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Abstract This paper gives a comprehensive treatment of local uniqueness, asymp-
totics and numerics for intrinsic sample means on the circle. It turns out that local
uniqueness as well as rates of convergence are governed by the distribution near the
antipode. If the distribution is locally less than uniform there, we have local unique-
ness and asymptotic normality with a square-root rate. With increased proximity to the
uniform distribution the rate can be arbitrarily slow, and in the limit, local uniqueness
is lost. Further, we give general distributional conditions, e.g., unimodality, that ensure
global uniqueness. Along the way, we discover that sample means can occur only at
the vertices of a regular polygon which allows to compute intrinsic sample means in
linear time from sorted data. This algorithm is finally applied in a simulation study
demonstrating the dependence of the convergence rates on the behavior of the density
at the antipode.

Keywords Circular statistics · Directional statistics · Intrinsic mean · Central limit
theorem · Asymptotic normality · Convergence rate

1 Introduction

The need for statistical analysis of directional data arises in many applications, be it
in the study of wind direction, animal migration or geological crack development. An
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178 T. Hotz, S. Huckemann

overview of and introduction into this field can be found in Fisher (1993) or Mardia
and Jupp (2000). Until today, nonparametric inferential techniques employing the
intrinsic mean, i.e., the minimizer of expected squared angular distances, rest on the
assumption that distributions underlying circular data have no mass in an entire interval
opposite to an intrinsic mean. This assumption, however, is not met by many of the
standard distributions for directional data, e.g., Fisher-von Mises, Bingham, wrapped
normal or wrapped Cauchy distributions.

The reason for this mathematical assumption lies in the fact that the squared intrinsic
distance is not differentiable at two antipodal points. However, the central limit theorem
for intrinsic means on general manifolds derived by Bhattacharya and Patrangenaru
(2005), cf. also Huckemann (2011), utilizes a Taylor expansion of the intrinsic variance
by differentiating under the integral sign, i.e., by differentiating the squared intrinsic
distance. In consequence, this has left the derivation of a central limit theorem along
with convergence rates for circular data of most realistic scenarios and distributions
an open problem until now.

Here, we fill this gap and provide for a comprehensive solution. In particular, we
show that, if the distribution features a continuous density near the antipode of the
intrinsic mean which stays below the density of the uniform distribution, asymptotic
normality with the n−1/2 rate well known from Euclidean statistics remains valid, the
asymptotic variance, however, increases with proximity to the uniform distribution.
Using different methods, this has also been observed by McKilliam et al. (2012) if the
distribution features a continuous density at the antipode whose value is less than 1

2π
,

though we give a different proof. When it increases further, namely if the distribution
at the antipode differs from the uniform distribution only in higher order, then the
asymptotic rate is accordingly lowered by this power. If and only if the distribution
at the antipode is locally uniform the intrinsic mean is no longer locally unique.
Moreover, at an antipode of an intrinsic mean, there may never be more mass than that
of the uniform distribution. In particular there can never be a point mass. For these
reasons, sample means are always locally unique and we will see that they can only
occur on the vertices of a regular polygon. Hence from ordered data, sample means can
be computed in linear time. These insights also allow to derive general distributional
assumptions such as unimodality under which there is only one local minimizer and
hence a unique intrinsic mean.

This last result extends the result of Le (1998) who guarantees uniqueness for
distributions symmetric with respect to a point, being non-increasing functions of the
distance to this point, strictly decreasing on a set of positive circular measure, cf. also
Kaziska and Srivastava (2008), as well as the very general result of Afsari (2011)
which in our case of the circle, yields uniqueness if the distribution is restricted to an
open half circle.

We note that there are other estimates for a mean direction than the intrinsic mean
discussed here, most notably the extrinsic mean discussed e.g., by Bhattacharya and
Patrangenaru (2003, 2005). For directional data, the latter is often simply called circu-
lar mean. However, we focus on the mathematically more difficult case of the intrinsic
mean here; the properties of the extrinsic mean, e.g., its asymptotic normality, being
well established.

123



Intrinsic means on the circle 179

2 Setup

Throughout this paper, we will work with angles in the interval [−π, π). On this
interval, we use the distance d(θ, ζ ) := ∣

∣θ − ζ − 2πν(θ, ζ )
∣
∣ for θ, ζ ∈ [−π, π) with

ν(θ, ζ ) :=
⎧

⎨

⎩

1 if θ > 0, ζ ∈ [−π, θ − π),

−1 if θ < 0, ζ ∈ (θ + π, π),

0 else.

If one identifies every angle θ ∈ [−π, π) with the point z(θ) = (cos θ, sin θ) ∈
S1 = {(x, y) ∈ R

2 : x2 + y2 = 1} on the unit circle, then d(θ, ζ ) gives the distance
between z(θ) and z(ζ ) in arclength, i.e., their geodesic distance on the unit circle.
We therefore call d the intrinsic distance. Note that d is a metric on [−π, π), and
for the induced topology z : [−π, π) → S1 is a homeomorphism. The advantage of
working on [−π, π) instead of on S1 is that it is a subset of R, almost a chart, so that
all calculations merely concern real numbers, and all statements are to be interpreted
this way. To emphasize that we do not use the standard topology on [−π, π) but the
one induced by the metric d, we will at times denote this set by T. This should remind
the reader of the fact that [−π, π) here bears the topology of the one-dimensional
torus R/2πZ, for which [−π, π) is a set of representatives. An interval on T is then
any interval on R modulo 2πZ.

In this paper, with the antipodal map φ : [−π, π) → [−π, π)

φ(θ) =
{

θ − π if 0 ≤ θ < π,

θ + π if − π ≤ θ ≤ 0,

the antipodal set S̃ := {φ(θ) : θ ∈ S} of S ⊂ [−π, π) = T will play a central role.
On T = [−π, π) we consider independent and identically distributed random ele-

ments X1, . . . , Xn ∼ X mapping from a given probability space (Ω,A, P) to [−π, π),
denoting the corresponding distribution of X by PX . Writing E for the usual Euclidean
expectation, we are then looking for minimizers θ ∈ [−π, π) of the so-called Fréchet
function, see Fréchet (1948),

V (θ) := E

(

d(θ, X)2
)

, and Vn(θ) := 1

n

n
∑

j=1

d(θ, X j )
2. (1)

Remark 1 Note that V and Vn , being continuous functions on the compact T, always
feature at least one global minimizer.

Definition 1 Every such global minimizer θ∗ of V and θn of Vn is called an intrinsic
population mean and an intrinsic sample mean, respectively. The values V (θ∗) and
Vn(θn) are called intrinsic population and sample variance, respectively.

Obviously, global minimizers need not be unique, and there may be local but non-
global minimizers, as the examples below will show.
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180 T. Hotz, S. Huckemann

Denoting the usual average by X̄ = 1
n

∑n
j=1 X j we have that −π ≤ X̄ < π . Since

V (θ) ≤ E|θ − X |2 with equality for θ = 0, the latter functional being minimized by
θ = EX , we see that θ∗ = 0 locally minimizing V implies EX = 0; cf. also Kobayashi
and Nomizu (1969, Section VIII.9) as well as Karcher (1977). The classical Euclidean
Central Limit Theorem gives

√
n X̄

D→ N (0, σ 2) (2)

with the Euclidean variance Var(X) = σ 2. If θ∗ = 0 is also a global minimizer of V ,
i.e., an intrinsic mean, then the Euclidean variance agrees with the intrinsic variance

V (0) = σ 2.

If we were interested whether any other θ ∈ T were an intrinsic mean, we could apply
a simple rotation of the circle to reduce this to the case θ = 0 again. Without loss of
generality we can hence restrict our attention to this special θ ; recall that its antipode
is φ(0) = −π .

3 Local and global minimizers

3.1 The distribution near the antipode

Here is our first fundamental Theorem.

Theorem 1 If θ∗ = 0 locally minimizes V , then:

(i) PX (−π) = 0, i.e., there is no point mass opposite an intrinsic mean.
(ii) If additionally there is some δ > 0 s.t. PX restricted to (−π,−π + δ) features

a continuous density f with respect to Lebesgue measure, then f (−π+) =
limθ↓−π f (θ) ≤ 1

2π
; similarly f (π−) = limθ↑π f (θ) ≤ 1

2π
for a continuous

density f on (π − δ, π). If both f (−π+) < 1
2π

and f (π−) < 1
2π

, then θ∗ is
locally unique.

(iii) In case f (−π) = 1
2π

, f being continuous in a neighborhood of −π , assume that
there is some δ > 0 s.t. f is k-times continuously differentiable on [−π,−π + δ)

(i.e., with existing left limits) and k̃-times continuously differentiable on (π −
δ, π ] (i.e., with existing right limits), where k and k̃ are chosen minimal s.t.

f (k)(−π+) = limθ↓−π f (k)(θ) �= 0 as well as f (k̃)(π−) = limθ↑π f (k̃)(θ) �=
0. Then, f (k)(−π+) < 0 as well as (−1)k̃ f (k̃)(π−) < 0, θ∗ is locally unique,
and for δ > 0 small enough

P{−π ≤ X ≤ −π + δ} = δ

2π
+ δk+1

(k + 1)! f (k)(−π+) + o(δk+1),

as well as

P{π − δ ≤ X < π} = δ

2π
+ δk̃+1

(k̃ + 1)! (−1)k̃ f (k̃)(π−) + o(δk̃+1).
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Intrinsic means on the circle 181

Proof For any θ > 0, we have

V (θ) − V (0)

=
∫ π

−π+θ

(θ − x)2 dPX (x) +
∫ −π+θ

−π

(θ − x − 2π)2 dPX (x) −
∫ π

−π

x2 dPX (x)

=
∫ π

−π

(

(θ − x)2 − x2)

︸ ︷︷ ︸

=θ2−2θx

dPX (x) +
∫ −π+θ

−π

(− 4π(θ − x) + 4π2) dPX (x)

= θ2 − 2θ EX
︸︷︷︸

=0

−4π

∫ −π+θ

−π

(−π + θ − x)
︸ ︷︷ ︸

≥0

dPX (x)

≤ θ2 − 4π θ PX (−π) (3)

which for θ small enough becomes negative if PX (−π) > 0, whence (i) follows.
Now denote the (shifted) cumulative distribution function of Y = X + π by

F(y) = P{0 ≤ Y ≤ y} = P{−π ≤ X ≤ −π + y} (4)

for y ≥ 0 to obtain

∫ −π+θ

−π

(−π + θ − x) dPX (x) =
∫ θ

0
(θ − y)F ′(y)dy

= 0F(θ) − θ F(0)
︸︷︷︸

=0

+
∫ θ

0
F(y)dy,

F ′ being understood in a distributional sense. Noting that θ2 = 4π
∫ θ

0
y

2π
dy where y

2π
is the (shifted) cumulative distribution function of the uniform distribution on [−π, π),
in conjunction with (3), we see that

V (θ) ≥ V (0) iff
∫ θ

0

( y

2π
− F(y)

)

dy ≥ 0, (5)

where equality holds simultaneously, too.
Thus, under the assumptions of (ii), we may use a 2nd order Taylor expansion to

obtain for θ ≥ 0 small enough

0 ≤
∫ θ

0

( y

2π
− F(y)

)

dy = θ2

4π
− θ2

2
F ′(0) + o(θ2),

hence f (−π+) = F ′(0+) ≤ 1
2π

. If this inequality is strict, V (θ) > V (0) follows for
θ small enough. With the analogous argument for θ < 0 this yields the assertion in
(ii).
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182 T. Hotz, S. Huckemann

Finally, (iii) is obtained by a Taylor expansion as well, namely (for θ > 0)

θ

2π
− F(θ) = − θk+1

(k + 1)! f (k)(−π+) + o(θk+1),

which after integration, noting that uniqueness implies a sharp inequality, gives

0 ≤
∫ θ

0

( y

2π
− F(y)

)

dy = − θk+2

(k + 2)! f (k)(−π+) + o(θk+2),

whence f (k)(−π+) < 0 follows as well as local uniqueness. The case θ < 0 is again
treated analogously. ��

3.2 Consequences for uniqueness, loci of local minimizers and algorithms

From Theorem 1 we obtain at once a necessary and sufficient condition such that a
minimizer of V is locally unique.

Corollary 1 By (5), V is constant on some interval S ⊂ T iff the probability distribu-
tion restricted to the antipodal interval S̃ has constant density 1

2π
there. In particular,

suppose that θ∗ ∈ T is a local minimizer of V . Then θ∗ is locally unique iff there is
no interval θ∗ ∈ S ⊂ T such that the distribution restricted to S̃ is uniform.

The following is a generalization of a result by Rabi Bhattacharya (personal com-
munication from 2008):

Corollary 2 If the distribution of X has a density with respect to the Lebesgue measure
which is composed of finitely many pieces, each being analytic up to the interval
boundaries, then any local minimizer of V is locally unique unless the density is
constant 1

2π
on some interval.

Proof This follows immediately since an analytic function is constant unless one of
its derivatives is non-zero. ��
Proposition 1 Consider the distribution of X, decomposed into the part λ which is
absolutely continuous with respect to Lebesgue measure, with density f , and the part
η singular to Lebesgue measure. Let S1, . . . , Sk be the distinct open arcs on which
f < 1

2π
, assume they are all disjoint from supp η, and that {x ∈ T : f (x) = 1

2π
} is

a Lebesgue null-set. Then X has at most k intrinsic means and every S̃ j contains at
most one candidate.

Proof Suppose that θ∗ = 0 is a local minimizer of V . By hypothesis and virtue of
Corollary 1 there is an open arc S1 � −π followed (going into positive x-direction)
by a closed arc T1 such that f (x) < 1/(2π) for x ∈ S1\{−π} and f (x) > 1/(2π)

for x ∈ T1 a.e.. Let S̃1 = (−δ′, δ) and T̃1 = [δ, δ′′] for some 0 < δ′, δ and δ′′ > δ. It
suffices to show that no 0 < θ < δ′′ can be another minimizer of V .
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Intrinsic means on the circle 183

To this end with F from (4) consider

G(θ) = θ

2π
− F(θ) and H(θ) =

∫ θ

0
G(x)dx =

∫ θ

0

( x

2π
− F(x)

)

dx,

cf. (5) and recall that θ is a minimizer of V iff H(θ) ≥ 0. By construction, G ′ is positive
on (0, δ) and it is negative on [δ, δ′] a.e. Hence G is continuous and G(0) = 0 < G(θ)

for small θ > 0. Hence, H(θ) > 0 for all 0 < θ ≤ δ. Arguing again with Corollary 1
that there cannot be a minimizer of V if its antipode carries more density than the
uniform density, gives that δ < θ < δ′′ cannot be a minimizer either, completing the
proof. ��

We note two straightforward consequences.

Corollary 3 (i) Every population mean of a unimodal distribution is globally
unique.

(ii) If the distribution of X is composed of k < ∞ point masses at distinct locations,
then V has at most k local minimizers, each being locally unique; for each interval
formed by two neighboring point masses there is at most one local minimizer in
the interior of the antipodal interval.

(iii) In particular, any intrinsic sample mean is locally unique.

Curiously, candidates for intrinsic sample means are very easy to obtain from one
another.

Corollary 4 For a sample X1, . . . , Xn the candidates for minimizers of Vn described
in Proposition 1 and Corollary 3 form the vertices of a regular n-polgyon. If
(X1, . . . , Xn) is continuously distributed on T

n, then there is almost surely one and
only one intrinsic sample mean.

Proof W.l.o.g. assume that the sample is ordered, i.e., −π ≤ X1 ≤ . . . ≤ Xn < π . We
consider for θ ≥ 0 the case that Xi < θ −π < Xi+1 for 1 ≤ i ≤ n −1 or θ −π < X1
for i = 0. Note that equalities Xi = θ − π etc. are excluded by Theorem 1(i); also,
observe that θ −π > Xn for i = n cannot lead to a local minimum at θ . Then, setting
the first sum to zero in case i = 0,

Vn(θ) = 1

n

⎛

⎝

i
∑

j=1

(X j − θ + 2π)2 +
n
∑

j=i+1

(X j − θ)2

⎞

⎠

= 1

n

n
∑

j=1

(X j − θ)2 − 4π

n

i
∑

j=1

(θ − X j − π). (6)

This is minimal for θ(i) = X̄ + 2π i
n . However, only if Xi + π < θ(i) < Xi+1 + π ,

this minimum corresponds to a local minimum of Vn . Similarly, for θ < 0 and Xi <

θ + π < Xi+1 for 1 ≤ i ≤ n − 1 or Xn < θ + π for i = n, we get
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Vn(θ) = 1

n

⎛

⎝

i
∑

j=1

(X j − θ)2 +
n
∑

j=i+1

(X j − θ − 2π)2

⎞

⎠

= 1

n

n
∑

j=1

(X j − θ)2 − 4π

n

n
∑

j=i+1

(X j − θ − π), (7)

which is minimal for θ(i) = X̄ − 2π(n−i)
n . Again, note that X1 > θ + π for n = 0

cannot lead to a local minimum at θ .
With X̄i = 1

i

∑i
j=1 X j and Xi = 1

n−i

∑n
j=i+1 X j , we obtain for a local minimizer

θ(i) that Vn(θ(i)) = vn,i where

vn,i = 1

n

n
∑

j=1

(X j − X̄)2+

⎧

⎪⎨

⎪⎩

− ( 2π i
n

)2 + 4π i
n

(

π + X̄i − X̄
)

, θ(i) ≥ 0,

−
(

2π(n−i)
n

)2 + 4π(n−i)
n

(

π − Xi + X̄
)

, θ(i) < 0,

(8)

whence Vn(θ(i)) = Vn(θ( j)) for i �= j implies that there are a, b, c, d ∈ Z, with
a �= 0 or b �= 0 s.t. a X̄i + bX̄ j + cX̄ + dπ = 0, the probability of which is zero for
continuously distributed data. ��
Remark 2 The fact that intrinsic sample means of continuous distributions are almost
surely globally unique has also been observed by Bhattacharya and Patrangenaru
(2003, Remark 2.6).

Remark 3 Corollary 4 has application for algorithmically determining an intrinsic
sample mean: to do so, determine the minimizers of Vn(θ(i)) for θ(i) ≡ X̄ + 2π i

n
mod 2π, i = 1, . . . , n; this requires as many steps as there are data points in the sam-
ple. In fact, (8) easily leads to an implementation requiring O(n) time for computing
the intrinsic mean(s) of a sorted sample. An example is shown in Fig. 1; note that not
all points on the polygon form candidates θ(i): if X̄ > 2π i

n then X̄ − 2π i
n cannot be a

minimizer. Also note that Vn(θ(i)) and vn,i only agree if θ(i) is a local minimizer. A
conceptually different algorithm for computing the intrinsic sample mean in linear time
using combinatorial optimization has recently been introduced by McKilliam et al.
(2012).

For the computation of population means, Proposition 1 allows for a similar pro-
cedure: compute in each interval with density less than 1/(2π) the unique minimizer.

Finally, we give an illustration to Corollary 1.

Example 1 Suppose that X is uniformly distributed on [−π,−π + δπ ]∪ [π − δπ, π)

with 0 ≤ δ ≤ 1
2 and total weight 0 ≤ αδ ≤ 1, i.e., 0 ≤ α ≤ δ−1 giving a density of

α
2π

near ±π , and with a point mass of weight 1 − αδ at 0. Then in case of α = 1,
by Corollary 1, V (θ) is constant for −δπ ≤ θ ≤ δπ , and [−δπ, δπ ] is precisely the
set of intrinsic means. Moreover for α > 1, {−αδπ, αδπ} is the set of intrinsic means
whereas for α < 1, 0 is the unique intrinsic mean.
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μ

V
n(μ

)

− π − 0.8π − 0.6π − 0.4π − 0.2π 0 0.2π 0.4π 0.6π 0.8π π

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Fig. 1 Numerical example for determining a sample’s intrinsic mean; see Remark 3: n = 10 observations
X1, . . . , X10 from a wrapped normal distribution are indicated as vertical strokes at the bottom; the curve
depicts their Vn(θ); vertical dashed lines give the θ(i) lying on a regular polygon from the proof of
Corollary 4, the corresponding values vn,i from (8) are indicated by circles; the average X̄ of the data is
shown in green, the intrinsic mean in red (color figure online)

Proof Indeed, for 0 ≤ θ ≤ δπ we have

V (θ) = (1 − αδ) θ2 + α

2π

(∫ π+θ

π−δπ

(x − θ)2 dx +
∫ −π+δπ

−π+θ

(x − θ)2 dx

)

= (1 − αδ) θ2 + α

6π

⎛

⎜
⎝π3 − ((1 − δ)π − θ)3 + (−(1 − δ)π − θ)3 + π3
︸ ︷︷ ︸

=2π3−2 (1−δ)3π3 −2.3 (1−δ)π θ2

⎞

⎟
⎠

= α

3
(3δ − 3δ2 + δ3)π2 + (1 − α) θ2

which is constant in θ for α = 1, minimal for θ = 0 in case of α < 1 and minimal for
θ = δπ in case of α > 1. On the other hand for δπ ≤ θ ≤ π we have

V (θ) = (1 − αδ) θ2 + α

2π

∫ π+δπ

π−δπ

(x − θ)2 dx

= (1 − αδ) θ2 + α

6π

⎛

⎜
⎝ ((1 + δ)π − θ)3 − ((1 − δ)π − θ)3

︸ ︷︷ ︸

=((1+δ)3−(1−δ)3)π3−3((1+δ)2−(1−δ)2)π2 θ+2.3 δπ θ2

⎞

⎟
⎠

= α

3
(3δ + δ3)π2 − 2αδπ θ + θ2

= V (0) + δ2α(1 − α)π2 + (θ − αδπ)2
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186 T. Hotz, S. Huckemann

which is minimal for θ = αδπ . In case of α = 1 this minimum agrees with V (0), in
case of α < 1 it is larger than V (0), and in case of α > 1 it is smaller than V (δπ). ��

4 Asymptotics

The strong law of large numbers established by Ziezold (1977) for minimizers of
squared quasi-metrical distances applied to the circle with its intrinsic metric, which
renders it a compact space for which the sequence of θn∈ T = [−π, π) necessarily
features an accumulation point, gives the following theorem; cf. also Bhattacharya
and Patrangenaru (2003, Theorem 2.3(b)).

Theorem 2 If θ∗ is the unique minimizer of V and (θn)n∈N a measurable choice of
minimizers of Vn, then θn → θ∗ almost surely.

More generally, if En denotes the set of intrinsic sample means, and E the set of
intrinsic population means, then

∞
⋂

n=1

∞
⋃

k=n

En ⊂ E almost surely. (9)

We now characterize the asymptotic distribution of θn∈ T = [−π, π) under similar
assumptions as in Theorem 1, though additionally requiring that the locally unique
intrinsic mean p∗ is in fact globally unique, say p∗ = 0. Then, pn − p∗ = pn might
fulfill a central limit theorem, i.e.,

√
n pn may converge to a normal distribution. Note

that by the choice p∗ = 0, we have d(pn, p∗) = pn , so that we may naturally identify
pn with the corresponding tangent vector at p∗ with length pn and that orientation.
Then,

√
n pn ∈ R would in fact converge in this tangent space, as is to be expected

from the general results on manifolds, cf. e.g., Bhattacharya and Patrangenaru (2003,
2005). Part (i) of the following theorem, for which we give a new proof, is due to
McKilliam et al. (2012).

Theorem 3 Assume that the distribution of X restricted to some neighborhood of
−π ∈ T features a continuous density f , has Euclidean variance σ 2 and that θ∗ = 0
is its unique intrinsic mean. Then the following assertions hold for the intrinsic sample
mean θn∈ T = [−π, π) of independent and identically distributed X1, . . . , Xn ∼ X:

(i) If f (−π) < 1
2π

then

√
n θn

D→ N
(

0,
σ 2

(

1 − 2π f (−π)
)2

)

.

(ii) If f (−π) = 1
2π

, and if f is (k − 1)-times continuously differentiable in a neigh-
borhood U of −π with these k − 1 derivatives vanishing at −π while f is even
k-times continously differentiable in U\{−π} with
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Intrinsic means on the circle 187

0 < (−1)k+1 f (k)(π−) = (−1)k+1 lim
θ↑π

f (k)(θ)

= − lim
θ↓−π

f (k)(θ) = − f (k)(−π+) < ∞

then

√
n sign(θn) |θn|k+1 D→ N

(

0,
σ 2
(

(k + 1)!)2
(

2π f (k)(−π+)
)2

)

.

Proof With the indicator function

χA(X) =
{

1 if X ∈ A
0 if X �∈ A

we have that

ν(X, θ) =
{

χ[−π,θ−π)(X j ) if θ > 0,

−χ(θ+π,π)(X j ) if θ < 0.

In consequence of Theorem 1, if θn is an intrinsic sample mean, almost surely none
of the X j ( j = 1, . . . , n) can be opposite of θn . Since the sample mean θn minimizes
Vn(θ), we have hence with the well- defined derivative d dθVn(θn) that

0 = 1

2

d
dθVn(θn) =

{

θn − X̄ − 2π 1
n

∑n
j=1 χ[−π,θn−π)(X j ) for θn ≥ 0,

θn − X̄ + 2π 1
n

∑n
j=1 χ(θn+π,π)(X j ) for θn < 0,

(10)

cf. (6) and (7). Under the assumptions of (i) above let us now compute

E
(

χ[−π,θ−π)(X)
) =

∫ θ−π

−π

f (x) dx = θ f (−π) + o(θ)

in case of θ > 0 and similarly

E
(

χ(θ+π,π)(X)
) = −θ f (−π) + o(θ)

in case of θ < 0. In consequence, using that the variance of these Bernoulli variables
is less or equal than their expectation, we get

1

n

n
∑

j=1

χ[−π,θ−π)(Xi ) = θ f (−π) + OP

(√
θ√
n

)

+ o(θ),

1

n

n
∑

j=1

χ(θ+π,π)(Xi ) = −θ f (−π) + OP

(√−θ√
n

)

+ o(θ)
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for θ > 0 and θ < 0, respectively, the bounds for OP (
√

θ/n) being uniform in θ . In
conjunction with (10), and using the strong law of large numbers for θn (Theorem 2),
i.e., θn = oP (1), we obtain

√
n
(

(1 − 2π f (−π)) θn − X̄
) = oP (1).

This gives assertion (i).
Under the assumptions of (ii) we get, noting that by Theorem 1(iii)

sign( f (k)(−π+)) = −1 while sign( f (k)(π−)) = (−1)k+1,

E
(

χ[−π,θ−π)(X)
)

E
(

χ(θ+π,π)(X)
)

}

= |θ |
2π

+ |θ |k+1

(k + 1)! f (k)(−π+) + o(θk+1).

In consequence, as above, we infer from (10) that

√
n

(

2π
sign(θn)|θn|k+1

(k + 1)! f (k)(−π+) + X̄

)

= oP (1),

which gives assertion (ii). ��
Remark 4 We note that under the assumptions in Theorem 3, namely that f differs
from the uniform distribution at −π for the first time in its k-th derivative there, then

the convergence rate of θn is precisely n− 1
2(k+1) .

Comparing with (2), we see that the asymptotic distribution of X̄ is more con-
centrated than the one of the intrinsic mean unless f (−π) = 0, the intrinsic mean
exhibiting slower convergence rates than X̄ if f (−π) = 1

2π
.

Concerning the distributions typically occurring in practice, we obtain by combin-
ing Proposition 1 and Theorem 3(i):

Corollary 5 Assume that the distribution of X features a continuous density f with
respect to Lebesgue measure such that the set where f is strictly less than the uniform
density is connected. Then it features a unique intrinsic mean θ∗, and

√
n(θn − θ∗)

is asymptotically normally distributed where θn is the almost surely unique sample
mean of independent and identically distributed X1, . . . , Xn ∼ X.

Thus, for the classically used distributions, e.g., wrapped normal, Fisher, or von Mises,
as well as for suitable mixtures thereof, the intrinsic mean behaves qualitatively as its
Euclidean counterpart.

5 Simulation

For illustration of the theoretical results we consider here examples exhibiting dif-
ferent convergence rates: we generalize the density from Example 1 to behave like a
polynomial of order k near ±π . To be precise, we assume that the distribution of X is
composed of a point mass at 0 with weight 1 −αδ with 0 ≤ α ≤ δ−1, 0 ≤ δ ≤ 1

2 , and
of a part absolute continuous with respect to Lebesgue measure with density g where
g(−π + x) = g(π − x) = f (x) for 0 ≤ x ≤ π , and
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Table 1 Parameters for the
simulations, and respective
colors used in Figs. 2 and 4

α k δ Color

Case 0a 0.9 0 0.4 Blue

Case 0b 1 0 0.4 Red

Case 1a 0.9 1 0.4 Green

Case 1b 1 1 0.4 Brown

Case 2 1 2 0.4 Violet

Case 3 1 3 0.4 Purple

x

de
ns

ity

− π − 0.8π − 0.6π − 0.4π − 0.2π 0 0.2π 0.4π 0.6π 0.8π π

0

0.45 π

0.5 π

case 0a
case 0b
case 1a
case 1b
case 2
case 3

Fig. 2 Densities g of the simulated distributions with parameters in Table 1; the dotted vertical line in the
center indicates the point mass at 0 (color figure online)

f (x) =
{

α
2π

for 0 ≤ |x | ≤ δπ,

0 else

for k = 0, while for k > 0

f (x) =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

α
2π

− α
4π

( |x |
δπ

)k
for 0 ≤ |x | ≤ δπ,

α
4π

(

2 − |x |
δπ

)k
for δπ ≤ |x | ≤ 2δπ,

0 else.

Note that f (−π) = α
2π

while
∫ π

−π
f (x)dx = αδ. We simulated several examples with

parameters given in Table 1, the corresponding densities are shown in Fig. 2.
Example 1 is the special case for which k = 0; in particular, for case 0b, we

computed 10,000 intrinsic means, each of which was based on n = 10,000 independent
and identically distributed observations, a histogram of these intrinsic means is shown
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Fig. 3 Histogram of 10,000 intrinsic means each based on n = 10,000 draws from case 0b in Table 1

in Fig. 3. There, the distribution of the intrinsic sample mean for case 0b appears
to be composed of two parts: an essentially constant density over [−δπ, δπ ], the set
of the intrinsic population mean, and two peaks with their modes located close to
the interval’s endpoints. Their presence can be explained as follows: approximately
with probability one half, we observe less than (1 − δ)n zeros, whence there is too
little mass at 0 to keep the intrinsic sample mean in the interval [−δπ, δπ ] but for n
large enough there will with large probability still be many zeros so that the intrinsic
sample mean cannot move far away from that interval. According to Theorem 2,
these peaks’ locations converge to the interval’s boundary when n → ∞. In fact, our
simulations suggest that we have ∩∞

n=1∪∞
k=n En ∩ A �= ∅ with positive probabiliy for

any A ⊂ [−δπ, δπ ] having non-zero Lebesgue measure.
We also determined the median absolute deviation of the intrinsic sample means

for the different cases in Table 1, and compared them to the median absolute deviation
predicted from the asymptotic distribution given in Theorem 3 (except for case 0b
where it does not apply), see Fig. 4. For this, one easily computes

σ 2 = 2
∫ 2δπ

0
(π − x)2 f (x)dx = 2

∫ δπ

0
(π − x)2 f (x)dx + 2

∫ 2δπ

δπ

(π − x)2 f (x)dx

= − 2α

6π

[

(π − x)3
]δπ

0
− α

2π(δπ)k

[
π2

k + 1
xk+1 − 2π

k + 2
xk+2 + 1

k + 3
xk+3

]δπ

0

+ α

2π(δπ)k

[
π2(1 − 2δ)2

k + 1
xk+1 + 2π(1 − 2δ)

k + 2
xk+2 + 1

k + 3
xk+3

]δπ

0

= απ2

3

(

1 − (1 − δ)3)− αδπ2

2(k + 1)

(

1 − (1 − 2δ)2)+ α(δπ)2

k + 2
(2 − 2δ),
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Fig. 4 Median absolute deviations of the intrinsic mean of n draws from the simulated distributions with
parameters in Table 1, based on 1,000 repetitions; lines give the values predicted using the asymptotic
distribution (color figure online)

as well as f (k)(0+) = −α k!
4π(δπ)k . We chose the median absolute deviation as it

commutes with the power transforms in Theorem 3(ii), as opposed to the standard
deviation, and is therefore easier to compute exactly. We then found the rates predicted

in Remark 4, namely n− 1
2 if α < 1 and n− 1

2(k+1) if α = 1 and k > 0, to match the
observed median absolute deviation in Fig. 4 well.

Furthermore, for case 1a, Fig. 5 shows normal q–q plots for the intrinsic sample
means, transformed and standardized according to their asymptotic distribution, i.e.,

for
√

n sign(θn) |θn|k+1 −2π f (k)(0+)
(k+1)!σ)

. Note that there appears to be a peak at 0, visible
from the curve getting almost horizontal there, which decreases with increasing n.

6 Discussion

Let us conclude with a discussion of our rather comprehensive results on locus, unique-
ness, asymptotics and numerics for intrinsic circular means. In the past, there has
been a fundamental mismatch between distributional and asymptotic theory on non-
Euclidean manifolds. While a great variety of distributions for circular data had been
developed which very well reflect the non-Euclidean topology, e.g., nowhere van-
ishing densities, the central limit theorem had only been available for distributions
essentially restricted to a subset of Euclidean topology. On the circle we have elimi-
nated this mismatch. In particular our results state that
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Fig. 5 Q–q plots of 1,000 intrinsic means, transformed and standardized according to the asymptotic
distribution, each based on n draws from case 1b in Table 1; the dashed line depicts the identity line (color
figure online)

the more the non-Euclidean topology is reflected by a probability distribution,
i.e., the closer the distribution near the antipode is to the uniform distribution,
the larger the deviation from Euclidean asymptotics.

We expect that similar results are valid for general manifolds where the antipode
needs to be replaced by the cut locus C(θ). Unless C(θ) carries positive mass, V (θ)

is still differentiable at θ , see Pennec (2006). From what we observed for the circle,
we conjecture that C(θ) cannot carry mass if θ is a local minimizer, and that an
analogue of Corollary 5 will hold. However, generalizing all results obtained here
to arbitrary Riemannian manifolds is the subject of future research, but note that
our results apply componentwise to tori, they being direct products of circles. The
asymptotic distribution of each component of the intrinsic sample mean on a torus can
then be used in image analysis, since the projective shape space of finite configurations
of k landmarks on a line, with the first three landmarks being distinct, is the torus T

k−3,
cf. Mardia and Patrangenaru (2005).

One may compare our results on the circle to those known for the extrin-
sic or circular mean. It is also obtained by minimizing the square of a distance,
namely of the so-called extrinsic or chordal distance given by 2 sin

(

d(θ, ζ )/2
)

, cf.
Sect. 2. It is easy to see that the extrinsic population mean is (essentially) given by
arctan(E(cos(X))/E(sin(X))), and it fulfills a law of large numbers as well as a cen-
tral limit theorem if the extrinsic population mean is unique, see e.g., Mardia and
Jupp (2000). However, no condition on the latter’s antipode enters. This is because
the squared extrinsic distance is everywhere differentiable. We thus conjecture that a
central limit theorem holds for any distance but that the rate depends on the density
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at points where the squared distance to the mean is not differentiable. However, the
explicit computations, and in particular the result on local minimizers in Corollary 4,
will not necessarily carry over easily.
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