag(h2,l , . . . , hd,l) will be used
in the estimate F̂l , although this will not be reflected in our notation. Throughout this
paper we denote by G : R → [0, 1] a strictly increasing given distribution function,
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which can be specified by the data analyst and denote by K a further positive one-
dimensional kernel with compact support, say [−1, 1] with corresponding bandwidth
bn . Following Dette and Volgushev (2008) we define

Q̂l,N (τ |x) = G−1 (Ĝl,N (τ |x)) , (6)

where the statistic Ĝl,N is given by

Ĝl,N (τ |x) = 1

N

N∑

i=1

∫ τ

−∞
Kbn

(
F̂l

(
G−1

(
i

N

) ∣∣∣x
)

− u

)
du (7)

and we use the notation Kbn (x) = K (x/bn)/bn . Note that intuitively (for example
if F̂l(y|x) is uniformly consistent) we obtain for N → ∞, n → ∞, bn → 0 the
approximation

Ĝl,N (τ |x) ≈ GN (τ |x) := 1

N

N∑

i=1

∫ τ

−∞
Kbn

(
F

(
G−1

(
i

N

) ∣∣∣x
)

− u

)
du

≈
∫

I
{
F
(
G−1(s)|x

)
≤ τ
}
ds = G(Q(τ |x)), (8)

and therefore the statistic Q̂l,N (τ |x) defined in (6) is a reasonable estimate of the con-
ditional quantile curve Q(τ |x) = F−1(τ |x). The distribution functionG is introduced
to treat the case where the density of the response variable has unbounded support.
Dette and Volgushev (2008) demonstrate that the choice of the distribution function G
has a negligible impact on the quality of the resulting estimate provided that an obvious
centering and standardization is performed. Similarly, the estimate Q̂l,N (τ |x) is robust
with respect to the choice of the bandwidthbn if it is chosen sufficiently small [seeDette
et al. (2006)]. The estimate (6) suffers from the curse of dimensionality if the dimen-
sion d of the predictor is large and for this reason Dette and Scheder (2011) propose to
combine it with themarginal integration technique to obtain an additive estimate of the
quantile regression with a one-dimensional rate of convergence. To be precise define

q̂l(τ |xl) = 1

n

n∑

j=1

Q̂l,N
(
τ |xl , X jl

)
, l = 1, . . . , d

as an estimate of the first marginal effect

ql(τ |xl) :=
∫

Q(τ |x) fl(xl)dxl = Ql(τ |xl) + c(τ ), (9)

where fl : Rd−1 → R is the density of the random vector X jl = (X j1, . . . , X jl−1,

X jl+1, . . . , X jd)
T and the second equality in (9) holds under H0. The estimates of

the marginal effects q̂l(τ |xl) are now used to define the final additive estimate of the
conditional quantile function which is given by
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Q̂add(τ |x) :=
d∑

k=1

q̂k(τ |xk) −
(
1 − 1

d

) d∑

k=1

1

n

n∑

i=1

q̂k(τ |Xik). (10)

We note that this statistic is well defined even in the casewhen the null hypothesis (1) is
not satisfied and in this case it estimates consistently (under appropriate assumptions)
the function

Qadd(τ |x) =
d∑

j=1

Q j (τ |x) + c(τ ),

where the quantities Q j are defined as in (9). Throughout this paper we make the
following assumptions regarding the kernels used in the definition of (2), (5) and (7).

Assumption 1 The one-dimensional kernel K1 in (5) is of bounded variation and has
compact support [−1, 1] with existing moments of order 2 satisfying

∫ 1

−1
xK1(x)dx = 0,

c2(K1) = 1

2

∫ 1

−1
x2K1(x)dx .

Similarly for a multi index ν1 = (ν2, . . . , νd) ∈ N
d−1 we define the monomial

x
ν1
1 = xν2

2 , . . . , xνd
d , denote by |v1| :=∑d

i=2 νi the corresponding degree.

Assumption 2 We assume that the kernel K2 in (5) is a (d−1)-dimensional bounded
kernel of order q with support [−1, 1]d−1, that is

(i) K2 is symmetric,

(ii)
∫

[−1,1]d−1
K2(x1)dx1 = 1,

(iii)
∫

[−1,1]d−1
|xν1

1 ||K2(x1)|dx1 < ∞ for |ν1| ≤ q,

(iv)
∫

[−1,1]d−1
x

ν1
1 K2(x1)dx1 = 0 for 1 ≤ |ν1| ≤ q − 1,

(v)
∫

[−1,1]d−1
x

ν1
1 K2(x1)dx1 �= 0 for some |ν1| = q,

and fulfills the following regularity assumption [see for example Einmahl and Mason
(2005)]: consider the class of functions

K =
{
K2

(
H−1(x − ·)

)
|H = diag(h2, . . . , hd), hi > 0, x ∈ R

d−1
}

.

For some C > 0 and V > 0 we assume thatK satisfies the following uniform entropy
condition:

sup
P

N (ε,K, L2(P)) ≤
(
C

ε

)V

, for 0 < ε < C, (11)
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whereN (ε,K, L2(P)) denotes theminimal number of balls of L2(P)-radius ε needed
to cover K.

Nolan and Pollard (1987) and van der Vaart and Wellner (1996) give some criteria
under which (11) holds. For example this assumption is satisfied, if K2(x) = �(p(x))
where � : R → R is a real-valued function of bounded variation and p(x) is a
polynomial. Similarly, the assumption is also satisfied if the (d − 1) dimensional
kernel K2 is a product of one-dimensional kernels, where for each factor a condition
of the type (11) holds.

Assumption 3

The kernel K is Lipschitz continuous with compact support [−1, 1].
The kernel L is a d-dimensional symmetric kernel of order 2 with compact support
[−1, 1]d and satisfies L(x) < ∞, L(x) ≥ 0 for all x ∈ [−1, 1]d .
To motivate the use of the statistic Tn to test H0 we introduce the “residuals”

R j = I
{
Y j ≤ Q

(
τ |X j

)}− τ (12)

Radd
j = I

{
Y j ≤ Qadd

(
τ |X j

)}− τ (13)

and denote by
�(X j ) = E[R j − Radd

j | X j ] = −E[Radd
j | X j ] (14)

the conditional expectation of the distance between the “unconstrained residuals” and
the “restricted residuals” obtained from an additive approximation. Note that under
the null hypothesis we have�(X j ) = 0 a.s., while under the alternative it follows that
P(�(X j ) = 0) < 1. With the approximation R̂i ≈ Radd

i we get that the expectation
of Tn can be approximated by

E[Tn] = E
[
Lg(Xi − X j )R̂i R̂ jπ(Xi )π(X j )

]

≈
∫

Lg(u − v)(F(Qadd(τ |u)|u) − τ)(F(Qadd(τ |v)|v)

−τ)π(u)π(v) f (u) f (v)dudv

≈
∫

(F(Qadd(τ |u)|u) − τ)2π2(u) f 2(u)du

= E
[
�2(X j )π

2(X j ) f (X j )
]

≥ 0.

Here we have E[�2(X j )π
2(X j ) f (X j )] = 0 if and only if P(Qadd(τ |X j ) =

Q(τ |X j )) = 1. In fact we will see in the next section that Tn converges to
E[�2(X j )π

2(X j ) f (X j )] in probability. Therefore, it is reasonable to reject the null
hypotheses for large Tn .

3 Asymptotic theory

In this section, we study the asymptotic properties of the statistic introduced in Sect. 2
for testing the hypothesis of an additive quantile regression.We begin with a statement
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regarding weak convergence under the null hypothesis. To keep the notation simple
we assume that the (d − 1)-dimensional bandwidth matrix in the definition of the
estimate (5) is proportional to the identity matrix, that is H = diag(h2, . . . , h2) ∈
R

(d−1)×(d−1), where h2 is a one-dimensional bandwidth. We also introduce the nota-
tion K2,h2(x) instead of K2,H (x) in this case. Moreover, to present a result regarding
weak convergence under the null hypothesiswemake the following basic assumptions.

Assumption 4 1. The random variables X j have a positive density f ∈ Cq([0, 1]d)
with support supp( f ) = [0, 1]d , where q ≥ d and Cq([0, 1]d) denotes the set of
all q times continuously differentiable functions defined on the unit cube [0, 1]d .

2. For any x the function F(·|x) is strictly increasing and continuously differentiable
with uniformly bounded derivative.

3. The distribution function G is twice continuously differentiable and (G−1)′ is
uniformly bounded on closed intervals I ⊂ (0, 1).

4. The positive weight function π is continuously differentiable and has compact
support S ⊂ (0, 1)d .

5. For any x the function Q(·|x) is twice continuously differentiable in a neighbor-
hood of τ and there exists ε > 0 such that

sup
x∈[0,1]d

sup
|s−τ |<ε

Q′(s|x) < ∞,

sup
x∈[0,1]d

sup
|s−τ |<ε

|Q′′(s|x)| < ∞.

6. For each l = 1, . . . , d, the bandwidths g, bn, h1, h2 satisfy the following condi-
tions (if n → ∞)

n = O(N ), N → ∞, bn = o(h1)

gd = o(h21), nh51 = O(1)

ngd → ∞, nbn → ∞, nh1h
d−1
2 → ∞

hq2 = o(h21), nh2q+1
2 = O(1).

Assumption 5

For each l = 1, . . . , d, the bandwidths g, bn, h1, h2 satisfy the following condi-
tions (if n → ∞)

n2α

nh1h
d−1
2 b2n

= o(1)

n2αg
d
2

1

h1h
d−1
2

= o(1)

for some α > 0.

We note that the order q of the kernel K2 provides an upper bound for the dimension
d. However, q can be chosen by the experimenter and increasing the order of the kernel
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K2 makes the test applicable to d-dimensional predictors for any d ∈ N. The following
result establishes weak convergence of the test statistic Tn defined in (2). Throughout

this paper the symbol
D−→ denotes weak convergence.

Theorem 1 If Assumptions 1, 2, 3, 4, 5 and the null hypothesis (1) of an additive
quantile regression model are satisfied, it follows that

ngd/2Tn
D−→ N (0, σ 2), (15)

where the asymptotic variance is given by

σ 2 = 2τ 2(1 − τ)2
∫

L2(u)du
∫

π4(x) f 2(x)dx . (16)

Remark 1 We would like to point out that a result of the form (15) is typical for the
limit distribution of a statistic of the type defined in (2) [see Gozalo and Linton (2001),
or Dette and von Lieres undWilkau (2001)]. For example, recently Härdle et al. (2012)
considered the problem of testing the hypothesis of causality in quantile regression,
which reduces in the simplest case to the hypothesis (for a given l ∈ {1, . . . , d})

Hc
0 : Q(τ | x) = Q(τ | xl).

This hypothesis means that the conditional quantile given X = x does not depend
on the components x1, . . . , xl−1, xl+1, . . . , xd of the vector x . Härdle et al. (2012)
proposed a statistic of the form (2),where the residuals R̂i are replaced by R̃i = I {Yi ≤
Q̂(τ |Xil)} and Q̂(τ |xl) is an appropriate estimate of the conditional quantile function
under the null hypothesis Hc

0 . They claimed asymptotic normality of a normalized test
statistic

Jn = 1

n(n − 1)

∑

i �= j

Lg(Xi − X j )R̃i R̃ j

with the same limit distribution as given in Theorem 5. However, it should be pointed
out here that the proof in this paper is not correct. The basic argument of Härdle et al.
(2012) consists in the statement that the fact

sup
x

| Q̂(τ |xl) − Q(τ |xl)| ≤ Cn

results in the estimate
JnU ≤ Jn ≤ JnL (17)

where the statistics JnU and JnL are defined by

JnU = 1

n(n − 1)

∑

i �= j

Lg(Xi − X j )εiU ε jU ,

JnL = 1

n(n − 1)

∑

i �= j

Lg(Xi − X j )εi Lε j L ,
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and εiU = I {Yi + Cn ≤ Q(τ |Xil)} − τ, εi L = I {Yi + Cn ≤ Q(τ |Xil)} − τ (see
equation (A.11-3) in this paper). A simple calculation shows that this conclusion is
not correct and in fact the inequality (17) does not hold in general. It turns out that the
proof of Theorem 1 in Härdle et al. (2012) can not be corrected easily.

However, using similar arguments as given in the proof of Theorem 1, it can be
shown that a similar statement of weak convergence holds for a slightly modified
statistic considered in Härdle et al. (2012), that is

gd/2

(n − 1)

∑

i �= j

Lg(Xi−X j )
(
I
{
Yi ≤ Q̂−i (τ |Xil)

}
− τ
) (

I
{
Y j ≤ Q̂− j (τ |X jl)

}
−τ
)

π(Xi )π(X j )
D−→ N (0, σ 2)

where Q̂−i (τ |Xil) denotes the quantile regression estimate of Dette and Volgushev
(2008) from the two-dimensional sample (Xil ,Yi )ni=1 and σ 2 is defined in (16) (we
omit details here for the sake of brevity). A correct proof of the result claimed in
Härdle et al. (2012) is still an open problem.

In the following discussion, we investigate the asymptotic properties of the statistic
Tn defined in (2) under local and fixed alternatives. We first consider the properties of
the test for local alternatives of the form

Q(τ |x) = Qadd(τ |x) + dnl(x), (18)

where dn denotes a sequence satisfying dn = (ngd/2)−1/2 → 0 as n → ∞ and the
function l(·) and its first-order derivatives are bounded.

Theorem 2 Assume that Assumptions 1, 2, 3, 4 and 5 are satisfied. Under local alter-

natives of the form (18) with dn = 1/(n1/2g
d
4 ) it follows that

ng
d
2 Tn

D−→ N (μ, σ 2), (19)

where the asymptotic variance and bias are given by (16) and

μ = E
[(
F ′ (Qadd (τ |X1) |X1)

)2
l2(X1)π

2(X1) f (X1)
]
,

respectively.

The following result specifies the asymptotic distribution of the test statistic Tn
defined in (2) under fixed alternatives. For its proof we require the following additional
assumptions.
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Assumption 6

1. For any y ∈ R we have F(y|·) ∈ Cq
b ([0, 1]d).

2. For each l = 1, . . . , d, the bandwidths bn, h1, h2 satisfy the following conditions
(if n → ∞)

log n

nh21h
2(d−1)
2 b2n

= o(1),

n2α−1/2

h1h
d−1
2

= o(1), for some α > 0.

Theorem 3 If Assumptions 1, 2, 3, 4 and 6 are satisfied and the null hypothesis (1)
does not hold, then we have as n → ∞

n1/2(Tn − E[Tn]) D−→ N (0, σ 2), (20)

where

E[Tn] = E
[
�2(X1)π

2(X1) f (X1)
]

+2E
[
F ′(Qadd(τ |X1)|X1)�(X1)π

2(X1) f (X1)
(
b(X1)

−
(
1 − 1

d

)
b(X2)

)]
h21 + o

(
h21

)
+ O(g2)

with b(x) =∑d
α=1 bα(xα) and

bα(xα) = c2(K1)

∫ ⎛

⎝1

2

∂2

∂x2α
F(Q(τ |xα, tα)|xα, tα)

F ′(Q(τ |xα, tα)|xα, tα)

+
∂

∂xα
F(Q(τ |xα, tα)|xα, tα) ∂

∂xα
f (xα, tα)

F ′(Q(τ |xα, tα)|xα, tα) f (xα, tα)

⎞

⎠ fα
(
tα
)
dtα. (21)

The asymptotic variance in (20) is given by

σ 2 = 4Var

[
�2(X1)π

2(X1) f (X1)

−E

(
�(X2)π

2(X2) f (X2)F
′(Qadd(τ |X2)|X2)

(
d∑

α=1

Q
(
τ |X2α, X1α

)

−
(
1 − 1

d

) d∑

α=1

Q
(
τ |X1α, X3α

)+ Q
(
τ |X3α, X1α

)
)∣∣∣∣∣ X1

)]
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+ 4τ(1 − τ)E

[(
− �(X1)π

2(X1) f (X1)

− 1

F ′(Q(τ |X1)|X1)

(
(d − 1)

∫
�(t)π2(t) f 2(t)F ′(Qadd(τ |t)|t)dt

−
d∑

α=1

fα(X1α)

f (X1)

∫
�
(
X1α, tα

)
π2 (X1α, tα

)
f 2
(
X1α, tα

)

F ′(Qadd(τ |X1α, tα)|X1α, tα)dtα
))2]

.

Remark 2 Note that Theorem 1 provides an asymptotic level α test for the hypothesis
(1) of an additive quantile regression model by rejecting H0, whenever

Tn > σ̂nu1−α,

where σ̂ 2
n is an appropriate estimate of the asymptotic variance σ 2 defined in (16).

Moreover, by Theorem 3 it follows that this test is consistent, because under the
alternative we have

Tn
D−→ E[�2(X1)π

2(X1) f (X1)] > 0

from this result.

4 Finite sample properties and a data example

4.1 A small simulation study

To investigate the finite sample properties of the new test we have performed a small
simulation study. To be precise, we consider the median regression model

Yi = Q(0.5|Xi ) + 0.25εi , (22)

where εi are independent, standard normally distributed and independent of the four-
dimensional covariates Xi = (Xi1, Xi2, Xi3, Xi4), i = 1, . . . , n. For the choice of
the predictor we investigate the following two scenarios.

(A) Xi are uniformly distributed on the unit square [0, 1]4, that is

Xi = (Xi1, Xi2, Xi3, Xi4) ∼ U([0, 1]4), i = 1, . . . , n,

(B) Xi = (Xi1, Xi2, Xi3, Xi4) are given by

Xi j = 1

2
+ 1

π
arctan(Ni j ), j = 1, . . . , 4,
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where Ni = (Ni1, Ni2, Ni3, Ni4) are (independent) centeredmultivariate normally
distributed random variables with different covariance matrices

V1 =

⎛

⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞

⎟⎟⎟⎠, V2 =

⎛

⎜⎜⎜⎝

1 0.1 0.2 0.1
0.1 1 0.1 0.2
0.2 0.1 1 0.1
0.1 0.2 0.1 1

⎞

⎟⎟⎟⎠

and V3 =

⎛

⎜⎜⎜⎝

1 0.3 0.5 0.1
0.3 1 0.3 0.5
0.5 0.3 1 0.3
0.1 0.5 0.3 1

⎞

⎟⎟⎟⎠ .

Note that in Design (A) the random variables Xi1,Xi2,Xi3 and Xi4 are independent,
whereas Design (B) also represents situations where Xi1,Xi2,Xi3 and Xi4 are cor-
related. In our simulation study, we consider six models for the conditional quantile
function, that is

Q(0.5|x1, x2, x3, x4) = x1 + x2 + x3 + x4, (23)

Q(0.5|x1, x2, x3, x4) = x21 + x22 + x23 + x24 , (24)

Q(0.5|x1, x2, x3, x4) = cos(x1) + cos(x2) + cos(x3) + cos(x4), (25)

Q(0.5|x1, x2, x3, x4) = cos(π(x1 + x2 + x3 + x4)), (26)

Q(0.5|x1, x2, x3, x4) = exp(2(x1 + x2 + x3 + x4)), (27)

Q(0.5|x1, x2, x3, x4) = (x1 + x2 + x3 + x4)
3, (28)

where the first three cases correspond to the null hypothesis of additivity and (26),
(27), (28) represent three alternatives. For all kernels of order 2 in our estimators we
use the Epanechnikov kernel K (t) = 3

4 (1 − t2)I[−1,1](t), and a product of kernels of
this type as a multi-dimensional kernel. To construct higher order kernels we use the
notation ci = ∫ ui K (u)du. Then

K̃ (u) =

∣∣∣∣∣∣∣∣∣∣

c1 c2 . . . cl 1
c2 c3 . . . cl+1 u
...

...

cl+1 cl+2 . . . c2l ul

∣∣∣∣∣∣∣∣∣∣

K (u)

∣∣∣∣∣∣∣∣∣∣

c1 c2 . . . cl c0
c2 c3 . . . cl+1 c1
...

...

cl+1 cl+2 . . . c2l cl

∣∣∣∣∣∣∣∣∣∣

−1

is a kernel of order l.
In similar problems it has been observed by several authors [see Fan and Linton

(2003)] that the asymptotic normal distribution under the null hypothesis does not
provide a satisfactory approximation for the distribution of the statistic Tn for small
sample sizes. For this reason many authors propose the application of a bootstrap
in this context to calculate critical values. We follow this suggestion and use a wild
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bootstrap for this purpose. To be precise, in the τ -quantile model we define a bootstrap
sample by

Y ∗
i = Q̂add

(
τ |Xi

)+ vi |Yi − Q̂N
(
τ |Xi

)|, i = 1, . . . , n, (29)

where Q̂add is defined in Sect. 2 and Q̂N is the multivariate quantile regression estima-
tor by Dette and Volgushev (2008), which is defined in the same way as (6), where the
estimator of the conditional distribution function F̂l is replaced by an estimator treating
all components of the predictor equally. Further vi denote independent and identically
distributed random variables satisfying P(vi = −1) = τ and P(vi = 1) = 1 − τ ,
which are independent from the original sample Yn = {(X j ,Y j ) | j = 1, . . . , n}. A
similar bootstrap data generation was suggested by Sun (2006) and Feng et al. (2011).
Note that, conditionally on the original sample, the bootstrap observations fulfill the
null hypotheses of additivity and additionally fulfill a τ -quantile regression model,
that is

P∗ (Y ∗
i ≤ Q̂add

(
τ |Xi

) | Xi

)
= P(vi ≤ 0) = τ

almost surely, where P∗ denotes the probability conditionally on Yn . Note that for the
medianmodel used in the simulationswe have τ = 1

2 and vi are Rademacher variables.
Further note that by construction of the bootstrap errors we mimic the dependence of
the i th error term from the i th covariate to obtain a bootstrap model approximating the
unknown data generating model. This approach is similar to wild bootstrap in mean
regression as introduced by Härdle and Mammen (1993). Some arguments regarding
the validity of this resampling method are given in Sect. 4.3. We conjecture that the
generation of bootstrap data according to the model Y ∗

i = Q̂add(τ |Xi )+vi would also
yield a valid bootstrap procedure from a theoretical point of view. However, for small
sample sizes, this model is likely to yield worse approximations of the nominal level.

Now let T ∗
n denote the test statistic based on the bootstrap data (Xi ,Y ∗

i ), i =
1, . . . , n. We indicate in Sect. 4.3 that both under H0 and under fixed alternatives,
conditionally on Yn ,

ngd/2T ∗
n

D−→ N (0, σ 2), (30)

in probability, whereσ 2 is defined in (16). The critical value for the test is then obtained
from the bootstrap distribution

P∗(T ∗
n ≥ t∗n,(1−α)) = 1 − α,

and the hypothesis of additivity is rejected whenever Tn ≥ t∗n,(1−α). From Theorems
1 and 3 together with (30) it follows that this hypothesis test has asymptotic level α

and is consistent against fixed alternatives. For the estimation of t∗n,(1−α) we choose
the number of bootstrap replications as B = 100 and we have simulated the rejection
probabilities of this test on the basis of 1000 replications of each experiment.

The performance of this test depends on the choice of the bandwidths and we have
implemented the following data driven rules.
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1. For the estimator Q̂N in (29) we select the bandwidths following Abberger (1998)
by calculating

argmin
h1,...,hd ,bn

n∑

i=1

ρτ

(
Yi − Q̂−i

N (Xi )
)

, (31)

where ρτ (u) = u(τ − I {u ≤ 0}).
2. The selection of the bandwidths for the additive estimator is more complicated.

If the hypothesis of an additive quantile regression is not true, the analog of the
procedure (31) might lead to overfitting. The additive estimator with the cross-
validated bandwidths converges very slowly to the additive model

Qadd(τ |x) =
d∑

j=1

Q j (τ |x j ) + c(τ )

=
d∑

j=1

∫
Q(τ |x) f j (x j )dx j −

(
1 − 1

d

) d∑

j=1

∫
Q(τ |x) f (x)dx,

and for reasonable sample sizes it still tries to interpolate the data points. To avoid
this problem we introduce a theoretical additive model which we will only use for
the bandwidth selection in the additive estimator, that is

Ỹi = σ(Q̂−i
N )

σ (
∑d

j=1 Xi j )

⎛

⎝
d∑

j=1

Xi j

⎞

⎠+ vi |Yi − Q̂−i
N (Xi )|. (32)

Here vi , i = 1, . . . , n are random variables, independent from the original sample
and σ(Q̂−i

N ) and σ(
∑d

j=1 Xi j ) denote the standard deviations of Q̂−1
N , . . . , Q̂−n

N

and
∑d

j=1 X1 j , . . . ,
∑d

j=1 Xnj , respectively. Now the bandwidths for the estima-

tor Q̂add are chosen by calculating

argmin
h1,...,hd ,bn

n∑

i=1

∣∣∣∣∣∣
σ(Q̂−i

N )

σ (
∑d

j=1 Xi j )

⎛

⎝
d∑

j=1

Xi j

⎞

⎠− Q̃−i
add(τ |Xi )

∣∣∣∣∣∣
. (33)

where Q̃−i
add(τ |Xi ) is the additive estimator in the theoretical model (32). The term

σ(Q̂−i
N )

σ (
∑d

j=1 Xi j )
tries do imitate the scale of the true model, while vi |Yi − Q̂−i

N (Xi )|
imitates the original error term.

3. Finally the bandwidths g j in the kernel L are chosen as 0.6 times the standard
deviations of X1 j , . . . Xnj ( j = 1, . . . , d).

In Table 1 we display the results of the simulation study for model (23), (24),
(25) which represent the null hypothesis where the sample size is n = 100. The
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Table 1 Simulated level of the bootstrap test for the hypothesis of an additive quantile regression model
under the null hypothesis of additivity

Model (23) Model (24) Model (25)

(A) (B) (A) (B) (A) (B)

V1 V2 V3 V1 V2 V3 V1 V2 V3

5 % 5.1 6.4 6.8 6.0 5.5 5.6 5.9 4.2 5.9 6.3 4.5 6.7

10 % 9.8 11.3 10.6 13.6 9.8 10.5 10.7 8.5 10.9 11.2 9.5 11.6

20 % 20.7 22.4 20.2 22.4 22.5 20.5 21.3 18.2 19.7 21.8 19.7 22.8

Table 2 Simulated power of the bootstrap test for the hypothesis of an additive quantile regression model
corresponding to the alternative

Model (26) Model (27) Model (28)

(A) (B) (A) (B) (A) (B)

V1 V2 V3 V1 V2 V3 V1 V2 V3

5 % 95.0 89.6 96.0 99.9 89.8 76.3 75.2 90.3 86.5 72.7 86.4 93.2

10 % 97.3 94.4 97.2 100.0 94.6 84.7 83.3 93.9 91.2 84.0 92.8 96.3

20 % 99.2 98.8 99.2 100.0 97.4 92.9 91.3 97.3 95.5 94.0 97.6 98.7

corresponding results under the alternative defined by model (26), (27), (28) are
shown in Table 2. Under the null hypothesis we observe a reasonable approxima-
tion of the nominal level under Design (A) and (B) (see Table 1). The results in
Table 2 demonstrate that the bootstrap test detects alternatives with reasonable power
in all cases under investigation. To investigate the properties of the test statistic for
other quantiles than the median, we considered the cases τ = 0.25 and τ = 0.75,
respectively. For the regression model (22), the conditional quantile function is given
by

Q(τ |x) = Q(0.5|x) + 0.25�(τ)

for all τ ∈ (0, 1). Here �(τ) denotes the τ—quantile of the standard normal distri-
bution. We considered one null hypothesis [model (23)] and one alternative [model
(26)] for each scenario. The results can be found in Tables 3 and 4, respectively. We
observe similar power properties as for the median.

Finally, to study the robustness of the procedure we investigated Cauchy distrib-
uted error variables, i.e., the εi are independent, standard Cauchy distributed random
variables and independent from the covariates. For the sake of brevity we considered
the median and one null hypothesis [model (23)] and one alternative [model (26)].
The results can be found in Table 5. The approximation of the nominal level is quite
satisfactory. One the other hand for Cauchy distributed errors the procedure is less
powerful.
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Table 3 Simulated level and power of the bootstrap test for τ = 0.25 and n = 100

Model (23) Model (26)

(A) (B) (A) (B)

V1 V2 V3 V1 V2 V3

5 % 6.3 6.4 6.4 8.6 91.6 87.2 97.3 100.0

10 % 11.1 11.4 11.6 14.8 95.6 92.4 98.7 100.0

20 % 19.4 22.3 21.7 24.8 97.2 97.6 99.3 100.0

Table 4 Simulated level and power of the bootstrap test for τ = 0.75 and n = 100

Model (23) Model (26)

(A) (B) (A) (B)

V1 V2 V3 V1 V2 V3

5 % 5.6 6.0 6.3 4.4 90.2 86.5 84.5 92.4

10 % 10.6 11.6 10.8 9.4 94.1 91.9 90.8 95.1

20 % 18.6 23.7 19.4 19.3 97.0 95.4 93.2 98.1

Table 5 Simulated level and power of the bootstrap test for Cauchy distributed error variables

Model (23) Model (26)

(A) (B) (A) (B)

V1 V2 V3 V1 V2 V3

5 % 5.6 5.1 5.4 6.8 58.7 53.1 66.3 84.5

10 % 10.7 9.9 11.3 12.5 69.9 62.3 75.8 90.9

20 % 21.9 20.8 22.9 21.9 79.8 76.4 86.9 95.6

4.2 A data example

We illustrate the test of additivity analyzing a data example from Yeh (2007), who
models the slump flow of concrete. The data set contains seven input variables and
three output variables. The output variables are the slump and the flow (measured in
cm) of concrete, which are measures of the consistency of concrete and the 28-day
compressive strength of concrete. The input variables are given by

• Cement (kg in one m3 concrete)
• Slag (kg in one m3 concrete)
• Fly ash (kg in one m3 concrete)
• Water (kg in one m3 concrete)
• SP (kg in one m3 concrete)
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• Coarse Aggr. (kg in one m3 concrete)
• Fine Aggr. (kg in one m3 concrete)

and the correlation matrix between these variables is estimated as

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −0.24 −0.49 0.22 −0.11 −0.31 0.06
−0.24 1 −0.32 −0.03 0.31 −0.22 −0.18
−0.49 −0.32 1 −0.24 −0.14 0.17 −0.28
0.22 −0.03 −0.24 1 −0.16 −0.60 0.11

−0.11 0.31 −0.14 −0.16 1 −0.10 0.06
−0.31 −0.22 0.17 −0.60 −0.10 1 −0.49
0.06 −0.18 −0.28 0.11 0.06 −0.49 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We observe that the correlations are of similar size as the correlations considered in
the previous section [Design (B), correlation matrix V3].

First, we focus on the variable slump. We want to check if the median regression
function of slump given the seven covariates is additive. Therefore, we apply the
bootstrap test, where we use the bandwidth selection method described before. The
p value from B = 100 bootstrap replications is p = 0.19. This indicates that the
hypothesis of additivity cannot be rejected at a controlled type I error of 10 %. Now
we apply the test to investigate whether the median regression function of the 28-day
compressive strength given the seven covariates is additive. The p value from B = 100
bootstrap replications is given by p = 0.90. This indicates that the hypothesis of
additivity cannot be rejected.

Finally we apply the test to investigate whether the median regression function of
the variable flow given the seven covariates is additive. The p-value from B = 100
bootstrap replications is p = 0.10. This indicates that the hypothesis of additivity can
be rejected at a controlled type I error of 10 %.

4.3 Some heuristics for the bootstrap test

A rigorous proof of the conditional weak convergence (30) can be obtained by mim-
icking the proof of Theorem 1. Because these arguments are very lengthy we only
give the main steps here. One starts with a decomposition of the bootstrap statistic,
T ∗
n = T ∗

1n+T ∗
2n+T ∗

3n , analogous to (34). Theproof of the statementsngd/2T ∗
2n = op(1)

and ngd/2T ∗
3n = op(1) (under the appropriate regularity assumptions) can be con-

ducted similarly to the proof of (39) in Appendix A (but with even more technical
effort). For example for the definition of T ∗

3nU one sets

R∗
iU = I

{
vi |Yi − Q(τ |Xi )| ≤ −2C∗

n − C̃n
}− τ, R∗

i L = I
{
vi |Yi − Q(τ |Xi )|

≤ 2C∗
n + C̃n

}− τ,
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where C∗
n and C̃n denote uniform rates of convergence of Q̂∗,−i

add − Q̂add and Q̂N − Q,
respectively. The remaining term is

ngd/2T ∗
1n = gd/2

n − 1

∑

i �= j

H∗
n

(
Z∗
i , Z

∗
j

)
π(Xi )π(X j ),

where

H∗
n

(
Z∗
i , Z

∗
j

) = Lg
(
Xi − X j

) (
I
{
Y ∗
i ≤ Q̂add(τ |Xi )

}
− τ
)

(
I
{
Y ∗
j ≤ Q̂add(τ |X j )

}
− τ
)

and Z∗
i = (Xi ,Y ∗

i ). Note that T ∗
1n is no U -statistic with respect to the conditional

probability measure P∗ because here all Xi are known. However, ngd/2T ∗
1n has a

structure similar to a U -statistic and the proof of conditional weak convergence in
probability follows along the lines of the proofs of Theorem 1 by Hall (1984) and
Corollary 3.1 byHall andHeyde (1996), p. 58 [seeNeumeyer (2009), proof ofTheorem
3.4] To motivate that one obtains the same limitN (0, σ 2) as in Theorem 1, we restrict
ourselves to a consideration of the conditional variance, i. e.

Var∗(ngd/2T ∗
1n) = gd

(n − 1)2
∑

i �= j

∑

k �=l

E∗

[
H∗
n

(
Z∗
i , Z

∗
j

)
H∗
n

(
Z∗
k , Z

∗
l

)
π(Xi )π(X j )π(Xk)π(Xl)

]

=2
gd

(n−1)2
∑

i �= j

L2
g

(
Xi −X j

)
E∗[E∗[(I

{
Y ∗
i ≤ Q̂add(τ |Xi )

}−τ
)2|Xi

]

×E∗[(I
{
Y ∗
j ≤ Q̂add(τ |X j )

}−τ
)2|X j

]]
π2(Xi )π

2(X j )

= 2τ 2(1 − τ)2
gd

(n − 1)2
∑

i �= j

L2
g

(
Xi − X j

)
π2(Xi )π

2(X j ) = σ 2
n

almost surely. Here Var∗ and E∗ denote variance and expectation with respect to the
conditional probability measure P∗ and the last equality defines σ 2

n . Now for n → ∞,
σ 2
n converges in probability to the desired variance 2τ 2(1 − τ)2

∫
L2
∫

π4 f 2 = σ 2.

Appendix A: proof of Theorem 1

Throughout the proofs we assume for the sake of a transparent notation N = n and
a uniform distribution G. The general case follows by exactly the same arguments
using an additional Taylor expansion. Recall the definition of the statistic Tn in (2)
and consider the decomposition

Tn = T1n + T2n + T3n (34)
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where the statistics Tjn ( j = 1, 2, 3) are given by

T1n = 1

n(n − 1)

∑

i �= j

Lg
(
Xi − X j

)
Ri R jπ(Xi )π(X j ) (35)

T2n = 2

n(n − 1)

∑

i �= j

Lg
(
Xi − X j

)
Ri
(
R̂ j − R j

)
π(Xi )π(X j ) (36)

T3n = 1

n(n − 1)

∑

i �= j

Lg
(
Xi − X j

) (
R̂i − Ri

)(
R̂ j − R j

)
π(Xi )π(X j ) (37)

and Ri and R̂i are defined in (12) and (3), respectively. The assertion follows from the
following two statements, which are proved below

ng
d
2 T1n

D−→ N (0, σ 2) (38)

ng
d
2 Tjn = op(1), j = 2, 3. (39)

Proof of (38)

Defining Zi = (Xi , Yi ), i = 1, . . . , n, and

Hn(Zi , Z j )

= Lg
(
Xi − X j

) (
I
{
Yi ≤ Q(τ |Xi )

}− τ
)(
I
{
Y j ≤ Q(τ |X j )

}− τ
)
π(Xi )π(X j )

we can write the statistic ng
d
2 T1n as

ng
d
2 T1n = gd/2

n − 1

n∑

i=1

∑

j �=i

Hn(Zi , Z j ).

The assertion then follows from Theorem 1 in Hall (1984) for U -statistics if the
assumptions of this statement can be checked. For this purpose, note that we obtain
from Assumption 5 for i �= j �= k �= i for some λ > 0

E
[
E
[
Hn(Zk, Zi )Hn(Zk, Z j )|Zi , Z j

]2]

≤ λ

g4d
E

[
E

[
L

(
Xk − Xi

g

)
L

(
Xk − X j

g

)
|Xi , X j

]2]

= λ

g4d

∫ ∫ [∫
L(u)L(u + v) f (x + ug)gddu

]2

f (x) f (x − vg)gddxdv = O

(
1

gd

)

E[H2
n (Zi , Z j )] = τ 2(1 − τ)2

1

g2d
E

[
L2
(
Xi − X j

g

)
π2(Xi )π

2(X j )

]
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= τ 2(1 − τ)2
1

gd

∫
L2(u)du

∫
π4(x) f 2(x)dx + o

(
1

gd

)
= σ 2

2gd
+ o

(
1

gd

)
,

where σ 2 > 0 is defined in (16). In a similar way one establishes the estimate

E[H4
n (Zi , Z j )] = O

(
1
g3d

)
, which gives

E[E[Hn(Zk, Zi )Hn(Zk, Z j )|Zi , Z j ]2] + n−1E[H4
n (Zi , Z j )]

(E[H2
n (Zi , Z j )])2 =

O
(
gd
)

+ O
( 1

ngd

)
= o(1).

Therefore, Theorem 1 in Hall (1984) yields ng
d
2 T1n → N (0, σ 2), where the asymp-

totic variance σ 2 is given by (16).

Proof of (39)

For the proof of (39) we define for α > 0 defined in Assumption 5

Cn = nα

√
log n

nh1h
d−1
2

; Dn = nα 1

nh1
(40)

and introduce the set

n =
{
sup
x∈S

|Q̂add(τ |x) − Q(τ |x)| ≤ Cn, sup
x∈S

n
max
k=1

|Q̂−k
add(τ |x) − Q̂add(τ |x)| ≤ Dn

}
.

(41)
First, we consider the term T3n and introduce the notation

T3nU = 1

n(n − 1)

n∑

i=1

n∑

j �=i

Lg
(
Xi − X j

)
(RiU − RiL)(R jU − R jL)π(Xi )π(X j )

where

RiU = I
{
Yi ≤ Q(τ |Xi ) + 2Cn

}− τ , RiL = I
{
Yi ≤ Q(τ |Xi ) − 2Cn

}− τ.

It is easy to see, that on the set n

I
{
Yi ≤ Q(τ |Xi ) − 2Cn

} ≤ I
{
Yi ≤ Q̂−i

add(τ |Xi )
} ≤ I

{
Yi ≤ Q(τ |Xi ) + 2Cn

}

which implies (note that the kernel L is non-negative) 1{n}|T3n| ≤ 1{n}T3nU ≤
T3nU . Therefore, we have

E[|T3n|] = E[1{n}|T3n|] + E
[
1
{
C

n

}|T3n|
] ≤ E[|T3nU |] + (E[|T3n|2

]
P
(
C

n

))1/2
.
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We now calculate

E[|T3nU |] = 1

n(n − 1)

∑

i

∑

j �=i

E
[
Lg
(
Xi − X j

)
(RiU − RiL)

(R jU − R jL)π(Xi )π(X j )
]
.

Observing that f ′(x) and F ′(y|x) are bounded we obtain by a Taylor expansion

E
[
Lg
(
Xi − X j

)
(RiU − RiL)(R jU − R jL)π(Xi )π(X j )

]

= E
[
Lg
(
Xi − X j

)
(F (Q(τ |Xi ) + Cn|Xi ) − F (Q(τ |Xi ) − Cn|Xi ))

× (F (Q(τ |X j ) + Cn|X j
)− F

(
Q(τ |X j ) − Cn|X j

))
π(Xi )π(X j )

] = O(C2
n ).

With Assumption 5 we have ng
d
2 T3nU = OL1(ng

d
2C2

n ) = oL1(1) and therefore the
proof of (39) in the case j = 3 follows from E[T 2

3n] = O(1/g2d) and the following
result.

Lemma 1 For n defined in (41) we have that

P(C
n ) = O

(
p(n) exp

(
−n2α

))
(42)

where p(n) is a polynomial in n and α is defined in Assumption 5.

Proof of Lemma 1 For a proof of (42) it suffices to show that

P(sup
x∈S

|Q̂add(τ |x) − Qadd(τ |x)| > Cn) = O
(
p(n) exp

(−nα
))

(43)

P(sup
x∈S

max
i

|Q̂add(τ |x) − Q̂−i
add(τ |x)| > Dn) = O

(
p(n) exp

(−nα
))

. (44)

At first, we consider the probability (43). We have that

sup
x

|Q̂add(τ |x) − Qadd(τ |x)| ≤
d∑

k=1

{
B(1)
nk +

(
1 − 1

d

)
B(2)
nk

}
(45)

where
B(1)
nk = sup

xk
|̂qk(τ |xk) − qk(τ |xk)|

B(2)
nk = 1

n

n∑

i=1

|̂qk(τ |Xik) − c(τ )|

and consider the term B(1)
n1 (the other cases are treated in exactly the same way). In the

following calculations, all constants are denoted byC although they might differ from
line to line. With the similar arguments as in Dette et al. (2006) and the assumptions
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regarding the bandwidths we have q1(τ |x1) = q1,n(τ |x1) + o (Cn), uniformly with
respect to x1, where

q1,n(τ |x1) = 1

n

n∑

i=1

Q1,n
(
τ |(x1, Xi1

))
(46)

and we introduce the notation

Q1,n(τ |x) = G−1(GN (τ |x))

and GN is defined in (8). Recalling the definition of Q̂l,n in (6) we obtain by a Taylor
expansion and similar arguments as in Dette and Scheder (2011)

q̂1(τ |x1) − q1,n(τ |x1)

= 1

n

n∑

j=1

[Q̂1,n(τ |(x1, X j1)) − Q1,n(τ |(x1, X j1))]

= 1

n2

n∑

i, j=1

∫ τ

−∞
1

bn
K ′
bn

(
F
( i
n
|(x1, X j1)

)
− u
)(

F̂1
( i
n
|(x1, X j1)

)

− F
( i
n
|(x1, X j1)

))
du

+ 1

n2

n∑

i, j=1

∫ τ

−∞
1

bn

(
K ′
bn (ξi − u) − K ′

bn

(
F
( i
n
|(x1, X j1)

)
− u
))

×
(
F̂1
( i
n
|(x1, X j1)

)
− F

( i
n
|(x1, X j1)

))
du

= �(1)
n (τ |x1) + 1

2
�(2)

n (τ |x1),

where the quantities �
(1)
n (τ |x1) and �

(2)
n (τ |x1) are defined by

�(1)
n (τ |x1) = − 1

n2

n∑

j=1

n∑

i=1

Kbn

(
F
( i
n
|(x1, X j1)

)
− τ
)(

F̂1
( i
n
|(x1, X j1)

)

− F
( i
n
|(x1, X j1)

))

�(2)
n (τ |x1) = − 1

n2

n∑

j=1

n∑

i=1

(
Kbn

(
ξi − τ

)
− Kbn

(
F
( i
n
|(x1, X j1)

)
− τ
))

×
(
F̂1
( i
n
|(x1, X j1)

)
− F

( i
n
|(x1, X j1)

))

and the random variables ξi = ξi (τ, x1, X j1) satisfy |ξi − F
( i
n |(x1, X j1)

) | ≤
|F̂1
( i
n |(x1, X j1)

) − F
( i
n |(x1, X j1)

) | (i = 1, . . . , n). Observing the Lipschitz
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continuity of the kernelK it follows with the notation Dn = {supy,x |F̂1(y|x) −
F(y|x)| ≤ bn} that

sup
x1

|�(2)
n (τ |x1)| ≤ sup

x,y
2
∣∣∣F̂1(y|x) − F(y|x)

∣∣∣
2
sup
x1

1

n2b2n

n∑

j=1

n∑

i=1

I
{
|F
( i
n
|(x1, X j1)

)
− τ | ≤ 2bn

}

≤ sup
x,y

2
∣∣F̂1(y|x) − F(y|x)∣∣2 sup

x1

1

nb2n

n∑

j=1

∫
I
{
|F (u|(x1, X j1)

)

− τ | ≤ 2bn
}
du(1 + o (1))

≤ sup
x,y

C
∣∣F̂1(y|x) − F(y|x)∣∣2 1

bn
(1 + o (1))

≤ sup
x,y

C
∣∣F̂1(y|x) − F(y|x)∣∣ (1 + o (1))

on the set Dn . For the term �
(1)
n (τ |x1) we have

sup
x1

�(1)
n (τ |x1) = − sup

x1

1

n

n∑

j=1

∫ 1

0
Kbn

(
F(t |x1, X j1) − τ

) (
F̂1
(
t |(x1, X j1)

)

−F
(
t |(x1, X j1)

))
dt (1 + o(1))

≤ sup
x,y

C
∣∣F̂1(y|x) − F(y|x)∣∣ (1 + o(1)),

and therefore we have for sufficiently large n

P
(
B(1)
n1 > Cn

)
= P

(
B(1)
n1 > Cn

∣∣Dn
)
P
(
Dn

)
+ P

(
B(1)
n1 > Cn

∣∣Dc
n

)
P
(Dc

n

)

≤ P
(
sup
x,y

C
∣∣∣F̂1(y|x) − F(y|x)

∣∣∣ > Cn

)
+ P

(
sup
y,x

∣∣∣F̂1(y|x) − F(y|x)
∣∣∣ > bn

)

≤ 2P
(
sup
x,y

C
∣∣∣F̂1(y|x) − F(y|x)

∣∣∣ > Cn

)
(47)

(note that Cn = o(bn)). Introducing the following notations

ĥ(x, y) = 1

n

n∑

k=1

K1,h1(x1 − Xk1)K2,h2

(
x1 − Xk1

)
1{Yk ≤ y}

f̂ (x) = 1

n

n∑

k=1

K1,h1(x1 − Xk1)K2,h2

(
x1 − Xk1

)

ĥ−i (x, y) = 1

n

n∑

k �=i

K1,h1(x1 − Xk1)K2,h2

(
x1 − Xk1

)
1{Yk ≤ y}
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f̂ −i (x) = 1

n

n∑

k �=i

K1,h1(x1 − Xk1)K2,h2

(
x1 − Xk1

)

h(x, y) = F(y|x) f (x)
straightforward calculations yield

∣∣F̂1(y|x) − F(y|x)∣∣ ≤ Cn1(x, y) + Cn2(x, y) (48)

where

Cn1(x, y) =
∣∣∣
(̂h(x, y) − h(x, y))

f̂ (x)

∣∣∣

Cn2(x, y) =
∣∣∣
h(x, y)( f̂ (x) − f (x))

f̂ (x) f (x)

∣∣∣.

Using the notation En = {supx | f̂ (x) − f (x)| ≤ δ} we have for the first term of the
right-hand side of (48) (where δ > 0 is chosen sufficiently small)

P(sup
x1,y

Cn1(x1, y) > Cn) =P

(
sup
x1,y

Cn1(x1, y) > Cn
∣∣En
)
P(En) + P

(
sup
x1,y

Cn1(x1, y)

> Cn
∣∣Ec

n

)
P(Ec

n )

≤P

(
sup
x,y

C
∣∣(̂h(x, y)−h(x, y))

∣∣ > Cn
∣∣ En
)
P(En) + P(Ec

n )

≤P

(
sup
x,y

C
∣∣(̂h(x, y) − h(x, y))

∣∣>Cn

)
+P(Ec

n )

and with similar arguments one can show

P

(
sup
x1,y

Cn2(x1, y) > Cn

)
≤ P

(
sup
x
C
∣∣ f̂ (x) − f (x)

∣∣ > Cn

)
+ P(Ec

n ).

Recalling (47) and combining these estimates we obtain

P
(
B(1)
n1 > Cn

)
≤ 6P

(
Csup

x
| f̂ (x) − f (x)| > Cn

)

+ 2P

(
C sup

x,y
|̂h(x, y) − h(x, y)| > Cn

)
. (49)

For the first probability on the right-hand side of (49) we have that

P

(
C sup

x

∣∣∣ f̂ (x) − f (x)
∣∣∣ > Cn

)
≤ P

(
2C sup

x

∣∣∣ f̂ (x) − E
[
f̂ (x)

]∣∣∣ > Cn

)

+ P

(
2C sup

x

∣∣∣E[ f̂ (x)] − f (x)
∣∣∣ > Cn

)
. (50)
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The second term of the right-hand side of (50) is of order p(n) exp(−na) which can
be shown by calculating the expectation and a Taylor expansion. For the first term, we
use Lemma 22 from Nolan and Pollard (1987) and Assumption 2 and obtain that the
class

G =
{
K1

(
. − x1
a

)
K2

(
. − x1
b

) ∣∣∣x ∈ [0, 1]d , a, b ∈ R \ {0}
}

is Euclidean. Furthermore we have that Gn ⊂ G for

Gn =
{
K1

(
. − x1
h1

)
K2

(
. − x1
h2

) ∣∣∣x ∈ [0, 1]d
}

and therefore the classes Gn are Euclidean with the same constants as G. Now with

σ 2
Gn

= ‖E[g − E[g]]2‖Gn ≤ Ch1h
d−1
2 ,

Theorem 2.14.16 of van der Vaart and Wellner (1996) yields

P
(
C sup

x

∣∣ f̂ (x) − E
[
f̂ (x)

]∣∣∣ > Cn

)

≤ O(p(n)) exp

⎛

⎜⎝−1

2

K̃C2
nnh1h

d−1
2

K + 3√
nh21h

2(d−1)
2

+ Cn

⎞

⎟⎠ = O
(
p(n) exp

(− n2α
))

where p(n) is a polynomial. The second term in (49) can be treated with the same
arguments. For a proof of (43) it remains to consider the term B(2)

n1 defined in (45) (the
cases k = 2, . . . , d are treated in exactly the same way). We have

∣∣∣∣∣
1

n

n∑

i=1

q̂k(τ |Xik) − c(τ )

∣∣∣∣∣

=
∣∣∣∣∣
1

n

n∑

i=1

q̂k(τ |Xik) − qk(τ |Xik) + qk(τ |Xik) − c(τ )

∣∣∣∣∣

≤ 1

n

n∑

i=1

|̂qk(τ |Xik) − qk(τ |Xik)| +
∣∣∣∣∣
1

n

n∑

i=1

qk(τ |Xik) − c(τ )

∣∣∣∣∣

≤ sup
xk

|̂qk(τ |xk) − qk(τ |xk)| +
∣∣∣∣∣
1

n

n∑

i=1

qk(τ |Xik) − E[qk(τ |Xik)]
∣∣∣∣∣
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and the assertion follows from what we have shown before and the Markov inequality.
Next we consider the proof of (44). Therefore, we consider the decomposition

sup
x

n
max
i=1

∣∣∣Q̂(τ |x) − Q̂−i (τ |x)
∣∣∣ ≤

d∑

k=1

{
D(1)
nk +

(
1 − 1

d

)
D(2)
nk

}

where

D(1)
nk = sup

xk

n
max
i=1

∣∣∣̂qk(τ |xk) − q̂−i
k (τ |xk)

∣∣∣

D(2)
nk = n

max
i=1

∣∣∣∣∣∣
1

n

n∑

j=1

q̂k(τ |X jk) − 1

n − 1

∑

j �=i

q̂−i
k (τ |X jk)

∣∣∣∣∣∣
.

Considering term D(1)
n1 (all other terms in the first sum are treated similarly) we obtain

by similar arguments for sufficiently large n

P
(
D(1)
n1 > Cn

)
≤C

(
P(Dc

n) + P(Ec
n ) + P

(
max
i

1

n

n∑

j=1

∣∣∣∣
|K2,h2(X j1 − Xi1)|∫ |K2(u)|du

− f1(Xi1)

∣∣∣∣ > δ

))

=O
(
p(n) exp(−nα)

)
.

For terms of the form D(2)
nk we use the estimate

n
max
i=1

∣∣∣∣
1

n

n∑

j=1

q̂k(τ |X jk) − 1

n − 1

∑

j �=i

q̂−i
k (τ |X jk)

∣∣∣∣

≤ n
max
i=1

∣∣∣∣
1

n

n∑

j=1

q̂k(τ |X jk) − 1

n − 1

∑

j �=i

q̂k(τ |X jk)

∣∣∣∣+
n

max
i=1

∣∣∣∣
1

n − 1

∑

j �=i

(q̂k(τ |X jk)

− q̂−i
k (τ |X jk))

∣∣∣∣ ≤
n

max
i=1

∣∣∣∣
1

n(n − 1)

n∑

j=1

q̂k(τ |X jk)

+ 1

n − 1
q̂k(τ |Xik)

∣∣∣∣+ sup
xk

n
max
i=1

∣∣∣∣̂qk(τ |xk) − q̂−i
k (τ |xk)

∣∣∣∣

≤ sup
xk

2

(
1

n − 1

∣∣∣∣̂qk(τ |xk) − qk(τ |xk)
∣∣∣∣+

1

n − 1
sup
xk

|qk(τ |xk)|
)

+ sup
xk

n
max
i=1

|̂qk(τ |xk)

− q̂−i
k (τ |xk)|

and the assertion of Lemma 1 follows by the same arguments as before. �
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Now we prove assertion (39) for the term T2n . Recalling its definition in (36) we
have

T2n = T (1)
2n + T (2)

2n ,

where the terms T (i)
2n , i = 1, 2 are given by

T (1)
2n = 2

n(n − 1)

∑

i

∑

j �=i

Lg
(
Xi − X j

) (
R̂i − R̂− j

i

)
R jπ(Xi )π(X j )

T (2)
2n = 2

n(n − 1)

∑

i

∑

j �=i

Lg
(
Xi − X j

) (
R̂− j
i − Ri

)
R jπ(Xi )π(X j )

with R̂− j
i = I {Yi ≤ Q̂−i, j

add (τ |Xi )} − τ . Now the random variable T (1)
2n can be treated

with the same arguments as the term T3n andwe get ngd/2T (1)
2n = O(ngd/2Dn) = o(1)

(in L1 and thus in probability), where the last equality follows by Assumption 5. For
the second term, T (2)

2n , we have that E[T (2)
2n ] = 0 and

(
T (2)
2n

)2 = U1 +U2

where

U1 = 4

n2(n − 1)2
∑

i1,i2, j
j �=i1, j �=i2

Lg
(
Xi1 − X j

)
Lg
(
Xi2−X j

) (
R̂− j
i1

− Ri1

) (
R̂− j
i2

− Ri2

)

R2
jπ(Xi1)π

2(X j )π(Xi2)

U2 = 4

n2(n − 1)2
∑

i1,i2, j1, j2
j1 �=i1, j2 �=i2, j1 �= j2

Lg
(
Xi1 − X j1

)
Lg
(
Xi2 − X j2

) (
R̂− j1
i1

− R̂− j1, j2
i1

+R̂− j1, j2
i1

− Ri1

)
R j1

×
(
R̂− j2
i2

− R̂− j2, j2
i2

+ R̂− j1, j2
i2

− Ri2

)
R j2π(Xi1)π(X j1)π(Xi2)π(X j2)

with R̂− j,k
i = I {Yi ≤ Q̂−i, j,k

add (τ |Xi )}− τ . For the second term, one obtains E[U2] =
E[Ũ2], where

Ũ2 = 4

n2(n − 1)2

�=∑

i1,i2, j1, j2

Lg
(
Xi1 − X j1

)
Lg
(
Xi2 − X j2

) (
R̂− j1
i1

− R̂− j1, j2
i1

)

R j1

(
R̂− j2
i2

− R̂− j1, j2
i2

)
R j2π(Xi1)π(X j1)π(Xi2)π(X j2)
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+ 8

n2(n − 1)2

�=∑

i1,i2, j

Lg
(
Xi1 − Xi2

)
Lg
(
Xi2 − X j

) (
R̂−i2
i1

− R̂−i2, j
i1

)
Ri2

(
R̂− j
i2

− Ri2

)
R jπ(Xi1)π

2(Xi2)π(X j )

and
∑�= denotes a sum where all indices are distinct. Similarly to the treatment of the

term T3n it can be shown that |E[Ũ2]| ≤ E[|Ũ2|] = O(D2
n) + O(CnDn/n) applying

Assumption 5. The same assumption yields analogously that |E[U1]| ≤ E[|U1|] =
O(C2

n/n + Cn/(n2gd)). Altogether we have E[(T (2)
2n )2] ≤ E[|U1|] + E[|Ũ2|] =

o((ngd/2)−2) by the bandwidth conditions. We obtain that ngd/2T (2)
2n = o(1) in L2

and thus in probability, which completes the proof of (39).

Appendix B: Proof of Theorem 2

Recall the definition of Cn and Dn in (40) and consider the decomposition

Tn = (T1n + 2T2n + T3n) + (−2T4n − 2T5n + T6n) (51)

where T1n is defined in (35), the statistics Tjn( j = 2, . . . , 6) are given by

T2n = 1

n(n − 1)

∑

i �= j

Lg
(
Xi − X j

)
Ri

(
R̂ j − Radd

j

)
π(Xi )π(X j )

T3n = 1

n(n − 1)

∑

i �= j

Lg
(
Xi − X j

) (
R̂i − Radd

i

) (
R̂ j − Radd

j

)
π(Xi )π(X j )

T4n = 1

n(n − 1)

∑

i �= j

Lg
(
Xi − X j

)
Ri

(
R j − Radd

j

)
π(Xi )π(X j )

T5n = 1

n(n − 1)

∑

i �= j

Lg
(
Xi − X j

) (
R̂i − Radd

i

) (
R j − Radd

j

)
π(Xi )π(X j )

T6n = 1

n(n − 1)

∑

i �= j

Lg
(
Xi − X j

) (
Ri − Radd

i

) (
R j − Radd

j

)
π(Xi )π(X j )

and Ri , R̂i and Radd
i are defined in (12), (3) and (13), respectively. Observing

the proofs of (38) and (39), respectively, we have that under the local alternatives
of the form (18)

ng
d
2 T1n

D−→ N (0, σ 2); Tjn = o

(
1

ng
d
2

)
; j = 2, 3 (52)
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in L1, and it remains to investigate the terms T4n, T5n and T6n in the decomposition
(51). First, we study the statistic T4n for which we have that E[T4n] = 0 and

E
[
T 2
4n

]
= 1

n2(n − 1)2

n∑

i1=1

n∑

j1 �=i1

n∑

i2=1

n∑

j2 �=i2

E
[
Lg(Xi1 − X j1)Lg(Xi2 − X j2)Ri1

(
R j1 − Radd

j1

)
Ri2

(
R j2 − Radd

j2

)
π(Xi1)π(X j1)π(Xi2)π(X j2)

]
,

where the expectations in this sum vanish whenever j2 �= i1 �= i2 or i1 �= i2 �= j1.
Considering the case where i1 = i2, j1 �= j2 we obtain by a Taylor expansion for
some constant λ (conditioning on Xi1, X j1, X j2 and Yi1)

E
[
Lg(Xi1−X j1)Lg(Xi1 − X j2)R

2
i1

(
R j1 − Radd

j1

)(
R j2−Radd

j2

)
π2(Xi1)π(X j1)π(X j2)

]

= E
[
Lg(Xi1 − X j1)Lg(Xi1 − X j2)R

2
i1E
[
R j1 − Radd

j1 |X j1

]
E
[
R j2

−Radd
j2 |X j2

]
π2(Xi1)π(X j1)π(X j2)

]

= E
[
Lg(Xi1 − X j1)Lg(Xi1−X j2)R

2
i1(F(Q(τ |X j1)|X j1)−F(Qadd(τ |X j1)|X j1))

×F(Q(τ |X j2)|X j2) − F(Qadd(τ |X j2)|X j2)π
2(Xi1)π(X j1)π(X j2)

]

≤ λd2n E
[
Lg(Xi1 − X j1)Lg(Xi1 − X j2)

] = O
(
d2n
)

.

The other cases can be treated with similar arguments and we obtain

E
[
Lg(Xi1 − X j1)

2R2
i1

(
R j1 − Radd

j1

)2] = O

(
dn
gd

)

E
[
Lg(Xi1 − X j1)

2Ri1R j1(R j1 − Radd
j1 )
(
Ri1 − Radd

i1

)] = O

(
d2n
gd

)
.

Combining these estimates we have

ng
d
2 T4n = oL1(1). (53)

The statistic T5n can be treated with the same arguments as the term T3n under the null
hypothesis and it follows

ng
d
2 T5n = Op

(
ng

d
2 dnCn

)
= oL1(1). (54)
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Finally, we study the remaining term T6n for which a straightforward calculation yields

E
[
ng

d
2 T6n

] = ng
d
2 E
[
Lg(X1 − X2)(R1 − Radd

1 )(R2 − Radd
2 )π(X1)π(X2)

]

= ng
d
2 E
[
Lg(X1 − X2)(F(Qadd(τ |X1) + dnl(X1)|X1)

− F(Qadd(τ |X1)|X1))(F(Qadd(τ |X2) + dnl(X2)|X2)

− F(Qadd(τ |X2)|X2))π(X1)π(X2)
]

= E
[
(F ′(Qadd(τ |X1)|X1)l(X1)π

2(X1)) f (X1)
]+ o(1) (55)

and

E
[
(T6n − E[T6n])2

]
= o

(
1

ng
d
2

)
. (56)

Thus (19) follows from (51, 52, 53, 54, 55, 56).

Appendix C: Proof of Theorem 3

For a proof of Theorem 3we assume for a transparent notation d = 2. The general case
follows by exactly the same arguments. Recall the decomposition (51). Observing the
proof of Theorem 1 we have

Tjn = o

(
1√
n

)
; j = 1, 2, 3,

in L1. Therefore, we obtain E[Tn] = −2E[T4n]− 2E[T5n]+ E[T6n]+ o(1/
√
n) and

√
n
(
Tn − E[Tn]

)
= −2

√
n
(
T4n − E[T4n]

)
− 2

√
n(T5n − E[T5n])

+√
n
(
T6n − E[T6n]

)
+ oL1 (1)

and it remains to investigate the statistics T4n, T5n and T6n . We first study the term
T4n for which we have the stochastic expansion

T4n =
n∑

i=1

Ri E
[
T (i)
4n |Xi

]
π(Xi ) + oL1

(
1√
n

)
= 1

n

n∑

i=1

Ri�(Xi )π
2(Xi ) f (Xi )

+ oL1

(
1√
n

)

where

T (i)
4n = 1

n(n − 1)

n∑

j=1, j �=i

Lg(Xi − X j )
(
R j − Radd

j

)
π(X j )
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and �(X j ) is defined in (14). A corresponding stochastic expansion for the term T5n
requires substantially more effort. More precisely, we have the following result, which
is proved below.

Lemma 2 Under the assumptions of Theorem 3 we have

T5n =
10∑

j=1

Z ( j)
n + o

(
1√
n

)
(57)

in L1 where the terms Z
( j)
n in this stochastic expansion are defined by

Z (1)
n = E

[
Lg
(
Xi − X j

)
F ′(Qadd(τ |Xi )|Xi )�(X j )K1,h1 (Xi1 − Xl1)K2,h2 (Xk2 − Xl2)

×
(
F(Q(τ |(Xi1, Xk2))|(Xl1, Xl2)) − F(Q(τ |(Xi1, Xk2))|(Xi1, Xk2))

f (Xi1, Xk2)F ′(Q(τ |(Xi1, Xk2))|(Xi1, Xk2))

)
π(Xi )π(X j )

]

(58)

Z (2)
n = − 1

n

n∑

l=1

Rlh2(Xl ) (59)

Z (3)
n = 1

n

n∑

k=1

(
E[ f (X)F ′(Qadd(τ |X)|X)�(X)π2(X)Q(τ |(X1, Xk2))|Xk ]

− E[ f (X)F ′(Qadd(τ |X)|X)�(X)π2(X)Q(τ |(X1, Xk2))]
)

(60)

Z (4)
n =E

[
Lg
(
Xi − X j

)
F ′(Qadd(τ |Xi )|Xi )�(X j )K1,h1 (Xk1 − Xl1)K2,h2 (Xi2 − Xl2)

×
(
F(Q(τ |(Xk1, Xi2))|(Xl1Xl2)) − F(Q(τ |(Xk1, Xi2))|(Xk1, Xi2))

f (Xk1, Xi2)F ′(Q(τ |(Xk1, Xi2))|(Xk1, Xi2))

)
π(Xi )π(X j )

]

(61)

Z (5)
n = − 1

n

n∑

l=1

Rlh5(Xl ) (62)

Z (6)
n = 1

n

n∑

k=1

(
E[ f (X)F ′(Qadd(τ |X)|X)�(X)π2(X)Q(τ |(Xk1, X2))|Xk ]

− E[ fX (X)F ′(Qadd(τ |X)|X)�(X)π2(X)Q(τ |(Xk1, X2))]
)

(63)

Z (7)
n =E

[
Lg
(
Xi − X j

)
F ′(Qadd(τ |Xi )|Xi )�(X j )K1,h1 (Xm1 − Xl1)K2,h2 (Xk2 − Xl2)

×
(
F(Q(τ |(Xm1, Xk2))|(Xl1, Xl2)) − F(Q(τ |(Xm1, Xk2))|(Xm1, Xk2))

f (Xm1, Xk2)F ′(Q(τ |(Xm1, Xk2))|(Xm1, Xk2))

)
π(Xi )π(X j )

]

(64)

Z (8)
n = 1

n

n∑

l=1

Rlh8(Xl ) (65)

Z (9)
n =−1

n

n∑

k=1

E
[
f (X)F ′(Qadd(τ |X)|X)�(X)π2(X)(q1(Xk1) + q2(Xk2) − 2c(τ ))|Xk

]
(66)
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Z (10)
n =E

[
Lg
(
Xi − X j

)
F ′(Qadd(τ |Xi )|Xi )�(X j )K2,h2 (Xm1 − Xl1)K1,h1 (Xk2 − Xl2)

×
(
F(Q(τ |(Xm1, Xk2))|(Xl1, Xl2)) − F(Q(τ |(Xm1, Xk2))|(Xm1, Xk2))

f (Xm1, Xk2)F ′(Q(τ |(Xm1, Xk2))|(Xm1, Xk2))

)
π(Xi )π(X j )

]

(67)

where (X,Y ) are independent copies of (Xi ,Yi ) and

h2(Xl)

= f2(Xl2)
∫

�(Xl1, t2)π2(Xl1, t2) f 2(Xl1, t2)F ′(Qadd(τ |(Xl1, t2))|(Xl1, t2))dt2
f (Xl)F ′(Q(τ |Xl)|Xl)

(68)

h5(Xl)

= f1(Xl1)
∫

�(t1, Xl2)π
2(t1, Xl2) f 2(t1, Xl2)F ′(Qadd(τ |(t1, Xl2))|(t1, Xl2))dt1

f (Xl)F ′(Q(τ |Xl)|Xl)

(69)

h8(Xl) = f1(Xl1) f2(Xl2)
∫

�(t)π2(t) f 2(t)F ′(Qadd(τ |t)|t)dt
f (Xl)F ′(Q(τ |Xl)|Xl)

. (70)

Next, we study the term T6n using Lemma 3.1 in Zheng (1996) with the kernel
H(Zi , Z j ) = Lg(Xi−X j )(Ri−Radd

i )(R j−Radd
j )π(Xi )π(X j ), where Zi = (Xi ,Yi ).

A straightforward calculation gives E[(H(Z1, Z2))
2] = o(n), which yields the

Hoeffding decomposition

T6n − E[T6n] =2

n

n∑

i=1

H1(Xi ) + oL1

(
1√
n

)
,

where H1(x) = E[H(Z1, Z2)|X1 = x] − E[H(Z1, Z2)] and

E[T6n] = E[�2(X1)π
2(X1) f (X1)] + O(g2).

From Lemma 2, we have for the expectation of the statistic T5n

E[T5n] = E
[
Z (1)
n

]
+ E

[
Z (4)
n

]
+ E

[
Z (7)
n

]
+ E

[
Z (10)
n

]
+ o

(
1√
n

)

where

E
[
Z (1)
n

]
= − E

[
�(X1)π

2(X1)F
′(Qadd(τ |X1)|X1) f (X1)b1(X11)

]
h21

+ o(h21) + O(hq2)

E
[
Z (4)
n

]
= − E

[
�(X1)π

2(X1)F
′(Qadd(τ |X1)|X1) f (X1)b2(X12)

]
h21

+ o(h21) + O(hq2)
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E
[
Z (7)
n

]
=1

2
E
[
�(X1)π

2(X1)F
′(Qadd(τ |X1)|X1) f (X1)b1(X21)

]
h21

+ o(h21) + O(hq2)

E
[
Z (10)
n

]
=1

2
E
[
�(X1)π

2(X1)F
′(Qadd(τ |X1)|X1) f (X1)b2(X22)

]
h21

+ o(h21) + O(hq2)

and the bias bα is defined in (21). Observing (51) it therefore follows that

E[Tn] =E
[
�2(X1)π

2(X1) f (X1)
]

+ 2E
[
F ′(Qadd(τ |X1)|X1)�(X1)π

2(X1) f (X1)(b(X1)

− 1

2
b(X2))

]
h21 + o(h21) + O(g2)

which is the claimed representation in Theorem 3 for the case d = 2. With the same
argument we obtain the stochastic expansion

√
n(Tn − E[Tn]) = An + Bn + Cn + oL1(1),

where the quantities An , Bn and Cn are given by

An = 2√
n

n∑

i=1

(
�2(Xi )π

2(Xi ) f (Xi ) − E[�2(Xi )π
2(Xi ) f (Xi )]

)

=√
n (T6n − E[T6n]) + oL1

(
1√
n

)
,

Bn = 2√
n

n∑

i=1

E
[
�(X j )π

2(X j ) f (X j )F
′(Qadd(τ |X j )|X j )

(1
2
(Q(τ |Xi1, Xl2)

+ Q(τ |Xl1, Xi2)

+ Q(τ |Xl1, Xi2) + Q(τ |Xi1, Xl2)) − Q(τ |X j1, Xi2) − Q(τ |Xi1, X j2)
)
|Xi

]

− E
[
�(X j )π

2(X j ) f (X j )F
′(Qadd(τ |X j )|X j )(2Q(τ |Xi ) − Q(τ |X j1, Xi2)

− Q(τ |Xi1, X j2))
]

= − 2
√
n
(
Z (3)
n + Z (6)

n + Z (9)
n

)
,

Cn = 2√
n

n∑

i=1

Ri

(
−�(Xi )π

2(Xi ) f (Xi ) + h2(Xi ) + h5(Xi ) − h8(Xi )
)

= − 2
√
n
(
T4n + Z (2)

n + Z (5)
n + 2Z (8)

n

)
+ oL1

( 1√
n

)
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and h2, h5 and h8 are defined in (68), (69) and (70), respectively. Therefore, asymptotic
normality is a direct consequence of Lyapunov’s central limit theorem. Finally, a
straightforward calculation yields

Var(An + Bn)

= 4Var
[
�2(X1)π

2(X1) f (X1)

− E
[
�(X2)π

2(X2) f (X2)F
′(Qadd(τ |X2)|X2)

×
(
Q(τ |X11, X22) + Q(τ |X21, X12) − 1

2

(
Q(τ |X11, X32) + Q(τ |X31, X12)

+ Q(τ |X31, X12) + Q(τ |X11, X32)
))∣∣∣X1

]]
,

Var(Cn) = 4E
[
τ(1 − τ)

(
−�(X1)π

2(X1) f (X1)

+ f2(X12)
∫

�(X11, t2)π2(X11, t2) f 2(X11, t2)F ′(Qadd(τ |X11, t2)|X11, t2)dt2
f (X1)F ′(Q(τ |X1)|X1)

+ f1(X11)�(t1, X12)π
2(t1, X12) f 2(t1, X12)F ′(Qadd(τ |t1, X12)|t1, X12)dt1

f (X1)F ′(Q(τ |X1)|X1)

−
∫

�(t)π2(t) f 2(t)F ′(Qadd(τ |t)|t)dt
F ′(Q(τ |X1)|X1)

)2]

and Cov(An + Bn,Cn) = 0, which completes the proof of Theorem 3.

Proof of Lemma 2 Observe the decomposition T5n = T̃ (1)
5n + T̃ (2)

5n , where

T̃ (1)
5n = 1

n(n − 1)

∑

i �= j

Lg
(
Xi − X j

) (
R̂i − Radd

i

) (
R j − Radd

j − E[R j

− Radd
j |X j ]

)
π(Xi )π(X j )

T̃ (2)
5n = 1

n(n − 1)

∑

i �= j

Lg
(
Xi − X j

) (
R̂i − Radd

i

)
E
[
R j − Radd

j |X j

]
π(Xi )π(X j ).

We calculate

E
[(

T̃ (1)
5n

)2] = 1

n2(n − 1)2
∑

i1 �= j1

∑

i2 �= j2

E
[
Lg
(
Xi1 − X j1

)
Lg
(
Xi2 − X j2

)

(
R̂i1 − Radd

i1

)(
R̂i2 − Radd

i2

)

×
(
R j1 − Radd

j1 − E
[
R j1 − Radd

j1 |X j1

])(
R j2 − Radd

j2

− E
[
R j2 − Radd

j2 |X j2

])

× π(Xi1)π(X j1)π(Xi2)π(X j2)
]
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= (1 + o(1))

n2(n − 1)2
∑

i1 �= j1

∑

i2 �= j2

E
[
Lg
(
Xi1 − X j1

)
Lg
(
Xi2 − X j2

)

(
R̂− j1
i1

− Radd
i1

)(
R̂− j1
i2

− Radd
i2

)

×
(
R j1 − Radd

j1 − E[R j1 − Radd
j1 |X j1 ]

)(
R j2 − Radd

j2 − E[R j2

− Radd
j2 |X j2 ]

)

× π(Xi1)π(X j1)π(Xi2)π(X j2)
]

= o

(
1

n

)
,

where the last estimate follows by similar arguments as given for the term T3n under
the null hypothesis (see Appendix A). With similar arguments we obtain

T̃ (2)
5n = 1

n(n − 1)

∑

i �= j

Lg
(
Xi − X j

) (
F(Q̂−i

add(τ |Xi )|Xi ) − F(Q(τ |Xi )|Xi )
)

× E[R j − Radd
j |X j ]π(Xi )π(X j ) + oL1

(
1√
n

)

and therefore a taylor expansion and Lemma 1 yield

T5n = T̃ (2)
5n + oL1

(
1√
n

)

= T (1)
5n + T (2)

5n + T (3)
5n + T (4)

5n + oL1

(
1√
n

)
,

where we introduce the notation

T (�)
5n = 1

n(n − 1)

∑

i �= j

Lg
(
Xi − X j

)
F ′(Qadd(τ |Xi )|Xi )�(X j )π(Xi )π(X j )

× (q̂−i
� (τ |Xi�) − q�(τ |Xi�)); � = 1, 2

T (�)
5n = − 1

2n2(n − 1)

∑

i �= j

Lg
(
Xi − X j

)
F ′ (Qadd(τ |Xi )|Xi ) �(X j )π(Xi )π(X j )

×
n∑

k=1

(
q̂−i
�−2(τ |Xk(�−2)) − c(τ )

)
; � = 3, 4

and we treat the terms T (�)
5n for � = 1, . . . , 4 separately. Recalling the notation (46)

we have for the first term

1

n(n − 1)

∑

i �= j

Lg
(
Xi − X j

)
F ′(Qadd(τ |Xi )|Xi

)
�(X j )π(Xi )π(X j )

(
q̂−i
1 (τ |Xi1)

− q1,n(τ |Xi1)
)
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+ 1

n(n−1)

∑

i �= j

Lg
(
Xi − X j

)
F ′(Qadd(τ |Xi )|Xi

)
�(X j )π(Xi )π(X j )(q1,n(τ |Xi1)

− q1(τ |Xi1)) =: T (1.1)
5n + T (1.2)

5n = T (1)
5n + oL1

(
1√
n

)
, (71)

where the first equality defines the terms T (1.1)
5n and T (1.2)

5n in an obvious manner. A
straightforward but tedious calculation (using a Taylor expansion and similar argu-
ments as in the proof of Theorem 3.1 in Dette and Scheder (2011)) yield

T (1.1)
5n = 1

n2(n − 1)

∑

i �= j

Lg
(
Xi − X j

)
F ′(Qadd(τ |Xi )|Xi )�(X j )π(Xi )π(X j )

×
n∑

k=1

[
Q̂−i

1,n(τ |(Xi1, Xk2)) − Q1,n(τ |(Xi1, Xk2))
]

= −1

n3(n − 1)

∑

i �= j

n∑

k=1

n∑

l=1

Lg
(
Xi − X j

)
F ′(Qadd(τ |Xi )|Xi )�(X j )π(Xi )π(X j )

× Kbn

(
F

(
l

n
|(Xi1, Xk2)

)
− τ

)(
F̂−i
1

(
l

n
|(Xi1, Xk2)

)

−F

(
l

n
|(Xi1, Xk2)

))
+ oL1

(
1√
n

)

=− 1

n2(n − 1)2
∑

i �= j

n∑

k=1

n∑

l �=i

Lg
(
Xi −X j

)
F ′(Qadd(τ |Xi )|Xi )�(X j )π(Xi )π(X j )

×
∫ 1

0
Kbn (F (t |(Xi1, Xk2)) − τ) K1,h1(Xi1 − Xl1)K2,h2(Xk2 − Xl2)

× I {Yl ≤ t} − F(t |(Xi1, Xk2))

f (Xi1, Xk2)
dt + oL1

(
1√
n

)

= Z (1)
n + Z̃ (2)

n + oL1

(
1√
n

)
,

where Z (1)
n is defined in (58) and

Z̃ (2)
n = −1

n3(n − 1)

∑

i �= j

n∑

k=1

n∑

l �=i

Lg
(
Xi − X j

)
F ′(Qadd(τ |Xi )|Xi )�(X j )π(Xi )π(X j )

×
∫ 1

0
Kbn (F (t |(Xi1, Xk2)) − τ) K1,h1(Xi1 − Xl1)K2,h2(Xk2 − Xl2)

I {Yl ≤ t} − F(t |(Xl1, Xl2))

f (Xi1, Xk2)
dt

= −1

n3(n−1)

∑

i �= j

n∑

k=1

n∑

l �=i

Lg(Xi−X j )
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F ′(Qadd(τ |Xi )|Xi )�(X j )π(Xi )π(X j )K1,h1(Xi1 − Xl1)K2,h2(Xk2 − Xl2)

I {Yl ≤ Q(τ |(Xi1, Xk2))} − F(Q(τ |(Xi1, Xk2))|(Xl1, Xl2))

f (Xi1, Xk2)

+ oL1

(
1√
n

)
= Z (2)

n + oL1

(
1√
n

)
.

Here, the last equality follows recalling the definition of Z (2)
n and some tedious but

straightforward calculations. Similarly we obtain for the statistic T (1.2)
n defined in (71)

T (1.2)
5n = 1

n2(n − 1)

n∑

i �= j

n∑

k=1

Lg
(
Xi − X j

)
F ′(Qadd(τ |Xi )|Xi )�(X j )π(Xi )π(X j )

× (Q(τ |(Xi1, Xk2)) − q1(τ |Xi1)) + oL1

(
1√
n

)

= 1

n

n∑

k=1

E
[
f (Xi )F

′(Qadd(τ |Xi )|Xi )�(Xi )π
2(Xi )(Q(τ |(Xi1, Xk2))

− q1(τ |Xi1))|Xk

]
+ oL1

(
1√
n

)
= Z (3)

n + oL1

(
1√
n

)
,

where Z (3)
n is defined in (60). The statistic T (2)

5n is treated similarly and we obtain the
representation

T (2)
5n =

6∑

j=4

Z ( j)
n + oL1

(
1√
n

)
,

where Z (4)
n , Z (5)

n and Z (6)
n are defined in (61), (62) and (63), respectively. The terms

Z (7)
n , . . . Z (12)

n in Lemma 2 correspond to the statistics T (3)
5n and T (4)

5n in the decom-

position (57) and we restrict ourselves to the calculations for the quantity T (3)
5n . The

corresponding representation of T (4)
5n follows exactly by the same arguments. Observ-

ing the definition of Q̂l,n in (6) and using a Riemann approximation and a Taylor
expansion we have

T (3)
5n =

(
T (3.1)
5n + T (3.2)

5n

)
(1 + o(1)). (72)

Here the term T (3.1)
5n is given by

T (3.1)
5n = −1

2n4(n−1)

n∑

i �= j

n∑

k,l,m=1

Lg
(
Xi−X j

)
F ′(Qadd(τ |Xi )|Xi )�(X j )π(Xi )π(X j )

×
(∫ τ

−∞
Kbn

(
F
(m
n

|(Xk1, Xl2)
)

− u
)
du − c(τ )

)
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= −1

2n3(n − 1)

n∑

i �= j

n∑

k,l=1

Lg
(
Xi − X j

)
F ′(Qadd(τ |Xi )|Xi )�(X j )π(Xi )π(X j )

× (Q(τ |(Xk1, Xl2)) − c(τ )) + oL1

(
1√
n

)

= −1

2n2

n∑

k,l=1

E[F ′(Qadd(τ |Xi )|Xi )�(Xi )π
2(Xi ) f (Xi )](Q(τ |(Xk1, Xl2))

− q1(Xk1))

− 1

2n

n∑

k

E[F ′(Qadd(τ |Xi )|Xi )�(Xi )π
2(Xi ) f (Xi )](q1(Xk1) − c(τ ))

+ oL1

(
1√
n

)
= 1

2
Z (9)
n + oL1

( 1√
n

)
,

where Z (9)
n is defined in (66) and the last equality follows by showing that the L2

distance between both sides is of order o(1/n). The term T (3.2)
5n in (72) is given by

T (3.2)
5n

= 1

2n4(n − 1)

n∑

i �= j

n∑

k,l,m=1

Lg
(
Xi−X j

)
F ′(Qadd(τ |Xi )|Xi )�(X j )π(Xi )π(X j )

× Kbn

(
F
(m
n

|(Xk1, Xl2)
)

− τ
) (

F̂−i
1

(m
n

|(Xk1, Xl2)
)

− F
(m
n

|(Xk1, Xl2)
))

= Z (7)
n + 1

2
Z (8)
n + oL1

(
1√
n

)
,

where Z (7)
n and Z (8)

n are defined in (64) and (65), respectively and the last equation
follows by similar arguments as used in the treatment of the term T (1.1)

5n . Finally, a
similar calculation shows

T (4)
5n = Z (10)

n + 1

2
Z (8)
n + 1

2
Z (9)
n + oL1

(
1√
n

)
,

where the terms Z ( j)
n are again defined in Lemma 2. This completes the proof of the

assertion.
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