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Abstract The weighted sum S = w1S1 + w2S2 + · · · + wN SN is approximated by
compound Poisson distribution. Here Si are sums of symmetric independent identically
distributed discrete random variables, and wi denote weights. The estimates take into
account the smoothing effect that sums Si have on each other.

Keywords Concentration function · Compound Poisson distribution · Kolmogorov
norm · Weighted random variables

1 Introduction

Let us consider the following complex sampling design: the entire population consists
of different clusters, and the probability for each cluster to be selected into the sample
is known. The design is usually referred to as cluster sampling and is often used in
social surveys. The sum of sample elements then is equal to S = w1S1 +w2S2 +· · ·+
wN SN = w1(X11 + X12 + · · · + X1n1) + · · · + wN (X N1 + X N2 + · · · X NnN ). We
assume further that all Xi j , (i = 1, . . . , N ; j = 1, 2, . . . , ni ) are independent and
Xi1, . . . , Xini are identically distributed. Let Fi denote the distribution of wi Xi j .

Many papers deal with the limiting behavior of weighted sums paying special
attention to weights, see, for example, Liang and Baek (2006), Rosalsky and Sreehari
(1998), Zhang (1997) and the references therein. In our paper, the emphasis is on
random variables, which form a triangular array. We investigate approximation of S
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196 A. Elijio, V. Čekanavičius

by compound Poisson distribution taking into account smoothing effect that the whole
sum has on its summands. This paper continues research of Čekanavičius and Elijio
(2013).

To make our goals more explicit we need additional notation. LetF (resp.S,S+,M)
denote the set of probability distributions (resp. symmetric probability distributions,
distributions with nonnegative characteristic functions, finite signed measures) on R.
The Dirac measure concentrated at a is denoted by Ia , we use notation I for the Dirac
measure concentrated at zero, that is I ≡ I0. All products and powers of finite measures
W ∈ M are defined in the convolution sense, and W 0 = I . The exponential of W is
defined by exp{W } = ∑∞

m=0 W m/m!. Note that Poisson (resp. compound Poisson)
distribution can be expressed as exp{λ(I1 − I )} (resp. exp{λ(H − I )}, H ∈ F). Note
also that the distribution of S is Fn1

1 Fn2
2 · · · FnN

N . We denote by Ŵ (t) the Fourier–
Stieltjes transform of W ∈ M.

The Kolmogorov (uniform) norm ‖ W ‖K and the total variation norm ‖ W ‖ of
W ∈ M are defined by

‖ W ‖K = sup
x∈R

|W {(−∞, x]}|, ‖ W ‖ = W +{R} + W −{R},

respectively. Here W = W + − W − is the Jordan–Hahn decomposition of W . If W is
concentrated on x1, x2, . . . , then ‖ W ‖ = ∑∞

k=1 |W {xk}|. Note that ‖ W ‖K � ‖ W ‖,
‖ W V ‖K � ‖ W ‖ · ‖ V ‖K and for any distribution ‖ F ‖ = 1.

We explain motivating idea of this paper by considering N = 2. Let us assume that
we want to approximate Fn1

1 Fn2
2 by some compound Poisson distributions Gn1

1 Gn2
2 .

Then by the triangle inequality and properties of the norms

‖ Fn1
1 Fn2

2 − Gn1
1 Gn2

2 ‖K � ‖ (Fn1
1 − Gn1

1 )Fn2
2 ‖K + ‖ Gn1

1 (Fn2
2 − Gn2

2 ) ‖K

� ‖ Fn1
1 − Gn1

1 ‖K + ‖ Fn2
2 − Gn2

2 ‖K . (1)

Such approach is reasonable only if both final estimates are of similar order. Oth-
erwise, by neglecting Fn2

2 in the first estimate, we can significantly worsen the overall
accuracy of approximation. For example, if n1 = 1, n2 = n, then it is very likely
for ‖ F1 − G1 ‖K to be of constant order. Meanwhile, convolution with Fn

2 can have
strong smoothing effect. Our aim is to estimate this effect.

Technically the problem is quite challenging, since we can hardly use any of the
standard approaches. In general, if we consider integer valued sums S1 and S2, the
sums w1S1 and w2S2 are concentrated on different lattices. Consequently, a) no simple
formula of inversion for Fn1

1 Fn2
2 is available; b) it is impossible to apply Stein’s method

(moreover, we consider symmetric random variables).
We end this section by introducing remaining notation. Smoothing effect is esti-

mated through Lévy’s concentration function. For F ∈ F , h � 0 Lévy’s concentration
function is defined by

Q(F, h) = sup
x

F{[x, x + h]}.

123



Compound Poisson approximation 197

All absolute positive constants are denoted by C . Sometimes we supply C with
indices. We use the notation θ for all quantities satisfying |θ | � 1. For example,
u = θ3e|t | means that |u| � 3e|t |.

2 Known results

First of all, note partial cases of the first uniform Kolmogorov theorem

sup
F∈S+

‖ Fn− exp{n(F−I )} ‖K �C1n−1, sup
F∈S

‖ Fn− exp{n(F−I )} ‖K � C2n−1/2,

(2)

see Arak and Zaı̆tsev (1988, pp. 116–117). For lattice distributions, there exists some
analog of (2) in total variation norm. Let us consider symmetric three point random
variable taking values ±1 with probability p < 1/4 and zero with probability 1 − 2p.
Then

‖ (I + p(I1−I )+p(I−1−I ))n − exp{np(I1+I−1 − 2I )} ‖ � C3 min(np2, n−1),

(3)

see, for example, Presman (1986, Eq. (11)). Estimates (2) and (3) show that sym-
metry of distributions significantly improves the accuracy of approximation. How-
ever, we cannot apply these estimates directly, since, in general, different w j S j will
never have the same symmetric component F . For the same reason, we cannot apply
results for compound Poisson approximation of discrete symmetric distributions from
Čekanavičius and Wang (2003), since in the mentioned paper all distributions have
the same support.

If distributions have three finite absolute moments the Berry–Esseen theorem can
be used:

∥
∥
∥
∥
∥

n∏

i=1

Fi − �(μ, σ 2)

∥
∥
∥
∥
∥

K

� C4
∑n

i=1 β3i
(∑n

i=1 σ 2
i

)3/2 . (4)

Here β3i and σ 2
i are the third absolute moment and variance of Fi , respectively. In

many situations, (4) is sufficient for obtaining the required accuracy. Moreover, in some
discrete cases of non-triangular arrays, second-order asymptotic expansion can be of
the order O(n−1), see Booth et al. (1994) However, this is not the case when random
variables are close to zero, i.e. when Poisson approximation is more preferable.

In this paper, we consider Fi with sufficiently large probability mass concentrated at
zero. Consequently, it allows decomposition Fi = (1− pi )I + pi Bi for some Bi ∈ F .
Then
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198 A. Elijio, V. Čekanavičius

∥
∥
∥
∥
∥

n∏

i=1

(
(1 − pi )I+pi Bi

)− exp

{
n∑

i=1

pi (Bi − I )

}∥
∥
∥
∥
∥

K

� C5 min

{
n∑

i=1

p2
i , max

i
pi

}

.

(5)

The first estimate in (5) is known since the early 1930s and holds also for the total
variation norm. Usually it is associated with the names of Khintchine, Doeblin and
Le Cam. The estimate through maximal pi is proved in Zaı̆tsev (1984). In general, (5)
cannot be improved. However, if part of Bi are equal, one can hope for a smoothing
effect. Note also that, for nonsymmetric Bi , the estimate with smoothing effect has
been obtained in Roos (2005).

3 Results

First we consider the case of discrete but not necessarily lattice symmetric distribu-
tions. Poisson type approximations for distributions with the same support have been
considered in Čekanavičius (2003) and Čekanavičius and Wang (2003). We assume
that all distributions have enough probability mass at zero: Fj ∈ S+. It is possible
to apply (2) for each F

n j
j separately as outlined in (1). However, then the estimate

will be of order O(1/ min n j ), which can be quite rough. Further on we use notation
σ 2

i = ∫
x2 Fi {dx} and assume that s � 1 is fixed.

Theorem 1 Let Fj ∈ S+ be concentrated on a set
{±w j x j1,±w j x j2, . . . ,±w j x js

}

( j = 1, . . . , N ), n = ∑N
i=1 ni . Then, for any h > 0,

∥
∥
∥
∥
∥
∥

N∏

j=1

F
n j
j − exp

⎧
⎨

⎩

N∑

j=1

n j
(
Fj − I

)
⎫
⎬

⎭

∥
∥
∥
∥
∥
∥

K

� C6 Q

⎛

⎝exp

⎧
⎨

⎩

N∑

j=1

n j

2

(
Fj − I

)
⎫
⎬

⎭
, h

⎞

⎠

×
⎛

⎝1

h

N∑

j=1

σ j√
n j

+ C7(N , s) ln(n + 1)

N∑

j=1

1

n j

⎞

⎠ + e−n (6)

and

∥
∥
∥
∥
∥
∥

N∏

j=1

F
n j
j − exp

⎧
⎨

⎩

N∑

j=1

n j
(
Fj − I

)
⎫
⎬

⎭

⎛

⎝I − 1

2

N∑

j=1

n j
(
Fj − I

)2

⎞

⎠

∥
∥
∥
∥
∥
∥

K

� C8 Q

⎛

⎝exp

⎧
⎨

⎩

N∑

j=1

n j

2

(
Fj − I

)
⎫
⎬

⎭
, h

⎞

⎠

×
⎛

⎝1

h

N∑

j=1

σ j

n j
√

n j
+ C9(N , s) ln(n + 1)

N∑

j=1

1

n2
j

⎞

⎠ + C10e−n . (7)
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Compound Poisson approximation 199

For better appreciation of the smoothing effect, let us consider the following exam-
ple. Let n = n1 + n2 and let all xi j do not depend on n and let Fi {xi j } be uniformly
bounded from zero and unity by some positive constants, Fi {xi j } � C . Then choosing
h = mini=1,2; j�s xi j/2 and applying (14) from Lemma 3 below, we get

∥
∥ Fn1

1 Fn2
2 − exp {n1 (F1 − I ) + n2 (F2 − I )} ∥∥K

� C√
n

(
1√
n1

+ 1√
n2

+ ln(n + 1)

(
1

n1
+ 1

n2

))

+ e−n . (8)

Note that direct application of the triangle inequality in a way similar to that of (1)
combined with (2) provides the following estimate

∥
∥ Fn1

1 Fn2
2 − exp

{
n1
(
F1 − I

) + n2
(
F2 − I

)} ∥
∥

K � C

(
1

n1
+ 1

n2

)

. (9)

Consequently, the smoothing effect is realized through replacement of individual fac-
tors n−1/2

j by a common factor n−1/2. This can significantly improve the accuracy.

Indeed, let n1 = O(
√

n2). Then the order of accuracy in (8) is O
(
n−3/4

2

)
. Meanwhile

(9) gives O(n−1/2
2 ). Moreover, application of the Berry-Esseen theorem (4) also gives

the estimate of the order O(n−1/2
2 ). Second order asymptotic expansion (7) improves

the accuracy to O(n−5/4
2 ).

Next we consider the case, when all Fj ∈ S are lattice distributions. However, due
to possible differences in weights, Fj and Fk may have different lattice supports, when
j �= k. Unlike the previous case, supports can be infinite. We use standard decompo-
sition Fj = (1 − p j )I + p j B j . Let μ2 j = ∫∞

−∞ x2 B j {dx} = 2w2
j

∑∞
k=1 k2 B j {k}.

Theorem 2 Let B j ∈ S be concentrated on a set {±w j ,±2w j , ±3w j , . . .}, μ2 j <

∞, and let 0 � p j � C̃ < 1 ( j = 1, . . . , N ). Then, for all h > 0,

∥
∥
∥
∥
∥
∥

N∏

j=1

((1 − p j )I + p j B j )
n j − exp

⎧
⎨

⎩

N∑

j=1

n j p j
(
B j − I

)
⎫
⎬

⎭

∥
∥
∥
∥
∥
∥

K

� C11 Q(M1, h)

×
N∑

j=1

(

n j p2
j
√

μ2 j min

{

1; 1

(n j p j )3/2

}
1

h
+ min

{

n j p2
j ;

√
μ2 j

n j

})

.

(10)

Here M1 ∈ S+ with the characteristic function M̂1(t) = exp
{∑N

l=1 nl(1 − pl)

pl
(
B̂l(t) − 1

)
/2
}
.

It is easy to check, that unlike (6), estimate (10) does not contain logarithmic factor.
Moreover, Fj might not have any finite moment of order higher than 2.
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200 A. Elijio, V. Čekanavičius

Corollary 1 Let in Theorem 2

B j = 1

2
I−w j + 1

2
Iw j , w j � C, j = 1, . . . , N .

Then

∥
∥
∥
∥
∥
∥

N∏

j=1

((1 − p j )I + p j B j )
n j − exp

⎧
⎨

⎩

N∑

j=1

n j p j
(
B j − I

)
⎫
⎬

⎭

∥
∥
∥
∥
∥
∥

K

� C12 min

⎧
⎨

⎩
1,

(
N∑

m=1

nm pm

)−1/2
⎫
⎬

⎭

N∑

j=1

min

(

n j p2
j ,

√
p j

n j

)

. (11)

For the proof of (11) it suffices to take h = min j w j/2 and apply (14). If N = 1, then
(11) has the same order of accuracy as (3). Of course, the smoothing effect appears,
when N > 1 and p j , ( j = 1, . . . , N ) tend to zero with different rates. Note also that
Theorem 2 allows investigation of the impact of w j on the accuracy of approximation.
For example, we can assume that some of the weights converge to zero as the others
are bounded by

√
n, etc.

Next we consider possible simplification of the structure of approximating com-
pound Poisson distributions. Both previous theorems involve accompanying approxi-
mating distributions exp{n j (Fj − I )}. Such distributions can have complicated struc-
tures. From a practical point of view, the fewer the number of Poisson convolutions
in Compound Poisson approximation, the more convenient it is for applications. Such
reduction of number of convolutions, however, comes at a price of additional assump-
tions.

Though, in principle, we consider the same case as in Theorem 2, it is
more convenient not to use its decomposition. Let Fj ∈ S be concentrated at
0, ±w j , ±2w j , ±3w j , . . ., that is

Fj = p0 j I +
∞∑

m=1

pmj (I−mw j + Imw j ), p0 j + 2
∞∑

m=1

pmj = 1, j = 1, . . . , N .

(12)

Inspired by Kruopis (1986) idea of left-handed and right-handed factorial moments
we set

νmj :=
∞∑

l=1

l(l − 1) . . . (l − m + 1)pl j .

Poisson approximation is natural for random variables satisfying Franken’s condition,
see Franken (1964) and Kruopis (1986). We say that symmetric Fj satisfies Franken’s
condition if
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Compound Poisson approximation 201

λ j := 2ν1 j − (2ν1 j )
2 − 2ν2 j = 2(ν1 j − 2ν2

1 j − ν2 j ) > 0. (13)

It is obvious that random variable satisfying (13) has most of its probability mass
concentrated at zero.

Theorem 3 Let Fj be defined by (12),
∫∞
−∞ x4 Fj {dx} < ∞, and let (13) be satisfied

for j = 1, 2, . . . , N. Then, for all h > 0, the following estimate holds

∥
∥
∥
∥
∥
∥

N∏

j=1

F
n j
j − exp

⎧
⎨

⎩

N∑

j=1

n j (ν1 j + ν2 j )
(
Iw j + I−w j − 2I

)
⎫
⎬

⎭

∥
∥
∥
∥
∥
∥

K

� C13 Q(M2, h)

N∑

j=1

n j
(
ν2 j + ν3 j + ν4 j + ν2

1 j

)

×
(

w j

h
min

{

1,
1

(λ j n j )3/2

}

+ min

{

1,
1

(λ j n j )2

(

1 + ν1 j + ν2 j

λ j

)})

.

Here M2 ∈ S+ with M̂2(t) = exp
{
−∑N

l=1 nlλl sin2(twl/2)
}

.

We exemplify Theorem 3 assuming that N = 2 and w1, w2 are some absolute
constants, Fj = (1 − 4p j )I + p j (I−w j + Iw j ) + p j (I−2w j + I2w j ), p j < 1/10,
n j p j > 1, ( j = 1, 2). Then λ j > p j/5, ν1 j = 3p j , ν2 j = 2p j , ν3 j = ν4 j = 0.
Observe that

M2 = n1λ1 + n2λ2

2

(
n1λ1

2(n1λ1 + n2λ2)
I−w1 + n1λ1

2(n1λ1 + n2λ2)
Iw1

+ n2λ2

2(n1λ1 + n2λ2)
I−w2 + n2λ2

2(n1λ1 + n2λ2)
Iw2

)

.

If h > 0 is a sufficiently small absolute constant, then from (14) below it follows that

Q(M2, h) � C√
n1λ1 + n2λ2

� C√
n1 p1 + n2 p2

.

Therefore, choosing sufficiently small h, from Theorem 3 we get

∥
∥ Fn1

1 Fn2
2 − exp{5n1 p1(I−w1 + Iw1 − 2I ) + 5n2 p2(I−w2 + Iw2 − 2I )} ∥∥K

� C√
n1 p1 + n2 p2

(
1√

n1 p1
+ 1√

n2 p2

)

.

We see that the smoothing effect is similar to that of Theorem 1.
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202 A. Elijio, V. Čekanavičius

4 Auxiliary results

Let 	u = (u1, . . . , uN̄ ) ∈ R
N̄ . Set

Km(	u) =
⎧
⎨

⎩

N̄∑

i=1

ji ui : ji ∈ {−m,−m + 1, . . . , m} , i = 1, . . . , N

⎫
⎬

⎭
,

δ(W, m, 	u) = W + {R\Km(	u)} + W − {R\Km(	u)} =
∫

R\Km (	u)

1 |W { dx} |.

Here W +, W − denote the positive and negative variation of W , respectively.
We will need the following lemmas.

Lemma 1 Let W ∈ M, W {R} = 0, N̄ , m ∈ N, 	u ∈ R
N̄+1, h > 0 and U ∈ F+. Then

‖ W ‖K � C
∫

|t |�1/h

∣
∣
∣
∣
Ŵ (t)

t

∣
∣
∣
∣ dt+C(N ) ln(m + 1) sup

t∈R

|Ŵ (t)|
Û (t)

Q(U, h)+δ(W, m, 	u).

Lemma 2 Let V1, V2 ∈ M be such that ‖V1‖ � b1, ‖V2‖ � b2 and, for some
s, N̄ , m ∈ N and 	u ∈ R

N̄+1, let supp V1 ⊂ Ks(	u) and supp V2 ⊂ Km(	u). Then, for
all y ∈ N,

δ(V1 exp{V2}, s + my, 	u) � b1 exp{3b2 − y}, δ(exp{V2}, my, 	u) � exp{3b2 − y}.

Lemmas 1 and 2 have been proved in Čekanavičius and Wang (2003).

Lemma 3 Let F, G ∈ F , h > 0 and a > 0. Then

Q(exp{a(F − I )}, h) � C√
aF {|x | > h} . (14)

If, in addition, F̂(t) � 0, then

h
∫

|t |�1/h
|F̂(t)| dt � C Q(F, h). (15)

Lemma 3 contains well-known properties of Levy’s concentration function, see, for
example, Arak and Zaı̆tsev 1988, Chapter 2.

One of the main tools used in this paper is the following modified Le Cam’s inequal-
ity from Čekanavičius and Elijio (2013) (see also Le Cam 1965; Čekanavičius and
Roos 2006a).

Lemma 4 Let h > 0, W ∈ M, W {R} = 0, H ∈ F , M ∈ S+, and |Ĥ(t)| � C M̂(t),
for |t | � 1/h. Then

‖ W H ‖K � C

(

sup
|t |�1/h

|Ŵ (t)|
|t | · 1

h
+ ‖W‖

)

Q(M, h).
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Compound Poisson approximation 203

Next two Lemmas have been proved in Čekanavičius and Roos (2006a, b).

Lemma 5 Let j ∈ {1, 2, . . . }, n ∈ N, and p = 1−q ∈ (0, 1). If F ∈ S is concentrated
on the set {±1,±2, . . . } and has finite variance σ 2, then

‖ (F − I ) j (I + p(F − I ))n ‖ � 6.73
√

σ
j

q1/4

(
j

e npq

) j

.

Lemma 6 Let F ∈ S be concentrated on {±1,±2, . . .} and has a finite variance σ 2.
Let a ∈ (0,∞), k ∈ N. Then

‖ (F − I )k exp{a(F − I )} ‖ ≤ 3.6k1/4
√

1 + σ

(
k

ae

)k

≤ C(k)

√
σ

ak
.

Lemma 7 Let R̂(t) = ∑∞
k=−∞ Rkei tk ,

∑∞
k=−∞ |k||Rk | < ∞. Then, for all γ > 0

and υ ∈ R,

( ∞∑

k=−∞
|Rk |

)2

�
(

1

2
+ 1

2πγ

)∫ π

−π

(

γ |R̂(t)|2 + 1

γ

∣
∣
∣
(
R̂(t)e−i tυ)′ ∣∣

∣
2
)

dt.

Lemma 7 has been proved in Presman (1986).

5 Proofs

For the sake of brevity, we omit the dependence of Fourier transforms on t whenever
it does not lead to ambiguity. For example, we write F̂i instead of F̂i (t). Let Gi =
exp{Fi − I } and let � denote all measures, satisfying ‖� ‖ � 1. We also constantly
use two simple estimates

xke−ax2 � C(k)a−k/2,

∣
∣
∣
∣
∣
∣
eb −

k∑

j=0

b j

j !

∣
∣
∣
∣
∣
∣
� |b|k+1

(k + 1)! , (16)

which hold, for any x > 0, a > 0, b � 0 and k ∈ N.

Proof of Theorem 1 Proofs of both estimates, (6) and (7), are based on Lemmas 1 and

2. First we use Lemma 1. In this case, set W = ∏N
i=1 Fni

i − exp
{∑N

i=1 ni
(
Fi − I

)}

and U = exp
{∑N

j=1 n j
(
Fj − I

)
/2
}

.

It is obvious, that F̂i � exp{F̂i −1}, since 0 � F̂i � 1. Moreover, exp{1− F̂i } � e.
Therefore, taking into account (16), it is not difficult to prove that

|F̂ni
i − Ĝni

i | � ni |F̂i − Ĝi |Ĝni −1
i � CĜni

i ni |F̂i − 1|2
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204 A. Elijio, V. Čekanavičius

and

|Ŵ | �
∣
∣
∣
∣
∣

N∏

i=1

F̂ni
i −

N∏

i=1

Ĝni
i

∣
∣
∣
∣
∣
� CÛ 2

N∑

i=1

ni |F̂i − Ĝi | � CÛ 2
N∑

i=1

ni |F̂i − 1|2.

From that we get two important inequalities. By the first estimate in (16),

|Ŵ | � CÛ
N∑

i=1

ni |F̂i − 1|2 exp{(ni/2)(F̂i − 1)} � CÛ (t)
N∑

i=1

1

ni
.

Similarly

|Ŵ | � CÛ 2
N∑

i=1

ni |F̂i − 1|3/2σi |t | � CÛ
N∑

i=1

σi |t |√
ni

,
|Ŵ |
|t | � CÛ

N∑

i=1

σi√
ni

.

Substituting these estimates into Lemma 1 and applying (15), we obtain

|W | � C Q(U, h)

⎛

⎝1

h

N∑

j=1

σ j√
n j

+ C(N ) ln(m + 1)

N∑

j=1

1

n j

⎞

⎠ + δ(W, m, 	u).

We still need to estimate δ(W, m, 	u) for suitably chosen m and 	u. For that purpose we
will use Lemma 2. In this particular case, let V1 = ∏N

j=1 F
n j
j and V2 = ∑N

j=1 n j
(
Fj −

I
)
.
Distribution Fi is concentrated on {±wi xi1,±wi xi2, . . . ,±wi xis}. By choos-

ing 	ui = (0, wi 	xi ) = (0, wi xi1, . . . , wi xis), we get that supp Fi ⊂ K1(	ui )

and supp Fni
i ⊂ Kni (	ui ). Here suppFi denotes the support of Fi . Let 	u :=

(0, w1 	x1, w2 	x2, . . . , wN 	xN ) ∈ R
Ns+1. Obviously, supp V1 = supp Fn1

1 · · · FnN
N ⊂

Kn1+...+nN (	u) = Kn(	u).
From the definition of V2, we easily get ‖V2‖ � 2(n1 + . . . + nN ) = 2n, and

supp V2 ⊂ K1(	u). Therefore, from Lemma 2 it follows that δ(eV2 , y, 	u) � e6n−y .
Let y = 7n. Then δ(eV2 , 7n, 	u) � e−n . From the definition of δ, we also have
that δ(V1, n, 	u) = 0. Therefore, it follows that δ(V1 + eV2 , 7n, 	u) � e−n . Since
δ(W, 7n, 	u) = δ(V1 − eV2 , 7n, 	u) � δ(V1 + eV2 , 7n, 	u) � e−n , we now easily get (6)
by choosing m = 7n.

The estimate (7) is proved similarly. Taking into account (3.16)–(3.18) from
Čekanavičius and Wang (2003), we obtain

|Ŵ | :=
∣
∣
∣
∣
∣
∣

N∏

j=1

F̂
n j
j − exp

⎧
⎨

⎩

N∑

j=1

n j
(
F̂j − 1

)
⎫
⎬

⎭

(

1 − 1

2

N∑

k=1

nk
(
F̂k − 1

)2

)∣∣
∣
∣
∣
∣

� CÛ 2

⎛

⎜
⎝

N∑

j=1

n j |F̂j − 1|3 +
⎛

⎝
N∑

j=1

n j (F̂j − 1)2

⎞

⎠

2
⎞

⎟
⎠ � C(N )Û (t)

N∑

j=1

1

n2
j
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and

|Ŵ | � CÛ
N∑

j=1

σi |t |
n j

√
n j

.

It remains to estimate δ(W, m, 	u). In this case, we choose the same 	u as before and
take V3 = (

I − 1
2

∑N
j=1 n j (Fj − I )2

)
. We have

‖ V3 ‖ � 1 + 1

2

N∑

j=1

n j · 22 = 1 + 2n, supp V3 ⊂ K1(	u).

Taking y = 8n, m = 1, from Lemma 2 we obtain

δ(V3eV2 , 9n, 	u) � (2n + 1)e6n−y � Ce−n

and δ(V1 − V3eV2 , 9n, 	u) � δ(V1, 9n, 	u) + δ(V3eV2 , 9n, 	u). Applying Lemmas 1 and
2 we complete the proof of (7). �
Proof of Theorem 2 We give the proof for the case N = 2 only. For the general case,
the argument is the same. Let Fj = (1 − p j )I + p j B j . Let �x� denote integer part of

x (0 � x − �x� < 1). Let W j = (Fj − I )2 F�(k−1)/2�
j G

�(n j −k)/2�
j and let

H1 = F�(k−1)/2�
1 G�(n1−k)/2�

1 Fn2
2 , H2 = F�(k−1)/2�

2 G�(n2−k)/2�
2 Gn1

1 . (17)

Taking into account the definition of G j we obtain

Fj − G j = I + (Fj − I ) −
∞∑

k=0

(Fj − I )k

k! = −(Fj − I )2
∞∑

k=2

(Fj − I )k−2

k!
= (Fj − I )2�C.

Then

∥
∥ Fn1

1 Fn2
2 − Gn1

1 Gn2
2

∥
∥

K

�
∥
∥ (Fn1

1 − Gn1
1 )Fn2

2

∥
∥

K + ∥
∥ (Fn2

2 − Gn2
2 )Gn1

1

∥
∥

K

�
n1∑

k=1

∥
∥
∥ (F1 − G1)Fk−1

1 Gn1−k
1 Fn2

2

∥
∥
∥

K
+

n2∑

k=1

∥
∥
∥ (F2 − G2)Fk−1

2 Gn2−k
2 Gn1

1

∥
∥
∥

K

� C ‖ W1 H1 ‖K + C ‖ W2 H2 ‖K . (18)

We apply Lemma 4 to W j Hj . First note that

F̂2
j = (1 − p j )

2 + 2p j (1 − p j )B̂ j + p2
j B̂2

j � 1 + 2p j (1 − p j )(B̂ j − 1).
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Therefore,

|F̂j |, |Ĝ j | � exp{p j (1 − p j )(B̂ j − 1)}. (19)

Note that

�(k − 1)/2� + �(n j − k)/2� � k − 1

2
− 1 + n j − k

2
− 1 � n j

2
− 5

2
.

Consequently,

|Ĥ1| � exp

{

n2 p2(1 − p2)(B̂2 − 1) + n1

2
p1(1 − p1)(B̂1 − 1) + θ

5

2
p1(1 − p1)2

}

� C M̂1(t). (20)

Similarly |Ĥ2| � C M̂2(t).
We have

|F̂�(k−1)/2�
j Ĝ

�(n j −k)/2�
j | � C exp{Cn j p j (B̂ j − 1)}. (21)

Indeed, if n j � 20 the estimate follows from (19). If n j < 20, then we make use of
the fact, that any characteristic function is bounded by unity and, therefore,

|F̂�(k−1)/2�
j Ĝ

�(n j −k)/2�
j | � 1 � exp{n j p j (B̂ j − 1)} exp{20p j (|B̂ j | + 1)}

� e40 exp{n j p j (B̂ j − 1)}.

Standard expansion of characteristic function results in inequality

|F̂j − 1|2 = p2
j |B̂ j − 1|2 � Cp2

j
√

μ2 j |t ||B̂ j − 1|3/2.

Combining the last estimate with (21) and (16) we obtain

|Ŵ j |
|t | � Cp2

j
√

μ2 j (1 − B̂ j )
3/2 exp{Cn j p j (B̂ j − 1)}

� Cp2
j
√

μ2 j min(1, (n j p j )
−3/2). (22)

It remains to estimate ‖ W j ‖. It is obvious that ‖ W ‖ � Cp2
j . We recall that total

variation norm of any distribution equals unity. Therefore, if n j � 20 and k > n j/2,
then by Lemma 5

‖ W j ‖ � p2
j‖ (B j − I )2(I + p j (B j − I ))�(k−1)/2� ‖ � C

√
μ2 j

n2
j

.
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Similar estimate is obtained via Lemma 6, if n j � 20 and k � n2/2. Now, let n j < 20.
Then

‖ W j ‖ � Cp2
j‖ (B j−I )2 ‖=Cp2

j‖ (B j−I )2 exp{n j p j (B j−I )} exp{n j p j (I − B j )} ‖
� Cp2

j‖ (B j − I )2 exp{n j p j (B j − I )} ‖ exp{n j p j‖ B j − I ‖}
� Cp2

j‖ (B j − I )2 exp{n j p j (B j − I )} ‖ � C
√

μ2 j

n2
j

. (23)

Combining last estimates with (22), (20), Lemma 4 and substituting the resulting
estimate into (18) we complete the proof of Theorem 2. �

Proof of Theorem 3 We apply similar argument as used for the proof of Theorem
2. We use (17) and (18) with Fj defined by (12) and G j with Ĝ j (t) = exp{(ν1 j +
ν2 j )(eit j −1+e−i t j −1)}. Hence and further t j ≡ tw j , r j = ν2 j +ν3 j +ν4 j +ν2

1 j . Note

that ν1 j , ν2 j � 1, since λ j > 0. Applying Lemma 2 from Šiaulys and Čekanavičius
(1988), we obtain

|F̂j | � exp

{

−2λ j sin2 t j

2

}

, |Ĝ j | � exp

{

−2λ j sin2 t j

2

}

. (24)

Taking into account the last estimates and arguing just like in the proof of (20) and
(21) we get

|Ĥ j | � M̂2(t), |F̂�(k−1)/2�
j Ĝ

�(n j −k)/2�
j | � C exp{−Cn jλ j sin2(t j/2)}. (25)

Next note that, for any t ∈ R,

(eit − 1) + (e−it − 1) = e−it (eit − 1)2, (eit − 1)3 + (e−it − 1)3

= (eit − 1)4e−3it (e2it + eit + 1), (eit − 1)2 + (e−it − 1)2

= 2(eit + e−it − 2) + e−2it (eit − 1)4.

Therefore, applying standard expansion in factorial moments, we obtain

F̂j = 1 + ν1 j (e
it j + e−it j − 2) + ν2 j

2
((eit j − 1)2 + (e−it j − 1)2)

+ν3 j

6
((eit j − 1)3 + (e−it j − 1)3) + θCν4 j |eit j − 1|4

= 1 + (ν1 j + ν2 j )(e
it j + e−it j − 2) + θC(ν2 j + ν3 j + ν4 j )|eit j − 1|4. (26)

Similarly,

Ĝ j = 1 + (ν1 j + ν2 j )(e
it j + e−it j − 2) + θC(ν2 j + ν1 j )

2|eit j − 1|4. (27)
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Therefore,

|F̂j − Ĝ j | � Cθ |eit j − 1|4r j

and

|W j |
|t | � Cr jw j min(1, (n jλ j )

−3/2). (28)

It remains to estimate ‖ W j ‖. The total variation norm is invariant to scale change.
Therefore, without loss of generality, we assume that W j is concentrated at nonnegative
integers, and t j = t . Expanding Fj in powers of (I1 − I ) (see, for example, Lemma
2.3 from Čekanavičius 1998) we can write analogs of (26) and (27):

Fj = I + (ν1 j + ν2 j )(I1 + I−1 − 2I ) + (I1 − I )4�C(ν2 j + ν3 j + ν4 j ),

G j = I + (ν1 j + ν2 j )(I1 + I−1 − 2I ) + (I1 − I )4�C(ν2 j + ν1 j )
2

and

Fj − G j = (I1 − I )4�Cr j .

It is obvious, that ‖ W j ‖ � Cr j . Therefore, it remains to prove estimate containing
C(n j a j )

−2. Let us assume that k < n j/2 and n j � 20. Then

‖ W j ‖ � Cr j‖ (I1 − I )4 exp{Cn jλ j (I1 + I−1 − 2I )} ‖
� Cr j‖ (I1 − I )4 exp{Cn jλ j (I1 − I )} ‖
� Cr j‖ (I1 − I ) exp{Cn jλ j (I1 − I )/4} ‖4 � Cr j (n jλ j )

−2.

For the last estimate we used well-known inequality (see, for example, Ibragimov and
Presman 1973, Eq. (28); or Čekanavičius and Roos 2006b, Lemma 4.1). Now let us
assume that k � n j/2 and n j � 20. For the sake of convenience we use abbreviation
a j = �(k − 1)/2�. Note that a j � n j/6. Let n j a j � 1. By the properties of total
variation norm

‖ W j ‖ � Cr j‖ (I1 − I )4 F
a j
j ‖.

We will use Lemma 7 with γ = √
n j a j , υ = 0 and

R̂(t) = F̂
a j
j (eit − 1)4.

Taking into account (24) we obtain

|R̂(t)| � C exp{−2a jλ j sin2(t/2)} sin4(t/2) � C(n jλ j )
−2 exp{−a j sin2(t/2)}.
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From Šiaulys and Čekanavičius (1988, Lemma 4) it follows that

|F̂ ′
j | � C(ν1 j + ν2 j )|eit − 1|.

Therefore,

|R′(t)| � 4|eit − 1|3|F̂a j
j | + |eit − 1|4a j |F̂j |a j −1|F̂ ′

j |
� C exp{−2a jλ j sin2(t/2)}

(
| sin(t/2)|3 + a j (ν1 j + ν2 j )| sin(t/2)|5

)

� C exp{−a jλ j sin2(t/2)}(n jλ j )
−3/2

(

1 + ν1 j + ν2 j

λ j

)

.

It remains to substitute the last two estimates in Lemma 7 to obtain estimate

‖ F
a j
j (I1 − I )4 ‖ � C(n jλ j )

−2
(

1 + ν1 j + ν2 j

λ j

)

.

For the case n j < 20 argument goes exactly as in (23). Thus, we proved that

‖ W j ‖ � Cr j min

(

1, (n jλ j )
−2

(

1 + ν1 j + ν2 j

λ j

))

. (29)

Consequently substituting estimates (29), (28), (25) into Lemma 4 and the resulting
estimate in (18) we complete the proof of Theorem. �
Acknowledgments The authors wish to thank the referee for constructive suggestions which improved
the paper.
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Čekanavičius, V. (2003). Infinitely divisible approximations for discrete nonlattice variables. Advances in
Applied Probability, 35, 982–1006.
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