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Abstract Multicanonical MCMC (Multicanonical Markov Chain Monte Carlo; Mul-
ticanonical Monte Carlo) is discussed as a method of rare event sampling. Start-
ing from a review of the generic framework of importance sampling, multicanonical
MCMC is introduced, followed by applications in random matrices, random graphs,
and chaotic dynamical systems. Replica exchange MCMC (also known as parallel
tempering or Metropolis-coupled MCMC) is also explained as an alternative to mul-
ticanonical MCMC. In the last section, multicanonical MCMC is applied to data
surrogation; a successful implementation in surrogating time series is shown. In the
appendix, calculation of averages and normalizing constant in an exponential family,
phase coexistence, simulated tempering, parallelization, and multivariate extensions
are discussed.

Keywords Multicanonical MCMC · Wang–Landau algorithm · Replica exchange
MCMC · Rare event sampling · Random matrix · Random graph · Chaotic dynamical
system · Exact test · Surrogation

Y. Iba (B)
The Institute of Statistical Mathematics and SOKENDAI, 10-3 Midori-cho,
Tachikawa, Tokyo 190-8562, Japan
e-mail: iba@ism.ac.jp

N. Saito
Research Center for Complex Systems Biology, The University of Tokyo,
3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
e-mail: saito@complex.c.u-tokyo.ac.jp

A. Kitajima
Digital Information Services Division, Digital Information Department, National Diet Library,
1-10-1 Nagata-cho, Chiyoda-ku, Tokyo 100-8924, Japan
e-mail: a-kitaji@ndl.go.jp

123



612 Y. Iba et al.

1 Introduction

Multicanonical MCMC (Multicanonical Markov Chain Monte Carlo; Multicanoni-
cal Monte Carlo) was introduced in statistical physics in the early 1990s (Berg and
Neuhaus 1991, 1992; Berg and Celik 1992); it can be viewed as a variant of umbrella
sampling, whose origin can be traced back to the 1970s (Torrie and Valleau 1974).1

The Wang–Landau algorithm developed in Wang and Landau (2001a,b) provides an
effective realization of a similar idea and many current studies use this implementa-
tion. It, however, relies on step-by-step realization of “multicanonical weight” defined
in Sect. 2.2.1 in this paper, which is an essential part of the original multicanonical
algorithms by Berg and Neuhaus (1991, 1992) and Berg and Celik (1992). In this
paper, we will use the term “multicanonical MCMC” for any method that uses the
multicanonical weight.

In these studies, multicanonical MCMC is applied to simultaneous sampling from
Gibbs distributions of different temperatures; in terms of statistics, it corresponds
to sampling from an exponential family. From this viewpoint, a major advantage of
multicanonical MCMC is fast mixing in multimodal problems. It often realizes an order
of magnitude improvement in the speed of convergence over conventional MCMC.
Some examples in statistical physics are provided by the references in Sect. 3.3.1; see
also review articles (Berg 2000; Janke 1998; Landau et al. 2004; Higo et al. 2012; Iba
2001).

Recent studies, however, provide another look at this algorithm. Multicanonical
MCMC enables an efficient way of sampling rare events under a given distribution.
Suppose that rare events of x in a high-dimensional sample space are characterized by
the value of statistics ξ(x). Then, in some examples, rare events even with probabil-
ities P(ξ0 ≤ ξ(x)) ≈ 10−100 are sampled within a reasonable computational time.2

Further, these probabilities are precisely estimated without additional computation.
This novel viewpoint opens the door to a broad application field of multicanonical

MCMC, while providing a more intuitive and easy understanding of the same algo-
rithm. Even though some surveys have already introduced multicanonical MCMC as
a method of rare event sampling (see Driscoll and Maki 2007; Bononi et al. 2009;
Wolfsheimer et al. 2011),3 it will be useful to conduct another survey with a broad
perspective and novel applications. An aim of this paper is to provide such an intro-
duction, including recent results by the authors.

Another aim of this paper is to apply multicanonical MCMC to exact tests in statis-
tics. Multicanonical MCMC is useful for sampling from highly constrained systems,
and this will be explained in this paper in connection with rare event sampling. Hence,
it can be naturally applied to MCMC exact tests (Besag and Clifford 1989; Diaconis
and Sturmfels 1998), where constraints among variables make it difficult to construct

1 A rarely cited paper (Mezei 1987), already proposed an adaptive version of umbrella sampling, which
uses a general “reaction coordinate” instead of total energy. Baumann (1987) is also referred to as a prototype
of multicanonical MCMC.
2 The constant ξ0 controls rareness; see Sect. 2.1.1 for details.
3 See also Birge et al. (2012); this paper introduced a related algorithm, split sampling, as a method of rare
event sampling.
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Multicanonical MCMC for sampling rare events 613

Markov chains for efficient sampling from null distributions. As an example, we will
discuss surrogation of nonlinear time series; yet the proposed method can be general-
ized to the other MCMC exact tests such as sampling from tables with fixed marginals.
The results discussed in Sect. 4.2 are published here for the first time in English.

The rest of this paper is organized as follows: In Sect. 2, multicanonical MCMC is
surveyed as a rare event sampling technique. Starting from general issues on rare event
sampling, the use of an exponential family with replica exchange MCMC is discussed
as an alternative to multicanonical MCMC. Then, the key idea of multicanonical
MCMC is introduced, and a concise description of the Wang–Landau algorithm is
provided. Section 3 provides examples of multicanonical rare event sampling, focus-
ing on the authors’ recent studies on random matrices, random graphs, and dynamical
systems. Section 4 begins with a multicanonical approach to highly constrained sys-
tems. Then, exact statistical tests and data surrogation are introduced as application
fields. A numerical experiment is discussed, where surrogates of time series that main-
tain the values of correlation functions are generated. An appendix deals with several
other issues on multicanonical MCMC, that is, calculating averages and normalizing
constant in an exponential family, “phase coexistence,” simulated tempering, parallel
computation, and multivariate extensions.4

This paper is mainly intended to describe the possibility of multicanonical MCMC
in various fields. Therefore, we focus on basic concepts and examples, omitting details
such as mathematical proofs of convergence and practical issues of implementation.
We assume the readers are familiar with standard algorithms of MCMC, but do not
have specific knowledge on rare event sampling nor multicanonical MCMC. Thus,
we begin with basics of rare event sampling and proceed to multicanonical MCMC,
skipping details of the implementation of MCMC. In fact, we can combine almost
any kind of MCMC algorithm to the idea of multicanonical MCMC. It is, however,
essential to pay attention to the behavior of the sample path in the case of multimodal
distributions, which we will discuss in detail in the paper.

Readers who are not familiar with MCMC will find necessary backgrounds, for
example, in Gilks et al. (1996), Robert and Casella (2004), Brooks et al. (2011). See
also books on MCMC by physicists, such as Newman and Barkema (1999), Frenkel
and Smit (2002), Berg (2004), Landau and Binder (2009), Binder and Heermann
(2012).

2 Multicanonical sampling of rare events

2.1 Rare event sampling

We first consider general issues in rare event sampling, namely, importance sampling
and the use of exponential families; replica exchange MCMC is also explained. For
further details on general frameworks and other approaches, see Bucklew (2004),
Rubinstein and Kroese (2008), Rubino and Tuffin (2009).

4 In this paper, double quotes (“ . . . ”) are used for marking technical terms in physics, non-technical
expressions, and terms defined in this paper, whereas italics are utilized for emphasizing other terms.
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614 Y. Iba et al.

2.1.1 Importance sampling

Let us assume that the value of a variable X is randomly sampled from the probability
distribution P; throughout this paper, we assume that P is precisely known. Hereafter,
for simplicity, we explain cases where variable X takes discrete values; however,
generalization to a continuous X is not difficult.

When we specify target statistics ξ , “rare events” of X with a rare value ξ(X) of ξ

are defined as a set A = {x | ξ0 ≤ ξ(x)}, where the probability P(ξ0 ≤ ξ(X)) takes
a small value;5 the constant ξ0 controls the rareness of the events.

Our problem is to generate samples of X that satisfy ξ0 ≤ ξ(X) and estimate their
probability P(ξ0 ≤ ξ(X)). Given current hardware, we can still complete the task by
a direct computation, even when the probability P(ξ0 ≤ ξ(X)) takes considerably
smaller values such as 10−4 or 10−6. However, when the probability of rare events
is much smaller, say, 10−12 or even 10−100, it is virtually impossible to deal with the
problem by naive random sampling from the original distribution P .

A standard solution to this problem is the use of importance sampling techniques,
that is, we generate samples of X from another distribution Q, which has a larger
probability in the set A . Hereafter, we assume that Q(X = x) �= 0 for the value of x
satisfying P(X = x) �= 0. Using samples X (i), i = 1, . . . , M from Q, the probability
under the original distribution P is estimated as

P(ξ0 ≤ ξ(X)) � 1

M

M∑

i=1

[
P

(
X (i)

)

Q
(
X (i)

) I (ξ0 ≤ ξ(X (i)))

]
, (1)

where I is defined by

I (ξ0 ≤ ξ(X (i))) =
{

1, ξ0 ≤ ξ(X (i))

0, ξ0 > ξ(X (i))
. (2)

By the law of large numbers, (1) becomes an equality as M → ∞. An average of
arbitrary statistics A(X) in the set A with weights proportional to P is calculated as

E[A(X) | ξ0 ≤ ξ(X)] �

1

M

∑M

i=1

[
A(X (i))

P
(
X (i)

)

Q
(
X (i)

) I (ξ0 ≤ ξ(X (i)))

]

P(ξ0 ≤ ξ(X))
, (3)

which also becomes an equality as M → ∞.
A critical issue in importance sampling is the choice of the distribution Q. Prior to

the introduction of MCMC, there was a severe limitation on the choice of Q; this was
because efficient generation of samples is possible only for a simple Q. In contrast,

5 P(ξ0 ≥ ξ(X)) is reduced to the case P(ξ0 ≤ ξ(X)) by considering −ξ , and hence, it is not discussed
separately. The probability P(ξ0 − δ ≤ ξ(X) ≤ ξ0 + δ) is also considered. In this case, we should maintain
an adequate value of δ and/or consider the relative probabilities using the same value of δ for a proper
definition of “rareness.”
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MCMC provides much freedom in the selection of Q. On the other hand, samples
from Q generated by MCMC are usually correlated, and such correlation can severely
affect the convergence of the averages. Thus, we should pay attention to the mixing
of MCMC in the choice of Q.

2.1.2 Exponential family and replica exchange MCMC

A strategy,6 which we will discuss in this paper, is to choose Q in the form

Q(x) = G(ξ(x)) P(x)∑
x G(ξ(x)) P(x)

,

where G(ξ) is an appropriate univariate function and
∑

x indicates the sum over the
domain of x . Multicanonical MCMC belongs to this class. Here, we will discuss a
different choice G(ξ) = exp(βξ) as an alternative to multicanonical approach; this
leads to

Qβ(x) = exp(βξ(x)) P(x)∑
x exp(βξ(x)) P(x)

. (4)

Qβ is interpreted as an exponential family with sufficient statistics ξ and a canonical
parameter β; it is also regarded as a Gibbs distribution with energy −ξ and inverse
temperature β, when the base measure P is uniform.

Assuming Qβ defined by (4), we can sample regions with larger values of ξ by
increasing the value of β. Thus, in principle, MCMC sampling from Qβ with a large
value of β can efficiently generate rare events defined by ξ0 ≤ ξ(x). When β increases,
however, the set A of x defined by ξ0 ≤ ξ(x) often almost disconnects, that is, it
consists of multiple “islands” of x separated by regions with tiny values of Qβ . Such
a multimodal property of Qβ obviously leads to slow convergence of MCMC.

In many examples, this difficulty is reduced using replica exchange MCMC, which
is also known as parallel tempering or Metropolis-coupled MCMC (Kimura and Taki
1991; Geyer 1991; Hukushima and Nemoto 1996; Iba 2001). In this algorithm, Markov
chains with different values of β run in parallel; here, we assume K chains with
(β1, β2, . . . , βK ). Selecting a pair i and j of chains in a regular interval of steps, the
current values of the states X∗

i and X∗
j of chains are swapped with probability Pswap

defined as

Pswap = max

{
1,

Qβi (X∗
j )Qβ j (X∗

i )

Qβi (X∗
i )Qβ j (X∗

j )

}
= max

{
1, exp((βi −β j )(ξ(X∗

j )−ξ(X∗
i )))

}
.

Note that the combined probability
∏K

k=1 Qβk (xk) is a stationary distribution of the
Markov chain defined by a combination of the original MCMC and the exchange
procedure defined above. This property ensures that replica exchange MCMC realizes
a proper sampling procedure at each value of β.

6 A different approach to combine importance sampling with MCMC is found in Botev et al. (2013).
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exchange                          exchange

Fig. 1 Exchange of states between the distribution Pβ with different values of β. The vertical axis cor-
responds to the value of ξ , whereas the horizontal axis for each sub-chart schematically represents a
high-dimensional space of X . Here, the values of β are assumed to increase from left to right; shading
represents the changes in high-probability regions

Exchange of states between chains is introduced for facilitating mixing at large
values of β. Owing to these exchanges, states generated at smaller values of β suc-
cessively “propagate” to chains with larger β (Fig. 1). This mechanism is similar to
that in the simulated annealing algorithm (Kirkpatrick et al. 1983) for optimization.
An essential difference is that replica exchange MCMC utilizes a time-homogeneous
Markov chain designed for sampling from each of the given distributions. In contrast,
simulated annealing utilizes a time-inhomogeneous chain; at least in principle, it is
not suitable for sampling.

The combination of replica exchange MCMC and Qβ given by (4) provides a
powerful tool for rare event sampling, which is easy to implement on parallel hardware.
However, the estimation of the probability of rare events P(ξ0 ≤ ξ(X)) under the
original distribution P requires some additional consideration. Namely, samples at a
single value of β are usually not enough for computing relative values of P(ξ0 ≤ ξ(X))

for all values of ξ0. Hence, the normalizing constant Zβ = ∑
x exp(βξ(x))P(x)

should be estimated for combining the results at different β.
These difficulties are well treated using samples at multiple values of β, which are

most naturally obtained as outputs of replica exchange MCMC. Here, however, we
omit details; essentially, the same problem in statistical physics is known as the esti-
mation of “density of states.” See, for example, an intuitive method used in Hartmann
(2002) and a rather sophisticated approach, the multiple histogram method, explained
in Newman and Barkema (1999).

2.2 Multicanonical MCMC

Here, we explain multicanonical MCMC, which is the main subject of this paper. First,
we define a “multicanonical weight” and discuss the behavior of MCMC with this
weight. Then, we introduce adaptive MCMC schemes for realizing the multicanonical
weight. In this section, we explain the algorithm for cases where both X and ξ take
discrete values. A simple way to treat a continuous ξ is introduction of a binning
function ξ̃ defined in Sect. 2.2.3; for more sophisticated methods, see references in
Sect. 2.2.4.

2.2.1 Multicanonical weight

As already explained, when Qβ given in (4) is used, some additional computation is
required for estimating the probabilities of rare events. The situation can be worse in
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Multicanonical MCMC for sampling rare events 617

some examples; a region of ξ is virtually not sampled for any choice of the canonical
parameter β. This may not be typical but possible; see “First-order transition and Phase
coexistence” in the appendix for further details.

In contrast, multicanonical MCMC has an advantage in that it provides probabilities
such as P(ξ0 ≤ ξ(X)) directly as outputs of the MCMC simulation and no additional
computation is required. Further, the problem of the missing region of ξ can be avoided,
at least in some examples. In addition to these nice properties, multicanonical MCMC
enables fast convergence in multimodal problems, similar to replica exchange MCMC.

To realize these properties, multicanonical MCMC utilizes G(ξ) defined in the
following way. First, we assume that an approximation P̃(ξ) of P(ξ) is given, in
which the marginal probability of ξ is defined as P(ξ ′) = ∑

ξ(x)=ξ ′ P(X = x), where∑
ξ(x)=ξ ′ indicates the sum over x that satisfies ξ(x) = ξ ′. Then, G(ξ) is given by the

inverse 1/P̃(ξ) of P̃(ξ); more precisely, we define

G(ξ(x)) =
{

c P̃(ξ(x))
−1

if ξ ∈ [ξmin, ξmax]
0 else

, (5)

where c is an arbitrary constant and [ξmin, ξmax] is an interval ξ of interest. Note that the
values of ξ that give P(ξ) = 0 should be excluded from the set [ξmin, ξmax]. Hereafter,
we refer to G(ξ) defined in (5) as a “multicanonical weight.” The corresponding
Q(x) is defined as Q(x) = G(ξ(x))P(x)/C , where C = ∑

x G(ξ(x))P(x) is the
normalizing constant; hereafter, the constant c is absorbed in C and omitted from the
expressions.7

At first sight, the choice of G(ξ(x)) shown in (5) does not make sense in practice
since the distribution P(ξ) is essentially the one that we want to calculate by the
algorithm. In some cases, we guess a form of P(ξ) and use it to approximate the
multicanonical weight (Körner et al. 2006; Monthus and Garel 2006), but this is rather
exceptional. Nevertheless, we leave this question for a while and discuss the properties
of a multicanonical weight.

Let us tentatively assume an ideal case that P̃(ξ), which appeared in the multicanon-
ical weight defined in (5), is exactly equal to P(ξ). Then, the marginal distribution
Q(ξ) defined by Q(x) = G(ξ(x))P(x)/C is uniform in the interval [ξmin, ξmax],
excluding the values of ξ that give P(ξ) = 0. This is because the multicanonical
weight is designed for canceling the factor P(ξ), which is confirmed via direct calcu-
lation as

Q(ξ ′) = 1

C

∑

x

G(ξ(x))P(x)I (ξ(x) = ξ ′)

= 1

C
G(ξ ′)

∑

x

P(x) I (ξ(x) = ξ ′) = 1

C
P(ξ ′)−1 P(ξ ′) = 1

C
,

where
∑

x is the sum over the all possible values of x and I (ζ = ζ ′) is defined as

7 This Q(x) will also be referred to as a “multicanonical weight” on the space of x .
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Fig. 2 “Flat” marginal Q(ξ) realized by (5) is compared to the marginal Qβ(ξ) of the exponential family
(4). Left Qβ(ξ) with a fixed value of β. Center a series of Qβ(ξ) with (β1, β2, . . . , β7) are printed over

one another. Right Q(ξ) realized by a multicanonical weight defined in (5); a case where P̃(ξ) � P(ξ) is
shown, while it becomes completely flat when P̃(ξ) = P(ξ). In some cases, behaviors very different from
these are observed; see Fig. 13

I (ζ = ζ ′) =
{

1 ζ = ζ ′

0 ζ �= ζ ′ .

This “flat” distribution Q(ξ) of ξ realized by a multicanonical weight defined in (5)
is illustrated in the rightmost panel of Fig. 2. For comparison, Q(ξ) given by an
exponential family (4) is shown in the other two panels of Fig. 2.

2.2.2 MCMC sampling with a multicanonical weight

So far, we discuss a rather obvious conclusion, but it is more interesting to con-
sider an MCMC simulation that samples the corresponding distribution Q(x) =
G(ξ(x))P(x)/C . To uniformly cover the region [ξmin, ξmax], the sample path moves
randomly in the region. In other words, the multicanonical weight realizes a random
walk on the axis of the target statistics ξ ; this walk has a memory because the value
of X does not determined uniquely by ξ(X).

This behavior enables us to obtain the desired properties using a single chain, as
shown in Fig. 3. First, efficient sampling of a tail region with a large value of ξ is
possible if we choose a sufficiently large ξmax. On the other hand, fast mixing of
MCMC is attained if we choose ξmin such that the set defined by ξmin ≤ ξ(x) is
tightly connected and a sample path can easily move around in it.8 Therefore, MCMC
sampling with a multicanonical weight shares an “annealing” property with replica
exchange MCMC.

Finally, we confirm how probabilities of rare events are computed under the original
distribution P . We assume that X (i), i = 1, . . . , M are samples from Q defined by G
of the equation (5). Then, the following expression is derived from (1):

P(ξ0 ≤ ξ(X) ≤ ξmax) � C × 1

M

M∑

i=1

[
P̃(ξ(X (i))) I (ξ0 ≤ ξ(X (i)))

]
,

8 Such a region corresponds to a “high-temperature” region in statistical physics, whereas the tail region
with rare events corresponds to a “low-temperature” region.
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random walk

A

A

B

B

C

C

Fig. 3 Random walk of ξ(X) realized by a multicanonical weight. Left P(ξ) and a sample path of the
random walk projected on the axis of the target statistics ξ . Note that the statistics ξ is a function of state X ,
and MCMC updates of X naturally cause such a walk of ξ ; no separate procedure is required for changing
ξ . Right A, B, and C show the distributions of (X, ξ(X)), each of which corresponds to the regions A, B,
and C in the left panel. The vertical axis corresponds to the value of ξ , whereas the horizontal axis for each
sub-chart schematically represents the high-dimensional space where X takes its value

where I is defined by (2). Because the values of ξ are limited in ξmin ≤ ξ ≤ ξmax by
our definition of the multicanonical weight,

P(ξmin ≤ ξ(X) ≤ ξmax) � C × 1

M

M∑

i=1

P̃(ξ(X (i))),

also holds. Hence, we arrive at

P(ξ0 ≤ ξ(X) ≤ ξmax)

P(ξmin ≤ ξ(X) ≤ ξmax)
�

∑M
i=1

[
P̃(ξ(X (i))) I (ξ0 ≤ ξ(X (i)))

]

∑M
i=1 P̃(ξ(X (i)))

. (6)

The value of the denominator P(ξmin ≤ ξ(X) ≤ ξmax) becomes almost unity when
the interval [ξmin, ξmax] contains most of the probability mass; otherwise, in some
cases, we are mainly interested in relative probabilities. The expectation of arbitrary
statistics A in the tail region ξ0 ≤ ξ(x) ≤ ξmax is also derived from (3) in a similar
manner as

E[A(X) | ξ0 ≤ ξ(X) ≤ ξmax] �
∑M

i=1

[
A(X (i)) P̃(ξ(X (i))) I (ξ0 ≤ ξ(X (i)))

]

∑M
i=1

[
P̃(ξ(X (i))) I (ξ0 ≤ ξ(X (i)))

] . (7)

2.2.3 Entropic sampling

Now, we return to the following problem. How to estimate the multicanonical weight
G(ξ) in (5) without prior knowledge? The key idea is to use adaptive Monte Carlo;
“preliminary runs” of MCMC are repeated to tune the weight G(ξ) until the marginal
distribution Q(ξ) becomes almost flat in the interval [ξmin, ξmax]. After tuning the
weight, a “production run” is performed, where G(ξ) is fixed; this run realizes MCMC
sampling with a multicanonical weight. Note that virtually any type of MCMC can be
used for sampling in both of these stages.
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An important point is that G(ξ) is a univariate function of a scalar variable ξ , while
Q(x) = G(ξ(x))P(x)/C is defined on a high-dimensional space of x ; thus, tuning
G(ξ) is much easier than performing a direct adaptation of Q(x) itself.

To illustrate the principle, we describe a simple method, sometimes known as
entropic sampling (Lee 1993). First, we consider the histogram H of the values of ξ .
It is convenient to introduce a discretized or binned version ξ̃ (x) of ξ(x), which takes
an integer value ξ̃ ∈ {1, 2, . . . , Nb}.9

Then, the histogram of the values of ξ̃ in the kth iteration of the preliminary runs
is represented by {H (k)(ξ̃ )}, ξ̃ = 1, . . . , Nb. We define H̄ as expected counts in each
bin of a flat histogram, which is the target of our adaptation.10 Further, the weight in
the kth iteration is represented by {G(k)(ξ̃ )}, ξ̃ = 1, . . . , Nb. Now that the adaptation
in the kth step is expressed as a recursion

G(k+1)(ξ̃ ) = G(k)(ξ̃ ) × H̄ + ε

H (k)(ξ̃ ) + ε
. (8)

Here, a constant ε is required for eliminating the divergence at H (k) = 0, which is
set to a small value, say, unity. The idea behind this recursion is simple—increase the
weight if the counts are smaller than H̄ and decrease the weight if the counts are larger
than H̄ .

The tuning stage of the algorithm is formally described as follows. Here, we use
LG(ξ̃ ) = log G(ξ̃ ) instead of G(ξ̃ ).

1. Initialize LG and set parameters.
– Set LG(i) = 0 for i = 1, . . . , Nb.
– Set the maximum number of iterations Kmax.
– Set the number of MCMC steps Mmax within each iteration.
– Set the number of MCMC steps Ms between histogram updates.
– Set a regularization parameter ε (e.g., ε = 1).
– Set H̄ = (Mmax/Ms)/Nb.
– Set the counter of iterations K to 0.

2. Initialize H and X .
– Set H(i) = 0 for i = 1, . . . , Nb.
– Initialize the state X .
– Set the counter of MCMC trials M to 0.

3. Run MCMC.
– Run Ms steps of MCMC with the weight P(x) exp[LG(ξ̃ (x))].

4. Update the histogram H .
– H(ξ̃ (x∗)) = H(ξ̃ (x∗)) + 1, where X = x∗ is the current state. ♠
– M = M + Ms .

9 Giving a partition Fi , i ∈ {1, 2, . . . , Nb} of the interval [ξmin, ξmax], it is defined by ξ̃ (x) = j ⇔ ξ(x) ∈
F j . If ξmax < ξ or ξ < ξmin, it is often convenient to define ξ̃ = Nb or ξ̃ = 1, respectively. Another
way is to reject the value of x that satisfies ξmax < ξ(x) or ξ(x) < ξmin within the Metropolis–Hastings
algorithm (See also a remark in Schulz et al. 2003).
10 The constant factor H̄ is not essential in the following argument when we consider relative weights, but
we retain it because it clarifies the meaning of formulae.
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– If M < Mmax, go to Step 3.
5. Check whether H is “sufficiently flat.”

– If so, end.
– If not and K < Kmax, modify LG.

– LG(i) = LG(i) + log[(ε + H̄)/(ε + H(i))] for i = 1, . . . , Nb. ♣
– K = K + 1.
– Go to Step 2.

– If not and Kmax ≤ K , the algorithm fails.

Note that the update formula (8) is included as a step marked with ♣, while the
histogram is incremented in the step marked with ♠.

After completing the above procedure, the production run is performed. If the above
algorithm fails to converge, we can increase the numbers Mmax and/or Kmax. Another
choice is to reduce our requirement and decrease the value of ξ0, which determines
the rareness of the obtained events.

The construction of the histogram can be replaced by other density estimation
techniques. In the original studies (Berg and Neuhaus 1991, 1992; Berg and Celik
1992), log G(ξ) is represented by a piecewise linear curve, instead of a piecewise
constant curve used in entropic sampling; parametric curve fitting is also utilized.
Another useful method is kernel density estimation, which is particularly convenient in
continuous and/or multivariate ξ cases; it is also used with the Wang–Landau algorithm
explained later, as seen in Zhou et al. (2006). Finally, we mention methods based on the
broad histogram equation. In these methods, the number of transitions between states
is used for optimizing the weight, instead of the number of visits to a state. Such an
idea has a somewhat different origin (de Oliveira et al. 1998), but it can be interpreted
as a way to realize a multicanonical weight; see Wang and Swendsen (2002).

2.2.4 Wang–Landau algorithm

Entropic sampling is already sufficient for realizing a multicanonical weight in many
problems. In current studies, however, the Wang–Landau algorithm (Wang and Landau
2001a,b) is often utilized, which provides a more efficient strategy to construct a
multicanonical weight.

An essential feature of the Wang–Landau algorithm is the use of a time-
inhomogeneous chain in the preliminary runs; that is to say, we change the weights
after each trial of MCMC moves instead of changing them only at the end of each
iteration consisting of a fixed number of MCMC steps. This may lead to an “incor-
rect” MCMC sampling in the preliminary runs, but it causes no problem if we fix the
weights in the final production run, where we compute the required probabilities and
expectations.

In the actual implementation, whenever a state x with ξ̃∗ = ξ̃ (x) appears, we
multiply the value of weight G(ξ̃∗) by a constant factor 0 < C < 1;11 it reduces the
weights of the already visited values of ξ̃ , whereas it effectively increases the relative
weights of the other values of ξ̃ . In parallel, we construct the histogram H of ξ̃ that

11 Do not confuse this C with the normalization constant C in the previous sections.

123



622 Y. Iba et al.

appeared in MCMC sampling. After some steps of MCMC, we reach a “sufficiently
flat” histogram;12 then, a step of iterative tuning of the weights is completed.

When we rerun MCMC where the weight is fixed to the values obtained by this
procedure, the run usually does not provide a sufficiently flat histogram of ξ̃ . Then,
an iterative method is introduced, that is, we increase the value of the constant C and
repeat the procedure in the preceding paragraph. A heuristics proposed in the original
papers (Wang and Landau 2001a,b) is to change C to

√
C . After each iteration step,

the histogram H is cleared, whereas the values of G are retained.
Again, we stress that any type of MCMC can be used for sampling at each of

these stages; we use the familiar Metropolis–Hasting algorithms in the examples con-
sidered in this paper. As shown in later sections, however, the choice of moves in
the Metropolis–Hasting algorithms significantly affects the efficiency of the entire
algorithm.

The tuning of the weight by the Wang–Landau algorithm is summarized as shown
below. Again, we use LG(ξ̃ ) = log G(ξ̃ ) in place of G(ξ̃ ); further, we define LC =
− log C (i.e., with a minus sign).

1. Initialize LG and LC ; set other parameters.
– Set LG(i) = 0 for i = 1, . . . , Nb.
– Set LC > 0 (e.g., LC = − log(1/e) = 1).
– Set the maximum number of iterations Kmax (e.g., Kmax= 15 or 18).
– Set the maximum number of MCMC steps Mmax within each iteration.
– Set the counter of iterations K to 0.

2. Initialize H and X .
– If K > Kmax, end.
– Set H(i) = 0 for i = 1, . . . , Nb.
– Initialize the state X .
– Set the counter of MCMC trials M to 0.

3. Run MCMC.
– Run a step of MCMC with the weight P(x) exp(LG(ξ̃ (x))).

4. Modify LG and update the histogram H .
– LG(ξ̃ (x∗)) = LG(ξ̃ (x∗)) − LC , where X = x∗ is the current state. ♣
– H(ξ̃ (x∗)) = H(ξ̃ (x∗)) + 1, where X = x∗ is the current state. ♠

5. Check whether H is “sufficiently flat.”13

– If so, LC = LC/2, K = K + 1 and go to Step 2
– If not and M < Mmax, M = M + 1 and go to Step 3.
– If not and Mmax ≤ M , the algorithm fails.

Note that update ♣ of the weight G and increment ♠ of the histogram H are done
simultaneously, in contrast to entropic sampling.

The criterion for a “sufficiently flat” histogram used in Sects. 3.1.1 and 3.1.2 is that
counts in every bin of the histogram are larger than 92 % of the value expected in a

12 Usually, in the Wang–Landau algorithm, this criterion for flatness should be severer than the requirement
on the flatness of the histogram expected in the final production run.
13 In actual implementation, this step need not to be performed after each step of MCMC; it can be done,
for example, each time after trying to update all random variables.
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perfectly flat histogram. In the cases of Sect. 3.1.2, we exclude “permanently” zero
count bins from the criterion, where true probability seems zero; it is usually difficult
to know a priori and some trial and error is required.

After completing the above procedure, the production run is performed. If this
algorithm does not converge or the production run using the obtained weights does
not give a flat histogram of ξ , what can we do? One possibility is to change the criterion
that the histogram H is “sufficiently flat;” when we make it more strict and increase
the value of Mmax, convergence may be attained with increasing computational time.
Increasing the value of Kmax may not be effective when we use the original

√
C rule

for modifying C because the value of C becomes nearly unity for large K . Another
possibility is to relax our requirement on the rareness and decrease the value of ξ0.

The algorithm presented here still contains a number of ad hoc procedures and
should be manually adapted to a specific problem. It, however, provides solutions to
problems otherwise difficult to treat. On the other hand, many modifications of the
algorithm are proposed. Examples of treating continuous variables are seen in Yan
et al. (2002), Shell et al. (2002), Liang (2005), Zhou et al. (2006), Atchadé and Liu
(2010). The following authors have criticized the

√
C rule and have proposed modi-

fied algorithms: Belardinelli and Pereyra (2007a,b); Liang et al. (2007); Zhou and Su
(2008); Atchadé and Liu (2010). The convergence of the algorithms is analyzed in Lee
et al. (2006), Belardinelli and Pereyra (2007b), while rigorous mathematical proofs
are discussed in Atchadé and Liu (2010), Jacob and Ryder (2011), Fort et al. (2012).
Bornn et al. (2013) proposed an automatic procedure including the adaptation of step
and bin size.

2.2.5 Variance of estimators

Finally, we will briefly discuss the variance of the estimators. Here, we restrict our-
selves to the final production run with a fixed weight. An experimental study on
convergence of estimates is shown in Sect. 3.1.1.

At first, we assume that all samples are independent, although it is not true for
samples generated by MCMC. Then, variances of the numerator and denominator of
the right-hand side of (6) are estimated as

σ 2
m = 1

M

⎧
⎨

⎩

ξmax∑

ξ=ξ0

P̃(ξ) P(ξ) − [P(ξ0 ≤ ξ)]2

⎫
⎬

⎭ (9)

σ 2
m0 = 1

M

⎧
⎨

⎩

ξmax∑

ξ=ξmin

P̃(ξ) P(ξ) − [P(ξmin ≤ ξ ≤ ξmax)]
2

⎫
⎬

⎭ . (10)

From (9) and (10), the relative variance of the right-hand side of (6) is estimated as14

14 Here, we apply the delta method using an approximation a+δa
b+δb

/
a
b � 1+ δa

a − δb
b ; correlation between

the denominator and the numerator is ignored.
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σ 2
m

[P(ξ0 ≤ ξ)]2 + σ 2
m0

[P(ξmin ≤ ξ ≤ ξmax)]2 . (11)

In the case of MCMC, sample correlation becomes important and we should modify
these formulae. Let us define integrated auto correlation of statistics B(X) as

TB = 1

σ 2
B

∞∑

τ=1

{
Epath[ B(X (0)) B(X (τ )) ] − E[ B(X) ]2

}
,

where the expectation Epath indicates an average over sample paths X (0), X (1), . . . gen-
erated by MCMC, and σ 2

B is the variance of independent samples from the same distri-
bution. Then, the effective number of samples changes from M to M/TB , when we cal-
culate the average of B. If we define Tm and Tm0 as TB with B(X) = P̃(ξ(X)) I (ξ0 ≤
ξ(X)) and P̃(ξ(X)), respectively, (11) is substituted for

(1 + 2Tm)σ 2
m

[P(ξ0 ≤ ξ)]2 + (1 + 2Tm0)σ
2
m0

[P(ξmin ≤ ξ ≤ ξmax)]2 . (12)

Unfortunately, it is rarely possible to estimate Tm and Tm0 a priori. Expression
(12), however, suggests that variances σ 2

m , σ 2
m0 of independent samples and integrated

auto correlations Tm , Tm0 are both important in rare event sampling using MCMC.
The multicanonical weight provides a practical method for balancing them.

If correlation among samples is ignored, a reasonable choice of Q for sampling
from A = {x |ξ0 ≤ ξ(x)} is Q∗(x) = C̃ P(x)I (ξ0 ≤ ξ(x)), which corresponds to the
generation of samples using MCMC from the tail ξ0 ≤ ξ(x) of the distribution P . It
is, however, not useful in most practical problems, because it is difficult to design a
Markov chain that efficiently samples from Q∗(x).15

3 Examples of rare event sampling by multicanonical MCMC

Here, we discuss two applications of multicanonical MCMC, rare event sampling
in random matrices and chaotic dynamical systems. Other applications in physics,
engineering, and statistics are briefly surveyed.

3.1 Rare events in random matrices

A pioneering study on rare events in random matrices with multicanonical MCMC is
Driscoll and Maki (2007), which computes large deviation in growth ratio, a quantity
relevant to the numerical difficulty in treating matrices. The results in this subsec-
tion are discussed in detail in Saito et al. (2010) and Saito and Iba (2011). Kumar
(2013) also applied the Wang-Landau algorithm to random matrices using coulomb
gas formulation.

15 In fact, even when conventional MCMC can produce samples of rare events from Qopt (x), calculation
of the normalizing constant C̃ and the probability of rare events are not straightforward. An advantage of
multicanonical MCMC is that it provides a way to calculate the probability using (6).

123



Multicanonical MCMC for sampling rare events 625

3.1.1 Largest eigenvalue

Distributions of the largest eigenvalue λmax of random matrices are of considerable
interest in statistics, ecology, cosmology, physics, and engineering. Small deviations
have been studied in this problem, and have yielded the celebrated N 1/6 law by Tracy
and Widom (1994, 1996). Here, we are interested in the numerical estimation of large
deviations; the present analytical approach to large deviations is limited to specific
types of distributions (Dean and Majumdar 2008; Majumdar and Vergassola 2009).
Specifically, the probability P(λmax < 0) that all eigenvalues are negative is important
in many examples, because it is often related to the stability of the corresponding
systems (May 1972; Aazami and Easther 2006).

In Saito et al. (2010), multicanonical MCMC is applied to this problem. Rare events
whose probability P(λmax < 0) is as small as 10−200 are successfully sampled for
matrices of size N ≤ 30 (or 40).16

Examples of the results in Saito et al. (2010) are shown in Figs. 4 and 5. In Fig. 4,
the probability P(λmax

0 < λmax ≤ λmax
0 + δ) is plotted against the values of λmax

0
with a small binsize δ for the case of Gaussian orthogonal ensemble (GOE). GOE is
defined as an ensemble of random real symmetric matrices such that entries are inde-
pendent Gaussian variables; hereafter, the variances of the diagonal and off-diagonal
components are 1 and 0.5, respectively, while means are all zero.

Figure 5 shows the probability P(λmax < 0) that all eigenvalues are negative. The
results for GOE and an ensemble of real symmetric matrices whose components are
uniformly distributed (hereafter “uniform”) are shown.17 For small Ns, the results
from the proposed method reproduce those by simple random sampling.18 On the
other hand, for a large N for which simple random sampling hardly suffices, the
obtained results match theoretical results in the case of GOE. The typical number of
steps in preparing the multicanonical weight is 2 ∼ 5 × 109, and the length of the
final productive run ranges from 1 × 109 (GOE N = 20) to 2.5 × 109 (GOE N = 40,
uniform N = 30).19

Examples of convergence of estimates are shown in Fig. 6. For an ensemble of
matrices whose components are uniformly distributed, multicanonical weights for
N = 6, 12, 18 and 24 are calculated by the Wang–Landau algorithm using at most
5.0 × 109 steps. Then, five independent production runs are performed for each N
using the same weight obtained by this procedure. The results for an increasing length
of the production run are shown in the figure. Noting that the vertical axis of Fig. 5

16 The most time-consuming part of the proposed algorithm is the diagonalization procedure required for
each step of MCMC; the Householder method is used here. It can be improved by the use of a more efficient
method for calculating the eigenvalue λmax.
17 The support of the uniform distributions is chosen as having the same variance as GOE.
18 Hereafter, “simple random sampling” refers to the method wherein a large number of matrices are
independently generated from the ensemble and the empirical proportion is used as an estimator.
19 Hereafter, the length of MCMC runs is measured by the number of Metropolis–Hastings trials; we do
not use physicists’ “Monte Carlo steps (MCS),” which is defined as the number of trials divided by the
number of random variables.
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Fig. 4 The probability P(λmax
0 < λmax ≤ λmax

0 + δ) estimated by the proposed method is plotted
for N = 10, 20, and 30, where δ is a small binsize. The Tracy–Widom distribution for small deviation
asymptotics is shown by the solid curve; systematic deviations from the obtained result for large deviation
are observed as expected. The horizontal axis corresponds to the scaled variable ( λmax

0 − E(λmax
0 ) )N 1/6.

Gaussian orthogonal ensemble (GOE) is assumed. From Saito et al. (2010), © 2010 American Physical
Society
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Fig. 5 Probabilities P(λmax < 0) obtained by the proposed method and simple random sampling method
are shown against N ; the latter is available only for small N . Left GOE; curve indicates a quadratic fit to the
results with Coulomb gas representation (Dean and Majumdar 2008). Right an ensemble of matrices whose
components are uniformly distributed; curve indicates the probability for GOE with the same variance.
From Saito et al. (2010), © 2010 American Physical Society

is log-scale, the variance of the estimates attained in Fig. 6 is reasonably small and is
enough for providing an accurate test for asymptotics.

The proposed method is quite general and can be applied to random matrices whose
components are sampled from an arbitrary distribution, or even random sparse matri-
ces, to which no analytical solution is available. These results are discussed in detail
in Saito et al. (2010), along with the detailed specifics of the proposed algorithm.

An important lesson from this example is that we should be careful while choos-
ing the moves in the Metropolis–Hasting algorithm. If we generate candidates using
conditional distributions of the original distribution, such as the Gaussian distribution
for each component in GOE, the algorithm fails in some cases. This occurs because
such a method cannot generate candidates with very large deviations in a component.
This difficulty is avoided by the use of a random walk Metropolis algorithm with an
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Fig. 6 Examples of the convergence of estimated probabilities. Upper Left N = 6, Upper Right N = 12,
Lower Left N = 18, and Lower Right N = 24. The vertical axis corresponds to probabilities P(λmax < 0),
while the horizontal axis (log-scale) corresponds to the steps of the algorithm. Results of five production
runs with the same weight and different random numbers are shown for each N ; in the N = 6 case, symbols
are almost overlapped one another. An ensemble of matrices whose components are uniformly distributed
is assumed

adequate step size; in the example of GOE, we use Gaussian distributions as proposal
distributions in the Metropolis algorithm (variances are unity for diagonals and 0.5
for non diagonals, respectively); see Saito et al. (2010).

3.1.2 Random graphs

The search for rare events in random graphs is also an interesting subject. An undi-
rected graph is represented by the corresponding adjacency matrix, whose components
take values in the set {0, 1}. For a k-regular graph, the maximum eigenvalue takes a
fixed value equal to k, and hence it is not interesting. On the other hand, the spec-
tral gap λgap, given as the difference between the maximum and the second-largest
eigenvalue in the case of regular graphs, is related to many important properties of the
corresponding graph. Specifically, graphs with larger values of the spectral gap are
called Ramanujan graphs or expanders; Ramanujan graphs have interesting properties
for communications and dynamics on networks (see references in Donetti et al. 2006;
Saito and Iba 2011).

In earlier studies, Donetti et al. (2005, 2006) optimized the spectral gaps of graphs
by simulated annealing; in their algorithm, a pair of edges of the graph is modified in
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Fig. 7 Examples of 3-regular graphs with a large spectral gap found in the simulation. From Saito and Iba
(2011), © 2011 Elsevier
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each Metropolis–Hasting step. Using this method, they showed that expanders with
interesting structures automatically appear.

Saito and Iba (2011) applied multicanonical MCMC to this problem; they defined
the Metropolis-Hasting update as in Donetti et al. (2005, 2006) and used the Wang–
Landau algorithm for realizing multicanonical weights. Examples of the obtained
graphs are shown in Fig. 7, while Fig. 8 gives probability P(λ

gap
0 < λgap) as a function

of λ
gap
0 and the size N of matrices. The typical number of Metropolis steps used in

preparing multicanonical weights is 0.5 ∼ 1.0 × 109, while the length of the final
production run is 0.25 ∼ 0.5 × 109. See Saito and Iba (2011) for further details.

3.2 Rare events in dynamical systems

Rare events in deterministic dynamical systems are important both in theory and
application (Ott 2002; Beck and Schlögl 1993). An example is a quantitative study
on tiny tori embedded in a “chaotic sea” of Hamiltonian dynamical systems, which
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is a familiar subject in this field. Numerical effort required for uncovering these tiny
structures dramatically increases with the dimension of the system. Therefore, it is
natural to introduce MCMC and other stochastic sampling methods to this field. Studies
on MCMC search for unstable structures in dynamical systems are found in Sasa and
Hayashi (2006), Yanagita and Iba (2009), Geiger and Dellago (2010), and references
therein.20

Kitajima and Iba (2011) applied multicanonical MCMC to the study of dynamical
systems. In the proposed algorithm, a measure of the chaoticity of a trajectory is defined
as a function of the initial condition,21 which corresponds to statistics representing
rareness. Then, the Metropolis–Hastings update is defined as follows: (1) perturb the
initial condition, (2) simulate a fragment of trajectory from the new initial condition,
and (3) calculate the chaoticity of the trajectory and reject/accept the new initial con-
dition using the current weight. Then, the entire algorithm is defined as multicanonical
MCMC with the Wang–Landau algorithm for tuning the weight.

Again, the choice of moves in the Metropolis–Hastings algorithm is important;
here, we sample a perturbation to the initial conditions from a mixture of uniform
densities with different order of widths. This idea, taken from Sweet et al. (2001),
seems essential for sampling from fractal-like densities; see Kitajima and Iba (2011)
for details.

In Kitajima and Iba (2011), sampling of tiny tori in the chaotic sea of a four-
dimensional map

un+1 = un − K

2π
sin(2πvn) + b

2π
sin(2π(vn + yn))

vn+1 = vn + un+1

xn+1 = xn − K

2π
sin(2πyn) + b

2π
sin(2π(vn + yn))

yn+1 = yn + xn+1

is studied, where K and b are constants that characterize the map. An example of tiny
tori found by the proposed method is shown in Fig. 9. In this case, the total number
of initial conditions tested in the proposed algorithm is about 4 × 109, while the
probability to find an initial configuration leading to a trajectory with the same degree
of chaoticity is as small as 10−12, assuming random sampling from the Lebesgue
measure. In addition, the relative volume of initial conditions that lead to trajectories
of the given order of “chaoticity” are successfully estimated by the algorithm; that is,
the proposed method is not only useful for the search but also provides quantitative
information on rare events in dynamical systems, see Fig. 2 of Kitajima and Iba (2011).

20 Sequential Monte Carlo-like algorithms are also used (see Tailleur and Kurchan 2007; Laffargue et al.
2013, and references therein).
21 Here, the chaoticity is defined as the number of iteration required for the divergence of perturbed
trajectories; the algorithm according to this definition is stable on finite precision machines.
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Fig. 9 Pair of tiny tori in the chaotic sea found by the proposed method. Projections on the (un , vn)-plane
are shown. Enlargement of a tiny area in the small circle in the left panel is given in the right panel; further
enlargement is given in the lower panel. K = 7.8 and b = 0.001. From Kitajima and Iba (2011), © 2011
Elsevier

3.3 Other applications

The rest of this section briefly describes other fields of applications of multicanonical
MCMC.

3.3.1 Statistical physics

Multicanonical MCMC was originally developed for sampling from Gibbs distribu-
tions in statistical physics. Hence, a number of studies in this field have successfully
applied it to problems where simple MCMC is virtually disabled by slow mixing.
Some typical examples are studies on the Potts and other classical spin models (Berg
and Neuhaus 1992; Wang and Landau 2001a; Zhou et al. 2006), spin glass models
(Berg and Celik 1992; Wang and Landau 2001a), and liquid models (Yan et al. 2002;
Shell et al. 2002; Calvo 2002). Multicanonical MCMC is also used for the study of
biomolecules (see Mitsutake et al. 2001; Higo et al. 2012 for full-atom protein models
and Chikenji et al. 1999; Wüst and Landau 2012 for lattice protein models). Attempts
to combine the idea of multicanonical weight with chain growth algorithms are found
in Bachmann and Janke (2003), Prellberg and Krawczyk (2004). More examples are
found in the review articles mentioned in Sect.1.

On the other hand, the use of multicanonical MCMC for other types of rare event
sampling in physics is a recent challenge.22 Hartmann (2002) introduced the idea of

22 In terms of physics, it corresponds to the sampling of the “quenched disorder,” whereas conventional
applications in physics deal with sampling from the Gibbs distribution of thermal disorder.

123



Multicanonical MCMC for sampling rare events 631

rare event sampling by MCMC to the physics community. Körner et al. (2006) and
Monthus and Garel (2006) applied MCMC to the sampling of disorder configurations
that gives large deviations in ground state energies; in these studies, modifications
of the Gumbel distribution are used for approximating multicanonical weights. Sub-
sequently, Hukushima and Iba (2008) and Matsuda et al. (2008) applied the Wang–
Landau algorithm to the study of Griffiths singularities in random magnets, which is
known to be sensitive to rare configurations of impurities; Wolfsheimer and Hartmann
(2010) discussed RNA secondary structures. In these studies, any prior knowledge on
the functional form of P̃(ξ) is assumed.

3.3.2 Optical telecommunication and related fields

Multicanonical MCMC is intensively used for rare event sampling in optical telecom-
munication and related fields. After a pioneering work by Yevick (2002), a number of
applications appeared; see, for example, Holzlöhner and Menyuk (2003), and a recent
review, Bononi et al. (2009). The sampling of rare noises that cause failures of error
correction is discussed in Holzlöhner et al. (2005) and Iba and Hukushima (2008),
which can be useful for predicting the performance of error-correcting codes.

3.3.3 Statistics

Algorithms based on the multicanonical weight, specifically, the Wang–Landau algo-
rithm and its generalizations, increasingly attract the attention of statisticians. Liang
(2005) introduced the Wang–Landau algorithm to statistics. Atchadé and Liu (2010)
and Chopin et al. (2012) developed closely related algorithms and tested them in
examples of Bayesian inference and model selection. Bornn et al. (2013) and Kast-
ner et al. (2013) also discussed applications in Bayesian statistics; Kwon and Lee
(2008) treated a target tracking problem. Yu et al. (2011) (also Liang et al. 2010) dis-
cussed hypothesis testing using stochastic approximation Monte Carlo. Wolfsheimer
et al. (2011) extended the study of Hartmann (2002) and applied rare event sampling
using the Wang-Landau method to the computation of p-values for local sequence
alignment problems. In the following section, we will discuss exact tests and data
surrogation as an application field of multicanonical MCMC for constrained systems.

4 Sampling from constrained systems and hypothesis testing

Sampling from highly constrained systems and combinatorial calculations are dis-
cussed here as a variation of the theme of rare event sampling. Exact tests and data
surrogation are introduced as an application field of this idea, where efficient sampling
from constrained systems is essential.

For general issues on Monte Carlo approximate counting, see Jerrum and Sinclair
(1996); Rubinstein and Kroese (2008); Rubino and Tuffin (2009).

4.1 MCMC sampling from constrained systems

MCMC sampling is difficult when constraints exist among random variables. In such
cases, it is often not easy to find a set of Metropolis–Hastings moves that realizes an
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ergodic Markov chain without violating the constraints. For example, considerable
effort is devoted to find ergodic moves for contingency tables with fixed margins and
other constraints (Diaconis and Sturmfels 1998; Bunea and Besag 2000; Takemura and
Aoki 2004).23 Although partial success has been obtained using highly sophisticated
mathematics, the problem becomes increasingly difficult when problem complexity
increases.

Yet another general strategy for dealing with highly constrained systems is an
introduction of “soft constraints.” First, given constraints fi (x) = 0, i = 1, . . . L ,
we define statistics ξ of the state variables X that satisfy the following conditions:
(1) ξ(X) ≥ 0 and (2) ξ(X) = 0, if and only if X satisfy fi (X) = 0 for all i . A simple
example of such statistics is

ξ(x) =
L∑

i=1

ci | fi (x)|α.

Here, α > 0 and ci > 0 are arbitrary constants; α = 1 is usually better than α = 2
because ξ keeps small values when | fi (x)| increases in the case of α = 1. Then, a
finite value of ξ represents soft constraints, whereas ξ = 0 corresponds to the original
hard constraints. Random sampling of the value of X usually gives a large value of
ξ(X); hence, ξ(X) = 0 can be regarded as a “rare event.”

At this point, we introduce multicanonical MCMC with target statistics ξ and
sample rare events X defined by ξ(X) = 0 (or, for a continuous variable X , ξ(X) ≈ 0).
Then, after tuning weights with the Wang–Landau algorithm, a production run provides
samples of X that (nearly) satisfy the constraints fi (X) = 0 (or fi (X) ≈ 0) for all i .
Note that a similar strategy can be implemented using a combination of an exponential
family with sufficient statistics ξ and replica exchange MCMC; in this case, a large
value of β corresponds to hard constraints.

Some references are as follows.24 Pinn and Wieczerkowski (1998) introduced
replica exchange MCMC with soft constraints to this field, and the number of magic
squares of size 6 × 6 is estimated in their paper. Kitajima and Kikuchi (private com-
munication) extended it to 30 × 30 using multicanonical MCMC. Hukushima (2002)
estimated the number of N-queen configurations by replica exchange MCMC, while
Zhang and Ma (2009) treated N-queen and Latin squares using a hybrid of simu-
lated tempering (see the appendix) and the Wang–Landau algorithm; they dealt with
Latin squares up to size 100 × 100. Fishman (2012) proposed an approach based
on soft constraints for counting contingency tables; conventional MCMC is used in
his paper.

23 See also Jacobson and Matthews (1996) for an algorithm specialized for Latin squares; it partially
utilized a soft constraint strategy.
24 “Self-avoidingness” of random walk is also well treated by the soft constraint strategy discussed here
(see Vorontsov-Velyaminov et al. 1996, 2004; Iba et al. 1998; Chikenji et al. 1999; Shirai and Kikuchi
2013).
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4.2 Application to hypothesis testing

Here, we discuss how multicanonical MCMC (and also replica exchange MCMC) can
be useful for exact tests and data surrogation; the proposed method is tested with a
simple example of time series.

4.2.1 MCMC exact tests

MCMC is useful for implementing statistical tests with a complicated null distrib-
ution. Particularly important cases occur when the null distribution is a distribution
conditioned with a set of statistics ζi . In these cases, the null hypothesis is represented
as the uniform distribution of X on the set defined by ζi (x) = ζ o

i , i = 1, . . . L , where
X is a random variable and ζ o

i is the value of statistics ζi corresponding to the observed
data. For a continuous variable X , this condition can be relaxed as

|ζi (x) − ζ o
i | < εi , i = 1, . . . L , (13)

where εi is a constant with a small value.
A prototype of such a test is Fisher’s exact test of contingency tables (Agresti 1992),

where the marginals of the table correspond to ζi ’s; a number of extended versions
exist and MCMC algorithms with complicated Metropolis moves have been developed
for them, as mentioned in the previous section. Besag and Clifford (1989) described
a test where an Ising model on the square lattice represents the null hypothesis.

In our view, it is natural to introduce the “soft constraint” strategy described in

Sect. 4.1 to this problem. When we define the statistics ξ as ξ(x) = ∑L
i=1 |ζi (x)−ζ o

i |,
it is straightforward to apply multicanonical MCMC for sampling X that uniformly
distributed on the set defined by ζi (x) = ζ o

i , i = 1, . . . L or its generalization (13).
This strategy is quite general and can be applied to a variety of MCMC hypothesis
testing.25

4.2.2 Data surrogation

In nonlinear dynamics and neural science, statistical tests for time series based on (13)
are well developed (Schreiber and Schmitz 2000). They are called as surrogate data
methods, and samples from null distributions defined by (13) are called as surrogates
of the original data. An example of the problem where surrogation is intensively used
is testing of statistical properties of neural spike trains (Grün and Rotter 2010).

In conventional approaches, surrogates are generated by partial randomization of
the original data. For example, if the phase of time series data xo(t), t = 1, . . . , N is

25 As mentioned in the previous section, Yu et al. (2011), Liang et al. (2010) also discussed hypothesis
testing with stochastic approximation Monte Carlo, which can be regarded as a version of multicanonical
MCMC in this case. They, however, focused on the problem of calculating small p-values; it differs from
our idea of using multicanonical MCMC as a sampler from highly constrained systems.
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randomized after the complex Fourier transform, then its inverse transform x = {x(t)}
has the same sets of correlation functions

C(x; τ) =
N−τ∑

t=1

x(t)x(t + τ) (14)

as the original time series26 and is considered as a surrogate that maintains the value
of sufficient statistics ζτ (x) = C(x; τ). Although a quick solution is provided in this
case, solutions to general cases are only found on a case-by-case basis, and it becomes
increasingly difficult as the complexity of the problems increases.

Therefore, Schreiber proposed a general idea of regarding data surrogation as an
optimization problem (Schreiber 1998; Schreiber and Schmitz 2000). According to
this idea, generating a surrogate is equivalent to finding a solution of (13), which
can be treated by a general-purpose optimization algorithm, for example, simulated
annealing. An application of this idea in neural science is found in Hirata et al. (2008).

This was an epoch-making idea in this field; randomization via a clever idea was
no longer required, being replaced by a routine procedure at the cost of computational
time. However, in data surrogation, we want to generate a sample (or a set of samples)
unbiasedly selected from the null distribution defined by (13), and not obtain a sample
that satisfies (13).

Therefore, applying multicanonical MCMC seems a better choice. Hence, we again
arrive at the idea of exact testing with multicanonical MCMC.

4.2.3 Example

Let us illustrate the idea of “multicanonical surrogation” using an example from
Schreiber (1998).27,28 In this example, the problem is to generate artificial time series
x = {x1, x2, . . . , xN } by permuting the original time series xo = {xo

1 , xo
2 , . . . , xo

N }
given as observed data. The constraint is to maintain the correlation functions C(x; τ),
defined as (14), to be nearly equal to the original correlation functions C(xo; τ) for
τ = 1 . . . T ; here, the constant 0 < T < N is the maximum of the delay τ , where we
expect correlation coincidence.

Here, ξ(X) = ∑T
τ=1 |C(X; τ) − C(xo; τ)| is used to define multicanonical MCMC

that samples X = {X1, X2, . . . X N }. ξ(X) is zero if and only if C(X; τ) = C(xo; τ)

for all 1 ≤ τ ≤ T . Then, Metropolis–Hastings moves are defined by the swap of a
randomly selected pair. In detail, a pair i and j is selected by a random number in
each step and a new candidate xnew of X is generated by xnew

i = x j and xnew
j = xi

26 To be precise, we should assume a periodic boundary condition and change the upper limit of the
summation from N − τ to N .
27 The results in this subsection (including Figs. 10, 11) appeared in an IEICE Technical Report
IBISML2011-7(2011-06) in Japanese, as a report without peer review. These have never been published in
English.
28 A quick practical solution is present for this problem, but it is not a perfect one; see Schreiber (1998).
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Fig. 10 Left frequency of the occurrence of ξ in the production run of multicanonical MCMC. The horizon-
tal and vertical axes correspond to the value of ξ and the observed frequency in the given bins, respectively.
Right probability density of ξ . The horizontal and vertical axes correspond to the value of ξ and the esti-
mated log-probabilities (log10), respectively; a set of bins used in the left panel is also applied in the right
panel for defining probabilities. The spike in the rightmost bin corresponds to a cumulated probability of
larger values of ξ [from Y. Iba, IEICE Technical Report IBISML2011-7(2011-06), 43–50, in Japanese,
© IEICE 2011]

without changing other components, using the current values Xi = xi and X j = x j .
Here, the value of {Xi } is initialized as a random permutation of {xo

i }.
In the following experiment, we consider time series xo of length N = 400 gener-

ated by nonlinear observations of a linear AR process y driven by uniform noise, that
is,

xo
t = y3

t , yt+1 = 0.3yt + ηt , ηt ∼ U (−2, 2).

Here, we choose T = 8. Multicanonical MCMC is designed for realizing an approxi-
mately flat distribution of ξ in the interval [0, 4800.8], which is divided into 80 bins.29

In this choice of the interval, we consider two conditions: (1) the interval contains a
high entropy region where the values of ξ are readily realized by a random permutation
of the original time series, and (2) the last bin ξ � 0 corresponds to a tail region of
ξ that we are interested in. The Wang–Landau algorithm with Kmax = 15 is used to
tune the weight; the

√
C rule is utilized. At each step of the iteration, we run MCMC

until counts in each bin coincide with the value for the uniform histogram within 1 %
accuracy. The total number of Metropolis trials is 2.5 × 108, of which 3.2 × 107 are
used for the final production run.

The results of this experiment are shown in Figs. 10 and 11. In Fig. 10, the dis-
tribution of ξ realized in the production run and the estimated log-density of ξ are
shown. The former is not quite flat in a non-logarithmic scale, but enough to ensure
efficient production of the desired samples. According to the right panel of Fig. 10,
the probability of obtaining a sample within the bin ξ ≈ 0 is estimated to be as small
as 10−25 or less, assuming a random permutation of xo.

29 Here, we round the value of ξ to ξmax when it exceeds ξmax instead of rejecting the candidate; this
causes the spike at the right edge of the density in the right panel of Fig. 10.
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Fig. 11 Left surrogate data generated by the proposed method. Uppermost series correspond to the original
data and other three are surrogates. The horizontal and vertical axes correspond to t and xt , respectively.
Right comparison of correlation functions. The horizontal and vertical axes correspond to the delay τ and
the values of the correlation function, respectively. The line represents C(xo, τ ), which corresponds to the
original data, while black dots represent sets of C(x(k), τ ) obtained from surrogated data; N = 400 is the
length of the time series. The results of 1976 samples are printed over each other; hence, symbols are almost
overlapping [from Y. Iba, IEICE Technical Report IBISML2011-7(2011-06), 43–50, in Japanese, © IEICE
2011]

In Fig. 11, the quality of the obtained samples is examined. In the left panel, three
samples in the last bin ξ � 0 are shown, which are considerably different from one
another. In the right panel, correlation functions C(x (k), τ ) are calculated for each of
the 1976 samples X = x (k), k = 1, . . . , 1976, in the bin ξ ≈ 0 and compared to the
original C(xo, τ ), which indicate an extremely good agreement between them.30

5 Summary and discussions

In this paper, we discussed rare event sampling using multicanonical MCMC. Two
different methods of tuning the weight, entropic sampling and the Wang–Landau
algorithm, are explained. Then, examples for random matrices, random graphs, chaotic
dynamical systems, and data surrogation are shown. We hope our exposition will be
useful for the exploration of further novel applications of multicanonical MCMC.

Appendix

Multicanonical MCMC for exponential family

We begin this paper with a history of multicanonical MCMC; it was originally devel-
oped as a method for sampling from Gibbs distributions, or an exponential family.
Here, we briefly discuss how to use multicanonical MCMC for this original purpose.

30 Note that not all 1976 samples are independent; some additional test is needed for estimating the number
of independent samples in our run.
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Assume that we want to compute the expectation Eβ [A(X)] = ∑
x A(x) exp

(βξ(x))/Zβ of statistics A from the output X (i), i = 1, . . . , M obtained from mul-
ticanonical MCMC that realizes an almost flat marginal of ξ in a “sufficiently wide”
interval [ξmin, ξmax]. Then, for M → ∞, the desired expectation is computed by the
reweighting formula31

Eβ [A(X)] �
∑M

i=1

[
A(X (i)) P̃(ξ(X (i))) exp(βξ(X (i)))

]

∑M
i=1

[
P̃(ξ(X (i))) exp(βξ(X (i)))

] . (15)

Further, we have an expression for the normalizing constant Zβ as

Zβ

V
�

∑M
i=1

[
P̃(ξ(X (i))) exp(βξ(X (i)))

]

∑M
i=1 P̃(ξ(X (i)))

, (16)

where V is the total number of states of the variable X that satisfy ξmin < ξ(X) < ξmax;
it is useful for the calculation of marginal likelihood in statistics and free energy in
physics.

It is easy to derive these expressions32 considering that the multicanonical weight is
proportional to P̃(ξ(X (i)))−1. Expressions (15) and (16), however, are quite unusual
in the sense that we can use them for a broad range of β where the interval [ξmin, ξmax]
covers a necessary region. Using this property, multicanonical MCMC simultaneously
gives the expectations Eβ [A(X)] for all β, through a single production run of a single
chain. This is because a multicanonical weight gives a flat distribution of ξ that has a
considerable overlap with the distribution exp(βξ(x))/Zβ for any value of β, which
is intuitively understood from the left panel in Fig. 12.

If we consider a similar reweighing that uses outputs of MCMC at β ′ for computing
the expectation at a different β, it is practically impossible for a high-dimensional
X unless the difference |β ′ − β| is very small. This is because the overlap of the
distributions virtually vanishes as shown in the right panel of Fig. 12; in such cases,
the variance of summands on the right-hand side of (15) drastically increases.

First-order transition and “Phase coexistence”

As already mentioned in the main text, there are examples in which a region of ξ is
virtually not realized for any choice of the canonical parameter β of the exponential
family with sufficient statistics ξ . The marginal distribution of ξ has multiple peaks in
this region of β, as illustrated in Fig. 13. Such examples naturally appear in statistical
physics, when we study the “phase coexistence” phenomena near first-order phase

31 To use this formula for an off-line calculation of the average of A, the values of ξ and A should be
recorded as pairs in the simulation, like ( ξ(X (i)), A(X (i)) ), i = 1, . . . , M .
32 Note that (15) becomes (7), if we substitute I (ξ0 ≤ ξ(X (i))) for exp(βξ(X (i))).

123



638 Y. Iba et al.

Fig. 12 Overlap of marginals of ξ . The horizontal axis corresponds to the sufficient statistics ξ . Left a
multicanonical weight (gray) and a member with a given β of the exponential family (black). Central and
right panels a pair of members with different values β and β ′ of the exponential family. The center panel
corresponds to cases with a small |β ′ −β|, whereas the right panel corresponds to cases with a large |β ′ −β|

disordered
ordered

Fig. 13 Marginals of ξ with different values of β in the case of phase coexistence; the horizontal axis
corresponds to the sufficient statistics ξ . These curves are obtained from the 10-states Potts model (see
Berg and Neuhaus 1992), which consists of discrete variables {Xi }, Xi ∈ {1, . . . , 10} on a square lattice;
they are computed by reweighting of the outputs of a single production run of multicanonical MCMC.
If {Xi } belongs to an “ordered” component, most Xi s take the same value. In contrast, their values are
almost random in the “disordered” component. In the disordered component, ξ takes smaller values, but
the number of states of X that belongs to the component is large; hence, the total probability is comparable
in both components

transitions.33 On the other hand, it seems that the significance of such phenomena in
statistics and engineering has not been fully explored.

In such cases, distributions defined by multicanonical weights are not well approx-
imated by a mixture of the members of the corresponding exponential family; this is
easily understood by considering Fig. 13. Hence, the advantage of replica exchange
MCMC is limited because the sample path is blocked by the gap of ξ , while multi-

33 Ice and water coexist at 0 ◦C; that is, both of them correspond to the same β but the values of average
energy −E(ξ) are different.
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random walk of 

Fig. 14 Random walk of inverse temperature variable B in simulated tempering. The vertical axis cor-
responds to the value of ξ , whereas the horizontal axis for each sub-chart schematically represents a
high-dimensional space of X . The values of inverse temperature β are assumed to increase from left to
right; the shading represents the corresponding changes in high-probability regions. Note that a random
variable B is updated by MCMC, retaining the value of X at that time; in other words, a separated procedure
for changing B is required for simulated tempering

canonical MCMC can, in principle, do better. Both methods, however, seem to fail in
very difficult cases; see Iba and Takahashi (2005).

Simulated tempering

The “third” method, simulated tempering (Marinari and Parisi 1992; Geyer and
Thompson 1995), or expanded ensemble Monte Carlo (Lyubartsev et al. 1992),34

is briefly explained here. Practically, we recommend choosing between multicanon-
ical MCMC and replica exchange MCMC. Simulated tempering, however, provides
an idea that interpolates these two algorithms and is conceptually important. The
idea is simple—inverse temperature β is regarded as a random variable (hereafter
denoted by B) and we consider MCMC sampling of (X, B) from the combined
distribution

P(x, β) = exp(βξ(x))

Zβ

π(β) = exp(βξ(x) − log Zβ + log π(β)).

Hereafter, we choose a “pseudo prior” π(β) as a uniform density on [βmin, βmax],
resulting in a random walk of B that uniformly covers the interval [βmin, βmax]; see
Fig. 14. This behavior is similar to that of multicanonical MCMC, but here B is a
variable updated in a separate step of MCMC; in contrast, a random walk of ξ(X) is
induced by the update of the state X in case of multicanonical MCMC.

Although this concept is simple, a difficulty arises because the MCMC update of
B requests the value of Zβ as a function of β, which is unknown in most cases.35

Hence, we should introduce the estimation of Zβ using repeated preliminary runs,
which is similar to the weight tuning procedure in multicanonical MCMC. See the

34 This paper introduced an idea similar to simulated tempering in an even more general framework.
35 The normalizing constant (partition function) Zβ is not required for replica exchange MCMC, because
it cancels in the Metropolis–Hastings ratio necessary for deciding whether to accept/reject the swap of the
states between chains; this is an essential advantage of replica exchange MCMC.
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above references, as well as Zhang and Ma (2007), which introduced a method like
the Wang–Landau algorithm.

Implementation on parallel hardware

Replica exchange MCMC is naturally parallelizable. Then, how can we efficiently
implement multicanonical MCMC on parallel hardware? A simple solution is paral-
lelization of the weight tuning stage. That is, a set of preliminary runs is performed in
parallel, each of which runs on a CPU; they share a histogram where total number of
visits to each value of ξ is recorded. Some variants of this idea are discussed in, for
example, Zhan (2008), Bornn et al. (2013). If we want to go beyond these schemes,
something more intricate is required. For example, the range of ξ is divided into a set
of intervals and a multicanonical weight is realized in each of them (see Wang and
Landau 2001a; Mitsutake et al. 2001; Vogel et al. 2013). In the latter two studies, the
exchange of states between neighboring intervals is incorporated.

Multivariate extensions

Multicanonical MCMC samples a high-dimensional X , while adaptation of the weight
is performed in a one-dimensional space of ξ . It is possible to introduce a “multivari-
ate multicanonical weight,” which realizes an almost uniform density in a region of
two-dimensional (ξ1, ξ2) or even three-dimensional (ξ1, ξ2, ξ3) spaces, where ξk is a
function of X . Examples of such extensions are found in Shteto et al. (1997), Iba et al.
(1998), Higo et al. (1997), Chikenji et al. (1999), Chikenji and Kikuchi (2000), Yan
et al. (2002), Zhou et al. (2006). Usually, the adaptation of weights in a multivariate
case is more difficult than in a univariate case, because of the sparseness of the data
collected in the preliminary run; Zhou et al. (2006) proposed the use of kernel density
estimation for this problem.
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