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Abstract Factorial k-means (FKM) clustering is a method for clustering objects in
a low-dimensional subspace. The advantage of this method is that the partition of
objects and the low-dimensional subspace reflecting the cluster structure are obtained,
simultaneously. In some cases that reduced k-means (RKM) clustering does not work
well, FKM clustering can discover the cluster structure underlying a lower dimensional
subspace. Conditions that ensure the almost sure convergence of the estimator of FKM
clustering as the sample size increases unboundedly are derived. The result is proved
for a more general model including FKM clustering. Moreover, it is also shown that
there exist some cases in which RKM clustering becomes equivalent to FKM clustering
as the sample size goes to infinity.

Keywords Subspace clustering · K -means

1 Introduction

If we apply a cluster analysis to data, it is highly unlikely that all variables relate to
the same cluster structure. Hence, it is sometimes beneficial to regard the true cluster
structure of interest as lying in a low-dimensional subspace of the data. In these cases,
researchers often apply the following two-step procedure:

Step 1. Carry out principal component analysis (PCA) and obtain the first few com-
ponents.

Step 2. Perform k-means clustering for the principal scores on the first few principal
components, which are obtained in Step 1.
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336 Y. Terada

This procedure is called “tandem clustering” by Arabie and Hubert (1994). Several
authors warn against the use of tandem clustering (e.g., Arabie and Hubert (1994);
Chang (1983); De Soete and Carroll (1994)). The first few principal components
of PCA do not necessarily reflect the cluster structure in data. Thus, an appropriate
clustering result might not be obtained using this procedure.

Instead of a two-step procedure, such as tandem clustering, some methods that
perform cluster analysis and dimension reduction simultaneously have been proposed
(e.g., De Soete and Carroll (1994); Vichi and Kiers (2001)). De Soete and Carroll
(1994) proposed reduced k-means (RKM) clustering, which includes conventional
k-means clustering as a special case. For given data points x1, . . . , xn in R

p, the fixed
cluster number k and the dimension number of subspace q (q < min{k − 1, p}), the
objective function of RKM clustering is defined by

RKMn(F, A) := 1

n

n∑

i=1

min
1≤ j≤k

‖xi − A f j‖2,

where f j ∈ R
q , F = { f 1, . . . , f k} ⊂ R

q , A is a p × q column-wise orthonormal
matrix, and ‖ · ‖ represents the Euclidean norm. Under certain regularity conditions,
RKM clustering has strong consistency (Terada 2014). However, when the data have
more variability in directions orthogonal to the subspace containing the cluster struc-
ture, RKM clustering may fail to find a subspace that reflects the cluster structure.

Example 1 Letμ1 = (4, 4, 0, . . . , 0), μ2 = (4,−4, 0, . . . , 0), μ3 = (−4, 4, 0, . . . ,
0) and μ4 = (−4,−4, 0, . . . , 0) (μ1, . . . ,μ4 ∈ R

p). Let �p denote the p × p
diagonal matrix with the elements (1, 1, 20, . . . , 20) on the diagonal. Observations
X i = [Xi1, . . . , Xip]T (i = 1, . . . , n) are generated as

X i :=
4∑

k=1

uikμk + εi ,

where ui = (ui1, . . . , ui4) and εi (i = 1, . . . , n) are independently generated from the
multinomial distribution for four trials with equal probabilities and the p-dimensional
normal distribution Np(0, �p), respectively. In this setting, Var[Xis] = 17 (s = 1, 2)
and Var[Xit ] = 20 (t = 3, . . . , p). Let X = [X1, . . . , Xn]T . Then, the data matrix
X has more variability in directions orthogonal to the subspace containing the cluster
structure. Here, we set n = 200 and p = 12. RKM clustering has been applied to
the data matrix X (Fig. 1). The result of RKM clustering for the data shown in Fig.
1 is given in Fig. 2. This result indicates that the low-dimensional subspace of RKM
clustering does not reflect the actual cluster structure and that the clustering result is,
in fact, incorrect.

Vichi and Kiers (2001) pointed out the possibility of such problems with RKM
clustering and proposed a new clustering method, called factorial k-means (FKM)
clustering. For the given data points x1, . . . , xn in R

p, the number of clusters k, and the
number of dimensions of subspace q, FKM clustering is defined by the minimization
of the following loss function:
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Fig. 1 Artificial data used to evaluate RKM clustering: a plot of the first two variables of the data matrix
X and b heat map of X

Fig. 2 Plot of the result of
RKM clustering for the artificial
data given in Fig. 1, where the
black points represent
misclassified objects
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F K Mn(F, A | k, q) := 1

n

n∑

i=1

min
1≤ j≤k

∥∥∥AT xi − f j

∥∥∥
2
,

where F := { f 1, . . . , f k}, f j ∈ R
q and A is a p × q column-wise orthonormal

matrix. When the given data points x1, . . . , xn are independently drawn from a pop-
ulation distribution P , we can rewrite the FKM objective function as

FKM(F, A, Pn) :=
∫

min
f ∈F

∥∥∥AT x − f
∥∥∥

2
Pn(dx),
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338 Y. Terada

where Pn is the empirical measure of the data points x1, . . . , xn in R
p. For each set

of cluster centers F and each p × q orthonormal matrix A, we obtain

lim
n→∞ FKM(F, A, Pn) = FKM(F, A, P) :=

∫
min
f ∈F

∥∥∥AT x − f
∥∥∥

2
P(dx) a.s.

by the strong law of large numbers (SLLN). Thus, besides k-means clustering and
RKM clustering, the global minimizer of F K M(·, ·, Pn) is also expected to con-
verge almost surely to the global ones of F K M(·, ·, P), say the population global
minimizers.

In this paper, we derive sufficient conditions for the existence of population global
minimizers and then prove the strong consistency of FKM clustering under some
regularity conditions. The framework of the proof in this paper is based on ones of
the proof of the strong consistency of k-means clustering (Pollard 1981; 1982) and
RKM clustering (Terada 2014). In Pollard (1981), the proof of strong consistency of
k-means clustering takes an inductive form. On the other hand, the proof of strong
consistency of FKM clustering does not take such form as with Terada (2014). In the
proof of main theorem, first we also show that the optimal sample centers eventually
lie in some compact region on R

p as with Pollard (1981) and Terada (2014) and
then prove the conclusion of the theorem in the same manner of the last part of the
proof of the consistency theorem in Terada (2014). For an arbitrary p×q column-wise
orthonormal matrix A (AT A = Iq , q < p), an arbitrary p-dimensional point x ∈ R

p

and an arbitrary q-dimensional point y ∈ R
q , the key inequality in this paper is that

‖AT x‖ ≤ ‖x‖ while the key equation in the strong consistency of RKM clustering
(Terada 2014) is that ‖A y‖ = ‖ y‖.

The rest of the paper is organized as follows. In Sect. 2, we describe the algorithm
of FKM clustering to get the local minimum and the relationship between RKM
clustering and FKM clustering. We introduce prerequisites and notations in Sect. 3.
In Sect. 4, we prove the uniform SLLN and the continuity of the objective function
of FKM clustering. The sufficient condition for the existence of the population global
minimizers and the strong consistency theorem for FKM clustering are stated, and we
derive a rough large deviation inequality in Sect. 5. In Sect. 6, we provide the main
proof of the consistency theorem.

2 Factorial k-means clustering

We will denote the number of objects and that of variables by n and p, respectively. Let
X = (xi j )n×p be a data matrix and xi (i = 1, . . . , n) be row vectors of X . For given
number of clusters k and given number of dimensions of a subspace q, the objective
function of FKM clustering is defined by

FKMn(A, F,U | k, q) := ‖X A − U F‖2
F =

n∑

i=1

min
1≤ j≤k

∥∥∥AT xi − f j

∥∥∥
2
,
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Fig. 3 Plot of the result of FKM
clustering for the artificial data
given in Fig. 1
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where ‖·‖F denotes the Frobenius norm, U = (ui j )n×k is a binary membership matrix,
A is a p × q column-wise orthonormal loading matrix, F = ( fi j )k×q is a centroid
matrix, and f j ( j = 1, . . . , k) are row vectors of F representing the j th cluster center.
FKMn can be minimized by the following alternating least-squares algorithm:

Step 0. First, initial values are chosen for A, F, and U .
Step 1. For each i = 1, . . . , n and each j = 1, . . . , k, we update ui j by

ui j =
{

1 iff‖AT xi − f j‖2 < ‖AT xi − f j ′ ‖2for each j ′ 	= j,

0 otherwise.

Step 2. A is updated by the first q eigenvectors of X T
[
U (U T U )−1U T − In

]
X , where

In is the n-dimensional identity matrix.
Step 3. F is updated using (U T U )−1U T X A.
Step 4. Finally, the value of the function F K Mn for the present values of A, F , and

U is computed. If the function value has decreased, the values of A, F , and
U are updated in accordance with Steps 1–3. Otherwise, the algorithm has
converged.

This algorithm monotonically decreases the FKM objective function and the solution
of this algorithm will be at least a local minimum point. Thus, it is better to use many
random starts to obtain the global minimum points.

Let Â, F̂ , and Û denote the optimal parameters of FKM clustering. We can visu-
alize the low-dimensional subspace that reflects the cluster structure by X Â. Figure 3
represents such a visualization of the optimal subspace that results from FKM clus-
tering for the artificial data given in Fig. 1.
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340 Y. Terada

Next, we briefly discuss the relationship between FKM clustering and RKM clus-
tering. The objective function of RKM clustering is defined by

RKMn(A, F,U ) := ‖X − U F AT ‖2
F =

n∑

i=1

min
1≤ j≤k

‖xi − A f j‖2.

This objective function can be decomposed into two terms:

RKMn(A, F,U ) = ‖X − X AAT ‖2
F + ‖X A − U F‖2

F . (1)

The first term of Eq. (1) is the objective function of the PCA procedure, and the second
term is that of FKM clustering. Thus, FKM clustering reveals the low-dimensional
subspace reflecting the cluster structure more clearly than the subspace of RKM clus-
tering in the cases that the data have much variability in directions orthogonal to
the subspace containing the cluster structure. For more details about the relationship
between FKM and RKM clusterings, see Timmerman et al. (2010).

3 Preliminaries

In this paper, the similar notations as the ones used in Pollard (1981) and Terada
(2014) are used. Let (�,F , P) be the probability space, and X1, . . . , Xn be i.i.d.
p-dimensional random variables drawn from the distribution P . Let Pn denote the
empirical measure based on X1, . . . , Xn . The set of all p×q column-wise orthonormal
matrices will be denoted by O(p × q). Bq(r) denotes the q-dimensional closed ball
of radius r centered at the origin. We will define Rk := {R ⊂ R

q | #(R) ≤ k},
where #(R) is the cardinality of R. We will denote the parameter space by �k :=
Rk ×O(p ×q). For each M > 0, R∗

k(M) := {R ⊂ R
q | #(R) ≤ k and R ⊂ Bq(M)}

and �∗
k(M) := R∗

k(M) × O(p × q). Let ψ : R → R denote a non-negative non-
decreasing function. For each subset F ⊂ R

q and each A ∈ O(p × q), the general
loss function of FKM clustering with a probability measure Q on R

p is defined by

�(F, A, Q) :=
∫

min
f ∈F

ψ
(∥∥∥AT x − f

∥∥∥
)

Q(dx).

Write

mk(Q) := inf
(F,A)∈�k

�(F, A, Q)

and

m∗
k(Q | M) := inf

(F,A)∈�∗
k (M)

�(F, A, Q).

For θ = (F, A) ∈ �k , we will use both descriptions�(θ, Q) and�(F, A, Q). The set
of population global optimizers and that of sample global optimizers will be denoted
by �′ := {θ ∈ �k | mk(P) = �(θ, P)} and �′

n := {θ ∈ �k | mk(Pn) = �(θ, Pn)},
respectively. For each M > 0, let �∗ := {θ ∈ �∗

k(M) | m∗
k(P | M) = �(θ, P)} and
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Strong consistency of factorial K -means clustering 341

�∗
n := {θ ∈ �∗

k(M) | m∗
k(Pn | M) = �(θ, Pn)}. When we emphasize that �′ and

�′
n are dependent on the index k, we write �′(k) and �′

n(k) instead of �′ and �′
n ,

respectively. One of the measurable estimators in �′
n will be denoted by θ̂n or θ̂n(k).

Similarly, let θ̂∗
n (or θ̂∗

n (k)) denote one of the measurable estimators in�∗
n . Existence of

measurable estimators is guaranteed by the measurable selection theorem; see Section
6.7 of Pfanzagl (1994) for a detailed explanation.

Let dF (·, ·) be the distance between two matrices based on the Frobenius norm and
dH (·, ·) be the Hausdorff distance, which is defined for finite subsets A, B ⊂ R

q as

dH (A, B) := max
a∈A

{
min
b∈B

‖a − b‖
}
.

We will denote a product distance with dF and dH by d (e.g., d :=
√

d2
F + d2

H ). As

was done by Terada (2014), the distance between θ̂n and �′ is defined as

d(θ̂n,�
′) := inf{d(θ̂n, θ) | θ ∈ �′}.

Like in Pollard (1981), we assume that ψ is continuous and ψ(0) = 0. In addition,
for controlling the growth of ψ , we assume that there exists λ ≥ 1 such that ψ(2r) ≤
λψ(r) for all r > 0. Note that

∫
ψ
(∥∥AT x − f

∥∥)P(dx) ≤
∫
ψ
(∥∥AT x

∥∥+ ∥∥ f
∥∥)P(dx)

≤
∫
ψ(‖x‖ + ‖ f ‖)P(dx)

≤
∫

‖ f ‖>‖x‖
ψ(2‖ f ‖)P(dx)+

∫

‖ f ‖≤‖x‖
ψ(2‖x‖)P(dx)

≤ ψ(2‖ f ‖)+ λ

∫
ψ(‖x‖)P(dx)

for all f ∈ F and all A ∈ O(p × q). Thus,�(F, A, P) is finite for each F ∈ Rk and
A ∈ O(p × q) as long as

∫
ψ(‖x‖)P(dx) < ∞.

Let R be a q × q orthonormal matrix, i.e., RT R = R RT = Iq . For each f ∈ R
q

and each A ∈ O(p × q), we have ART ∈ O(p × q) and

∫
ψ
(∥∥AT x − f

∥∥)P(dx) =
∫
ψ
(∥∥R AT x − R f

∥∥)P(dx).

Hence, �′ is not a singleton when �′ 	= ∅; that is, FKM clustering has rotational
indeterminacy, as well as RKM clustering.

4 The uniform SLLN and the continuity of �(·, ·, P)

Lemma 1 Let M be an arbitrary positive number. Let G be the class of all P-integrable
functions on R

p of the form g(F,A)(x) := min f ∈F ψ(‖AT x− f ‖),where (F, A) takes
all values over �∗

k(M). Suppose that
∫
ψ(‖x‖)P(dx) < ∞. Then,
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342 Y. Terada

lim
n→∞ sup

g∈G

∣∣∣∣
∫

g(x)Pn(dx)−
∫

g(x)P(dx)

∣∣∣∣ = 0 a.s.

Proof Dehardt (1971) provided a sufficient condition for the uniform SLLN. Thus, it
is sufficient to prove that for all ε > 0, there exists a finite class of functions Gε such
that, for each g ∈ G, there are ġ and ḡ in Gε with ġ ≤ g ≤ ḡ and

∫
ḡ(x)P(dx) −∫

ġ(x)P(x) < ε.

Choose an arbitrary ε > 0. Let Sp×q(
√

q) := {X ∈ R
p×q | ‖X‖F = √

q}. We will
denote by Dδ1 the finite set on R

q satisfying the condition that, for all f ∈ Bq(M),
there exists g ∈ Dδ1 such that ‖ f − g‖ < δ1. Similarly, we will denote by Ap×q,δ2

the finite set on Sp×q(
√

q) satisfying the condition that, for all A ∈ Sp×q(
√

q), there
exists B ∈ Ap×q,δ2 such that ‖A−B‖F < δ2. Let Rk,δ1 := {F ∈ R∗

k(M) | F ⊂ Dδ1}.
Take Gε as the finite class of functions of the form

min
f ∈F∗

ψ(‖AT∗ x − f ‖ + δ1 + δ2‖x‖) or min
f ∈F∗

ψ(‖AT∗ x − f ‖ − δ1 − δ2‖x‖),

where (F∗, A∗) takes all values over Rk,δ1 × Ap×q,δ2 and ψ(r) is defined as zero for
all negative r < 0.

For any F = { f 1, . . . , f k} ∈ R∗
k(M), there exists F∗ = { f ∗

1, . . . , f ∗
k} ∈ Rk,δ1

with ‖ f i − f ∗
i ‖ < δ1 for each i . In addition, since O(p×q) ⊂⋃A∗∈Ap×q,δ2

{A | ‖A−
A∗‖F < δ2}, for any A ∈ O(p ×q) there exists A∗ ∈ Ap×q,δ2 with ‖A − A∗‖F < δ2.
Corresponding to each g(F,A) ∈ G, choose

ḡ(F,A)(x) := min
f ∈F∗

ψ
(∥∥AT∗ x − f

∥∥+ δ1 + δ2‖x‖)

and

ġ(F,A)(x) := min
f ∈F∗

ψ
(∥∥AT∗ x − f

∥∥− δ1 − δ2‖x‖).

Since ψ is a monotone function and

∥∥AT∗ x − f ∗
j

∥∥− δ1 − δ2‖x‖ ≤ ∥∥AT x − f j

∥∥ ≤ ∥∥AT∗ x − f ∗
j

∥∥+ δ1 + δ2‖x‖

for each i and each x ∈ R
p, we have ġ(F,A) ≤ g(F,A) ≤ ḡ(F,A).

Choosing R > 0 to be greater than (M + δ1)/
√

q (or (M + δ1)/(
√

q + δ2)), we
obtain

∫ [
ḡ(F,A)(x)− ġ(F,A)(x)

]
P(dx)

≤
∫ k∑

i=1

[
ψ
(∥∥AT∗ x − f ∗

i

∥∥+ δ1 + δ2‖x‖)− ψ
(∥∥AT∗ x − f ∗

i

∥∥− δ1 − δ2‖x‖)]P(dx)
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Strong consistency of factorial K -means clustering 343

≤ k sup
‖x‖≤R

sup
f ∈Bq (M)

sup
A∈Sp×q (

√
q)

[
ψ
(∥∥AT x − f

∥∥+ δ1 + δ2‖x‖)

− ψ
(∥∥AT x − f

∥∥− δ1 − δ2‖x‖)]+ 2kλm
∫

‖x‖≥R
ψ(‖x‖)P(dx),

where m ∈ N is chosen to satisfy the requirement that
√

q + δ2 ≤ 2m−1. The second
term in the last bound of the inequality directly above can be less than ε/2 by choosing
R to be sufficiently large. Note that ψ is uniformly continuous on a bounded set.
The first term can be less than ε/2 by choosing δ1, δ2 > 0 to be sufficiently small.
Therefore, the sufficient condition of the uniform SLLN for G is satisfied, and the
proof is complete. ��

Lemma 2 Let M be an arbitrary positive number. Suppose that
∫
ψ(‖x‖)P(dx) <

∞. Then, �(·, P) is continuous on �∗
k(M).

Proof This lemma can be proven in a similar manner as the proof of Lemma 1. If
(F, A), (G, B) ∈ �∗

k(M) is chosen to satisfy dH (F,G) < δ1 and ‖A − B‖F < δ2,
then for each g ∈ G there exists f (g) ∈ F such that ‖g − f (g)‖ < δ1. Choosing R
to be larger than M + δ1, we obtain

�(F, A, P)−�(G, B, P)

=
∫ [

min
f ∈F

ψ
(∥∥AT x − f

∥∥)− min
g∈G

ψ
(∥∥BT x − g

∥∥)
]

P(dx)

≤
∫

max
g∈G

[
ψ
(∥∥AT x − f (g)

∥∥)− ψ
(∥∥BT x − g

∥∥)
]

P(dx)

≤
∫ ∑

g∈G

[
ψ
(∥∥BT x − g

∥∥+ δ1 + δ2‖x‖)− ψ
(∥∥BT x − g

∥∥)
]

P(dx)

≤ k sup
‖x‖≤R

max
g∈G

[
ψ
(∥∥BT x − g

∥∥+ δ1 + δ2‖x‖)− ψ
(∥∥BT x − g

∥∥)
]

+ 2
∑

g∈G

∫

‖x‖≥R
ψ
(∥∥BT x − g

∥∥+ δ1 + δ2‖x‖)P(dx)

≤ k sup
‖x‖≤R

max
g∈G

[
ψ
(∥∥BT x − g

∥∥+ δ1 + δ2‖x‖)− ψ
(∥∥BT x − g

∥∥)
]

+ 2kλm
∫

‖x‖≥R
ψ(‖x‖)P(dx), (2)

where m ∈ N is chosen to satisfy the condition that 2 + δ2 ≤ 2m . By choosing
R to be sufficiently large and δ1, δ2 > 0 to be sufficiently small, the last bound in
the inequality (2) can be less than ε. Since for each f ∈ F there exists g( f ) ∈ G
such that ‖g − g( f )‖ < δ1, the other inequality needed for continuity is obtained by
interchanging (F, A) and (G, B) in the inequality (2). ��
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5 Consistency theorem

5.1 Existence of population global optimizers

Our purpose is to prove that limn→∞ d(θ̂n,�
′) = 0 a.s. under some regularity con-

ditions. However, there is a possibility that �′ is empty. Therefore, first, we provide
sufficient conditions for the existence of population global optimizers.

Proposition 1 Suppose that
∫
ψ(‖x‖)P(dx) < ∞ and that m j (P) > mk(P) for

j = 1, 2, . . . , k − 1. Then, �′ 	= ∅. Furthermore, there exists M > 0 such that
F ⊂ Bq(5M) for all (F, A) ∈ �′.

Proof See Appendix 8. ��
Under the assumption of Proposition 1, we can prove that �(·, P) ensures the

identification condition, which is a requirement of the consistency theorem.

Corollary 1 Suppose that
∫
ψ(‖x‖)P(dx) < ∞ and that m j (P) > mk(P) for

j = 1, 2, . . . , k − 1. Then, there exists M0 > 0 such that for each M > M0

inf
θ∈�∗

ε (M)
�(θ, P) > inf

θ∈�′�(θ, P) for all ε > 0,

where �∗
ε (M) := {θ ∈ �∗

k(M) | d(θ,�′) ≥ ε}.
Proof See Appendix 8. ��

5.2 Strong consistency of FKM clustering

If the parameter space is restricted to �∗
k(M) ⊂ �k , we easily obtain the strong

consistency of FKM clustering. Since �∗
k(M) is compact, we have �∗ 	= ∅ and the

identification condition:

inf
θ∈�∗

ε (M)
�(θ, P) > inf

θ∈�∗�(θ, P) for all ε > 0

where �∗
ε (M) := {θ ∈ �∗

k(M) | d(θ,�∗) ≥ ε}.
Proposition 2 Let M be an arbitrary positive number. Suppose that

∫
ψ(‖x‖)P(dx)<

∞. Then,

lim
n→∞ d

(
θ̂∗

n ,�
∗) = 0 a.s., and lim

n→∞ m∗
k(Pn | M) = m∗

k(P | M) a.s.

Proof From Lemma 1 and Lemma 2, we already obtain the uniform SLLN and the
continuity of �(·, P) on �∗

k(M). Thus, the proof of this proposition is given by the
similar argument of the last part of the proof of the consistency theorem. ��
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Strong consistency of factorial K -means clustering 345

This fact is very important in the proof of Lemma 4. Using this fact, the proof of the
main theorem does not necessarily take an inductive form with the number of cluster
k.

We cannot assume the uniqueness condition since FKM clustering has rotational
indeterminacy. In this study, as Terada (2014) did previously, we assume that m j (P) >
mk(P) for j = 1, . . . , k −1. This condition implies that an optimal set F(k) of cluster
centers has k distinct elements. When we do not use the fact in Proposition 2, the
proof of the main theorem takes an inductive form with the number of cluster k as
with Pollard (1981) and becomes somewhat more complicated. The following theorem
provides sufficient conditions for the strong consistency of FKM clustering.

Theorem 1 Suppose that
∫
ψ(‖x‖)P(dx) < ∞ and that m j (P) > mk(P) for j =

1, . . . , k − 1. Then, �′ 	= ∅,

lim
n→∞ d(θ̂n,�

′) = 0 a.s., and lim
n→∞ mk(Pn) = mk(P) a.s.

Proof See Sect. 6. ��
Note that if there exists a specific A such that �(A, F, P) = 0 for all F ; that is,

the population distribution, P , is degenerate and the number of dimensions with the
support of P is given as p − q, m j (P) > mk(P) for j = 1, . . . , k − 1 is not satisfied.

Based on the consistency of FKM clustering and RKM clustering, we can compare
these methods more clearly. In the following example, we show that there exist some
cases in which RKM clustering becomes equivalent to FKM clustering as n goes to
infinity.

Example 2 (Asymptotic equivalence of FKM clustering and RKM clustering)
Let E[X] = 0, Var(Xs) = σ 2 and Cov(Xs, Xt ) = 0 (s 	= t). For A ∈ O(p × q),

write B = (bst )p×p := AAT . Then, we have

∫ ∥∥AT x
∥∥2 P(dx) =

∫
xT AAT x P(dx) =

∫ p∑

s=1

p∑

t=1

bst xs xt P(dx)

=
p∑

s=1

bss

∫
x2

s P(dx)+ 2
p−1∑

s=1

p∑

t=s+1

bst

∫
xs xt P(dx)

=
p∑

s=1

( q∑

t=1

a2
st

)
σ 2 = σ 2tr(AT A) = qσ 2.

Thus, the objective function of RKM clustering can be decomposed into the following
two terms:

∫
min
f ∈F

‖x − A f ‖2 P(dx)

=
∫ ∥∥x − AAT x

∥∥2 P(dx)+
∫

min
f ∈F

∥∥AT x − f
∥∥2 P(dx)
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Fig. 4 Boxplots of �(θ̂FKM, Pn) and �(θ̂RKM, Pn) with the 100 data sets for each sample size

=
∫

‖x‖2 P(dx)−
∫ ∥∥AT x

∥∥2 P(dx)+
∫

min
f ∈F

∥∥AT x − f
∥∥2 P(dx)

= (p − q)σ 2 +
∫

min
f ∈F

∥∥AT x − f
∥∥2 P(dx).

Note that the first term is constant and the second term is the objective function
of FKM clustering. In this setting, the set of population global optimizers of RKM
clustering is same as that of FKM clustering. Let θ̂FKM := (F̂FKM, ÂFKM) and θ̂RKM
:= (F̂RKM, ÂRKM) denote the estimators of FKM and RKM clusterings, respectively.
Here, we set ψ(x) := x2. Both �(θ̂RKM, Pn) and �(θ̂FKM, Pn) converge to mk(P)
almost surely as n → ∞. Moreover, if the population global optimizers of FKM (or
RKM) clustering are unique up to a rotation, then as n → ∞,

Diff(ĈFKM, ĈRKM) :=
∑

f ∈ĈFKM

min
g∈ĈRKM

‖ f − g‖2 → 0 a.s.,

where ĈFKM := { ÂFKM f | f ∈ F̂FKM} and ĈRKM := { ÂRKM f | f ∈ F̂RKM}.
For example, let Z = [Z1, ..., Zn]T be the normalized data matrix of the data

matrix X in Example 1 with zero means and unit variances. Then we have E[Z] =
0, Var(Zs) = 1 and Cov(Zs, Zt ) = 0 (s 	= t). Here, we set p = 12 and generated
100 data sets for each sample size. We applied FKM and RKM clusterings with 100
random starts for these data sets. Figure 4 shows the boxplots of �(θ̂FKM, Pn) and
�(θ̂RKM, Pn)with the 100 data sets for each sample size. Figure 5 shows the boxplots
of Diff(ĈFKM, ĈRKM)with the 100 data sets for each sample size. These figures show
that RKM clustering becomes equivalent to FKM clustering as n goes to infinity in
this setting.
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Fig. 5 Boxplots of Diff(ĈFKM, ĈRKM) with the 100 data sets for each sample size

5.3 Large deviation inequality for FKM clustering

From Corollary 29.1 in Devroye et al. (1996), if the support of the population dis-
tribution is bounded, we have a non-asymptotic large deviation inequality. Before
stating this theorem, we introduce some notations which are used in the proof
of the theorem. In this subsection, we assume that the support of the population
distribution is bounded; that is, P(‖X1‖2 ≤ B) = 1 for some B > 0. Let
FKM(k) := { f (x) = minc∈C ‖x − c‖2 | C ⊂ Bp(

√
B), #(C) ≤ k}, FFKM(k, q) :=

{ f (x) = min f ∈F ‖AT x − f ‖2 | (F, A) ∈ �∗
k(

√
B)} and FRKM(k, q) := { f (x) =

min f ∈F ‖x − A f ‖2 | (F, A) ∈ �∗
k(

√
B)}. Moreover, for every f ∈ FKM(k) and

t ∈ [0, 4B], the set A(KM)
f,t ⊂ R

p is defined as A(KM)
f,t := {x | f (x) > t}. and

define F̂KM := {A(KM)
f,t | f ∈ FKM(k, q), t ∈ [0, 4B]}. Similarly, we define A(FKM)

f,t ,

A(RKM)
f,t , F̂FKM and F̂RKM. Figure 6 shows sets A(KM)

f,t , A(FKM)
f,t and A(RKM)

f,t with
k = 3, p = 2 and q = 1. From Fig. 6, we can clearly see the differences between
k-means, FKM and RKM clusterings.

Theorem 2 Letψ(x) := x2 and X1, . . . , Xn ∈ R
p be i.i.d. random vectors such that

P(‖X1‖2 ≤ B) = 1 for some 0 < B < ∞. Then, for all q < p and all ε > 0,

P
(
�
(
θ̂n, P
)− mk(P) > ε

)
≤ P

⎛

⎝2 sup
θ∈�∗

k (
√

B)

|�(θ, Pn)−�(θ, P)| > ε

⎞

⎠

≤ 8n8.741k(p−q+1)(q+1) exp

(
− nε2

2048B2

)
.
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(a) (b) (c)

Fig. 6 Grey areas in three figures show the sets A(KM)
f,t , A(RKM)

f,t and A(FKM)
f,t with k = 3, p = 2 and

q = 1, respectively

Proof Since P(‖X1‖2 ≤ B) = 1, we clearly have mk(Pn) = mk(Pn | √
B) a.s. for

all n ∈ N and mk(P) = mk(P | √
B). Let θ∗ ∈ �∗, that is,�(θ∗, P) = mk

(
P | √

B
)
.

Then, we have

�
(
θ̂n, P
)− mk(P | √

B)

= �
(
θ̂n, P
)−�

(
θ̂n, Pn

)+�
(
θ̂n, Pn

)−�(θ∗, Pn)+�(θ∗, Pn)−�(θ∗, P)

≤ �
(
θ̂n, P
)−�

(
θ̂n, Pn

)+�(θ∗, Pn)−�(θ∗, P)

≤ 2 sup
θ∈�∗

k (
√

B)

|�(θ, Pn)−�(θ, P)|.

Thus, we obtain

P
(
�
(
θ̂n, P
)− mk(P) > ε

)
≤ P

⎛

⎝2 sup
θ∈�∗

k (
√

B)

|�(θ, Pn)−�(θ, P)| > ε

⎞

⎠ .

From Corollary 29.1 in Devroye et al. (1996), if we find an upper bound of the shutter
coefficient s(F̂FKM, n), then we obtain an uniform deviation inequality for FKM clus-
tering. Thus, we derive a upper bound of s(F̂FKM, n). Let F̂c

FKM := {A(FKM)
f,t

c |
A f,t ∈ F̂FKM}. From Theorem 13.5 (ii) in Devroye et al. (1996), we have that
s(F̂FKM, n) = s(F̂c

FKM, n). For every f (x) := min f ∈F ‖AT x − f ‖2 ∈ F̂FKM, Hl

denotes the (p − q)-dimensional affine subspace which contains A f l and is orthog-
onal to the q-dimensional subspace spanned by the k cluster centers A f 1, . . . , A f k .
Then, a set A ∈ F̂c

FKM is the union of the following k hyperbands

B(Hl , t) := {x ∈ R
p | dO(x,Hl) ≤ t} (l = 1, . . . , k),

where dO(x,Hl) is the orthogonal distance between x and Hl . We have

F̂c
FKM ⊂

{
k⋃

l=1

Bl | B1, . . . ,Bk ∈ C p
(p−q)

}
,
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where C p
(p−q) := {B(H, t) | H ⊂ R

p is a (p − q)-dimensional affine subspace and
t ≥ 0}. By Theorem 13.5 (iv) in Devroye et al. (1996),

s
(F̂FKM, n

) = s
(F̂c

FKM, n
) ≤ s
(C p
(p−q), n

)k
.

Akama et al. (2010) provides the lower and upper bounds of the VC dimension of
C p
(p−q):

(p − q + 1)(q + 1) ≤ VCdim
(C p
(p−q)

) ≤ 8.741(p − q + 1)(q + 1).

Since VCdim(C p
(p−q)) > 2 for all q < p, by Theorem 13.3 in Devroye et al. (1996),

we have

s
(C p
(p−q), n

) ≤ nVCdim
(
C p
(p−q)

)
≤ n8.741(p−q+1)(q+1)

and

s
(F̂FKM, n

) ≤ s
(C p
(p−q), n

)k ≤ n8.741k(p−q+1)(q+1).

Since 0 ≤ f (X1) ≤ 4B a.s. for all f ∈ FFKM(k, q), by Corollary 29.1 in Devroye
et al. (1996) we obtain

P
(
�
(
θ̂n, P
)− mk(P) > ε

)
≤ P

⎛

⎝2 sup
θ∈�∗

k (
√

B)

|�(θ, Pn)−�(θ, P)| > ε

⎞

⎠

≤ 8s
(F̂FKM, n

)
exp

(
− nε2

2048B2

)

≤ 8n8.741k(p−q+1)(q+1) exp

(
− nε2

2048B2

)
.

��

6 Proof of the consistency theorem

Since the theorem deals with almost sure convergence, there might exist null subsets
of � on which the strong consistency does not hold. Therefore, throughout the proof,
�1 denotes the set obtained by avoiding a proper null set from �.

First, we prove that there exists M > 0 such that, for sufficiently large n, at least
one center of the estimator Fn ∈ Rk is contained in Bq(M).

Lemma 3 Suppose that
∫
ψ(‖x‖)P(dx) < ∞. Then, there exists M > 0 such that

P

( ∞⋃

n=1

∞⋂

m=n

{ω | ∀(Fm, Am) ∈ �′
m; Fm(ω) ∩ Bq(M) 	= ∅}

)
= 1.
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Proof Choose an r > 0 to satisfy the condition that P(Bp(r)) > 0. Let us take M to
be sufficiently large to ensure that M > r and

ψ(M − r)P(Bp(r)) >
∫
ψ(‖x‖)P(dx). (3)

Note that mk(Pn) ≤ �(F, A, Pn) for all F ∈ Rk and all A ∈ O(p × q). Let F0 be
the singleton that consists of only the origin. By the SLLN, we obtain

�(F0, A, Pn) =
∫
ψ
(∥∥AT x

∥∥)Pn(dx) →
∫
ψ
(∥∥AT x

∥∥)P(dx) a.s.

for all A ∈ O(p × q). Since ‖AT x‖ ≤ ‖x‖, we have

∫
ψ
(∥∥AT x

∥∥)P(dx) ≤
∫
ψ(‖x‖)P(dx)

for all A ∈ O(p × q).
Let �′ := {ω ∈ �1 | ∀n ∈ N; ∃m ≥ n; Fm(ω) ∩ Bq(M) = ∅}. For all

ω ∈ �′, there exists a subsequence {nl}l∈N such that Fnl (ω) ∩ Bq(M) = ∅. Since
‖AT x − f ‖ ≥ ‖ f ‖ − ‖x‖ > M − r for all x ∈ Bp(r), all f 	∈ Bq(M), and all
A ∈ O(p × q), we have

lim sup
l
�(Fnl , Anl , Pnl ) ≥ lim sup

l

1

nl

∑

i∈{i |X i ∈Bp(r)}
min
f ∈Fnl

ψ
(∥∥AT

nl
X i − f

∥∥)

≥ lim sup
l

1

nl

∑

i∈{i |X i ∈Bp(r)}
ψ(M − r)

≥ ψ(M − r)P(Bp(r)).

From the assumptions made on the values of M , we have

lim sup
l
�(Fnl , Anl , Pnl ) >

∫
ψ(‖x‖)P(dx),

which contradicts mk(Pn) ≤ �(F, A, Pn) for all F ∈ Rk and all A ∈ O(p × q).
Therefore, we obtain P(�′) = 0; that is,

P

( ∞⋃

n=1

∞⋂

m=n

{ω | ∀(Fm, Am) ∈ �′
m; Fm(ω) ∩ Bq(M) 	= ∅}

)
= 1.

��
By Lemma 3, without loss of generality, we can assume that each Fn contains at least
one element of Bq(M) when n is sufficiently large. The next lemma indicates that
there exists M > 0 such that Bq(5M) contains all the estimators of centers when n is
sufficiently large.
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Lemma 4 Under the assumption of the theorem, there exists M > 0 such that

P

( ∞⋃

n=1

∞⋂

m=n

{ω | ∀(Fm, Am) ∈ �′
m; Fm(ω) ⊂ Bq(5M)}

)
= 1.

Proof Choose ε > 0 sufficiently small such that ε + mk(P) < mk−1(P). Let us take
M > 0 to satisfy the inequality (3) and

λ

∫

‖x‖≥2M
ψ(‖x‖)P(dx) < ε. (4)

Suppose that Fn contains at least one center outside Bq(5M). By Lemma 3, when
n is sufficiently large, Fn must contain at least one center in Bq(M), say f 1 ∈ Bq(M).
Since {x | ‖AT x‖ ≥ 2M} ⊂ {x | ‖x‖ ≥ 2M}, we have

∫

‖AT x‖≥2M
ψ
(∥∥AT x − f 1

∥∥)Pn(dx) ≤
∫

‖x‖≥2M
ψ
(∥∥AT x − f 1

∥∥)Pn(dx)

≤
∫

‖x‖≥2M
ψ(‖x‖ + ‖ f 1‖)Pn(dx)

≤ λ

∫

‖x‖≥2M
ψ(‖x‖)Pn(dx)

for all A ∈ O(p × q). Let F∗
n denote the set obtained by deleting all centers lying

outside Bq(5M) from Fn . Since (F∗
n , A) ∈ �∗

k−1(5M) for all A ∈ O(p×q), we have

�
(
F∗

n , A, Pn
) ≥ m∗

k−1(Pn | 5M) ≥ mk−1(Pn)

for all A ∈ O(p × q). For each x ∈ Bp(2M) and each A ∈ O(p × q), we have

‖AT x − f ‖ ≥ ‖ f ‖ − ‖x‖ > 3M for all f /∈ Bq(5M)

and

∥∥AT x − g
∥∥ ≤ ‖x‖ + ‖g‖ < 3M for all g ∈ Bq(5M).

Thus, we obtain

∫

‖x‖<2M
min
f ∈Fn

ψ
(∥∥AT x − f

∥∥)Pn(dx) =
∫

‖x‖<2M
min
f ∈F∗

n

ψ(‖AT x − f ‖)Pn(dx)

for all A ∈ O(p × q).
Let �∗ := {ω ∈ �1 | ∀n ∈ N; ∃m ≥ n; ∃(Fm, Am) ∈ �′

m; Fm(ω) 	⊂ Bq(5M)}.
By the axiom of choice, for an arbitrary ω ∈ �∗, there exists a subsequence {nl}l∈N
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such that Fm(ω) 	⊂ Bq(5M). By Proposition 2, we have

lim
n→∞ m∗

k−1(Pn | 5M) = m∗
k−1(P | 5M) a.s.

For any (F, A) ∈ �k , we have

mk−1(P) ≤ m∗
k−1(P | 5M) ≤ lim inf

l
�
(
F∗

nl
, An, Pn

) ≤ lim sup
l
�(F∗

nl
, Anl , Pnl )

≤ lim sup
n

[∫

‖x‖<2M
min
f ∈Fn

ψ
(∥∥AT

n x − f
∥∥)Pn(dx)

+
∫

‖x‖≥2M
ψ
(∥∥AT

n x − f 1

∥∥)Pn(dx)
]

≤ lim sup
n

[
�(Fn, An, Pn)+ λ

∫

‖x‖≥2M
ψ(‖x‖)Pn(dx)

]

≤ lim sup
n
�(F, A, Pn)+ λ

∫

‖x‖≥2M
ψ(‖x‖)Pn(dx). (5)

Choose (F̄, Ā) ∈ �′ as (F, A) ∈ �k in the last bound of the above inequality. By
the assumption of M > 0 and the SLLN, for a sufficiently large n, the last bound of
the inequality (5) can be less than mk(P)+ ε, which is a contradiction. Therefore, we
obtain

P

( ∞⋃

n=1

∞⋂

m=n

{ω | ∀(Fm, Am) ∈ �′
m; Fm(ω) ⊂ Bq(5M)}

)
= 1.

��
Hereafter, M denotes a positive value satisfying inequalities (3) and (4). According

to Lemma 4, for all (Fn, An) ∈ �′
n , Fn ∈ R∗

k(5M) when n is sufficiently large. Since
R∗

k(5M) is compact, �∗
k(5M) is also compact.

By the uniform SLLN, the continuity of �(·, ·, P) on �∗
k(5M) and Lemma 4, the

conclusion of the theorem for the cluster number k can be proved in the same manner
as was done for the last part of the proof of the consistency theorem in Terada (2014).

Choose θ∗ ∈ �∗
k(5M) such that d(θ∗,�′) > 0. Write

θ̃n =
{
θ̂n if θ̂n ∈ �∗

k(5M)

θ∗ if θ̂n /∈ �∗
k(5M)

.

By Lemma 4, we have θ̃n = θ̂n for a sufficiently large n. Since �(θ̂n, Pn) =
infθ∈�k �(θ, Pn), we have

lim sup
n

[
�
(
θ̃n, Pn

)− inf
θ∈�′�(θ, Pn)

]
≤ 0 a.s.
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Since lim supn ψ(θ0, Pn) = mk(P) for any θ0 ∈ �′,

lim sup
n

inf
θ∈�′�(θ, Pn) ≤ lim sup

n
�(θ0, Pn) = mk(P) a.s.

Hence, we have

0 ≥ lim sup
n
�
(
θ̃n, Pn

)− lim sup
n

inf
θ∈�′�(θ, Pn)

≥ lim sup
n
�
(
θ̃n, Pn

)− mk(P) a.s.

Let �∗
ε (5M) := {θ ∈ �∗

k(5M) | d(θ,�′) ≥ ε}. By the uniform SLLN applied to
�∗

k(5M), we obtain

lim inf
n

inf
θ∈�∗

ε (5M)
�(θ, Pn) ≥ inf

θ∈�∗
ε (5M)

�(θ, P) a.s.

for all ε > 0. Fix an arbitrary ε > 0. By Corollary 1,

lim inf
n

inf
θ∈�∗

ε (5M)
�(θ, Pn) > lim sup

n
�
(
θ̃n, Pn

)
a.s.

Thus, for any ω ∈ �1 there exists n0 ∈ N such that

inf
θ∈�∗

ε (5M)
�(θ, Pn) > �

(
θ̃n, Pn

)

for all n ≥ n0. Conversely, suppose that d
(
θ̃n,�

′) ≥ ε for some n ≥ n0. Then, we
have

inf
θ∈�∗

ε (5M)
�(θ, Pn) = �

(
θ̃n, Pn

)
,

which is a contradiction. Thus, we obtain

lim
n→∞ d

(
θ̃n,�

′) = 0 a.s.

By θ̃n = θ̂n for a sufficiently large n, it follows that

lim
n→∞ d

(
θ̂n,�

′) = 0 a.s.

Moreover, by the continuity of �(·, P) on �∗
k(5M), we obtain

lim
n→∞ mk(Pn) = mk(P) a.s.
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7 Conclusion

In this study, we proved the strong consistency of FKM clustering under i.i.d. sampling
using the frameworks of the proof for the consistency of k-means clustering (Pollard
1981) and the consistency of RKM clustering (Terada 2014). Based on these facts,
we showed that there exists some cases in which FKM and RKM clusterings become
equivalent as n goes to infinity. The compactness of the parameter space is not a
requirement for the sufficient condition of the strong consistency for FKM clustering,
as well as k-means clustering and RKM clustering. As with k-means clustering and
RKM clustering, the proof of the consistency theorem is based on Blum–DeHardt uni-
form SLLN (Peskir 2000). Thus, for the consistency of FKM clustering, stationarity
and ergodicity are only required and the i.i.d. condition is also not necessary. We also
derived the sufficient condition for ensuring the existence of population global opti-
mizers of FKM clustering. Moreover, we provided a rough large deviation inequality
for FKM clustering.

Finally, as with Timmerman et al. (2010), we note that RKM clustering works well
and FKM clustering does not work when the subspace containing the cluster structure
has more variability than the orthogonal subspace. On the other hand, FKM clustering
works well and RKM clustering does not work when the data have much variability in
directions orthogonal to the subspace containing the cluster structure. Moreover, we
mention that, since for all k ∈ N and all q < p

inf
(F,A)∈�k

∫
min
f ∈F

∥∥AT x − f
∥∥2 Pn(dx) ≤ inf

A∈O(p×q)

∫ ∥∥AT x
∥∥2 Pn(dx),

FKM clustering does not work for a data matrix which is rank deficient or nearly rank
deficient.

8 Appendix: Existence of �′

Here, we prove the existence of population global optimizers.

Lemma 5 Suppose that
∫
ψ(‖x‖)P(dx) < ∞. There exists M > 0 such that

inf
A∈O(p×q)

�(F ′, A, P) > inf
θ∈�∗

k (M)
�(θ, P)

for all F ′ ∈ Rk satisfying F ′ ∩ Bq(M) = ∅.

Proof Conversely, suppose that, for all M > 0, there exists F ′ ∈ Rk such that
F ′ ∩ Bq(M) = ∅ and

inf
A∈O(p×q)

�(F ′, A, P) ≤ inf
θ∈�∗

k (M)
�(θ, P).
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Choose r > 0 to satisfy that the ball Bp(r) has a positive P measure; that is
P(Bp(r)) > 0. Let M be sufficiently large such that M > r and that it satisfies
inequality (3). Since ‖AT x − f ‖ ≥ ‖ f ‖ − ‖AT x‖ > M − r for all f /∈ Bq(M) and
all x ∈ Bp(r), we have

∫
ψ(‖x‖)P(x) ≥ inf

θ∈�∗
k (M)

�(θ, P) ≥ inf
A∈O(p×q)

�(F ′, A, P)

≥ inf
A∈O(p×q)

∫

x∈Bp(r)
min
f ∈F ′ ψ

(∥∥AT x − f
∥∥)P(dx)

≥ φ(M − r)P(Bp(r)).

This is a contradiction. ��
Lemma 6 Suppose that

∫
ψ(‖x‖)P(dx) < ∞, and for j = 2, 3, . . . , k−1, m j (P) >

mk(P). There exists M > 0 such that, for all F ′ ∈ Rk satisfying F ′ 	⊂ Bq(5M),

inf
A∈O(p×q)

�(F ′, A, P) > inf
θ∈�∗

k (5M)
�(θ, P).

Proof Choose M > 0 to be sufficiently large to satisfy inequalities (3) and (4). Suppose
that, for all M > 0, there exists F ′ ∈ Rk satisfying F ′ 	⊂ Bq(5M) and

inf
A∈O(p×q)

�(F ′, A, P) ≤ inf
θ∈�∗

k (5M)
�(θ, P).

Let R′
k be the set of such F ′ and then

mk(P) = inf
θ∈R′

k×O(p×q)
�(θ, P).

According to Lemma 5, each F ′ ∈ R′
k includes at least one point on Bq(M), say f 1.

For all x satisfying ‖x‖ < 2M and all A ∈ O(p × q), we obtain

∥∥AT x − f
∥∥ > 3M for all f 	∈ Bq(5M)

and

∥∥AT x − g
∥∥ < 3M for all g ∈ Bq(M).

Thus,

∫

‖x‖<2M
min
f ∈F ′ ψ

(∥∥AT x − f
∥∥)P(dx) =

∫

‖x‖<2M
min
f ∈F∗ ψ

(∥∥AT x − f
∥∥)P(dx),

where the set F∗ is obtained by deleting all points outside Bq(5M) from F ′. Since∫
‖x‖≥2M ψ(‖AT x − f 1‖)P(dx) ≤ λ

∫
‖x‖≥2M ψ(‖x‖)P(dx), we obtain that
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�(F ′
k, A, P)+ λ

∫

‖x‖≥2M
ψ(‖x‖)P(dx)

≥
∫

‖x‖<2M
min
f ∈F∗ ψ

(∥∥AT x − f
∥∥)P(dx)+

∫

‖x‖≥2M
ψ
(∥∥AT x − f 1

∥∥)P(dx)

≥ �(F∗, A, P) ≥ mk−1(P)

for all A ∈ O(p ×q). It follows that mk(P)+ε ≤ mk−1(P), which is a contradiction.
��

Let us consider M > 0 to be sufficiently large to satisfy inequalities (3) and (4).
Write �k := R∗

k(5M) × O(p × q). Proposition 1 and Corollary 1 can be proved in
the same way as Proposition 1 and Corollary 1 in Terada (2014).

Proof of Proposition 1 According to Lemma 6,

inf
θ∈�k

�(θ, P) = inf
θ∈�k

�(θ, P).

Moreover, for any θ ∈ (Rk \ R∗
k(5M)) × O(p × q), mk(P) < �(θ, P). Thus, we

only have to prove �′ 	= ∅.
Let C := {�(θ, P) | θ ∈ �k} and then mk(P) = inf C . By the definition of the

infimum, for all x > mk(P), there exists c ∈ C such that c < x . By the axiom of choice,
we can obtain a sequence {cn}n∈N such that cn → mk(P) as n → ∞. Using the axiom
of choice again, we can obtain a sequence {θn}n∈N such that �(θn, P) → mk(P) as
n → ∞.

By the compactness of �k , there exists a convergent subsequence of {θn}n∈N, say
{θni }i∈N. Let θ∗ ∈ �k denote the limit of subsequence {θni }i∈N, i.e., θmi → θ∗ as
i → ∞. Since �(·, P) is continuous on �k , �(θ∗, P) = mk(P). Hence, we obtain
�′ 	= ∅. ��

Proof of Corollary 1 Let �ε := {θk ∈ �k | �(θk, P) = mk(P)}. Conversely,
suppose that there exists ε > 0 such that infθ∈�ε �(θ, P) = infθ∈�′ �(θ, P).
By the definition of the infimum, there exists a sequence {θn}n∈N on �ε such that
�(θn, P) → mk(P) as n → ∞. By compactness of �k , there exists a convergent
subsequence of {θn}n∈N, say {θmi }i∈N. Let θ∗ ∈ �k denote the limit of subsequence
{θmi }i∈N. Since θmi → θ∗ as i → ∞, we have d(θmi , θ∗) < ε for a sufficiently large
i , which is a contradiction. ��
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