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Abstract This article introduces a class of generalized duration models and shows
that the autoregressive conditional duration (ACD) models and stochastic conditional
duration (SCD) models discussed in the literature are special cases. The martingale
estimating functions approach, which provides a convenient framework for deriving
optimal inference for nonlinear time series models, is described. It is shown that
when the first two conditional moments are functions of the same parameter, and
information about higher order conditional moments of the observed duration process
become available, combined estimating functions are optimal and are more informative
than component estimating functions. The combined estimating functions approach is
illustrated on three classes of generalized duration models, viz., multiplicative random
coefficient ACD models, random coefficient models with ACD errors, and log-SCD
models. Recursive estimation of model parameters based on combined estimating
functions provides a mechanism for fast estimation in the general case, and is illustrated
using simulated data sets.
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130 A. Thavaneswaran et al.

1 Introduction

There has been growing interest in the statistical analysis of random durations between
events. Let #; be the time until the ith event with #y being the starting time. The ith
duration, defined as the time interval between two consecutive events, is denoted by

Xi=t—ti—, i=1,2,...

and is a non-negative random variable for each positive integer i. Statistical mod-
els used to analyze durations between market events, such as trades, have become
extremely popular in finance, for the analysis of intra-day financial data such as trans-
action and quote data which are increasingly often being provided by several stock
exchanges. There is also an increasing number of applications of such models for
understanding patterns in durations between economic events, health-policy events,
etc. Inference for duration analysis has developed along several directions, for exam-
ple, using likelihood and quasi-likelihood approaches.

Engle and Russell (1998) proposed the autoregressive conditional duration (ACD)
model to study the dynamic structure of durations in the context of irregularly spaced
financial transactions data. This model shares similarities with the generalized autore-
gressive conditional heteroscedastic (GARCH) models. The crucial assumption under-
lying the ACD model is that the time dependence in the durations is described through
a function ¥;, which is the conditional expectation of the duration x; between the
(i — 1)th and ith events. The ACD model has the form

X = wl‘giv
Vi = E[Xi|-7:,'x_1] =w+oaxi—1 + p¥i_1, M

wherew > 0, > 0,8 > 0,4+ B < 1,and ¢; arei.i.d. non-negative random variables
with E(g;) = 1 and density function f;(.), while .7-'1?‘_1 denotes the o-field generated
by x1, x2, ..., xi—1, assumed to be independent of ¢;. Different specifications of f(-)
with unit mean for the non-negative random variables ¢; yield different ACD models.
Under the more general ACD(p, ¢) model, ¥; takes the form

p q
Vi=o+ D aixioj+ D Bivioj, @)
j=1 j=1
where the conditions on the model parameters, viz., w > 0,a; > Ofor j =1,..., p,
Bj=0forj=1,....,gand XF_ a; +>%_| B; < 1, ensure positive conditional

durations which are weakly stationary and the existence of the marginal mean of x;.
The model (1) has been extended along several directions. Jasiak (1998) analyzed
the persistence of inter-trade durations using the fractionally integrated ACD (FIACD)
model and showed that the autocorrelation function of the durations can show a slow,
hyperbolic rate of decay which is typical of long memory processes. Bauwens and Giot
(2000) developed a logarithmic ACD model which avoids positivity restrictions on
the parameters and is, therefore, more flexible in terms of accommodating exogenous
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variables. Bauwens and Giot (2003) considered an asymmetric ACD model where
the dynamics of the duration process depend on the state of the price process. Pacurar
(2008) has given an excellent survey of the theoretical and empirical literature on ACD
models.

The stochastic conditional duration (SCD) model has also received considerable
attention for modeling durations. Consider the SCD model

xi = exp(¥i)ei,
P q
¢i=w+2ajxi,j+2ﬂjl/fi7j + 2, 3
=1 j=1

where z; |.7’-"f‘71 arei.i.d. N(O, azz) variables, ¢; |.7‘-"l.{1 follows a distribution with positive
support, and z; s are distributed independently of ¢ ;| 7", foralli, j,and F}_, denotes
the information set at the end of the (i — 1)th duration, including past values of
x; and ;. This model is a generalization of the model proposed in Bauwens and
Veredas (2004); Bauwens et al. (2008), and is a special case of the model proposed by
Thavaneswaran and Ghahramani (2011). While the SCD model has a multiplicative
specification similar to the ACD model, it differs from the latter because it is a doubly
stochastic process. The conditional expected duration, which was a fixed function of
unknown parameters under the ACD model, is assumed to be a random variable under
the SCD model, as in state space models. Thavaneswaran and Ghahramani (2011)
have also proposed quadratic SCD and long memory SCD models, and studied their
moment properties. For recent references on applications to modeling durations, see
Pacurar (2008) and references therein, as well as Allen et al. (2008).

One of the main difficulties in estimation, especially with SCD models, lies in the
evaluation of the likelihood function for carrying out parametric inference, because
the latent variable must be integrated out. This can of course be performed using
computer-intensive simulation methods, or naturally using a Bayesian framework.
For fast estimation, especially with long time series, it is useful to employ other meth-
ods that are less demanding in terms of computing time and do not need to evaluate
the exact likelihood function. In the literature, the quasi-maximum likelihood (QML)
approach and the generalized method of moments (GMM) approach have been stud-
ied in the context of stochastic volatility models (Ruiz 1994; Jacquier et al. 1994).
Overall, the estimation approaches used in the literature are based on a transforma-
tion of the nonlinear time series model into a linear state space representation and
application of the Gaussian Kalman filter (see Broto and Ruiz 2004 for a review). One
major drawback is that these approaches neither address the information associated
with the corresponding estimating functions nor the efficiency of the resulting esti-
mates. Nevertheless, there are some interesting duration models, such as the log-SCD
models with non-normal errors which are proposed in Sect. 2, for which the approach
of using the Kalman filter on the linearized model cannot be applied to construct the
estimates. The combined estimating functions approach based on generalized martin-
gale estimating functions is discussed in this article and provides a viable approach for
optimal estimation in such problems, also providing the information associated with
the corresponding optimal estimating functions.
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132 A. Thavaneswaran et al.

Godambe (1985) first studied inference for discrete-time stochastic processes using
the estimating functions approach. Thavaneswaran and Abraham (1988) described
estimation for nonlinear time series models using linear estimating functions.
Naik-Nimbalkar and Rajarshi (1995) and Thavaneswaran and Heyde (1999) stud-
ied problems in filtering and prediction using linear estimating functions in the
Bayesian context. Merkouris (2007), Ghahramani and Thavaneswaran (2009), Ghahra-
mani and Thavaneswaran (2012), and Thavaneswaran et al. (2012), among oth-
ers, have studied estimation problems for time series via the estimating functions
approach. Bera et al. (2006) give a review of the historical use of estimating equa-
tions in economic applications. Here, we describe combined estimating functions
based on linear and generalized martingale differences for the duration models and
show that the combined estimating functions are more informative when the condi-
tional mean and variance of the observed process depend on the same parameter of
interest.

We then describe the use of optimal combined estimating functions for carry-
ing out parameter estimation for generalized duration models. Inference for the
parametric basic ACD model of Engle and Russell is shown to be a special case.
We also provide generalized recursive estimates based on combined estimating
functions. We study the estimation for log-SCD models using the extended ver-
sion of the prefiltered estimation method discussed in Thavaneswaran and Abraham
(1988).

This paper is organized as follows: Section 2 presents the generalized durations
model and shows that ACD and SCD models discussed in the literature are special
cases. Section 3 describes optimal combined estimation for the class of generalized
duration models and provides detailed illustrations for three models, viz., multiplica-
tive random coefficient ACD models, random coefficient models with ACD errors,
and log-SCD models. Section 4 presents simulation studies to illustrate the recursive
estimation approach for the duration models. Section 5 provides a discussion and
summary. Proofs of theorems from Sect. 3 are given in the Appendix.

2 Generalized duration models

We introduce a new class of generalized duration models which includes the various
ACD and SCD models proposed in the literature as special cases. The generalized
duration model has the form

xi = h(FF |, i, 2)ei, 4

where {1;} is the conditional mean of x; given the information set 7 | and {z;} is a
random process independent of the history 7* ;. The ACD models in (1) and (2), and
the SCD model in (3) are seen to be special cases of (4) by assigning E(]—'l?‘_l, Vi, 2i)
to be, respectively v; and exp(z;). We discuss below other popular duration mod-
els proposed in the literature, and in each case, we provide the forms of the first
four conditional moments of the process, which enable construction of the estimating
equations.

@ Springer



Generalized duration models and optimal estimation 133

2.1 Long memory ACD (p, d, q) and SCD (p, d, g) models

The long memory ACD(p, d, ¢) model, which was referred to as the FIACD model
by Jasiak (1998), has the form

(1 — B)x; = yei,

P q
Vi=0+ D aixij+ > Bivi-j,
=1 j=1

wherew > 0, > Oforj=1,....p.B; > 0j=1,....¢. 2" P(a;+8)) <
1, B denotes the backshift operator, and d € (—0.5, 0.5) is the fractional differencing
parameter such that

o0

1-By¥=>" L@+ 1) (—1)¥BE.
£ T+ DI(d —k+1)

Let =(d,w,a1,...,0p,B1,..., ,Bq)/ be the vector of unknown model parameters.
Here, and in the rest of this paper unless stated otherwise, we assume that &; are
i.i.d. non-negative random variables with mean u, variance 062, third central moment
¥e, and fourth central moment «.. This model is seen to be a special case of the
general model (4) by assigning E(.?—"I{I L Vi, zi) = (1— B)_d ;. The central moments
of {x;} conditional on F* | are yt; = p.(1 — B)~%y;, 0? = o2(1 — B)~2y2,
vi = ve(1 — B)73%y2, and k; = k(1 — B)~*?y*. The ACD(p, q) model belongs
to the class of long memory ACD(p, d, g) models when d = 0. The corresponding
class of long memory SCD (p, d, ¢g) models, with E(]—'f_l, Vi, zi) = exp(¥i), is
defined as

(1 — B)'x; = exp(y)ei,

P q
Vi =+ D aixij+ > Bivioj+

j=1 j=1

where the latent process {z;} was defined under (3), and when d = 0, this model
corresponds to (3).

2.2 Log-ACD and log-SCD models

The log-ACD| model has the form discussed in Pacurar (2008) as an extension of the
model proposed in Bauwens and Giot (2000):

xi = exp(Yi)ei,
P q
Yi=w+ Y ajlogxi_j+ > Bivi ),
j=1 j=1
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134 A. Thavaneswaran et al.

where Zl;]:;(p ’ q)(a j + Bj) < 1. For the log-ACD; model, v; takes the form

p
1»/fizw‘i‘z JeXp(lﬁ, j)+2ﬂ]% Jo

j=1

where Z(]].:l B < 1. This model is seen to be a special case of the general model
(4) by assigning i"(fi):l’ ¥, zi) = exp(y;). The conditional central moments of
{x;} are derived as 11; = weexp(Vi), 0f = o2 exp2y), vi = e exp(3¥;), and
ki = ke exp(4y;), with the ; corresponding to each of the two model forms. The
unknown parameters are § = (v, oy, ..., ap, B1, ..., ﬂq)/.

For the corresponding log-SCD; and log-SCD; models, v; takes the respective
forms

4 q
Y = a)—l—Zajlogx,'fj +Z,3j1//i—j + Zi,

j=1 j=1

and

P
wi=w+j§ ]e (wl j)‘i’Z,Bﬂ/fz —jtz.

Here, z; are i.i.d. random variables with mean O and variance a , and are assumed to
be mutually uncorrelated with ¢;. The log-SCD model is agam a special case of (4)
by defining h(]:z—l s Wi, zi) = exp(¥i).

Moreover, if we define x; = exp(ay; + ﬂl//iz)si , we obtain the quadratic log-SCD
model (see Thavaneswaran and Ghahramani 2011), which is seen to be a special case
of the general model (4) by defining ﬁ(]—'ix_l, Yi, zi) = exp(az; + ﬁzl.z).

2.3 Augmented ACD and SCD models

Augmented ACD models were introduced by Fernandes and Grammig (2006) to allow
asymmetric responses to small and large shocks:

Xi = 1ﬁigia
Y=o+ ayl [leio1 — bl +c(ei — b + Y-,

where w > 0, @ > 0 and 8 > 0. The parameter A determines whether the Box—Cox
transformation is concave (A < 1) or convex (A < 1). The shift parameter b enables
identification of the asymmetric response implied by the shocks impact curve. The
parameter ¢ determines whether the rotation is clockwise (¢ < 0) or counterclockwise
(¢ > 0). The parameter v induces concavity (v < 1) or convexity (v > 1) to the
shock impact curve. This model is seen to be a special case of the general model
(4) by assigning E(]-"l.{l , Vi, Zi) = Vi, and the unknown parameters are specified by
0 = (w, a, B)’. The forms of the first four conditional central moments are given by
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Generalized duration models and optimal estimation 135

wi = pe(WH'V*, o = a2, vi = ve (), and i = ke (Y])**. We define
the corresponding augmented SCD models as

xi = exp(yi)é&i,

Vi = o+ aylleir — bl +cer = D) + Yl + 2.

2.4 Multiplicative random coefficient ACD models

In analogy with random coefficient autoregressive (RCA) models, we introduce a new
class of models, called the multiplicative random coefficient ACD (p, g) models of
the form

xi = (2 + Viei,
P q

wi=w+Zajx,-7j +Z/3j1/fi7j, 5
j=1 j=1

where > 0, a; > 0, 8; > 0, and Zr;l:;(p’q)(aj + Bj) < 1. We assume that z; are
i.i.d. non-negative random variables with mean . (¢), variance azz (¢), third central
moment y, (¢), and fourth central moment . (¢), where ¢ € R'. We also assume that
¢; and z; are mutually independent. This model is a special case of model (4) by letting
h(F"_|, Vi, zi) = zi + ;. For this model, the conditional moments of {x;} can be
calculated as

wi = ez + ¥i),
o} =0l (1 + ) + ol (ui + o)),
Vi = Vet + ¥i)* + B02ye + 61160202 (2 + Vi) + 213 + 3pe02 + o),
Ki = ke(ptz + Yi)* + 602 (20l + 2peve + ko) (e + ¥i)?
Ay, Buio? + 3peve + ke)(z + Vi) + ko (14f + dpeve + 6107 + ko).

S}

In Sect. 3.1, we describe the estimating functions approach for estimation of the
parameter vector 6§ = (¢', w, a1, ..., ap, 1, ..., By) "

2.5 Random coefficient autoregressive models with ACD errors
We define the RCA model with ACD errors as
xi = (0 +z)xi—1 + Vg

p q
Vi =w+zajx,~_j +Z,3j¢i—js (©)
j=1 j=1

where 6 is a non-negative unknown parameter, {z;} is a sequence of i.i.d. non-negative
random variables with four central moments ., (¢), O’ZZ (@), v:(¢), and «,(¢) which
depend on an unknown real parameter vector ¢ € R'. We assume that {e;} is a
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non-negative process with first four central moments . (6), ‘732(9), ¥:(0), and k. (0).
Moreover, {b;} and {g;} are assumed to be mutually uncorrelated. This model is a
special case of the vector case of the general model (4) by letting H(}‘l{], Vi, zi) =
(0 +zi)xi—1, ¥;) and &; = (1,¢)', where 0 = (0, @', w, a1, ..., ap, B1,...,By)
is the vector of model parameters. In this model, the first four conditional central
moments of the process {x;} are

i = (e + 1 (@)xi—1 + 1t (),
= 02 (P)xi_; + ol (O,

Vi = Vz((b)xi_l + )/5(9)1/![ s

Ki = ko ()X} | + K (O)Y + 602 ()02 (O)x?_ Y2,

3 Combined estimating functions

Suppose that {x;,i = 1, ..., n} is a realization of a discrete-time stochastic process
and its distribution depends on a vector parameter # belonging to an open subset
O of the P-dimensional Euclidean space. Let (€2, F, Py) denote the underlying
probability space, and let .7-";‘ be the o-field generated by {xi,...,x;,i > 1}. Let
h;(0) = h;(x1,...,x;,0),1 <i < n be specified Q-dimensional vectors which are
martingale differences. We consider the class M of zero mean and square integrable
P-dimensional martingale estimating functions of the form

n
M= [gnw) £ 2.(0) = Za,-_m))hi(o)] :
i=1
where a;_1(#) are P x Q matrices depending on xq,...,x;—1, | <i < n and the
parameter @, and P < (. The estimating functions g, (@) are further assumed to be
almost surely differentiable with respect to the components of @ and are such that

E[ 981(6) ‘ Fi ] and E[g,(0)g,(0)'|F,_,] are nonsingular for all # € © and for

each n > 1. The expectations are always taken with respect to Py. Estimators of
can be obtained by solving the P estimating equations g,(#) = 0 (Godambe 1985).
Furthermore, the P x P matrix E[g, (0)g,(#)’ |F7_1is assumed to be positive definite
for all # € ©. Then, in the class of all zero mean and square integrable martingale
estimating functions M, the optimal estimating function g’ () which maximizes, in
the partial order of nonnegative definite matrices, the information matrix

" h; (0 ’
I, (6) =(Zai1(0)E[ ()‘f" ])

i=1

n -1
X (Z E[(a;-1(0)h;(#))(a;—1(0)h; (0))/|f,-x_1])

i=1

oh; (0
(Za, 1(0>E[ @ ;‘1])

@ Springer



Generalized duration models and optimal estimation 137

is given by

- - dh, (0 ' ,
SOE SROMOES of (1 e e O OE
i=1

i=1

and the corresponding optimal information reduces to
. B ' , o, (0
Ig:<0>=Z(E[ . )’fx D (Elh; @)h; ) |F=_ )" (E[ ()‘}'x ])
i=1

Now, consider a real-valued discrete-time stochastic process {x;, i = 1, 2, ...} with
conditional moments

wi(0) = E[x;|F_1, (7
0 () = Var(x;|F ). ®)
In order to estimate the parameter @ based on the observations x1, . . ., x,, we consider

the usual martingale differences {m; () = x; — u;(0)} and the generalized martin-
gale differences {M;(0) = q(m;(0)) — E[qg(m;(0))|F;_,1}, fori = 1,...,n. The
generalized martingale difference corresponds to the least absolute deviations (LAD)
case when g(m;(0)) = sgn(m;(@)), to the quadratic estimating function case when
G(m;(8)) = m;(0)2, and to the transformed estimating function (Merkouris 2007)
when g (m; (0)) = exp(wum;(0)) for real u and for 1 = «/—1. The quadratic variations
of m; (@), M;(0), and the quadratic covariation of m; (@) and M; (@) are, respectively,

(m); = E[m?(0)|F*_ 1= 02(0),
(M); = E[q*(m;(0)|FF 1 — (E[q(m;(0)|F* 1),

and
(m, M); = E[m;(0)q(m;(0))|F;_,].

For notational convenience, we denote g (m;(#)) by g; in the rest of the paper. In
general, g; is any differentiable function with respect to # chosen in a way such that
(M); and (m, M); exist. However, although it is not differentiable at O in the LAD case,
it admits positive and negative derivatives (see Thavaneswaran and Heyde 1999 for
details). The optimal estimating functions based on the martingale differences m; ()
and M; (@) are, respectively,

) — i (6) m;
n®=-2 =5 (m);
i=1

and

N 0G| o 1 OELGIFL ) M
i) =2 (E[ 30 ‘f”} - 20 ) M)

i=1
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138 A. Thavaneswaran et al.

The information associated with g (#) and gj,l (0) is, respectively,

n

o~ 0i(0) 0 (6) 1
Ig'fl(a)_; 00 90 (m);’

. 3g; 0g; IE[G:| FXF 19E[G I FX 1\ 1
air @) Z;( [ 00 96’ ] 00 00’ (M);

i—1
=

The following theorem first extends the results for quadratic estimating functions
in Liang et al. (2011) to combined estimating functions based on the martingale dif-
ferences m;(0) and the generalized martingale differences M;(#). Next, the theorem
provides the form of recursive estimates based on the generalized combined estimat-
ing functions. Neither the combined estimation nor the recursive estimation has been
previously discussed to this level of generality in the literature, and in particular for
duration models.

Theorem 1 For the general model defined by (7) and (8), in the class of all combined
estimating functions of the form

Gc = [gc((’) 1gc(0) = Z(aifl(o)mi(o) +bil(0)Mi(0))] ;
i=1
(a) the optimal estimating function is given by

g (0) = (@ (0)m;(®) + b} (0)M;(9)),

i=1

where

oo m® 1 Tag| _aE[anff_l]) )
ai—l(a)_‘”’( 30 (m); (E[ao ff‘} 20 ) O
and

C o (0O 8| _aE[cmf;‘l]) | )
b"‘l((’)_p"( 20 ”l+(E[80‘f"‘1} 26 o, ) 10

2 (m,M)? \—1 _ M)
where p7 = (1 — ) and i = 4

(b) the information I!s’é (0) is given by
N i (0) dpi(9) 1
L+ (0) = 2
@ =2 0 ( 00 00" (m);

+ E 8_@8_(71 fx _ aE[al|f'lX,1] 3E[al|f;x,1] 1
a0 06’ a0 a0’ (M);

i=1

i—1
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0w @) ([0G| . 1 OELGIFL]
T e

a0’
aq(m;(0))| . IE[qil FiZ 1\ 0 @)) .
- (2[5 - ) M) )

(c) the optimal estimating function is equal to g} (0) if for each i

dpLi 0Gi | 1 IELgil Fi ]
20 " ( [ 00 | i1 20 ’

(d) the recursive estimate for 0 is given by

0, =01 +Ki@ [ 0;:_)mi@_1)+b ,@;_)M;@;_1), (11

om;@,_) oar @) -
laoj =+ 11801 mi(0;-1)

OM;(0;-1) N ob* (@;—1)
00’ 00

K, = K,'_l(Ip - (a?{,](o\i—l)

M@ 1)K, _)~' (12)

+b;_, (b\i—l)

where 1p is P-dimensional identity matrix, and a;Z] and b:{l can be calculated
by substituting 0;_1 in (9) and (10), respectively.
(e) for the scalar parameter case, the recursive estimate of 0 is given by

0 =01 + Ki(a}_; @—1)m; @i—1) + b @i—1)M; (Bi—1)),
Ki— K1 =AK,1K;,

L Gi—1)

—~ am: (0 dak -~ ~ IM: (6:
where A; = af_ (0;-1) " G=) + S m G + by 6 1) M +

by Bi-1)
LM G- 1).

The proof of the theorem is given in the Appendix.

Note I The optimal information matrix based on the first i observations is given
by —E [ agc(o) ‘ Fi ] and hence, Kl._1 = — ZS 1 8gc(0, D can be interpreted as
the observed information matrix associated with the optlmal combined estimating
function g7.(#). Equations (11) and (12) update the recursive estimate as well as the
associated information matrix. For more details and an interpretation of these terms,
see Thavaneswaran and Abraham (1988).

Note 2 When ¢; follows an exponential distribution with scale parameter A,
Ue = 1/x, og = 1/A% v = 2/2°, and k. = 9/A* Then, I (6) =

— L 9v; 99y — L 9y oy
* (0) 221 1 11/2 30 80/, and Igé(o) = Z?zl w—?ww

.
mM)i _ 8570 , and hence g% (0) = g (9) is optimal.
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140 A. Thavaneswaran et al.

Note 3 Suppose that ¢ follows a lognormal distribution with parameters
. 2
w and o2, The moments of ¢; are given by . = exp(u + ”7), %2 = (exp(c?) —

1 expRu+02), ye = exp(o?+2)/exp(c2 — 1, and k; = exp(40?) +2exp(302) +

2 . _ 1 1 9y 0
3exp(20~) —6. Then, it can be shown that I« (9) = —7127 13296 907 L (0) =

4 no 19y 0y 20 +2€ —1 1 9y 0
o7 2 3t g 2ei=1 37 a0 o0 and gy (0) = 2i-1 278 797 and

hence, I, (0) > Igx (0) and I (0) > I (0) Moreover When &; follows a double

exponentral distribution with densr[y functron f(& p,b)= —e —le=1l/b where pis a
known location parameter and b > 0 is aknown scale parameter the moments of ¢; are

given by u, = u, 02 = 2b%, y. = 0, and , = 3. Then I (0) = b2 Z wlz ad%’ %‘gi ,

1 9y 0 5u>+8b* 1 9y
g, 0) = 3 DX V7 allél 3},”;, and I« (0) = Top— 2i= W%Tzf and hence,
1

gé (0) > I+ (9) and Ig» (0) > Ig?& (@). It follows from Lindsay (1985) that the esti-
mate obtained by solving the estimating equation g¢.(f) = 0 is more efficient than
that obtained by solving the estimating equations g;, (#) = 0, or g},(6) = 0.

3.1 Multiplicative random coefficient ACD models

Letm; = x; —pu; and M; = ml2 — aiz be the sequences of martingale differences such
that

(m)i =02 (uz +v)* + 02 (uf +07)
(M); = (ke — o) (1uz + ¥i)* + 202 Quiol + 6eye + ke — o)z + Vi)
+ 4y, Gulol + 3M8V5 +iee) (g + i) + ko (14e +diteye + 61202 + k)
—o;(ug—f-Z,u o, +o, )
(m, M) = ye(ue + 1) + B0l ve +61e0200) (1z + Vi) + vz (14 + 3107 + ve).

Theorem 2 For the model (5), in the class of all quadratic estimating functions of the
form Ge ={gc (@) : gc(0) = >/ (@j_ym; +b;_1 M)},

(a) the optimal estimating function is given by g&(0) = D1 (aF_ m; +bi_ M;),

where
a’ | = p?(ri, Ri, Rixi—1, ..., Rixi—p, Rivi—1, ..., Rivvi—g)’
where
a 2
(m)i(M)iri =—pe— 8¢ M)+ 202 (1 +7) 8¢ 8¢ (m, M);,

(m)i (M);R; = —pe(M); + 202 (1 + i) (m, M);
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and
by = 07 (siy iy SiXi—ts vy SiXiepy SiViot, -, Sivhig)

where

i)
(m)i (M);S; = pe(m, M); — 202 (ju; + Wi)(m),;

(m)i(M);s; = Ms%(m, M); — (Zﬂf(ﬂz + i) " )

o do?
P 4 (ug o) )(m)i,
(b) the recursive estimate for 0 = (¢, w, a1, ..., 0op, B1, ..., By) is given by

0, =01 +K;(@_;@i—)m;i@:—1) + b 0:-1)M; 0;-1)),

— ami@_) 0ar_ @i_1)
Ki:Ki—l(Ip+q+l+l_(a;k1(01'—1) A ()

00’ 00
. - 1
~  OM;(@;—1) Obj_(0i-1)
b’ (0;_ ! M;(0;_ K,_ .
+ b (0;-1) 50 + 20 @i-1) 1

Explicit expressions for gé () , the associated information matrix Igé (), as well
as the proof of the theorem are given in the Appendix.

3.2 RCA models with ACD errors

Corresponding to the model (6), let m; = x; — u; and M; = ml2 — oiz such that

(m); = o2(p)x?_| + 2OV, (M) = (k:(¢) —oHP)x} | + (ke(0) — 0 @)Y +
402()a20)x? (Y2, (m, M) = y,($)x3 | + v(0)y;.

Theorem 3 For the model (6), in the class of all quadratic estimating functions of the
form Ge = {gc(8) : gc(0) = X7 (ai—1m; +b;—1 M)},

(a) the optimal estimating function is given by g (0) = >/ (@’ m; + b} M;),
where

2
a’ | = p;(vi1, vio, Vi, Vixici, ..o, Vixicp, Vivien, ..., Viving)

where

e (0 9020
(m); (M)ivi1 = — (x,»_l + “ao( )wi) (M), 050( L2 m, My,
AL, do?
(m)i{M)jvir = —%M—l )i (;Z'T(,@xiz_dm, M);,

(m)i(M);V; = —pe(M); + 202 (m, M);
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and
2 /
bi_ | = pj (wit, wiz, Wi, Wixi—1, ..., Wixi—p, Withi—1, ..., Withi—y)

where

de (0 902(0
<m>i<M>iwi1=(x,~_1+ “()w,») m, My, — 22O 2

a0 a0
092

() .
/ 8(]5/ i—1

(m)i(M);jw;> = sz'—ﬂm, M);

(m)i (M) W; = pe(m, M); — 202; (m);

(m)i,

b) the recursive estimate for 0 = (¢', w, a1, ..., a,, B, ..., By) is given b
p q 1 y

0: =01 + K@ (0;i_1)mi(B;_1) + b5, @;—1)M;(0;:_1)),

— ami@_) 0ar_ @i
KizKi—l(Ip+q+l+2_(a;k1(01'—1) 180: 4= gol m;i(0;—1)

. A -1
~  OM;6;—) Ibf_(0;—1)
+ b 1(0;-1) lao,l + — 50 M;@0;-1) )Ki-1 ) -

Explicit expressions for g¢-(#) , the associated information matrix Igé (0), as well as
the proof of the theorem are shown in the Appendix.

3.2.1 Recursive estimation for RCA(1) model with ACD(1,1) errors
Consider the RCA(1) model with ACD(1,1) errors of the form

xi =0 +z)xi—1 + i
Vi =ow+axi| + i1,

where z; follows a centered log-normal distribution with mean 0 and variance ¢, and
&i ~ Gamma(l,0), and {z;} and {¢;} are assumed to be mutually uncorrelated. We
discuss the estimation of the parameter vector @ = (0, ¢, w, &, 8)’. In this model, the
first four conditional central moments are p; = 6x;—1 + 0, al.z = d)x,.z_l + 92%2,
vi =203y and k; = 3¢%x} | +6¢0%x7 | Y? + 904yt Letm; = x; —0(xi—1 + Vi)
and M; = ml2 - aiz = xj_1 (Xi—1 +2¥,)0% — 2x; (xj—1 + V)0 + x,.2 — ¢xi2—1 be the
sequences of martingale differences; then (m); = q)xizfl + 921/11.2, (M); = 2¢2x?71 +
4¢02xi2_2wi2 + 8941/f;‘ ,and (m, M); = 2931pl.3. We describe recursive estimation of
0 for known scale ¢, w, o, and 8. The optimal estimate is obtained by solving the
estimating equation

n
gc(0) =D ai (O)mi + b (O)M; =0,

i=1
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where
@) = 29 @ximt +906% 2007 YR (xim1 Y0 + ¢2x) (ici + )
=1 29806 + 6¢x2 Yt 4+ 3¢2x! Y202 + ¢3xf | '
3p3 2 2
X;i_1¥>0° — px: 0
b;kil(e): i 11ﬂ, ¢ i— 1150

29900 + 6px?_ Y0 + 3¢2x} Y202 + 310 |

Therefore, the recursive estimate of 6 is given by

0 = Oi—1 + Ki(ai_ Gim)mi @i—1) + b} Gi-1)M; Bi-1)),
Ki — Ki—1 = CiKi—1K;,

aal 1(91 1)

where C; = (x;—1 +¥i)a’ 1(91 D+ mi (Bi—1) +2(xi—1 (xi—1 +29:)6; -1 —

, |(01 1)

X (Xi— 1+Wz))b* 1(91 l)+ M; (91 1)-
3.3 Log-SCD models
For the log-SCD model defined by
xi = exp(yi)éei,
p q
lﬁi=a)+zaj10gxi_j +Z,3j¢i—j + zi, (13)

J=1 J=1

neither the linear nor the combined estimating functions approach has been discussed in
the literature. This model is similar to the doubly stochastic time series model discussed
in Thavaneswaran and Abraham (1988). In order to estimate the model parameters, we
express the log-transformed model in non-Gaussian state space form, which implies
that the usual Kalman filtering is not appropriate. In Theorem 4, we consider a class of
linear filtered estimates and find the optimal estimate which minimizes the conditional
MSE. Then, we use Theorem 1 and construct the estimating functions based on the
martingale differences, m; and M; = ml2 — al.z.

Specifically, using the logarithmic transformation for x;, and setting p = 1 and
g = 1, we have

logx; = w+alogxi—1 + BYi—1 + pioge + &,

where & = z; +1og &; — pioge is uncorrelated with ¥; 1 and pjoge = E(loge;), and
For instance, if ¢; follows the lognormal (u, o?) distribution,

Var(loge;) = Ologe-

then ptioge = w and o5, = o> If & follows a Weibull (e, 1) distribution, then
log &; follows the extreme value distribution (0, 72/6a?) with pige. = —0.5772/c
and olig e = 72/6a?. The mean and variance of & are given by E(&) = 0 and

Var(§;) = ozz + al%)g .» while the covariance between &; and z; is E(§;z;) = azz.
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In order to estimate the unknown parameters § = (w, «, ), we first need to consider
nonlinear filtering to obtain the optimal recursive estimate of v;. By minimizing the
prediction mean squared error (PMSE) A; = E[(¢; — ;ﬁ\i )2 |fi" ], the optimal recursive
estimate @,' and its PMSE A; are given in the following theorem:

Theorem 4 In the class of all estimates of the form @ =w+alogxi_1 + /31/#\5_1 +
Gi(logx; — w — BYi_1 — Mioge), the optimal recursive estimate ; of W; which
minimizes the PMSE A; is given by
Y =w+alogxi—1 + Bi—1 — 5 (logx; —w — alogx;_q
O-log e

—BYi—1 — Mioge)s (14)

where the optimal PMSE is given by

(BAi—1 +0))0j,,

= 2 .
ﬂzAi*I + Uzz + Gloge

5)

Proof Since
Vi — i =B+ G)(Wi1 —¥i1) + Gii +zi.

A; = E[(Yi — ¥i)*|F]
= E[B* (1 + G)*(Wi—1 — Vi—1)* + G} + 2} +2G,&zi| F}]
= BA(1+ Gi)*Ai1 + G} (02 + 0y,) + 02 +2Gio?

B*Ai—i + 0] )2

2
ﬂzAi—l + O-z2 + Ulogs

= (B*Ai_1 + UZ2 + U]%gs) (Gi +

(B*Ai—1 + ozz)alﬁgg

B2Ai-1 + 02 + o,

Hence A; is minimized by taking

_ BAini+o?
B2Ai1 + 02 + o,

i =

Now, the conditional mean and variance of log x; are given by

1i(0) = Ellogx;|F* |1 = o + alogxi_1 + BE[Vi_11F" 1+ tioge
= w+alogxi_1 + BYi—1 + fiogs

o7 (0) = Var(log x;|F}_y) = E[B*(Yi—1 — E[Yi—1|F D + &1 F" ]
= B*Ais1 07 + o,
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where @,1 and A; can be calculated recursively by (14) and (15). Then the optimal
estimating function g* (@) based on the martingale difference m; (6) = log x; — 1; (6)
is given by

o [1+ B | |
_Z log x;— 1+ﬂdu, ogx; — (w+alogxi—1 + Buri— 1+ll»logs)

B2Ai—1 + 02 + o,

L
ll/"tl'i‘ 13

with associated information matrix Igx (6) given by

n 1_,’_/33#1 1+133Hz !
S [ o+ pt | frogy g | L
i=1 \ pi_ 1+’33Mz Wi 1+ﬂ3ﬂ: B Ai—l"‘o'z +010g8

The recursive estimate for 6 is given by

0, =0, +Kia_;(0;—)m; (0;_1),

—~ —1
—~ am; 0-_ daF . (0;_1) Iy
K =K (13 - (a;'k_1(0i—l) 18(0: 1) + — 30 " mi(0im1) )Kioy .

Moreover, the combined optimal estimating function g.(#) based on the martingale
differences m; (#) = logx; — u; (@) and M;(0) = ml.2(0) — oi2(0) and the recursive
estimate of @ can be obtained using Theorem 1. If we further assume that &; ~
logNormal(u, 0%) and z; ~ N (0, 0'2), then the combined optimal estimating function
g (0) is simplified as

1+ﬁ3Mi—1
‘Zn: log x; 1+ﬁ3“’ i)
= 2A. 2 2
i=t \ \ iy + gt PrAi-itosto
0
(o Mi(6)
2A. 2 AV
2,3Al 1+/328Al 1 2(,3 Al—l +0e +o )

with associated information matrix Igé (6) given by

n 14+ ,Ba'ui_l 1+ ﬁal‘«i—l 4
Z log x; —i—ﬂa’u’ log x; +,38M' 1
g Xi—1 g Xi—1 IB2A. _|_0-2 +0.2
=1\ wi—1 +,3 5 Wi + /g i—1 5 foge
0 0 / 1
3 0 2(B2A 2 2y2°
2BA;1 + 225 ) \2BAi ) + B2 255 (B2Ai—1 + 02 +02)

O
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It follows from Theorem 1 that the combined estimating function is more informative
than the linear estimating function discussed in Thavaneswaran and Abraham (1988).
An approach similar to that discussed in this paper can be used to derive optimal esti-
mates based on the quadratic estimating function for the quadratic SCD, and quadratic
log-SCD models as well.

4 Monte Carlo simulations

We present simulation results to illustrate the performance of the recursive estima-
tion for a few models discussed earlier. Tables 1 and 2 present results for the log
ACDI1(1,1) and log ACD2(1,1) models obtained by setting p = g = 1 in the respec-
tive models in Sect. 2.2. Column 1 in Tables 1 and 2 shows the true values of the
parameters , «, and B. Using these values, we generated L = 100 sets of time
series each of length n = 4,000. The distribution of &; was assumed to be exponential
with mean 1. For each simulated series, we then computed the recursive estimates of
the model parameters w, «, and § using Theorem 1. We started with random initial
values selected uniformly from reasonably wide intervals. Columns 2—-6 in Tables 1
and 2 present selected percentiles of the empirical distribution of the estimates from
the L simulated time series. The computations were easily coded in R and illus-
trate that the recursive estimation approach provides good estimates (close to the
true values used for the simulation) of the parameters from these duration models.
The quantiles enable us to understand the location, spread, symmetry, and tail behav-
ior of the empirical distribution of the recursive estimates from the simulated data
sets.

Table 3 presents results from a simulation study for the multiplicative RCACD(1,1)
model. The simulation was carried out in a similar manner by setting L = 100 and
n = 4,000. We simulated both ¢; and z; from an exponential distribution with mean
1. In this model (see Sect. 3.1 for model details), the parameters must satisfy the

Table 1 Percentiles of the

R . . True parameters  Estimates
Distribution of Recursive p

Estimates from a Log 5th 25th 50th 75th 95th

ACDI(1,1) process:

n =4,000, L =100 w=0.6 0373 0498  0.621  0.701  0.775
o =0.05 0.035  0.041  0.049  0.059  0.069
B=0.75 0.550  0.648 0717  0.822  0.938
»=0.6 0437 0509 0619  0.705  0.782
a=0.15 0.134  0.140  0.149  0.160  0.168
B =0.65 0455 0532 0.601 0717  0.827
©=20 1.835  1.896  2.006  2.100  2.184
a=—0.1 —0.116 —0.109 —0.101 —0.091 —0.083
B =075 0.560  0.630  0.703  0.817  0.927
® =20 1.823  1.892  2.008  2.100 2.184
a=-05 —0.516 —0.510 —0.503 —0.490 —0.483
B =035 0.161 0235 0302 0417  0.527

@ Springer



Generalized duration models and optimal estimation 147

Table 2 Percentiles of the R

distribution of recursive True parameters  Estimates

estimates from a log ACD2(1,1) 5th 25th 50th 75th 95th

process: n = 4,000, L = 100
0 =0.6 0.419 0.507 0.616 0.700 0.784
a = 0.05 0.034 0.041 0.049 0.059 0.067
B =0.75 0.559 0.634 0.703 0.817 0.927
0 =0.6 0.424 0.505 0.621 0.701 0.785
a=0.15 0.133 0.140 0.149 0.159 0.168
B =0.65 0.458 0.528 0.606 0.717 0.827
0 =20 1.835 1.896 2.006 2.100 2.184
a=0.1 0.084 0.091 0.099 0.109 0.117
B =045 0.260 0.330 0.402 0.517 0.627
w=20 1.826 1.903 2.011 2.100 2.185
a = —0.05 —0.066 —0.059 —0.050 —-0.041 —0.033
B =0.35 0.159 0.231 0.298 0.417 0.527

ii?rliistioiegcfegciissgfethe True Parameters Estimates

estimates from a multiplicative 5th 25th 50th 75th 95th

RCACD(1,1) process from

Sect. 3.1:n = 4,000, L =100, o =0.25 0.095 0.148 0206 0273 0337

o=1l¢=1 o = 0.005 0017 —0.002 0005 0010 0016
B =0.25 0.151 0.190  0.242 0304  0.341
=025 0.131 0.178 0.217 0.277 0.331
a=02 0.191 0.197 0.201 0.206  0.209
B =0.35 0.257 0.297 0.346  0.408 0.440
w=0.1 —0.045 0.001 0.060  0.129  0.196
a = 0.01 —0.003 0.004  0.011 0.016  0.021
B =045 0.357 0.395 0.444  0.511 0.539
w=0.1 —0.008 0.027  0.064  0.130 0.183
a=02 0.191 0.197 0202 0206 0210
B =045 0.360 0.397  0.448 0.509  0.539

conditions w > 0, > 0, 8 > 0 and o + B < 1. From Table 3, we see that for Case
1 when the true value of « is assumed to be 0.005, the 5th and 25th percentiles of the
estimates from the L simulated sets is negative. Negative values also occur in certain
lower percentiles when the true values of w and/or « are close to zero. These negative
values may be ignored, or viewed as zeroes. Again, the recursive estimation approach
yields estimates of the model parameters close to the true values.

Table 4 presents percentiles of the distribution of recursive estimates from an
RCA(1) model with ACD(1,1) errors, which was discussed in Sect. 3.2. We again
set n = 4,000 and L = 100. We simulated ¢; from a Gamma(1, ) distribution with
6 = 0.1 and simulated z; from a centered log-normal distribution with mean 0 and
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Table 4 Percentiles of the

S . True parameters Estimates
distribution of recursive

estimates from a RCA(1) model 5th 25th 50th 75th 95th

with ACD(1,1) errors from

Sect. 3.2:n=4,000,L =100, ¢ =0.6 0510 0543 0598  0.639  0.691

0=01,¢=025 o = 0.005 —0.004 0.0001 0.006 0.010 0.014
B =0.15 0.054 0.098 0.157 0.202 0.240
0 =0.6 0.510 0.546 0.595 0.639 0.689
o = 0.005 —0.004 0.0001 0.006 0.010 0.013
B =035 0.258 0.299 0.360 0.399 0.439
w=12 1.112 1.146 1.198 1.239 1.285
o =0.01 0.001 0.005 0.011 0.015 0.019
B =0.15 0.059 0.100 0.153 0.197 0.240
w=12 1.111 1.145 1.197 1.239 1.285
o = 0.005 —0.004 0.0003 0.006 0.010 0.014
B =035 0.259 0.300 0.353 0.397 0.440

variance ¢ = 0.25 (starting from a N (0, 0.188) distribution). From Table 4, we see
that the recursive estimation approach yields good estimates of the model parameters
in this case as well.

5 Discussion and summary

Duration models are now widely used in applied statistics and econometrics. Thus,
it is important to investigate the behavior of these models. In this paper, we have
introduced a class of generalized duration models and shown that almost all the ACD
and SCD models in the literature are special cases of this generalized model. Com-
bined estimation using generalized martingale differences yields optimal estimates of
the model parameters. Further, we have obtained a recursive estimation algorithm by
extending the work in Thavaneswaran and Heyde (1999) to the multi-parameter setup.
This algorithm is based on the function g*(#) and leads to optimal estimates which
are more informative than the estimates based on the linear estimating function g\ (9).
We have provided details for three classes of duration models, viz., the multiplicative
random coefficient ACD models, random coefficient models with ACD errors, and the
log-SCD models, for which we have provided closed form expressions for g} () via
the quadratic estimating function and shown that it is optimal. These details can be
easily derived for all the models discussed in Sect. 2. The contribution of this paper
is threefold. First, this article introduces a class of generalized duration models and
provides a framework to integrate a number of ACD models in the literature. Sec-
ond, the martingale estimating functions approach is described for the generalized
duration models. Third, it is shown that combined estimating functions are optimal
and are more informative than the component estimating functions under stated con-
ditions. We expect that the recursive estimation described in this paper will enable
practitioners to apply these methods in order to carry out fast estimation for long time
series.
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A Proof of Theorem 1

Proof We choose two orthogonal martingale differences m;(0) = x; — p;(0) and
;(0) = M;(0) — m M ==+ m;(@), where the conditional variance of W;(0) is given by

(W); = (M); — b, M That is, m; (@) and W; (0) are uncorrelated martingale differ-
(m);

ences with conditional variances (m); and (W);, respectively. Moreover, the optimal
martingale estimating function and associated information based on the martingale

differences W; (@) are
\ o (dmi (m, M); i| g vi
g ZZ(W ) +E[W fl—l])m
_ i {m, M)} oMi| o 7\,
- S (i [ 7))
o . 1 )
+\—n +E .7: — | M;
( 1 [ ](M»)

00
op; (m, M); oM; | _,
b0 =3 (5 e )
i=1 !
o (m, M); oM; 1
E x )
X(ae/ i [80/ 7i- D @),
n
3/,L,' 3,bLl‘ (m, M) 3M,‘ 3M,' 1
2 i X
= of 2 TP Y T g 2 .
;pl ( 90 00" (m2(M); [ 90 96’ f'—l} (M);

;i OM; OM; Ou;
+(ao TRNT 80')”’)'

Then the combined estimating function based on m; and W; becomes

oui 1
sc® _Zp’ (( T m_L_E[ 20 ]n)

i 1
“an h E | — Ml ’
(e[ ) )

a0
and satisfies the sufficient condition for optimality

a0

and

20

agc (0
E[ sc( )';:x ]chwgc(o),gz(o)lﬁ-"])K, Vgc(®) € Ge.

where K is a constant matrix. Hence, gé (0) is optimal in the class G¢, and (a) follows.
Since m; and W; are orthogonal, the information Igé 0) = I:(0) + 1 el (6) and (b)
follows. Hence, neither g7, (6) nor g7, () is fully informative, that is, / g @) > I, ()
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and Ix (0) > Iy (0) Part (c) follows immediately from the fact that if a“’ (m—n)/?’ =
—E [%’ .7-'1."71] for each i, then g, (#) = 0 and Iy, ) =0.

To prove (d), we note that the optimal combined estimating function based on
m;(#) and M;(0) is given by g/ (0) = > a’ (0)m;(0) +b;_(0)M;(#). Using
the Taylor expansion for g7.(f) and substituting the recursive estimate for 6 at each
step, the estimate based on the first i — 1 observations is given by

i—1
- PO Pt 3 A ~ w oA 0
0,1 = <21 (aj_l(osfl)%mswm g 81 @sms @) + b7 @) 7o M Bs1)

-1 i—1
ab*_, @-1) e _ . _
13701 L0, 1))} (—g“(as1(0Ay_l)ms<os_1)+bs1<0S_I)Ms(os_1))

< ~ amx(as—l) aaj_l(és—l) ~ ~ an(ar—l)
+Z(a:]<os_1) 0t s @) 10—

v O-)  ~ \~
+ ;wsMs(asl))osl)-

When the ith observation becomes available, the estimate becomes

i

_ o amg@s_y)  0a* | B,-1) — aMy(8,_1)
0i={§(a;"_1(0”> a(; + ‘80 ms(0x71)+b;‘_,ws71)$

—1 .
Ky (95 ) ! % o~ o~ % ~ o~
+ 5701 M, ®,- 1>)} (—Z(ax_l(os_nms(os_l)+bx_1(05_1>M5(0s_1))

s=1

i 7y * 7y 7y
~  oms(0;_) o0al_(0,_1) ~ ~ M0, 1)
+Z(a:‘_1(0s_1> e Ty @) b O ) —

ab* 1(9v 1)
+ T v(or 1)) )

Let
_ " ~ am@,_p) | dal ()
Kil =—Z(a;k1(0s—l) Yaov ! + — ;)03 mg(@s—1)
s=1
. aM,@,_1) obF @)
+b;<_1(0s—1) ABGA + - Y’ M;(05-1) ).
then

~ 3mi(§i—1)+337_1(0i—1) ~

K =K', —a’ 6,_) 0 50 m;i(0;_1)
~ M@ DT B
+b;_ 1 (0i-1) laol + — 29 M;(0;-1),
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and

6, —0, 1 =K /(K '0, —K;'0,_1)
=K@ @—)m;i @) + b7 @:-1)M;0;-1)).
Hence it is easy to show that the recursive equations for @ take the form (11)—(12).
Note that the proofs of (a) and (b) are somewhat similar to the proof given in Liang

et al. (2011). Part (d) extends the results in Thavaneswaran and Heyde (1999) to the
generalized combined estimating function g¢-(f) with a vector-valued parameter. 0O

A Proof of Theorem 2

Proof Since

/

oL ol
a—olz ( q;,lx, 17-~-,xi—pv¢i—lv-~~»lm—q)
and
8(72 o2 2
W 20 (tz + i) a¢,+(ﬂg )3(]5/ 20 (g +¥ri)xi—1, ...,

/

2021z + V)i, 202Gt + YDVt 202+ VDY)

the quadratic estimating function for each component of 6 is given by
n
ge(@) = D pf (xim; +si M),

i=1

n
ge(@) = > pf(Rim; + S;M;),
i=1

n
gi(a) = Zp?x,-_k(Rim,- +SM).k=1,...,p,
i=1

n
gc(B)) = ZP[ZWifj(Rimi +SiMy),j=1,...,q,
i=1

where
-1
. (m, M)? ’
(m): (M),
(m)s (M)ixs = — e 2= 0y, + ( 2021z + v (m. M);
1 i £ a¢ Z 1 ¢ ¢ £ 19
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Moreover, the information matrix corresponding to the optimal quadratic estimating
function for @ is given by
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A Proof of Theorem 3
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