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Abstract Large covariance or correlation matrix is frequently assumed to be sparse in
that a number of the off-diagonal elements of the matrix are zero. This paper focuses
on estimating the sparsity of a large population covariance matrix using a sample
correlation matrix under multivariate normal assumptions. We show that sparsity of a
population covariance matrix can be well estimated by thresholding the sample cor-
relation matrix. We then propose an empirical estimator for the sparsity and show
that it is closely related to the thresholding methods. Upper bounds for the estimation
error of the empirical estimator are given under mild conditions. Simulation shows
that the empirical estimator can have smaller mean absolute errors than its main com-
petitors. Furthermore, when the dimension of the covariance matrix is very large, we
propose a generalized empirical estimator using simple random sampling. It is shown
that the generalized empirical estimator can still estimate the sparsity well while the
computation complexity can be greatly reduced.

Keywords Adaptive thresholding · Large correlation matrix · Large covariance
matrix · Simple random sampling · Sparsity · Thresholding

1 Introduction

Large dimensional sparse covariance matrix estimation is frequently encountered in
many fields during the past decades. The number of variables p may be much larger
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212 B. Jiang

than the sample size n and the population matrix is usually assumed to be sparse in
that a number of the off-diagonal elements are zero. In this paper, sparsity of a matrix
is defined as the proportion of zero in the off-diagonal elements of the matrix as p
tends to infinity. Although sparsity assumptions are frequently used in many papers,
the problem of estimating the sparsity of a covariance matrix is seldom studied.

Let X1, . . . , Xn be n iid p dimensional multivariate normal random vectors with
mean 0 and covariance matrix Σp×p = (σi j )p×p. The sample covariance matrix is
given by

S = (si j )p×p = 1

n

n∑

i=1

Xi X T
i . (1)

Given the sample covariance matrix, one popular approach in estimating a sparse
Σ is to use thresholded covariance matrices as estimators. More specifically, a thresh-
olding estimator Σ̂ = (σ̂i j )p×p is defined by:

σ̂i j = σ̂ j i = Ti j (si j ),

where Ti j (s), 1 ≤ i < j ≤ p, are general thresholding functions. For example Bickel
and Levina (2008) and El Karoui (2008) considered hard thresholding functions
Ti j (s) = sI(|s| > t), 1 ≤ i < j ≤ p, where I(·) is the indicator function. The
thresholding parameter t controls the sparsity of the estimator Σ̂ . Rothman et al.
(2009) considered more general thresholding functions possessing shrinkage proper-
ties. Overall, the threshold in Bickel and Levina (2008) or Rothman et al. (2009) is
a universal-threshold in that a same thresholding parameter t is used for every off-
diagonal elements in S. Lately, Cai and Liu (2011) proposed an adaptive thresholding
method which is applicable when the p elements in Xi are not homoscedastic. They
used different thresholding parameters for different si j depending on the variances
of si j . For example, considering hard thresholding, for any 1 ≤ i < j ≤ p, they set

Ti j (si j ) = si jI(|si j | > t θ̂1/2
i j ), where θ̂i j is an estimator of the variance of si j and t is a

thresholding parameter which determines the sparsity of the resulting estimator. Cross
validation methods were used for finding a data-dependent thresholding parameter t
in the above literatures.

Another popular approach in estimating a sparse covariance matrix is the penaliza-
tion method, where estimators are obtained by minimizing penalized loss functions;
see Rothman (2012) and the references cited therein. Similar to the thresholding
approach, sparsity of these estimators relies on the choice of penalization parame-
ters. These penalization parameters are also usually determined using cross validation
methods.

Although thresholding approach and penalization approach are able to obtain sparse
estimators for the covariance matrix, the resulting sparsity of the estimators may not
be close to the sparsity of the true population covariance matrix in finite sample esti-
mation. In fact, different loss functions used in determining thresholding parameters
or penalization parameters in cross validation may result in different sparsity. In addi-
tion, the sparsity of the population covariance matrix is assumed to be tending to one
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Estimating the sparsity of a covariance matrix 213

in some papers. Instead of estimating a sparse Σ , in this paper, we are trying to answer
a relatively basic question: how sparse is the population covariance matrix?

Let ω be the proportion of zero in the off-diagonal elements of the population
covariance matrix. A good estimator of ω can be used to check some sparsity assump-
tions. For example, we would know the assumption that ω tends to 1 is not appropriate
if the consistent estimator we obtain is not close to 1. Another possible application
of a good estimator of sparsity is in finding data-dependent thresholds in the thresh-
olding approach. We can choose the thresholding parameter such that the sparsity of
the thresholded sample covariance matrix equals the estimated sparsity. This way of
determining the thresholding parameter is computationally more efficient than cross
validation methods in Bickel and Levina (2008), Rothman et al. (2009) and Cai and
Liu (2011) especially when p is very large. Similarly, when thresholding approach is
applied to the sample correlation matrix in estimating the covariance structure as in
Jiang and Loh (2012), the thresholding parameter can be determined based on a good
estimator of ω.

Jiang and Loh (2012) proposed a method of moments estimator for ω. Their
assumptions are similar to those in this paper but the methodology is totally different.
In this paper, we propose an empirical estimator ω̂em(g) for ω. We show that under mild
conditions, E |ω̂em(g) − ω| = O{(log n/n)1/2 ∨ p−1/2}. Here a ∨ b = max(a, b) for
any constants a, b. Under multivariate normal assumptions, the rate in this upper bound
is better than the one given in Theorem 1 of Jiang and Loh (2012). In addition, when p
is very large, to further reduce the computation complexity, we propose a generalized
empirical estimator ω̂m

em(Sm, g) using simple random sampling. Let Sm be a random
subset generated by simple random sampling (without replacement) from the index set
{(i, j) : 1 ≤ i < j ≤ p} such that the cardinality ofSm equals m. From classical theory
in sampling (see for example Chap. 3 of Thompson 1997) we know that given Σ , the
proportion of zero elements in the set {σi j : (i, j) ∈ Sm} is an unbiased estimator of the
proportion of zero elements in the set {σi j : 1 ≤ i < j ≤ p}. Motivated by this, in Sect.
4 we propose a generalized empirical estimator ω̂m

em(Sm, g), which to some degree
is an empirical estimator of the sparsity of the set {σi j : (i, j) ∈ Sm}. We show that
under mild conditions, E |ω̂m

em(Sm, g)−ω| = O{(log n/n)1/2 ∨ (m ∧ p)−1/2}, where
a ∧ b = min(a, b) for any constants a, b. From this upper bound we know that the
generalized empirical estimator can still estimate ω very well while the computation
complexity can be largely reduced. Particularly, if we choose m � p, by comparing
the upper bounds we obtained for the empirical estimator ω̂em(g) and the generalized
empirical estimator ω̂m

em(Sm, g), we immediately have that the rates of the bounds for
both estimators are the same. On the other hand, when m � p, from the definition of
ω̂em(g) and ω̂m

em(Sm, g) as in (4) and (6), we know that the number of terms in the
summation of (4) is quadratic in p while the number of terms in the summation of (6)
is linear in p, which is computationally more efficient especially when p is large.

The rest of the paper is organized as follows. In Sect. 2, we show that consistent
estimators for the sparsity of the population correlation matrix can be obtained by
thresholding the sample correlation matrix. In addition, upper bounds under L1-loss are
established for some thresholding-based estimators. In Sect. 3, we propose an empirical
estimator ω̂em(g). We show that ω̂em(g) is closely related to the thresholding-based
estimators and possessing all the properties given in Sect. 2. In Sect. 4, we propose a
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generalized empirical estimator ω̂m
em(Sm, g) using simple random sampling. Section 5

provides some simulation studies with comparison to methods in Bickel and Levina
(2008), Rothman et al. (2009), Cai and Liu (2011) and Jiang and Loh (2012).

2 Estimating the sparsity by thresholding the population correlation matrix

Suppose X1, . . . , Xn are n independent and identically distributed p dimensional mul-
tivariate normal random vectors with mean 0 and covariance matrix Σp×p = (σi j )p×p.
Define the sample covariance matrix S as in (1). Denote the population correlation
matrix as Γ = (ρi j )p×p and the sample correlation matrix as R = (ri j )1≤i, j≤p where
ρi j = σi j/(σi iσ j j )

1/2, ri j = si j/(sii s j j )
1/2, 1 ≤ i, j ≤ p.

2.1 Assumptions on the prior

Suppose Γ has a prior distribution satisfying the following assumptions:

Assumption 1 For each 1 ≤ j < k ≤ p, the prior cumulative distribution function
of each ρ jk has the form

Fρ(x) = ωI(0 ≤ x ≤ 1) +
ν∑

i=1

ωiI(μi ≤ x ≤ 1) +
(

1 − ω −
ν∑

i=1

ωi

) ∫ x

−1
g(x)dx,

where ν is a nonnegative integer, ω,ω1, . . . , ων are positive constants satisfying
ω + ∑ν

i=1 ωi ≤ 1, μ1, . . . , μν are nonzero constants in (−1, 1) and g is an unknown
probability density function on (−1, 1) such that supρ∈(−1,1) g(ρ) < ∞. For simplic-
ity, we assume that 0 < ω < 1 and ν = 0. Results in this paper can be generalized to
the case that ν ≥ 1.

Assumption 2 Let Fi j = σ(ρi j ) denote the σ -field generated by ρi j . Define for all
1 ≤ i, j, s, t ≤ p,

α(ρi j , ρst ) = sup
A∈Fi j ,B∈Fst

|P(A ∩ B) − P(A)P(B)|.

Assume that, as p → ∞,

1/p4
∑

i, j,s,t :all distinct

α(ρi j , ρst ) → 0.

Assumption 3 For all 1 ≤ i, j, s, t ≤ p such that {i, j} ∩ {s, t} = ∅, we have
α(ρi j , ρst ) = O(p−1).

These three assumptions are similar to those in Jiang and Loh (2012). Assumption
3 is stronger than Assumption 2. Let Σ = L LT be the Cholesky decomposition of
Σ with L a lower triangular matrix. If the rows of L are independent of each other,
Assumption 3 is then satisfied if Γ is the correlation matrix corresponding to Σ . In
addition, Assumptions 1 and 3 are satisfied by adding a random permutation to the
indices. Model 5.3 in Sect. 5 is an example of this. Under Assumptions 1 and 2, the
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Estimating the sparsity of a covariance matrix 215

proportion of zero in the off-diagonal elements of Σ is tending to ω as p tends to
infinity; see for example (7) in the Appendix. Sparsity of Σ is then quantified by ω.
In the next section, we show that ω can be well estimated by thresholding the sample
correlation matrix.

2.2 Sparsity estimators based on thresholding

The universal thresholding approach had been applied to the sample correlation matrix
too. In the literature it is commonly assumed that for any 1 ≤ i < j ≤ p, |ρi j | is either
equal to zero or greater than k(n, p), which is a constant depending on p and n. For
example El Karoui (2008) considered estimating the population correlation matrix by
thresholding the sample correlation matrix and it was assumed that k(n, p) = O(n−v)

for a constant v > 1/2. Jiang (2013) found that to obtain covariance selection consis-
tency by thresholding the sample correlation matrix, k(n, p) should be at least of order√

log p/n. Here in this section, we construct sparsity estimators by thresholding the
sample correlation matrix and provide some results on their asymptotic performance.
Particularly, we do not assume that the nonzero |ρi j | are greater than some constant
k(n, p). For a threshold t > 0, define

ω̂(t) = 2

p(p − 1)

∑

1≤i< j≤p

I(|ri j | < t). (2)

Recall that for any constants a and b, we denote a ∨ b = max(a, b), and a ∧ b =
min(a, b). The following theorem indicates that when t converges to zero slowly
enough, ω̂(t) is consistent in estimating ω.

Theorem 1 Let ω̂(t) be defined as in (2). Under Assumptions 1 and 2, for any t
satisfying t → 0 and tn1/2 → ∞, we have ω̂(t) → ω in probability when n∧ p → ∞.

Theorem 1 is true when t = C0(log n/n)1/2 for some constant C0 > 0. The
following theorem provides an upper bound for the estimation error of ω̂(t) when
{(log n − log log n)/n}1/2 ≤ t < C1(log n/n)1/2 for some constant C1 > 0.

Theorem 2 Under Assumptions 1 and 3, for any threshold t such that {(log n −
log log n)/n}1/2 ≤ t < C1(log n/n)1/2 for some constant C1 > 0, when n ∧ p → ∞,
we have

E |ω̂(t) − ω| = O
{
(log n/n)1/2 ∨ p−1/2

}
.

From Theorems 1 and 2 we know that sparsity of a population matrix can be
well estimated by thresholding the sample correlation matrix. In the next section,
we propose an empirical estimator. We shall see from Theorem 3 that the empirical
estimator is closely related to the thresholding estimator ω̂(t).

3 An empirical estimator of sparsity under multivariate normal assumption

Under multivariate normal assumption, the density of ri j given ρi j is (see for example
Anderson 2003)
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fri j |ρi j (r |ρ) = 2n−2
(
1 − ρ2

) n
2
(
1 − r2

) n−3
2

(n − 2)!π
∞∑

i=0

(2ρr)i

i ! Γ 2
(

n + i

2

)
, ∀r ∈ (−1, 1).

Under Assumption 1, the marginal density of ri j is:

fri j (r;ω) = ω fri j |ρi j (r |ρ = 0) + (1 − ω)

∫ 1

−1
fri j |ρi j (r |ρ)g(ρ)dρ

= Γ
( n

2

)

Γ
( n−1

2

)
π1/2

(
1 − r2

) n−3
2 {1 + (1 − ω)ai j (ri j , g)},

where

ai j (ri j , g) = −1 +
∫ 1
−1 fri j |ρi j (ri j |ρ)g(ρ)dρ

fri j |ρi j =0(ri j |ρ = 0)

= −1 +
∞∑

k=0

Γ 2
( n+2k

2

)
22kr2k

i j

Γ 2
( n

2

)
(2k)!

∫ 1

−1

(
1 − ρ2

) n
2
ρ2k g(ρ)dρ

+
∞∑

k=0

Γ 2
( n+2k+1

2

)
22k+1r2k+1

i j

Γ 2( n
2 )(2k + 1)!

∫ 1

−1

(
1 − ρ2

) n
2
ρ2k+1g(ρ)dρ. (3)

Notice that when ai j (ri j , g) > (<)0, fri j (r;ω) is maximized when ω = 0(1).
In other words, when ai j (ri j , g) > (<)0, it tends to estimate ρi j as nonzero (zero).
Therefore, we propose the following empirical estimator for ω:

ω̂em(g) =
∑

1≤i< j≤p I{ai j (ri j ,g)<0}
p(p − 1)/2

. (4)

Definition For any constant d > 0, let Hd denote the set of probability density
functions in (−1, 1) such that for any h ∈ Hd ,

n−d ≤ inf
ρ∈(−1,1)

h(ρ) ≤ sup
ρ∈(−1,1)

h(ρ) < ∞.

We shall see in Sect. 3.1 that for any g ∈ Hd , ω̂em(g) is a consistent estimator of
ω. In other words, asymptotically speaking, the functional ω̂em(·) maps Hd to a small
neighborhood of ω.

3.1 Asymptotic properties of ω̂em(g) for any g ∈ Hd

For any g ∈ Hd , the empirical estimator ω̂em(g) is closely related to the thresholding
approach. For example, suppose g is an odd function. It can be easily seen from (3)
that ai j (ri j , g) is a monotone function of r2

i j . Given g, let t0 > 0 be the solution of
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the equation ai j (t, g) = 0, it is easy to see that ω̂(t0) = ω̂em(g). For a general density
function g ∈ Hd , we have the following proposition:

Proposition 1 Suppose Assumption 1 holds. When n is large enough we have for any
g ∈ Hd ,

ai j (ri j , g) > 0 ⇒ r2
i j >

log n − log log n

n
;

ai j (ri j , g) < 0 ⇒ r2
i j <

2(d + 1) log n

n
.

From Proposition 1 and the definition of ai j (ri j , g), we immediately have:

Theorem 3 Suppose Assumption 1 holds. When n is large enough we have for any
g ∈ Hd ,

ω̂({(log n − log log n)/n}1/2) ≤ ω̂em(g) ≤ ω̂({2(d + 1) log n/n}1/2).

From Theorems 1 and 3 we immediately have

Theorem 4 Suppose Assumptions 1 and 2 hold. For any g ∈ Hd , we have ω̂em(g) →
ω in probability when n ∧ p → ∞.

Similarly, from Theorems 2 and 3 and the triangular inequality, we have

Theorem 5 Suppose Assumptions 1 and 3 hold. For any g ∈ Hd , when n ∧ p → ∞,
we have

E |ω̂em(g) − ω| = O
{
(log n/n)1/2 ∨ p−1/2

}
.

Under multivariate normal assumptions the upper bound obtained in Theorem 5 is
better than the upper bound given in Theorem 1 of Jiang and Loh (2012), which is
O(n−1/4 ∨ p−1/2).

3.2 An empirical version of ω̂eb(g)

To compute ω̂eb(g), we need to determine the prior density g(ρ). However, the theoret-
ical results in Sect. 3.1 to some degree imply that the choice of the density function g is
not crucial in the sense that for any prior density g ∈ Hd , all the asymptotic properties
given in Sect. 3.1 are true for the corresponding empirical estimator ω̂em(g). This is
similar to the Bayes approach, where as long as the sample size is large enough, the
choice of the prior (from a proper set of distribution families) is theoretically not very
crucial. Here in this section we propose to compute ω̂em(g) based on a sequence of
“crude” samples from g.

Notice that ai j (ri j , g) can be written as

ai j (ri j , g) = −1 + Eg fri j |ρi j (ri j |ρ)

fri j |ρi j =0(ri j |ρ = 0)
, (5)
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where Eg denotes expectation under g. Suppose g is bounded both from below
and above, that is, there exists constants D1 > 0 and D2 > 0 such that D1 <

infρ∈(−1,1) g(ρ) ≤ supρ∈(−1,1) g(ρ) < D2. From Theorem 3 we have that when n
is large enough, ω̂({(log n − log log n)/n}1/2) ≤ ω̂em(g) ≤ ω̂({2 log n/n}1/2). Moti-
vated by this we first of all threshold |ri j |, 1 ≤ i < j ≤ p, by (2 log n/n)1/2 and
obtain a sequence: ri jI{|ri j |>{2 log n/n}1/2}, 1 ≤ i < j ≤ p. We then use those nonzero
ri jI{|ri j |>{2 log n/n}1/2} as samples from g and use Monte Carlo approximation in com-
puting the expectation in (5). In addition, we suggest using the following form of
fri j |ρi j (r |ρ) since it converges more rapidly; see for example Anderson (2003):

fri j |ρi j (r |ρ) = n − 1√
2π

(
1 − ρ2

)n/2 (
1 − r2

)(n−3)/2
(1 − ρr)−n+1/2

∞∑

j=0

Γ (1/2 + j)Γ (1/2 + j)Γ (n)(1 + ρr) j

Γ (1/2)Γ (1/2)Γ (n + 1/2 + j)Γ ( j + 1)2 j
.

From the second statement of Proposition 1, we know that when n is large enough,

|ri j | >

√
2(d+1) log n

n implies ai j (ri j , g) > 0. Therefore, to further reduce the com-
putation complexity, we only need to compute ai j (ri j , g) when |ri j | is small. This
can further reduce the computation complexity. For example, when n is large, we
can compute the ai j (ri j , g) values for those |ri j | ≤ (2 log n/n)1/2 and simply set
I{ai j (ri j ,g)<0} = 0 if |ri j | > (2 log n/n)1/2.

4 A generalized empirical estimator

Suppose we randomly choose a subset S from {σi j : 1 ≤ i < j ≤ p} by simple
random sampling without replacement. When the size of S is large enough, we would
expect that the proportion of zero in S is close to the proportion of zero in the off-
diagonal elements of Σ ; see for example Chap. 3 of Thompson (1997). Motivated by
this, we propose a generalized version of the empirical estimator:

ω̂m
em(Sm, g) = 1/m

∑

(i, j)∈Sm

I{ai j (ri j ,g)<0}, (6)

where Sm is a random subset generated by simple random sampling (without replace-
ment) from the index set {(i, j) : 1 ≤ i < j ≤ p} such that the cardinality of Sm

equals m. When m = p(p − 1)/2, ω̂m
em(·) reduces to ω̂em(·).

Similar to Theorems 4 and 5, we have:

Theorem 6 For any g ∈ Hd , let ω̂m
em(Sm, g) be defined as in (6). Under the assump-

tions of Theorem 4, we have ω̂m
em(Sm, g) → ω in probability when n ∧ m → ∞.

Theorem 7 For any g ∈ Hd , let ω̂m
em(Sm, g) be defined as in (6). Under the assump-

tions of Theorem 5, when n ∧ m → ∞, we have

E |ω̂m
em(Sm, g) − ω| = O

{
(log n/n)1/2 ∨ (m ∧ p)−1/2

}
.
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To compute ω̂m
em(Sm, g), we first of all generate the index set Sm from {(i, j) : 1 ≤

i < j ≤ p} using simple random sampling, and then for any (i, j) ∈ Sm compute
ai j (ri j , g) as in Sect. 3.2.

5 Simulation study

This section provides some simulation results for estimating the sparsity of the pop-
ulation covariance matrix. More simulations can be found in the author’s PhD thesis.
In this simulation study, we consider the following three types of sparse covariance
matrices.

Model 5.1 Following Jiang and Loh (2012), let Σ = (σi j )1≤i, j≤p, where σi i =
1, 1 ≤ i ≤ p; σi j = 0.3 if 1 ≤ i, j ≤ p/2, i �= j and σi j = 0 otherwise.

Model 5.2 Following Cai and Liu (2011), let Σ = (σi j )1≤i, j≤p, where σi j = (1 −
|i − j |/20)+ if 1 ≤ i, j ≤ p/2, σi i = 4 if p/2 + 1 ≤ i ≤ p, and σi j = 0 otherwise.

Model 5.3 Let L = (li j )1≤i, j≤p be a lower triangular matrix and the elements in L
are generated as follows: lii = 1, i = 1, . . . , p, li1 = 2

√
U (0, 1) × B(0, 0.5), i =

2, . . . , p and li j = U (0, 1) × B(1, 0.01), 2 ≤ j < i ≤ p. Here U (0, 1) denotes a
random variable uniformly distributed on (0, 1) and B(1, α) is a Bernoulli random
variable which equals 1 with probability α and 0 with probability 1 − α. Let C =
(ci j )1≤i, j≤p be a lower triangular matrix such that ci j = li j/(

∑i
k=1 l2

ik)
1/2, 1 ≤ j ≤

i ≤ p. We then set Σ = MCCT MT , where M is a random permutation matrix
uniformly distributed in set of all p × p permutation matrices.

In the first simulation, we set n = 100 and p = 50, 100, 200. X1, . . . , Xn are
generated independently from Np(0,Σ). We compare the empirical estimator ω̂em(g)

to the following three estimators:

(i) ω̂mm, estimator based on moment matrices; see Jiang and Loh (2012).
(ii) ω̂cv, sparsity of the hard thresholding estimator derived using cross validation.

Following Bickel and Levina (2008), the threshold is chosen in the following
way: randomly split the n sample into two sets of size n1 = n − �n/ log n� and
n2 = �n/ log n� and repeat this N times. Here �·� is the greatest integer function.
For the kth split, let S1,k, S2,k be the sample covariance matrix based on the n1
and n2 observations, respectively. For a given threshold t define the thresholding
operator by Tt (S) = [si jI(|si j | > t)]p×p. We then choose t such that

CV(t) = 1

N

N∑

k=1

‖Tt (S1,k) − S2,k ‖2
F ,

is minimized. Here ‖ S ‖2
F= ∑

1≤i, j≤p s2
i j is the Frobenius norm of a matrix

S = (si j )p×p. In this simulation, we set N = 100 and the set of thresholds over
which an optimal threshold was searched is {0.02, 0.04, . . . , 0.38, 0.40}.
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(iii) ω̂s
cv, sparsity of the thresholding estimator derived using soft thresholding func-

tion and cross validation as in Rothman et al. (2009). ω̂s
cv is computed sim-

ilar to ω̂cv except that the thresholding operator is now given as Tt (S) =
[sign(si j )(|si j | − t)I(|si j | > t)]p×p.

(iv) ω̂acv, sparsity of the adaptive thresholding estimator derived using hard thresh-
olding function and cross validation. Denote the i th observation as Xi =
(Xi1, . . . , Xip)

T . Following Cai and Liu (2011), for a thresholding parameter
t , the adaptive thresholding estimator is defined as T a

t (S) = [T a
i j (si j , t)]1≤i, j≤p,

where T a
i j (si j , t) = si jI

(
|si j | > t

√
θ̂i j log p/n

)
, and θ̂i j is defined as:

θ̂i j = 1

n

n∑

k=1

[(
Xki − X̄ i

) (
Xkj − X̄ j

)
− si j

]2
, X̄ i = 1

n

n∑

k=1

Xki .

Similar to the cross validation procedure for computing ω̂cv, we randomly split the
n observations for N times and choose t such that

ACV(t) = 1

N

N∑

k=1

‖T a
t (S1,k) − S2,k‖2

F ,

is minimized. In this simulation, we set N = 100 and the set of thresholds over which
an optimal threshold was searched is {0.1, 0.2, . . . , 3.9, 4}.

For each case, the simulation is repeated 100 times. The mean and its standard
deviation (SD) of the following quantities are computed over 100 replications: (i)
L1-loss: |estimator − ω|; (ii) Error1 = #{(i, j) : 1 ≤ i < j ≤ p, ρi j = 0, r̂i j �= 0};
(iii) Error2 = #{(i, j) : 1 ≤ i < j ≤ p, ρi j �= 0, r̂i j = 0}. Here R̂ = (r̂i j )p×p is
obtained in the following ways: for ω̂mm, let t be the �ω̂mm p(p − 1)/2�th smallest
number among |ri j |, 1 ≤ i < j ≤ p. Here �·� is the greatest integer function. We
construct R̂ = (r̂i j )p×p with r̂ j i = r̂i j = ri jI(|ri j | > t), 1 ≤ i < j ≤ p and r̂i i = 1,
i = 1, . . . , p, i.e., R̂ is obtained by applying the universal thresholding approach to
the sample correlation matrix R such that the resulting sparsity of R̂ equals ω̂mm;
for ω̂cv and ω̂acv we use the correlation matrices corresponding to the thresholding
estimator and the adaptive thresholding estimator as R̂, respectively; For ω̂eb(g), we
set r̂ j i = r̂i j = ri jI(|ai j > 0|), 1 ≤ i < j ≤ p.

Tables 1, 2 and 3 indicate that under Models 5.1, 5.2 and 5.3, ω̂em(g) has smaller
mean L1-loss and Error1+Error2 values than the other four estimators. From Tables
1, 2 and 3 and all other simulations we have done, we found that generally both ω̂mm
and ω̂em(g) can estimate ω well while ω̂cv and ω̂acv can estimate ω well only when
most of the nonzero off-diagonal elements of Γ are away from zero. ω̂s

cv is not doing
well in terms of covariance selection and sparsity estimation under the models used in
the simulation study. Similar results can be observed from Table 3 of Rothman et al.
(2009), which shows that soft thresholding method can have much larger false-positive
rates than hard thresholding method. When not too many of the nonzero off-diagonal
elements of Γ are close to zero, ω̂em(g) generally would outperform ω̂mm while
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Table 1 Simulation results under Model 5.1 over 100 replications

ω̂em(g) ω̂mm ω̂cv ω̂s
cv ω̂acv

p = 50; ω = 0.755

L1-loss (SD) 0.011 (0.001) 0.025 (0.002) 0.045 (0.004) 0.237 (0.010) 0.052 (0.005)

Error1 (SD) 41.3 (0.9) 49.0 (2.9) 62.1 (4.7) 299.7 (11.9) 67.1 (4.7)

Error2 (SD) 40.7 (2.1) 39.8 (2.1) 45.5 (4.3) 9.4 (1.0) 43.6 (5.3)

p = 100; ω = 0.753

L1-loss (SD) 0.011 (0.001) 0.013 (0.001) 0.037 (0.004) 0.216 (0.008) 0.058 (0.008)

Error1 (SD) 122.3 (2.3) 176.1 (8.0) 218.4 (13.5) 1,107.9 (38.1) 333.7 (34.4)

Error2 (SD) 122.9 (8.3) 155.8 (7.1) 190.5 (19.9) 36.8 (4.3) 147.7 (19.0)

p = 200; ω = 0.751

L1-loss (SD) 0.011 (0.001) 0.011 (0.008) 0.037 (0.004) 0.233 (0.008) 0.059 (0.006)

Error1 (SD) 562.8 (7.0) 692.1 (25.0) 834.4 (48.0) 4,777.2 (138.9) 1,134.8 (71.5)

Error2 (SD) 496.0 (29.7) 634.3 (27.9) 846.1 (76.4) 138.9 (21.0) 817.7 (114.5)

Table 2 Simulation results under Model 5.2 over 100 replications

ω̂em(g) ω̂mm ω̂cv ω̂s
cv ω̂acv

p = 50; ω = 0.767

L1-loss (SD) 0.018 (0.001) 0.034 (0.003) 0.027 (0.002) 0.179 (0.008) 0.051 (0.002)

Error1 (SD) 12.9 (0.8) 34.9 (3.7) 92.1 (2.7) 261.1 (8.9) 1.3 (0.4)

Error2 (SD) 32.3 (1.3) 35.4 (2.3) 87.7 (2.4) 42.2 (2.2) 63.7 (2.1)

p = 100; ω = 0.846

L1-loss (SD) 0.014 (0.001) 0.032 (0.002) 0.015 (0.001) 0.112 (0.004) 0.051 (0.001)

Error1 (SD) 70.0 (2.6) 141.6 (14.8) 333.9 (5.4) 770.6 (29.0) 2.2 (0.5)

Error2 (SD) 135.2 (3.3) 143.1 (6.5) 326.9 (5.6) 217.2 (5.4) 253.0 (4.8)

p = 200; ω = 0.914

L1-loss (SD) 0.004 (<0.001) 0.021 (0.002) 0.023 (0.001) 0.092 (0.002) 0.032 (0.001)

Error1 (SD) 299.6 (7.8) 361.6 (404.5) 1,257.0 (11.1) 2,404.7 (39.3) 4.5 (0.7)

Error2 (SD) 339.4 (5.8) 414.5 (184.6) 795.6 (7.2) 577.7 (9.1) 649.4 (11.1)

ω̂mm would perform better when most of the nonzero off-diagonal elements of Γ are
close to zero. On the other hand, ω̂em(g) generally has smaller Error1+Error2 values
than ω̂mm, indicating the covariance selection procedure based on R̂ = (r̂i j )p×p

with r̂ j i = ri jI(|ai j > 0|) can do better than simply thresholding R based
on ω̂mm.

In the second simulation, we study the performance of the generalized empirical
estimator ω̂m

em(Sm, g). Similar to the previous simulation, we let n = 100 and generate
n independent samples from Np(0,Σ) with Σ given by Models 5.1, 5.2 and 5.3. We
let m = 5,000 and p = 200, 600, 1,000. The mean and its standard deviation over
100 replications of the L1-loss are reported in Table 4.
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Table 3 Simulation results under Model 5.3 over 100 replications

ω̂em(g) ω̂mm ω̂cv ω̂s
cv ω̂acv

p = 50; ω = 0.639

L1-loss (SD) 0.037 (0.001) 0.037 (0.028) 0.249 (0.014) 0.261 (0.012) 0.067 (0.001)

Error1(SD) 11.1 (0.7) 44.5 (4.1) 318.9 (16.4) 331.6 (13.7) 47.2 (11.0)

Error2 (SD) 57.8 (1.7) 47.0 (2.1) 13.8 (0.1) 11.9 (1.0) 62.2 (3.1)

p = 100; ω = 0.743

L1-loss (SD) 0.024 (0.001) 0.024 (0.002) 0.244 (0.012) 0.231 (0.012) 0.036 (0.002)

Error1 (SD) 51.0 (1.7) 142.7 (11.9) 1,273.2 (60.7) 1,210.9 (58.8) 50.5 (7.9)

Error2 (SD) 174.2 (2.9) 160.2 (4.7) 65.6 (3.5) 68.5 (3.8) 209.9 (4.8)

p = 200; ω = 0.745

L1-loss (SD) 0.017 (0.001) 0.018 (0.001) 0.247 (0.012) 0.229 (0.011) 0.027 (0.001)

Error1 (SD) 225.8 (5.6) 425.2 (31.6) 5,121.7 (230.8) 4,757.5 (219.3) 206.0 (19.0)

Error2 (SD) 575.4 (9.9) 559.4 (13.1) 196.9 (9.1) 208.4 (10.8) 713.6 (18.2)

Table 4 Simulation results for the generalized empirical estimator under Models 5.1 and 5.2

Model 5.1 p 200 600 1,000

L1-loss (SD) 0.011 (0.001) 0.010 (0.001) 0.010 (0.001)

Model 5.2 p 200 600 1,000

L1-loss (SD) 0.006 (<0.001) 0.009 (<0.001) 0.015 (<0.001)

Model 5.3 p 200 600 1,000

L1-loss (SD) 0.049 (0.001) 0.071 (0.001) 0.096 (0.001)

Simulation results in Table 4 indicate that ω̂m
em(Sm, g) can still estimate ω very well

while the computation is largely reduced. For example, when p = 200 and m = 5,000,
the time used for calculating ω̂m

em(Sm, g) is about 1/4 of the time used for calculating
ω̂em(g), while the L1-loss and mean error values of ω̂m

em(Sm, g) are still very small.

6 Appendix: Technical details

The following lemma is a special case of Proposition 1 in Jiang (2013). It gives a
Bernstein-type inequality for elements of the sample correlation matrix.

Lemma 1 For any 0 < v ≤ 2 and 1 ≤ j, k ≤ p, there exist constants d1 > 0 and
d2 > 0 such that

P(|r jk − ρ jk | ≥ v|ρ jk) ≤ d1e−d2nv2
.

Next we provide the proof for Theorem 2. Theorem 1 can be proved similarly.
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Proof of Theorem 2 Notice that

E |ω̂(t) − ω|
≤ E

∣∣∣∣
2

p(p − 1)

∑

1≤i< j≤p

I{ρi j =0} − ω

∣∣∣∣ + E

∣∣∣∣ω̂(t) − 2

p(p − 1)

∑

1≤i< j≤p

I{ρi j =0}
∣∣∣∣,

we shall bound E |ω̂(t) − ω| by bounding the two terms on the right hand side of the
above inequality.

Under Assumption 3, By Jensen’s inequality we have

E

∣∣∣∣
2

p(p − 1)

∑

1≤i< j≤p

I{ρi j =0} − ω

∣∣∣∣

≤
{

E

∣∣∣∣
2

p(p − 1)

∑

1≤i< j≤p

(I{ρi j =0} − EI{ρi j =0}
) ∣∣∣∣

2}1/2

≤
[

4ω(1 − ω)

p2(p − 1)2

{
p(p − 1)

2
+ p(p − 1)(p − 2)

}
+ O(p−1)

]1/2

= O(p−1/2), (7)

where in the last step we have used Assumption 3 and the fact that

Var
(I{ρ12=0}

) = ω(1 − ω),

and

E
(I{ρ12=0} − EI{ρ12=0}

) (I{ρ23=0} − EI{ρ23=0}
)

≤ {
Var

(I{ρ12=0}
)

Var
(I{ρ23=0}

)}1/2

= ω(1 − ω).

On the other hand,

E
∣∣∣ω̂(t) − 2

p(p − 1)

∑

1≤i< j≤p

I{ρi j =0}
∣∣∣

≤ 2

p(p − 1)
E

∑

1≤i< j≤p

∣∣∣I{|ri j |<t} − I{ρi j =0}
∣∣∣

= E |Y12|, (8)

where

Yi j = I{|ri j |<t} − I{ρi j =0}, ∀ 1 ≤ i < j ≤ p.

Since {(log n − log log n)/n}1/2 ≤ t < C1(log n/n)1/2, for any constant C2 > 0
we have,
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E |Yi j | = P(|ri j | ≥ t, ρi j = 0) + P(|ri j | < t, ρi j �= 0)

≤ ωP
{
|ri j | ≥ {(log n − log log n)/n}1/2|ρi j = 0

}

+ P
{

0 < |ρi j | ≤ C2(log n/n)1/2
}

+ P
{
|ri j | < C1(log n/n)1/2, |ρi j | > C2(log n/n)1/2

}
. (9)

By choosing C2 > (2d2)
−1/2 + C1, from the assumption supρ∈(−1,1) g(ρ) < ∞

and Lemma 1 we have:

P
{

0 < |ρi j | ≤ C2(log n/n)1/2
}

= O
{
(log n/n)1/2

}
, (10)

and

P
{
|ri j | < (C1 log n/n)1/2, |ρi j | > C2(log n/n)1/2

}
= o

(
n1/2

)
. (11)

Let C3 > (2d2)
−1 be a constant. Using the density function of ri j given ρi j = 0

and Lemma 1, we have,

P
{
|ri j | ≥ {(log n − log log n)/n}1/2|ρi j = 0

}

= P
[
{(log n − log log n)/n}1/2 ≤ |ri j | ≤ (C3 log n/n)1/2|ρi j = 0

]

+ P
{
|ri j | ≥ (C3 log n/n)1/2|ρi j = 0

}

≤
∫ (C3 log n/n)1/2

{(log n−log log n)/n}1/2

Γ (n/2)r(1 − r2)(n−3)/2

{(log n − log log n)/n}1/2Γ (n/2 − 1/2)(π/2)1/2 dr

+ d1e−d2C3 log n

≤ Γ (n/2){1 − (log n − log log n)/n}}(n−1)/2

{(log n − log log n)/n}1/2Γ (n/2 − 1/2)(n − 1)(π/2)1/2 + d1e−d2C3 log n

= O(n−1/2). (12)

Combining (8), (9), (10), (11) and (12) we have

E

∣∣∣∣ω̂(t) − 2

p(p − 1)

∑

1≤i< j≤p

I{ρi j =0}
∣∣∣∣ = O

{
(log n/n)1/2

}
.

Together with (7) we conclude that

E |ω̂(t) − ω| = O{(log n/n)1/2 ∨ p−1/2}. �

Theorems 3, 4 and 5 can be easily proved using Proposition 1, Theorems 1 and 2.
Hence we only provide the proof of Proposition 1. The following lemma is a direct
result of (4.2) in Bustoz and Ismail (1986) and will be used frequently in the proof of
Proposition 1.
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Lemma 2 For any n, k ∈ Z+, we have

1√
n/2 + k

<
Γ (n/2 + k)

Γ (n/2 + k + 1/2)
<

1√
n/2 + k − 1/4

. (13)

Proof of Proposition 1 We prove the first statement of Proposition 1. The proof for
the second statement is similar and can be found in Lemma 3.6 in the author’s PhD
thesis. To prove the first statement, it suffices to show that for all n large enough,
r2 ≤ (log n − log log n)/n implies ai j (r, g) < 0. Denote D = sup−1<ρ<1 g(ρ). First
of all decompose ai j (r, g) to be:

ai j (r, g) =
∫ 1

0

(
1 − ρ2

) n
2

g(ρ)dρ

+
�2 log n�∑

i=1

Γ 2
( n+2i

2

)
22i r2i

Γ 2
( n

2

)
(2i)!

∫ 1

0

(
1 − ρ2

) n
2
ρ2i g(ρ)dρ

+
∞∑

i=�2 log n�+1

Γ 2
( n+2i

2

)
22i r2i

Γ 2
( n

2

)
(2i)!

∫ 1

0

(
1 − ρ2

) n
2
ρ2i g(ρ)dρ

+
�2 log n�∑

i=0

Γ 2
( n+2i+1

2

)
22i+1r2i+1

Γ 2( n
2 )(2i + 1)!

∫ 1

0

(
1 − ρ2

) n
2
ρ2i+1g(ρ)dρ

+
∞∑

i=�2 log n�+1

Γ 2
( n+2i+1

2

)
22i+1r2i+1

Γ 2
( n

2

)
(2i + 1)!

∫ 1

0

(
1 − ρ2

) n
2
ρ2i+1g(ρ)dρ − 1

:= I + I I + I I I + I I ′ + I I I ′ − 1.

From Lemma 2 we have

I ≤ D
Γ (n/2 + 1)Γ (1/2)

Γ (n/2 + 3/2)
≤ D

√
π√

n/2 + 3/4
;

For I I , when r2 ≤ (log n − log log n)/n, we have

I I ≤ 2D
�2 log n�∑

i=1

Γ 2
( n+2i

2

)
22i r2i

Γ 2
( n

2

)
(2i)! · Γ

( n
2 + 1

)
Γ

(
i + 1

2

)

Γ
( n

2 + i + 3
2

)

= 2D
�2 log n�∑

i=1

(2r)2i√π2−2i

Γ (i + 1)
·
(n

2
+ i − 1

)
· · · n

2
· Γ

( n
2 + i

)

Γ
( n

2 + i + 1
2

) ·
n
2

n
2 + i + 1

2

≤ 2
√

2π D√
n − 1

�2 log n�∑

i=1

r2i

i !
(n

2
+ 2 log n

)i

≤ 2
√

2π D√
n − 1

er2(n/2+2 log n)

= O(log−1/2 n).
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Similarly it can be shown that I I ′ = O(log−1/2 n). For I I I we have

I I I ≤ 2D
∑

i>�2 log n�

Γ 2
( n+2i

2

)
22i r2i

Γ 2
( n

2

)
(2i)! · Γ

( n
2 + 1

)
Γ

(
i + 1

2

)

Γ
( n

2 + i + 3
2

)

= 2D
∑

i>�2 log n�

(2r)2i · n
2

n
2 + i + 1

2

· Γ
( n

2 + i
)

Γ
( n

2 + i + 1
2

) · Γ
(
i + 1

2

)

Γ (i + 1)
·
( n

2 + i − 1
) · · · n

2

2i · · · (i + 1)

≤ 2D
∑

i>�2 log n�
(2r)2i · 1√

n
2 + i − 1

4

· 1√
i + 1

4

·
( n

4 log n

)i

≤ 2D√
n log n

∑

i>�2 log n�

(
1 − log log n

log n

)i

= O
(

n−1/2 log−1/2 n
)

.

Similarly we have I I I ′ = O(n−1/2 log−1/2 n). Therefore, for any r2 ≤ (log n −
log log n)/n, ai j (r, g) converge to −1 when n → ∞. �

Proof of Theorem 7 Notice that

E |ω̂m
eb(Sm) − ω| ≤ E

∣∣∣∣
1

m

∑

(i, j)∈Sm

I{ai j (ri j ,g)<0} − 1

m

∑

(i, j)∈Sm

I{ρi j =0}
∣∣∣∣

+E

∣∣∣∣
1

m

∑

(i, j)∈Sm

I{ρi j =0} − 2

p(p − 1)

∑

1≤i< j≤p

I{ρi j =0}
∣∣∣∣

+E

∣∣∣∣
2

p(p − 1)

∑

1≤i< j≤p

I{ρi j =0} − ω

∣∣∣∣. (14)

Similar to the bound we obtained for (8) in the proof of Theorem 2, by conditioning
on Sm first we have

E

∣∣∣∣
1

m

∑

(i, j)∈Sm

I{ai j (ri j ,g)<0} − 1

m

∑

(i, j)∈Sm

I{ρi j =0}
∣∣∣∣ = O

{
(log n/n)1/2

}
. (15)

Let EΓ denote the conditional expectation given Γ . From (3.2) of Thompson
(1997) we have

E

∣∣∣∣
1

m

∑

(i, j)∈Sm

I{ρi j =0} − 2

p(p − 1)

∑

1≤i< j≤p

I{ρi j =0}
∣∣∣∣

= E

{
EΓ

∣∣∣∣
1

m

∑

(i, j)∈Sm

I{ρi j =0} − 2

p(p − 1)

∑

1≤i< j≤p

I{ρi j =0}
∣∣∣∣

}
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≤ E

[
p(p − 1) − 2m

m{p(p − 1) − 2}
2

∑
1≤i< j≤p I{ρi j =0}

p(p − 1)

{
1 − 2

∑
1≤i< j≤p I{ρi j =0}

p(p − 1)

}]1/2

≤
[

p(p − 1) − 2m

4m{p(p − 1) − 2}
]1/2

. (16)

Combining (14), (7), (15) and (16) we have

E |ω̂m
eb(Sm) − ω| = O

{
(log n/n)1/2 + p−1/2 +

[
p(p − 1) − 2m

4m{p(p − 1) − 2}
]1/2}

= O{(log n/n)1/2 ∨ (m ∧ p)−1/2}. �
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