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Abstract We develop the panel-limited information maximum likelihood approach
for estimating dynamic panel structural equation models. When there are dynamic
effects and endogenous variables with individual effects at the same time, the LIML
method for the filtered data does give not only a consistent estimator and asymp-
totic normality, but also attains the asymptotic bound when the number of orthogonal
conditions is large. Our formulation includes Alvarez and Arellano (Econometrica
71:1121–1159, 2003), Blundell and Bond (Econ Rev 19-3:321–340, 2000) and other
linear dynamic panel models as special cases.

Keywords Dynamic panel structural equation · LIML · Many orthogonal
conditions · Forward and backward filters · Optimality

1 Introduction

There have been a number of panel data available and their analyses have been grow-
ing in many applied fields of economics in the past decades. Statistical methods on
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panel data have been developed, which are indispensable in econometrics (see Hsiao
2003, Arellano 2003 and Baltagi 2005 for instance). The dynamic panel models have
been often used in empirical applications and the earlier investigations were from
Anderson and Hsiao (1981, 1982). In a pioneering work Alvarez and Arellano (2003)
investigated the asymptotic behavior of alternative estimation methods in a dynamic
panel regression model when both N (the number of individuals) and T (the number
of observation periods) are large. Our approach is related to these studies.

There are still non-trivial statistical problems on estimating dynamic panel econo-
metric models to be investigated. In particular, when there are lagged endogenous
variables with individual effects and the simultaneity effects in the structural equation
of interest exist at the same time, the standard econometric methods including the
GMM (generalized method of moments) in the econometric literature or the estimat-
ing equation (EE) method in the statistics literature do not necessarily work well due to
the presence of individual effects, which cause the problem of incidental parameters
when we have a long time-horizon.

In this paper, we propose the panel-limited information maximum likelihood
(PLIML) approach to dynamic panel structural equation models. It is a simple exten-
sion of the limited information maximum likelihood (LIML) method, which was orig-
inally developed by Anderson and Rubin (1949, 1950). We intend to apply the LIML
method to the dynamic panel structural models when there are dynamic effects and
endogenous variables with individual effects at the same time. We need to modify
the LIML method to handle the dynamic panel models with individual effects and
possibly many orthogonal conditions because the individual effects in panel structural
equations cause a source of endogeneity between the explanatory (or instrumental)
variables and the explained variables, and we propose to use the filtering procedures.
The PLIML method gives a consistent estimator and attains the asymptotic efficiency
bound for general dynamic panel structural equation models when the relative ratio
T/N is not small. In macro-panel data or long panel data, T (the number of observa-
tions over time) can be substantial and it is often important to estimate the dynamic
effects in the structural equation of interest. When the panel dimensions (N , T ) and
the number of available instruments are not small, the approximations of the limiting
distributions of estimators and test statistics based on the standard asymptotics are
often poor and we need another asymptotic theory, which corresponds to the large-K2
asymptotics developed by Kunitomo (1980) as an early study and it has been recently
re-examined by Anderson et al. (2005, 2010, 2011).

In our framework of study, we shall consider alternative ways of filtering procedure
for the original data before estimation systematically, namely, the forward-filtering
and the backward-filtering. We shall show that the LIML estimation has an advanta-
geous aspect when we use the forward-filtering and utilize many orthogonal conditions
in particular. Also the usage of the backward-filtering for instruments can decrease
the effects of a large number of possible instruments and the doubly-filtered LIML
becomes asymptotically less biased. In a companion paper, Akashi and Kunitomo
(2012) further have investigated the details of the finite sample properties of alterna-
tive estimation methods such as the WG (within groups), the GMM and the PLIML
estimators in a simple setting when there are two equations. The formulation of this
paper is much more general and we shall show that their findings and results on the
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finite sample and asymptotic properties of alternative estimators are relevant for more
general dynamic panel structural equations. A related work to the LIML method in
panel econometric analysis would be Alonso-Borrego and Arellano (1999).

In Sect. 2, we state the formulation of models and define the alternative estimation
methods of unknown parameters in the dynamic panel structural equation model with
possibly many instruments and the filtering procedures. Then in Sect. 3, we give the
results on the asymptotic properties of the LIML and GMM estimation methods and
the result on the asymptotic optimality. In Sect. 4, we shall report on the finite sample
properties based on a set of Monte Carlo simulations. Then in Sect. 5, some concluding
remarks will be given. The proofs of our theorems will be given in Sect. 6.

2 LIML approach to dynamic panel structural equation

2.1 Model

We consider the estimation problem of a dynamic panel structural equation with indi-
vidual effects in the form

y(1)i t = β
′
2 y(2)i t + γ

′
1z(1)i t−1 + ηi + uit , (1)

where y(1)i t and y(2)i t = (y( j)
i t ), ( j = 2, . . . , 1 + G2) are 1 + G2 endogenous variables,

z(1)i t−1 is the K1 × 1 vector of the included predetermined variables in (1), ηi (i =
1, . . . , N ) are individual effects, uit are mutually independent (over individuals and
periods) disturbance terms with E[uit ] = 0, E[u2

i t ] = σ 2, and γ 1 and β2 are K1×1 and
G2×1 vectors of unknown parameters. We allow that the explanatory variables include
the lagged endogenous variables and the observations are for i = 1, . . . , N ; t =
1, . . . , T and the sample size is N T (= n).

We assume that the reduced form is written as

yi t = Πzi t−1 + π i + vi t , (2)

where yi t = (y( j)
i t ), ( j = 1, . . . ,G), zi,t−1 = (z( j)

i,t−1, j = 1, . . . , K ), and E[vi t ] = 0

and E[vi t v
′
i t ] = Ω > 0 (a positive definite matrix). We also assume that the instru-

mental variables zi t−1 are Ft−1 adapted, and Ft−1 is the σ−field generated by
{vi t−h,π i }∞h=1. (We use the notation Et [ . ] = E[ . |Ft−1] for the conditional expecta-
tion operator.) The relation between the coefficients in (1) and (2) gives the condition
(1,−β

′
2)Π = (γ

′
1, 0

′
) and Π

′
12 = β

′
2Π22, where Π ′

1 = (Π11,Π
′
21) is a K1 × G

matrix, Π ′
2 = (Π12,Π

′
22) is a K2 × G matrix and the G × (K1 + K2) matrix of

coefficients is partitioned as

Π =
[

Π
′
11 Π

′
12

Π21 Π22

]
. (3)
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Although we may call (2) as the reduced form, the predetermined variables in zi t−1
are correlated with unobserved variables (π i +vi t ) since E[zi t−1π

′
i ] �= O in general

and it makes the panel econometric model of (1) and (2) different from the classical
simultaneous equation models. We give two examples in the econometric literature.

Example 1 Blundell and Bond (2000) have considered the simple model of a dynamic
panel structural equation with two endogenous variables given by

y(1)i t = β2 y(2)i t + γ1 y(1)i t−1 + ηi + uit , (4)

y(2)i t = γ2 y(2)i t−1 + δηi + vi t , (5)

where the disturbance terms uit and vi t are correlated. The equation (5) can be regarded
as a reduced form equation and the estimation of γ2 was considered by Alvarez and
Arellano (2003). They used the forward-filtering to data and proposed to use all past
values yis (s < t) at period t as instruments, i.e., the number of instruments is
T (T − 1)/2 (= rn). Hayakawa (2006, 2009), on the other hand, has suggested to
apply the backward-filter to generate instruments.

Example 2 The Panel Vector Autoregressive (Panel VARs) model suggested by Holtz-
Eakin et al. (1988) can be written as

y(1)i t = β2 y(2)i t + γ11 y(1)i t−1 + γ12xit + ηi + uit , (6)

and the extended reduced form is defined by

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

y(1)i t

y(2)i t

y(2)i t−1

xit+1

xit

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝
π∗

11 π∗
12 π∗

13 π∗
14 0

0 π∗
21 π∗

22 0 0
0 1 0 0 0
0 0 0 π∗

31 π∗
32

0 0 0 1 0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

y(1)i t−1

y(2)i t−1

y(2)i t−2

xit

xit−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

π
∗(1)
i

π
∗(2)
i

0

π∗
i

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

v
∗(1)
i t

v
∗(2)
i t

0

ε∗i t+1

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where the first two rows are the Panel VARs model and xit is the included independent
variable.

There are several important aspects of the problem of estimating equations with
instrumental variables in the dynamic panel structural equations. First, the standard
statistical estimation methods do not necessarily have desirable properties because
of the presence of individual effects ηi (i = 1, . . . , N ). To deal with this problem,
there have been several statistical procedures developed for the estimating equations
with individual effects. Second, some estimation procedures based on the standard
asymptotics (N → ∞, T < ∞) have substantial bias when the panel models become
dynamic in the sense that we have lagged endogenous variables as explanatory vari-
ables. This is because even if we used the appropriate filtering method to remove the
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individual effects, their influence cause the second-order bias through the past vari-
ables and it becomes serious when T becomes large as Akashi and Kunitomo (2012)
illustrated. Although we can remove the source of correlations among the lagged
endogenous variables and heterogeneity of individual using the filtering procedure,
we cannot remove the simultaneity by the standard procedure.

We shall develop a new statistical procedure which may overcome these problems
at the same time by applying the limited information maximum likelihood (PLIML)
method. The asymptotic properties of the LIML method for estimating structural equa-
tions including its asymptotic optimality have been recently investigated by Anderson
et al. (2010, 2011) when there are many instruments. We extend their analysis to the
PLIML method when the number of instruments increases as T , which may be quite
natural in the estimation problem of dynamic panel structural equations. Before we
apply the LIML method, however, first we need to use the filtering procedure to the
original data, which is a data transformation. There are alternative filtering procedures,
which correspond to either the forward direction filtering or the backward direction
filtering, to remove their individual effects.

2.2 Instrumental variables and filtering procedures

Let y(1)i = (y(1)i t ),Y(2)i = (y(2)
′

i t ) and Z(1)i(−1) = (z(1)
′

i t−1) be T × 1, T × G2 and T × K1
matrices. We define the forward deviation operator A f , which is the (T − 1) × T
upper triangular matrix used by Arellano and Bover (1995) and Alvarez and Arellano
(2003) such that A f A

′
f = IT −1, ι = (1, . . . , 1)

′
and A

′
f A f = QT = IT − ιT ι

′
T /T .

We apply the forward deviation operator y(1)i ,Y(2)i , and Z(1)i(−1) and then denote the

resulting variables as y(1, f )
i = (y(1, f )

i t ),Y(2, f )
i = (y(2, f )′

i t ) and Z(1, f )
i = (z(1, f )′

i t−1 ). For
an example, we denote

y(2, f )
i t = ct

[
y(2)i t − 1

T − t
(y(2)i t+1 + · · · + y(2)iT )

]
(7)

where c2
t = (T − t)/(T − t + 1) for t = 1, . . . , T − 1, T ≥ 2. Using the forward-

filtered variables, we write for t = 1, . . . , T − 1 as

y(1, f )
i t = β

′
2 y(2, f )

i t + γ
′
1z(1, f )

i t−1 + u( f )
i t , (8)

where u( f )
i = (u( f )

i t ) is the transformed (T − 1)× 1 vector by u( f )
i = A f ui from the

T ×1 disturbance vector ui = (uit ). Here, we have the relation that E[z(1, f )
i t u( f )

i t ] �= 0,
consequently.

We also define the backward operator Ab with the filter direction to the past, which
is the (T − 1) × T lower triangular matrix as used by Hayakawa (2006). This pro-
cedure removes the individual effects from the instrumental variables. We denote the
transformed instrumental variables Z(b)i(−1) = (z(b)

′
i t−1) and
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z(b)i t−1 = bt

[
zi t−1 − 1

t
(zi t−2 + · · · + zi0 + zi(−1))

]
, (9)

where b2
t = t/(t + 1) for t = 1, . . . , T − 1, and we include zi(−1) to simplify the

notation of the index range.
The forward-filtering enables us to make use of the orthogonal conditions for the

disturbance terms. The backward-filtering removes the individual effects from instru-
mental variables. In our analysis, we use two types of transformations on the instru-
mental variables, and the instrumental matrices at period t are defined by

Z(a)t =

⎛
⎜⎜⎜⎝

z(a)1(t−1) · · · z(a)N (t−1)

...
...

...

z(a)10 · · · z(a)N0

⎞
⎟⎟⎟⎠

′

, Z(b)t =
(

z(b)1(t−1), . . . , z(b)N (t−1)

)′
, (10)

where z(a)i t−1 is the K∗ × 1 vector such that z(a)i t−1 = J
′
K∗zi t−1, and the selection matrix

J
′
K∗ chooses the nearest lagged variables to t − 1 while Z(b)t is the N × K matrix. The

dimension reduction from K to K∗ is often needed for the full rank of (Z(a)
′

t Z(a)t ),

where Z(a)t is the N × (K∗t).
We shall consider two alternative ways of the instrumental variables.
(a) At period t , we use all available lagged variables after applying the forward-

filtering to the structural equation as suggested by Arellano and Bover (1995) and
Alvarez and Arellano (2003). Since the instruments z(a)is (0 ≤ s < t) are generated by
the past information at t and the individual effects, the orthogonal conditions at period
t can be written as

E
[
z(a)is u( f )

i t

]
= 0 (0 ≤ s < t ≤ T ). (11)

When T is large, the number of orthogonal conditions can be large if we use all
orthogonal conditions imposed.

(b) Alternatively, at period t , we can use the only (a fixed number of) lagged variables
included in the reduced form after applying the backward-filtering to all instruments.
Since the instruments z(b)is (0 ≤ s < t) are generated by the past information at t and
the individual effects are removed, the orthogonal conditions at period t used can be
written as

E
[
z(b)i t−1u( f )

i t

]
= 0,

which are the standard orthogonal conditions except the effects of the forward-filtering
and backward-filtering for the original data.

Then, we consider two asymptotic sequences with respect to two dimensions N
and T in alternative ways. We define the total number of orthogonal conditions used
as rn and consider the ratio rn/n (the total sample N T (= n)) as
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(a)
K∗T (T − 1)

2N T
N ,T →∞→ ca =

(
K∗
2

)
lim

N ,T →∞

(
T

N

)
. (12)

(b)
K (T − 1)

N0T
T →∞→ cb = K

N0
, (13)

where we use the notation N (= N0) as a fixed integer. Then we shall investigate the
asymptotic behaviors of estimators when the sequence of ratio can be a reasonable
approximation when rn and N are large under panel structural equation model. When
the number of instruments used is reduced to O(T ), the doubly-filtered LIML estima-
tor does not need the double asymptotics N , T → ∞ and the number of individuals
is regarded as a fixed number.

2.3 The LIML and GMM Estimation

Let y( f )
t = (y(1, f )

i t , y(2, f )′
i t )

′
be (1 + G2) vectors and

Y( f )′
t =

(
y( f )

1t , . . . , y( f )
Nt

)
, Z(1, f )′

t =
(

z(1, f )
1t , . . . , z(1, f )

Nt

)
,

be (1+G2)× N , and K1 × N matrices of the forward-filtered variables, respectively.
Using these notations, we define two (1 + G2 + K1)× (1 + G2 + K1) matrices as

G( f ) =
T −1∑
t=1

(
Y( f )′

t

Z(1, f )′
t−1

)
Mt

(
Y( f )

t ,Z(1, f )
t−1

)
, (14)

and

H( f ) =
T −1∑
t=1

(
Y( f )′

t

Z(1, f )′
t−1

)
[IN − Mt ]

(
Y( f )

t ,Z(1, f )
t−1

)
, (15)

where the projection matrices Mt = M(a)
t and M(b)

t are defined by M(a)
t =

Z(a)t (Z(a)
′

t Z(a)t )−1Z(a)
′

t and M(b)
t = Z(b)t (Z(b)

′
t Z(b)t )−1Z(b)

′
t . Then the LIML estima-

tor θ̂
(.)

LI = (β̂
′
2.LI, γ̂

′
1.LI)

′
of (1,−β

′
2,−γ

′
1)

′ = (1,−θ ′)′ is defined by

[
1

n
G( f ) − λn

1

qn
H( f )

][
1

−θ̂
(.)

LI

]
= 0, (16)

where n = N T, qn = n − rn and λn is the smallest root of

∣∣∣∣1n G( f ) − l
1

qn
H( f )

∣∣∣∣ = 0. (17)
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In this formulation, we use the notation θ̂
(.)

LI = θ̂
(a)
LI in the case of M(a)

t and θ̂
(b)
LI in the

case of M(b)
t , respectively. The solution to (16) gives the minimum of the variance

ratio

VRn =

[
1,−θ

′]
G( f )

[
1
−θ

]
[
1,−θ

′]
H( f )

[
1
−θ

] . (18)

Similarly, we define the panel GMM (or two-stage least squares TSLS) estimator,

θ̂
(.)

G M = (β̂
′
2.G M , γ̂

′
1.G M )

′
of (1,−β

′
2,−γ

′
1)

′ = (1,−θ ′)′ by

[
0, IG2+K1

] T −1∑
t=1

[
Y( f )′

t

Z(1, f )′
t−1

]
Mt

[
Y( f )

t ,Z(1, f )
t−1

] [1

−θ̂
(.)

G M

]
= 0 (19)

and we denote θ̂
(a)
G M and θ̂

(b)
G M accordingly. It minimizes the numerator of the variance

ratio in (18). The LIML and TSLS estimation methods were originally developed by
Anderson and Rubin (1949, 1950), and we modify them slightly to develop the panel
LIML and the panel GMM (or TSLS) methods for the dynamic panel simultaneous
equations model with individual effects.

3 Asymptotic properties of the LIML and GMM estimators

3.1 Asymptotic distributions

In this section, we shall derive the limiting distributions of the LIML and the GMM
estimators when we have the representation y∗

i t = Π∗y∗
i,t−1 + π∗

i + v∗
i t and G∗ × 1

vector y∗
i t includes yi t (1 + G2 ≤ G ≤ G∗). Then we shall investigate the case when

1 + G2 ≤ G ≤ G∗ when y∗
i t can be degenerated as above and both Examples 1

and 2 are some special cases. There can be some possible ways of extensions of our
arguments, but then we would need quite lengthy derivations as Sect. 6 of this paper
has suggested.

Let wi t = y∗
i t − μi and (IG∗ − Π∗)μi = π∗

i . We make a set of assumptions on the
moments of disturbances and the dynamics of the underlying process {wi t } satisfying

wi t = Π∗wi t−1 + v∗
i t . (20)

(A1) {v∗
i t } (i = 1, . . . , N ; t = 1, . . . , T ) are i.i.d. across time and individuals and

independent of π∗
i and zi0 with E[v∗

i t ] = 0, E[v∗
i t v

∗′
i t ] = Ω∗ and E[‖vi t‖8] exists.

(A2) The initial observation satisfies y∗
i0 = (IG∗ − Π∗)−1π∗

i + wi0 (i =
1, . . . , N ), where wi0 is independent of π∗

i and i.i.d. with the steady state dis-
tribution of the homogenous process such that wi0 =∑∞

j=0 Π j vi,− j . All roots of∣∣Π∗ − λIG∗
∣∣ = 0 satisfy the stationarity condition |λk | < 1 (k = 1, . . . ,G∗).
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(A3) There exists an K∗ × 1 (K∗ ≤ K ) vector of instrumental variables zi,t−1 in
(2) such that Z(a)t and Z(b)t in (10) are non-degenerate.

The assumptions (A1) and (A2) are analogous to some conditions used by Alvarez
and Arellano (2003). They imply that the underlying processes for {yi t } and {wi t } are
stationary. We shall make use of the assumption on initial condition to prove Lemmas
in Sect. 6, but they could be relaxed at the expense of the resulting lengthy derivations.

To state main theoretical results in concise ways, we prepare some notations such

that E[vi t v′
i t ] = Ω, σ 2 = E[u2

i t ] = β ′Ωβ, whereβ = (1,−β ′
2)

′,u⊥
i t = [0, IG2 ]

[
vi t −

Cov(vi t , uit )uit/σ
2
]
,Φ∗ = D′J′

K E[wi(t−1)w′
i(t−1)]JK D,D = (Π2, JK1) and J

′
K1

=
(IK1,O).

We first discuss Case (a) when we take the forward-filtering procedure and then
apply the LIML and the GMM estimation. We denote Mt = M(a)

t and we have the
next result whose proof will be in Sect. 6.

Theorem 1 Suppose Assumptions (A1)–(A3) hold and Φ∗ is a positive definite
matrix. Consider the double asymptotics N , T → ∞ and assume that 0 ≤
K∗ limN ,T →∞(T/N ) < 1.

(i) Assume T/N → ca > 0 as N → ∞ and T → ∞. Then

θ̂
(a)
G M − θ

p→
[
Φ∗ + ca

(
J

′
∗G2

ΩJ∗G2 O
O O

)]−1 [
caJ

′
∗G2

Ωβ

O

]
,

where J
′
∗G2

= [0, IG2 ].
(ii) For ca = 0, 0 ≤ limN ,T →∞(T 3/N ) = da < ∞,

√
N T

(
θ̂
(a)
G M − θ

)
d−→ N

(
b(a)0 , σ 2Φ∗−1

)
, (21)

where

b(a)0 =
[

d1/2
a K∗

2

]
Φ∗−1

(
J

′
∗G2

Ωβ

0

)
.

(iii) For ca = 0,

√
N T

(
θ̂
(a)
L M − θ

)
d−→ N (0, σ 2Φ∗−1). (22)

(iv) For 0 < ca < 1/2,

√
N T

(
θ̂
(a)
L M − θ

)
d−→ N

(
b(a)c ,Ψ ∗(a)) , (23)
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48 K. Akashi, N. Kunitomo

where c∗a = ca/(1 − ca), J
′
G2

= (IG2 ,O),

Ψ ∗(a) = Φ∗−1
[
σ 2Φ∗ + JG2(ca[Ωσ 2 − Ωββ ′Ω]22 + Ξ

(a)
4 )J

′
G2

]
Φ∗−1,

[ · ]22 is the (2,2)-th element (G2 × G2 matrix) of the partitioned (1+ G2)× (1+ G2)

matrix,

Ξ
(a)
4 =

(
1

1 − ca

)2

E
[(

u2
i t − σ 2

)
u⊥

i t u⊥′
i t

] [
plimN ,T →∞

1

N T

T −1∑
t=1

d(a)
′

t d(a)t − c2
a

]
,

b(a)c = −
(

K∗
2

)1/2 c1/2
a

(1 − ca)
Φ∗−1D′J′

G∗(IG∗ − Π∗)−1E [v∗
i t uit

]
,

d(a)t = (d(a)i t ) = diag(M(a)
t ) and Wt−1 = (w1(t−1), . . . ,wN (t−1))

′ is the N × K∗
matrix consisting of {wi t }.

The asymptotic covariances in Theorem 1 in some case look complicated due to
the term Ξ

(a)
4 which depends on the fourth moments of disturbances. In our numerical

analysis, the effects of fourth moments are usually negligible. When ca = 0, both the
LIML and the GMM estimators are consistent and they have the asymptotic normality.
But the GMM estimator has an extra asymptotic bias b(a)0 due to the presence of
endogenous variables. This result agrees with the one by Anderson et al. (2010) for
linear structural equation models with many instruments. The asymptotic bias b(a)c due
to the presence of forward-filtering is similar to the one by Alvarez and Arellano (2003)
for a simple dynamic regression model. When ca > 0, however, the LIML estimator
is still consistent and it has the asymptotic normality while the GMM estimator is
inconsistent.

Next, we consider Case (b). When we apply the backward-filtering procedure to
the set of instrumental variables including the lagged endogenous variables. We take
Mt = M(b)

t . In the case (b) we have the next result whose proof will be in Section 6.

Theorem 2 Suppose Assumptions (A1)–(A3) hold andΦ∗ is a positive definite matrix.
Let T → ∞ and set K/N = cb. We take cb = 0 when N → ∞ while K is a fixed
positive integer. We denote cb > 0 when N and K are bounded and positive integers.

(i) Consider the case when cb > 0 and N is bounded. Then as T → ∞,

θ̂
(b)
G M − θ

p→
[
Φ∗ + cb

(
J

′
∗G2

ΩJ∗G2 O
O O

)]−1 [
cbJ

′
∗G2

Ωβ

O

]
,

where J
′
∗G2

= [0, IG2 ].
(ii) For cb = 0 or N → ∞, 0 ≤ limN ,T →∞(T/N ) = db < ∞,

√
N T

(
θ̂
(b)
G M − θ

)
d−→ N

(
b(b)0 , σ 2Φ∗−1

)
, (24)
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where

b(b)0 = [d1/2
b K ]Φ∗−1

(
J

′
∗G2

Ωβ

0

)
.

(iii) For cb = 0 or N → ∞,

√
N T

(
θ̂
(b)
L M − θ

)
d−→ N (0, σ 2Φ∗−1). (25)

(iv) For 0 < cb < 1 or N = N0 is fixed,

√
N0T

(
θ̂
(b)
L M − θ

)
d−→ N (0,Ψ ∗(b)), (26)

where c∗b = cb/(1 − cb),

Ψ ∗(b)=Φ∗−1
[
σ 2Φ∗+JG2(c∗b

[
Ωσ 2−Ωββ ′Ω

]
22+Ξ

(b)
4 )J

′
G2

+Ξ
(b)
3 +�

(b)′
3

]
Φ∗−1,

Ξ
(b)′
3 =

⎛
⎜⎝ 1

1−cb
E [u2

i t u
⊥
i t

]
p limT →∞

1

N0T

T −1∑
t=1

[
d(b)

′
t Wt−1

]
JK D

O

⎞
⎟⎠ ,

Ξ
(b)
4 =

(
1

1 − cb

)2

E
[
(u2

i t − σ 2)u⊥
i t u⊥′

i t

] [
p limT →∞

1

N0T

T −1∑
t=1

d(b)
′

t d(b)t − c2
b

]
,

d(b)t = (d(b)i t ) = diag(M(b)
t ) and Wt−1 = (w1(t−1), . . . ,wN (t−1))

′ is the N × G∗
matrix consisting of {wi t }.

When cb = 0, both the LIML and the GMM estimators are consistent and they
have the asymptotic normality. But the GMM estimator has an extra asymptotic bias.
When cb > 0, however, the LIML estimator is also consistent and almost medium-
unbiased (i.e., b(b)c = 0) and it has the asymptotic normality while the GMM estimator
is inconsistent.

We notice that Φ∗ is the same in both our theorems, so that the backward-filtered
instruments can be considered as the optimal instruments in the double asymptotics.
But when cb > 0 and the fixed-N or the large-K2 asymptotics holds, then the second
term of the asymptotic covariance becomes large, so that the large-K2 improves the
approximation of limiting distributions by capturing the number K and possibly large
fixed N0. On the other hand, the GMM estimator has the asymptotic bias even when
N → ∞. If N → ∞, the doubly-filtered LIML has no bias asymptotically and
attains the asymptotic efficiency bound σ 2Φ∗−1, which is the standard bound when
π∗

i = 0 (i = 1, . . . , N ) and T is a fixed integer. In our numerical analysis, the third-
and fourth-order moments of disturbances are usually negligible.
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3.2 An asymptotic bound and optimality

For the estimation problem of the vector of structural parameters θ, it may be natural to
consider a set of statistics of two (1+G2 +K1)×(1+G2 +K1) random matrices G( f )

and H( f ). It includes the GMM and the LIML estimators for instance. As a related
earlier study, Hahn and Kuersteiner (2002) have investigated the asymptotic bound in
the panel estimation when there does not exist any endogeneity and the disturbances
are normally distributed. Anderson et al. (2010) have developed the asymptotic bound
when there are many instruments in the structural equation models.

We consider a class of estimators which are some smooth functions of G( f ) and
H( f ). It may be natural to restrict this class because they are sufficient statistics when
there are no individual effects under the normal disturbances. Then we have some
results on the asymptotic optimality and the proof is quite similar to the corresponding
ones in Anderson et al. (2010).

Theorem 3 In the panel structural equation models of (1) and (2), define the class
of consistent estimators for θ = (β

′
2, γ

′
1)

′
by

(
β̂2

γ̂ 1

)
= φ(G( f ), H( f )), (27)

whereφ is continuously differentiable and its derivatives are bounded at the probability
limits of random matrices (1/n)G( f ) and (1/qn)H( f ).

(i) Then either under the conditions of Theorem 1 or Theorem 2, as T → ∞ with
ca = 0 or cb = 0,

√
N T

(
β̂2 − β2

γ̂ 1 − γ 1

)
d−→ N (b(·)0 ,Ψ ), (28)

where

Ψ ≥ Ψ ∗ (29)

and Ψ ∗ and b(·)0 are given in Theorems 1 and 2. The LIML estimator and the
bias-adjusted GMM estimator attain the asymptotic bound.

(ii) When 0 < ca < 1/2 or 0 < cb < 1 in Theorem 1 or Theorem 2

√
N T

(
β̂2 − β2
γ̂ 1 − γ 1

)
d−→ N (b(·)c ,Ψ ), (30)

where Ψ ≥ Ψ ∗ and the asymptotic bias b(·)c caused by the forward-filter depends
on φ(G( f ),H( f )). The LIML estimator attains the asymptotic bound.

This is a result on the asymptotic efficiency bound for dynamic panel structural equa-
tion models with individual effects and endogeneity at the same time. It can be regarded
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as an extension of Theorem 4 of Anderson et al. (2010) for the linear structural equa-
tion in the simultaneous equation systems. Because of individual effects in the panel
structural equations and the filtering problem, there are additional features on the
asymptotic optimality.

4 On finite sample properties

It is important to investigate the finite sample properties of estimators partly because
they are not necessarily similar to their asymptotic properties. One simple example
would be the fact that the exact moments of some estimators do not necessarily exist. In
that case, it may be meaningless to compare the exact MSEs of alternative estimators
and their Monte Carlo analogs.

In our experiments, we took Example 2 (K = 4, K∗ = 3, K1 = 2,G2 = 1) in
Sect. 2 as a typical example.1 In Example 2 we set the unknown parameters such
as (β2, γ11) = (.5, .5), γ12 = .3, and (ω11, ω12, ω22) = (1.0, .3, 1.0), (1.5, 1.0, 1.0)
where we take γ 1 = (γ11, γ12)

′
and Ω = (ωi j ). Also we control the variance of each

components of π i as 1. Our experiments are similar to the ones reported in Akashi
(2008), and Akashi and Kunitomo (2012). Then we generate a large number of random
variables by simulations and calculate the empirical distribution functions of the GMM
and LIML estimators in their normalized forms. We repeat 5,000 replications for each
case and the smoothing technique to estimate the empirical distribution functions.
The details of simulations are similar to those explained by Anderson et al. (2005,
2011). We report only the results for (N , T ) = (100, 25) and (100, 50) as the typical
cases among a large number of our simulations. All simulations reported in this section
have been done under the situation that the disturbance terms are normally distributed.
Although we have done a number of simulations when the disturbances are non-normal
such as the t-distribution, we have omitted them to save space because they are quite
similar to the results reported.

We examine the distribution functions of the LIML and GMM estimators in two
normalizations. The first one is in terms of

√
N T

σ

[
(φ11)−1/2 0
0 (φ22)−1/2

] [
β̂2 − β2
γ̂1 − γ1

]
, (31)

where φ11 and φ22 are the (1,1)-th element and (2.2)-th element of Φ∗−1, respectively.
The second normalization is

√
N T

[
ψ

−1/2
11 0

0 ψ
−1/2
22

][(
β̂2 − β2
γ̂1 − γ1

)
− 1√

N T
b(·)c

]
, (32)

where b(·)c is the asymptotic bias term, ψ11 and ψ22 are the (1,1)-th element and the
(2,2)-th element of Ψ ∗, respectively. We have chosen these standardizations because

1 We have used Example 1 in Akashi and Kunitomo (2012) to investigate Case (a) in more details. Example 1
can be regarded as a special case of Example 2.
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of the form of the limiting distribution of the LIML estimator in Theorems 1 and 2.
We may call the large-rn case when c = 0 (c = ca or cb) and c �= 0 as the general
case.

Since Akashi and Kunitomo (2012) have given many figures on Case (a), we only
give Figs. 5 and 6 in Appendix. We have shown the estimated distribution functions
of the GMM and the LIML estimators of (β2, γ1) and we confirm the findings of
Akashi and Kunitomo (2012) in a simple case. The GMM estimator is badly biased
when N and T are large while the LIML estimator is almost median-unbiased after
correcting the bias term in (32). However, the normalization by the limiting covariance
matrix of the LIML estimator when c = 0 is not appropriate. This aspect can be
observed because the circles in figures are the standard normal distribution function
N(0,1).

For Case (b) with the backward-filtering procedure, we show the estimated distri-
bution functions of the GMM and LIML estimators of β2 and γ1 as Figs. 1, 2, 3 and
4 among many results. From these figures, we first observe that the GMM estimator
is often biased when N and T are large while the LIML estimator is almost median-
unbiased. Second, the normalization by the limiting covariance matrix of the LIML
estimator when c = 0 is often not appropriate. Since the normal approximations based
on the general case c �= 0, it is important to use the formulas in Sect. 3.

5 Conclusions

In this paper, we develop the panel-limited information maximum likelihood (PLIML)
approach for estimating dynamic panel simultaneous equation models. When there are
dynamic effects and endogenous variables with individual effects at the same time,
the LIML method for the filtered data does give not only the consistency and the
asymptotic normality, but also attains the asymptotic efficiency bound when the order
of orthogonal conditions is large or many instruments.

The consistency of LIML method does not depend on specified panel asymptotics
and the total number of instruments as long as it is less than the total number of
observations. The approximation of its limiting distribution embodies the influence of
the number of instrumental variables automatically and our method gives an unified
approach for solving the statistical problem with panel data when N and T are large.

We have examined the effects of alternative filtering procedures. When we only
apply the forward-filtering and use O(T 2) instruments, the GMM estimator is badly
biased while the LIML estimator can be almost-unbiased. If we use the backward-
filtering to instruments, the GMM estimator is often biased, but its magnitude is sig-
nificantly reduced. Since we often do not know the precise form of lag structures of
the reduced form in the panel simultaneous equation models, we conclude that the
LIML method has the asymptotic robustness in both cases of (a) and (b) while the
GMM does not have such robustness.

In a companion paper, Akashi and Kunitomo (2012) have investigated the finite
sample properties of alternative estimation methods such as the WG (Within Groups),
the GMM and the PLIML estimators in a simpler setting. Although they have used
a particular case of dynamic panel models and the forward filtering procedure, their
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results are relevant for more general panel structural equations. In this sense, the LIML
method is quite useful and relevant in dynamic panel econometric modeling.

Finally, there is an important issue on the individual heteroscedasticity in panel
structural equation models. An optimal modification of the LIML method to remove
the possible bias due to individual heteroscedasticity can be developed. The details
have been discussed in Kunitomo and Akashi (2010), which was along the arguments
originally developed by Kunitomo (2012).

6 Mathematical details

In this section, we give the proofs of Theorems 1 and 2. The method of proofs are similar
to those used in Akashi and Kunitomo (2012). When we use notations (Mt ,Nt , c, c∗),
the relevant derivations are valid for each case of Mt = M(a)

t and M(b)
t under the

corresponding asymptotics. (We shall use c and c∗ (= c/(1 − c)) for ca, cb (, which
are different from ct ), and c∗a (= ca/(1 − ca)), c∗b (= cb/(1 − cb)) without any
confusion.) Also we use notations J for JK and zi t = Jwi,t−1, which means that the
relevant information is in the first K -variables for the sake of convenience. Because
some derivations have been given in Akashi and Kunitomo (2012) when G2 = 1 and
it is often straight-forward to extend their analysis to the general case, we refer to their
results in such cases.

Derivations of Theorems 1 and 2
Step 1: First, we shall investigate the effects of the forward-filtering. We drive the
probability limits of sample quantities and obtain the representations for the LIML
estimator. Substitution of (7) into (14) yields

G( f ) = G( f,1) + G( f,2) + G( f,2)′ + G( f,3), (33)

where G( f,1) = D∗′ ∑T −1
t=1 Z( f )′

t−1 Mt Z
( f )
t−1D∗,G( f,2) = D∗′ ∑T −1

t=1 Z( f )′
t−1 Mt (V

( f )
t ,O),

G( f,3) = ∑T −1
t=1 (V

( f )
t ,O)

′
Mt (V

( f )
t ,O),V( f )′

t = (v( f )
1t , . . . , v( f )

Nt ) and v( f )
i t (i =

1, . . . , N ) are the corresponding forward-filtered disturbances of vi t , and a K × (1 +
G1 + K1) matrix D∗ = D[θ , IG2+K1 ].

We shall show that for Mt = M(a)
t or M(b)

t ,

1

n
G( f ) p−→ G0 =

[
θ

′

IG2+K1

]
Φ∗ [ θ , IG2+K1

]+ c

[
Ω O

O O

]
(34)

and

1

qn
H( f ) p−→ H0 =

[
Ω O

O O

]
, (35)
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where Φ∗ = D′J′E[wi t−1w′
i t−1]JD = D′J′0JD and n = N T . Using the represen-

tation

(
Y( f )′

t

Z(1, f )′
t−1

)
= D∗′

Z( f )′
t−1 +

(
V( f )′

t

O
′

)
(say, )

we show that (1/n)G( f,2) p→ OG2+K1 using the same argument for (1/
√

n)
∑T −1

t=1

Z( f )′
t−1 Mt u

( f )
t in Akashi and Kunitomo (2012). We write

Z( f )′
t−1 = J

⎛
⎝ct

⎡
⎣IG∗ − 1

T − t

⎛
⎝T −t∑

j=1

Π∗ j

⎞
⎠
⎤
⎦W

′
t−1 − ct Ṽ

′
tT

⎞
⎠ = Ψ t W

′
t−1 − ct Ṽ

′
tT ,

where Ṽ
′
tT is defined in Step 3 below. We further decompose (1/n)G( f,1) as

1

n

T −1∑
t=1

Z( f )′
t−1 Mt Z

( f )
t−1 = 1

n

T −1∑
t=1

Ψ t W
′
t−1Mt Wt−1Ψ

′
t − 1

n

T −1∑
t=1

ctΨ t W
′
t−1Mt ṼtT

−1

n

T −1∑
t=1

ct Ṽ
′
tT Mt Wt−1Ψ

′
t + 1

n

T −1∑
t=1

c2
t Ṽ

′
tT Mt ṼtT . (36)

Moreover, using Lemmas 2 and 3 in Steps 4 and 5, and c2
t = 1 − 1/(T − t + 1) after

some calculations, it is possible to show

1

n

T −1∑
t=1

Ψ t W
′
t−1Mt Wt−1Ψ

′
t

= 1

n

T −1∑
t=1

c2
t W

′
t−1Mt Wt−1

− 1

n

T −1∑
t=1

c2
t

T − t
W

′
t−1Mt Wt−1

⎛
⎝T −t∑

j=1

Π∗ j

⎞
⎠

′

− 1

n

T −1∑
t=1

c2
t

T − t

⎛
⎝T −t∑

j=1

Π∗ j

⎞
⎠W

′
t−1Mt Wt−1

+ 1

n

T −1∑
t=1

(
ct

T − t

)2
⎛
⎝T −t∑

j=1

Π∗ j

⎞
⎠W

′
t−1Mt Wt−1

⎛
⎝T −t∑

j=1

Π∗ j

⎞
⎠

′

(37)

converges to E[wi(t−1)w
′
i(t−1)] in probability. The second and third terms of (36) have

zero means and their variances to tend to zeros. It is because
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Var

[
1

N T

T −1∑
t=1

ct e
′
jΨ t W

′
t−1Mt ṼtT ek

]

≤ 1

N 2T 2

T −1∑
t=1

T −1∑
s=1

√
c2

t E
[
(e

′
jΨ t W

′
t−1Mt ṼtT ek)2

]√
c2

s E
[
(e

′
kṼsT MsWs−1Ψ

′
se j )2

]
,

where e j ( j, k = 1, . . . , K ) are j-th unit vector. Also we have

c2
t E
[
(e

′
jΨ t W

′
t−1Mt ṼtT ek)

2
]
= c2

t

[
e

′
kE
[
ṽi tT ṽ

′
i tT

]
ek

]
E
[
e

′
jΨ t W

′
t−1Mt Wt−1Ψ

′
t e j

]

≤ c2
t

[
1

(T − t)2
e

′
k

T −t∑
h=1

ΦhE
[
v∗

i0v∗′
i0

]
Φ

′
hek

]

×
[
e

′
jΨ tE[W′

t−1Wt−1]Ψ ′
t e j

]
,

which is O(N/(T − t)) because
∑T −t

h=1 e
′
kΦhE[v∗

i0v∗′
i0]Φ

′
hek = O(T − t). Then

Var

[
1

N0

T −1∑
t=1

ct e
′
jΨ t W

′
t−1Mt ṼtT ek

]
= O

(
(
√

T )2

N0T 2

)
.

For the fourth term of (36), the expected value is given by

E
[

1

n

T −1∑
t=1

c2
t e

′
j Ṽ

′
tT Mt ṼtT ek

]
= 1

n

T −1∑
t=1

c2
t tr(Mt )E

[
e

′
j ṽi tT ṽ

′
i tT ek

]

= O

(
1

n

∑
t

tr(Mt )

T − t + 1

)

and it converges to zero in probability. Its variance tends to zero in the same way as
for ϒ(k)21n and ϒ(k)22n in Step 3 below.

Next, we consider (1/n)G( f,3). Using the fact that Et [v( f )
i t v( f )′

i t ] = Ω ,

E
[

1

n

T −1∑
t=1

e
′
gV( f )′

t Mt V
( f )
t eh

]
= e

′
gΩeh

n

T −1∑
t=1

tr(Mt ),

which converges to c(e
′
gΩeh) as n → ∞. Moreover, using V( f )

t = (Vt − V̄tT )/ct ,
we decompose
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1

n

T −1∑
t=1

V( f )′
t Mt V

( f )
t = 1

n

T −1∑
t=1

c−2
t V

′
t Mt Vt − 1

n

T −1∑
t=1

c−2
t V

′
t Mt V̄tT

−1

n

T −1∑
t=1

c−2
t V̄

′
tT Mt Vt + 1

n

T −1∑
t=1

c−2
t V̄

′
t Mt V̄tT . (38)

Because of Lemma 1 of Step 3 below, Var[v(g)′t Mt v
(h)
t ] = O(t) and Cov[v(g)′t Mt v

(h)
t ,

v(g)
′

s Mt v
(h)
s ] = 0 for t �= s. Hence the variance of the first term satisfies

Var

[
1

n

T −1∑
t=1

e
′
gV( f )′

t Mt V
( f )
t eh

]
= 1

n2

T −1∑
t=1

(
1 + 1

T − t

)2

× O(t),

which converges to zero.
The second and third terms of the right-hand side of (38) can be evaluated analo-

gously asϒ(k)21n andϒ(k)22n , and their variances tend to zeros using the similar arguments.

We turn to show that (1/qn)H( f ) p→ H0 by evaluating

1

n

T −1∑
t=1

(
Y( f )′

t

Z(1, f )′
t−1

)
(Y( f )

t ,Z(1, f )
t−1 )

= D∗′ 1

n

T −1∑
t=1

Z( f )′
t−1 Z( f )

t−1D∗ + D∗′ 1

n

T −1∑
t=1

Z( f )′
t−1 (V

( f )
t ,O)

+1

n

T −1∑
t=1

(
V( f )′

t
O′

)
Z( f )

t−1D∗ + 1

n

T −1∑
t=1

(
V( f )′

t
O′

)
(V( f )

t ,O). (39)

The expected values of the second and third terms of 1/(N0T )
∑

t E[Z( f )′
t−1 V( f )

t ] =
(1/T )(IG∗ −Π∗)−1E[v∗

i t v
∗′
i t ]+O(1/T ) converge to zeros as T → ∞. We can establish

the mean squared convergence similarly. Moreover,

1

n

T −1∑
t=1

e′
j Z
( f )′
t−1 Z( f )

t−1ek = 1

N0T

N0∑
i=1

T −1∑
t=1

w
( j)
i(t−1)w

(k)
i(t−1)−

1

N0T

N0∑
i=1

1

T
ι′T w( j)

i(t−1)w
(k)′
i(t−1)ιT

converges to E[w( j)
i(t−1)w

(k)
i(t−1)] in probability since (1/T )

∑T −1
t=1 w

( j)
i(t−1)w

(k)
i(t−1)

p→
E[w( j)

i(t−1)w
(k)
i(t−1)] and the second term converges to (1/N0)

∑N0
i=1(0+op(1))2 = op(1)

using that (1/T )ι′T w( j)
i(t−1)

p→ 0. Again using the similar argument, we have that

(1/n)
∑T −1

t=1 V( f )′
t V( f )

t
p→ Ω . Hence
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1

qn
H( f ) p→ 1

1 − c

[
plimn→∞

1

n

T −1∑
t=1

(
Y( f )′

t

Z(1, f )′
t−1

)
(Y( f )

t ,Z(1, f )
t−1 )− G0

]
= H0.

Step 2: Using the convergence results in Step 1, we have

∣∣∣∣Φθ + [c − (plimn→∞λn)]

[
Ω O
O O

]∣∣∣∣ = 0, (40)

where

Φθ =
[

θ ′
IG2+K1

]
Φ∗ [θ , IG2+K1

]
. (41)

By the assumption that Φ∗ is a positive definite matrix, λn
p→ c and we have that

θ̂LI
p→ θ because (16) gives Φ∗(θ̂ − θ) = op(1) . Define G( f )

1 = √
n[(1/n)G( f ) −

G0],H( f )
1 = √

qn[(1/qn)H( f ) − H0], λ( f )
1n = √

n[λn − c] and b1 = √
n[θ̂ − θ ] . By

substituting these variables into (16), we find

[G0 − cH0]
[

1
−θ

]
+ 1√

n

[
G( f )

1 − λ
( f )
1n H0

] [1
−θ

]
+ 1√

n
[G0 − cH0] b1

− 1√
qn

[cH( f )
1 ]

[
1
−θ

]
= op

(
1√
n

)
. (42)

Then using the relation of Φθ (1,−θ ′)′ = 0, we have

Φθ

[
0
b1

]
=
[
G( f )

1 − λ
( f )
1n H0 − √

cc∗H( f )
1

] [ 1
−θ

]
+ op(1).

Multiplication of (42) from the left by (1,−θ) yields

λ
( f )
1n =

(1,−θ ′)
[
G( f )

1 − √
cc∗H( f )

1

]
(1,−θ ′)′

(1,−θ ′)H0(1,−θ ′)′
+ op(1). (43)

Also the multiplication of (43) from the left by (0, IG2+K1) and substitution for λ( f )
1n

for (43) yields

Φ∗√n

[
β̂2L I − β2
γ̂ 1L I − γ 1

]

= [0, IG2+K1 ]
[

I1+G2+K1 − 1

β ′Ωβ

(
Ωβ

0

)
(1,−θ ′)

] [
G( f )

1 −√
cc∗H( f )

1

] [1
−θ

]
+op(1). (44)
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Using the relation of (33), we have

[
G( f )

1 − √
cc∗H( f )

1

] [1
−θ

]

= 1√
n

D∗′
T −1∑
t=1

Z( f )′
t−1 Mt u

( f )
t + 1√

n

[
T −1∑
t=1

(
V( f )′

t
O

)
Mt u

( f )
t − rn

(
Ωβ

0

)]

−
√

cc∗√
qn

D∗′
T −1∑
t=1

Z( f )′
t−1 [IN − Mt ] u( f )

t

−
√

cc∗√
qn

[
T −1∑
t=1

(
V( f )′

t
O

)
[IN − Mt ]u( f )

t − qn

(
Ωβ

0

)]
. (45)

Also we use the relations
√

cc∗/
√

qn−c∗/
√

n = o(1), [I1+G2−(1/σ 2)Ωββ ′]Ωβ = 0
and then

Φ∗√n

(
β̂2L I − β2
γ̂ 1L I − γ 1

)
= 1√

n
D′

T −1∑
t=1

Z( f )′
t−1 Nt u

( f )
t + 1√

n

T −1∑
t=1

(
U(⊥, f )′

t
O

)
Nt u

( f )
t

+op(1). (46)

where Nt = Mt − c∗(IN − Mt ) = 1
1−c [Mt − cIN ] and

U(⊥, f )′
t = [0, IG2

] [
I1+G2 − Ωββ

′

β
′
Ωβ

]
V( f )′

t =
(

u(⊥, f )
1t , . . . ,u(⊥, f )

Nt

)
.

Step 3: We evaluate the additional effects of the forward-filtering on the LIML
estimation at this step by setting Mt = M(a)

t and the k-th unit vector as ek =
(0, . . . , 0, 1, 0, . . . , 0)′. Using (A2) and u( f )

t = (ut − utT )/ct , we decompose the
first and second terms of (46) as, for k = 1, . . . , K (= K1 + K2) and g = 1, . . . ,G2,

1√
n

T −1∑
t=1

e′
kZ( f )′

t−1 N(a)t u( f )
t

= 1

1 − ca

[(
1√
n

T −1∑
t=1

e′
kJ′W′

t−1Mt ut − ϒ
(k,a)
11n −ϒ

(k,a)
12n

)
−
(
ϒ
(k,a)
21n − ϒ

(k,a)
22n

)]

−c∗a

(
1√
n

T −1∑
t=1

e′
kJ′W′

t−1ut − ϒ
(k)
3n

)
, (47)
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1√
n

T −1∑
t=1

e′
gU(⊥, f )′

t N(a)t u( f )
t

= 1

1 − ca

[
1√
n

T −1∑
t=1

(
e′

gU⊥′
t M(a)

t ut +
(

1

T − t

)
e′

gU⊥′
t M(a)

t ut

−c−2
t e′

gU⊥′
t M(a)

t ūtT − c−2
t e′

gŪ⊥′
tT M(a)

t ut + c−2
t e′

gŪ⊥′
tT M(a)

t ūtT

)]

−c∗a

(
1√
n

T −1∑
t=1

e′
gU⊥′

t ut −
√

T

N

N∑
i=1

e′
gū⊥

i ūi

)

= 1√
n

T −1∑
t=1

e′
gU⊥′

t N(a)t ut − ϒ
(g,a)
4n , (48)

where

ϒ
(k,a)
11n = 1√

n

T −1∑
t=1

e′
kJ′W′

t−1M(a)
t ūtT , ϒ

(k,a)
12n = 1√

n

T −1∑
t=1

ct

T − t
e′

kJ′W̃′
t−1M(a)

t u( f )
t ,

ϒ
(k,a)
21n = 1√

n

T −1∑
t=1

e′
kJ′Ṽ′

tT M(a)
t ut , ϒ

(k,a)
22n = 1√

n

T −1∑
t=1

e′
kJ′Ṽ′

tT M(a)
t ūtT ,

ϒ
(k)
3n =

√
T

N

N∑
i=1

e′
kJ′w̄i(−1)ūi ,

ϒ
(g,a)
4n = 1√

n

T −1∑
t=1

e′
gU(⊥, f )′

t N(a)t u( f )
t − 1√

n

T −1∑
t=1

e′
gU⊥′

t N(a)t ut ,

and we use notations : ūtT = (ut +· · ·+uT )/(T −t+1),u
′
t = (u1t , . . . , uNt ), W̃

′
t−1 =

(
∑T −t

h=1 Π∗h)W′
t−1, Ṽ

′
tT = 1

T −t

∑T −t
h=1 ΦhV∗′

T −h,V∗′
h = (v∗

1h, . . . , v∗
Nh)= (v∗(1)

h , . . . ,

v∗(K )
h )′,Φh = (IG∗ − Π∗)−1(IG∗ − Π∗h), w̄i(−1) = 1

T

∑T −1
t=1 wi(t−1), ūi =

1
T

∑T −1
t=1 uit , Ū⊥

t = (U⊥
t + · · · + U⊥

T )/(T − t + 1), ū⊥
i = 1

T

∑T −1
t=1 u⊥

i t and

U⊥′
t = [0, IG2

] [
I1+G2 − Ωββ

′

β
′
Ωβ

]
V

′
t = (u⊥

1t , . . . ,u⊥
Nt ).

We shall show that some of variances go to zeros. The variances of each terms ϒ(g,a)4n

(and the corresponding ϒ(g,b)4n ) can be evaluated using the same argument of Akashi
and Kunitomo (2012) and we give the Key Lemma below (the proof is in Akashi and
Kunitomo (2012)).
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Lemma 1 Let dt and ds be N × 1 vectors containing the diagonal elements of
Mt and Ms , respectively, such that tr(Mt ) = d′

t ιN , tr(Ms) = d′
sιN , d′

t ds ≤
max{tr(Mt ), tr(Ms)} and tr(Mt Ms) ≤ max{tr(Mt ), tr(Ms)}. Then, for l ≥ r ≥
t, p ≥ q ≥ s, t ≥ s,

Cov
[
ε∗′

l Mtε
∗∗
r , ε

∗′
p Msε

∗∗
q

]

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(m(3) + m(2))tr(Mt Ms)+ m(0)E[d′
t ds] if l = r = p = q,

E [ε∗2
i t ε

∗∗
i t

] E[d′
t Msε

∗∗
q ] if l = r = p �= q < t,

m(3)tr(Mt Ms) if l = p �= r = q,

0 otherwise,

(49)

where |E
[
d′

t Msε
∗∗
q

]
| ≤ (tr(Mt )tr(Ms)E

[
ε∗∗2

i t

]
)1/2,

m(1) = m(1)(ε∗
t , ε

∗∗
t ) = E

[
ε∗2

i t ε∗∗2
i t

]
,m(2) = m(2)(ε∗

t , ε
∗∗
t ) = (E [ε∗

i tε
∗∗
i t

]
)2,

m(3) = m(3)(ε∗
t , ε

∗∗
t ) = E

[
ε∗2

i t

]
E
[
ε∗∗2

i t

]
,m(0)=m(0)(ε∗

t , ε
∗∗
t )=m(1)−2m(2)−m(3).

Now we go back to the original derivation. First, it it straightforward to show that
Var[ϒ(k)3n ] → 0 as T → ∞ by the similar argument as used for Alvarez and Arellano
(2003). Second, we have

Var[ϒ(k,a)11n ] = 1

n

T −1∑
t=1

T −1∑
s=1

E
[
e′

kJ′W′
t−1M(a)

t ūtT ū′
sT M(a)

s Wt−1Jek

]
.

For t ≥ s,

E
[
w(k)′

t−1M(a)
t ūtT ū′

sT M(a)
s w(k)

s−1

]
= σ 2

(T − s + 1)
E
[
Es

[
w(k)′

t−1

]
M(a)

s w(k)
s−1

]

= σ 2

(T − s + 1)
E
⎡
⎣ G∗∑

j=1

(
e′

k J Π∗t−se j
)

w( j)′
s−1M(a)

s w(k)
s−1

⎤
⎦ ,

where w(k)′
t−1 = e′

k J W′
t−1, w( j)′

t−1 = e′
j W

′
t−1 and e′

k J = e′
kJ′, which is an unit k-

th vector. The second equality is due to the fact that M(a)
t M(a)

s = M(a)
s . Using the

relation that for any s, j, k, |E[w( j)′
s−1M(a)

s w(k)
s−1]| ≤ (E[(w( j)′

0 w( j)
0 )(w(k)′

0 w(k)
0 )])1/2 and

(E[(w( j)′
0 w( j)

0 )(w(k)′
0 w(k)

0 )])1/2 = O(N ), we can evaluate
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Var[ϒ(k,a)11n ] ≤ O(1)× 1

T

⎡
⎣T −1∑

t=1

T −1∑
s=1

1

T − s + 1

G∗∑
j=1

|e′
k J Π∗|t−s|e j |

⎤
⎦

= O(1)

T

⎡
⎣( 1

T
+ · · · + 1

2

)
+ 2

G∗∑
j=1

S(k, j)
T

⎤
⎦ ,

which is O((log T )/T ) because

S(k, j)
T = 1

T

(
|e′

k J Π∗e j | + · · · + |e′
k J Π∗T −2e j |

)

+ 1

T − 1

(
|e′

k J Π∗e j | + · · · + |e′
k J Π∗T −3e j |

)
+ · · · + 1

3
|e′

k J Π∗e j |

≤
(

1

3
+ · · · + 1

T

)(
|e′

k J Π∗e j | + · · · + |e′
k J Π∗T −2e j |

)
= O(log T ).

Next,

Var[ϒ(k,a)12n ] = σ 2

n

T −1∑
t=1

c2
t

(T − t)2
E
[
w̃(k)′

t−1M(a)
t w̃(k)

t−1

]

≤ σ 2

n

T −1∑
t=1

c2
t

(T − t)2
E
[
w̃(k)′

t−1w̃(k)
t−1

]

≤ σ 2λmax{E
[
wi0w′

i0

]}
T

T −1∑
t=1

1

(T − t)2
e′

kJ′
(

T −t∑
h=1

Π∗h

)(
T −t∑
h=1

Π∗h

)′
Jek,

which is O(1/T ),where w̃(k)′
t−1 = e′

kJ′W̃′
t−1 andλmax stands for the largest eigenvalue.

The last inequality follows from the fact that c2
t < 1 and

∑T −t
h=1 Π∗h is bounded for

any t, T (T − t > 0).
Turning to evaluate the variance of ϒ(k,a)21n , in view of Lemma 1 the only non-zero

terms to be considered are given by the quantities a(k, j,a)
0n and a(k, j,a)

1n ( j = 1, . . . , K ∗)
which, are represented as

Var[ϒ(k,a)21n ] = 1

n
Var

⎡
⎣T −1∑

t=1

1

T − t

T −t∑
h=1

G∗∑
j=1

(e′
k J Φhe j )e′

j V
∗′
T −hM(a)

t ut

⎤
⎦

= 1

n

⎡
⎣ G∗∑

j=1

Var

[
T −1∑
t=1

ṽ∗(k, j)′
tT M(a)

t ut

]
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+
G∗∑
i, j

Cov

[
T −1∑
t=1

ṽ∗(k,i)′
tT M(a)

t ut ,

T −1∑
t=1

ṽ∗(k, j)′
tT M(a)

t ut

]⎤
⎦

=
G∗∑
j=1

(a(k, j,a)
0n + a(k, j,a)

1n )+ 1

n

G∗∑
i, j

Cov[., .], (50)

where

ṽ∗(k, j)′
tT = 1

T − t

T −t∑
h=1

(
e′

k J Φhe j
)

e′
j V

∗′
T −h,

a(k, j,a)
0n = 1

n

T −1∑
t=1

1

(T − t)2

[(
e′

k J ΦT −t e j
)2 Var

[
u′

t M
(a)
t v∗( j)

t

]

+ · · · + (e′
k J Φ1e j

)2 Var
[
u′

t M
(a)
t v∗( j)

T −1

]]
,

a(k, j,a)
1n = 2

n

T −2∑
t=1

⎡
⎣
(
e′

k J ΦT −t−1e j
)2 Cov

[
u′

t M
(a)
t v∗( j)

t+1 ,u′
t+1M(a)

t+1v∗( j)
t+1

]
(T − t)(T − t − 1)

+ · · · +
(e′

k J Φ1e j )
2Cov

[
u′

t M
(a)
t v∗( j)

T −1,u′
T −1M(a)

T −1v∗( j)
T −1

]
(T − t)

⎤
⎦ .

Using Lemma 1 and (e′
k J Φhe j )

2 is bounded, we can evaluate as a(k, j,a)
0n =

O( 1
N T

∑
t

t
T −t ) = O( log T

N ).

Moreover, using the fact that |E[d′
t+ j M

(a)
t ut ]| ≤ O(tr(M(a)

t+ j )), we find a positive
constant C1 such that

|a(k, j,a)
1n | ≤ C1

1

n

T −2∑
t=1

1

(T − t)

(
t + 1

T − t − 1
+ · · · + T − 1

1

)
,

which is O((log T )2/N ). Finally, we shall evaluate the variance of ϒ(k,a)22n as

Var[ϒ(k,a)22n ] = 1

n
Var

⎡
⎣T −1∑

t=1

1

T − t

T −t∑
h=1

G∗∑
j=1

(
e′

k J Φhe j
)

e′
j V

∗′
T −hM(a)

t ūtT

⎤
⎦

= 1

n

⎡
⎣ G∗∑

j=1

Var

[
T −1∑
t=1

ṽ∗(k, j)′
tT M(a)

t ūtT

]
+

G∗∑
i, j

Cov[., .]
⎤
⎦ .

Using the same argument as for Lemma 1, we find
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Var
[
ṽ∗(k, j)′

tT M(a)
t ūtT

]
≤ tr

(
M(a)

t

) [
m(1)

(
ṽ∗(k, j)

tT , ūtT

)
+ m(3)

(
ṽ∗(k, j)

tT , ūtT

)]
and then

m(3)(ṽ∗(k, j)
tT , ūtT ) = Var

[
1

T − t

(
e′

k J ΦT −t e jv
∗( j)
i t + · · · + e′

k J Φ1e jv
∗( j)
iT −1

)]

×Var

[
1

T − t + 1
(uit + · · · + uiT )

]
,

which is O(1/(T − t)2) because (v∗( j)
i t , uit ) is independent of (v∗( j)

is , uis) for s �= t .
Similarly,

m(1)(ṽ∗(k, j)
tT , ūtT ) = 1

(T − t)2(T − t + 1)2

× E
[(

e′
k J ΦT −t e jv

∗( j)
i t + · · · + e′

k J Φ1e jv
∗( j)
iT −1

)2
(uit + · · · + uiT )

2
]
,

which is O(1/(T − t)2). Therefore, for any j , we have Var[ṽ∗(k, j)′
tT M(a)

t ūtT ] =
O(t/(T − t)2) . From this result and the arguments as Alvarez and Arellano (2003),
we conclude that Var[ϒ(k,a)22n ] = O((log T )2/N ) .
Step 4: Now we evaluate the limiting distribution of the LIML estimator with the
backward-filtered instruments. We replace M(b)

t for M(a)
t and define ϒ(k,b)11n , ϒ

(k,b)
12n ,

ϒ
(k,b)
21n and ϒ(k,b)22n , accordingly. We first notice that the order of Var[ϒ(k,.)12n ] is free

with Mt , and those of ϒ(k,b)21n and ϒ(k,b)22n are reduced by the fact that tr(M(b)
t ) =

O(1). For instance, Var[ϒ(k,b)12n ] = O(1/T ),Var[ϒ(k,b)21n ] = O((log T )2/(N0T )) and

Var[ϒ(k,b)22n ] = O((log T )2/(N0T )). To evaluate Var[ϒ(k,b)11n ], we prepare the next
lemma, which is a generalization of the corresponding one by Hayakawa (2006). The
proof of Lemma 2 will be provided in the online supplementary appendix.

Lemma 2 Define the N ×1 error vectors of the linear projection of Wt−1J on Z∗(b)
t J,

E(b)t =
[
ε
(1,b)
t , . . . , ε

(K ,b)
t

]
= Wt−1J − Z∗(b)

t J
[
γ

∗(1,b)
t , . . . , γ

∗(K ,b)
t

]
, (51)

where Z∗(b)
t = [z∗(b)

1(t−1), . . . , z∗(b)
N (t−1)]′, Z∗(b)

t J = Z(b)t and γ
∗(k,b)
t is defined by

[γ ∗(1,b)
t , . . . , γ

∗(K ,b)
t ] = (b2

t limt→∞ J′E[z∗(b)
i t−1z∗(b)′

i t−1]J)−1J′E[z∗(b)
i t−1w

′
i t−1]J;. Then,

for k = 1, . . . , K ,

E[ε(k,b)2i t ] = O

(
1

t

)
(52)

and

1

N0T

T −1∑
t=1

J′W′
t−1M(b)

t Wt−1J
p→ J′E

[
wi(t−1)w′

i(t−1)

]
J = J′0J. (53)
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We turn to evaluate the order of Var[ϒ(k,b)11n ]

Var[ϒ(k,b)11n ] = 1

N0T

T −1∑
t=1

T −1∑
s=1

E
[
e′

kJ′W′
t−1M(b)

t ūtT ū′
sT M(b)

s Wt−1Jek

]
. (54)

For t ≥ s and k = 1, . . . , K ,

E
[
w(k)′

t−1M(b)
t ūtT ū′

sT M(b)
s w(k)

s−1

]

= σ 2

(T − s + 1)

[
E
[
w(k)′

t−1

(
IN0 − M(b)

s

)
ε
(k,b)
s−1

]
− E

[
w(k)′

t−1w(k)
s−1

]

− E
[
ε
(k,b)′
t−1

(
IN0 −M(b)

t

) (
IN0 −M(b)

s

)
ε
(k,b)
s−1

]
+E

[
ε
(k,b)′
t−1

(
IN0 −M(b)

t

)
w(k)

s−1

]]
,

where we use the decomposition w(k)′
h−1M(b)

h = w(k)′
h−1 −ε

(k,b)′
h [IN0 −M(b)

h ] for h = t, s.

For the second term of the last equality, we write E[w(k)′
t−1w(k)

s−1] = E[Es(w
(k)′
t−1)w

(k)
s−1]

and then we find Var[ϒ(k,a)11n ] = O(log T/T ). Hence for the first term, we have the

same result as Step 3. As for the third term |E[ε(k,b)′t−1 (IN0 −M(b)
t )(IN0 −M(b)

s )ε
(k,b)
s−1 ]|2

is less than

E
[
ε
(k,b)′
t−1 ε

(k,b)
t−1 ε

(k,b)′
s−1 ε

(k,b)
s−1

]
=

N0∑
i=1

E
[
ε
(k,b)2
i(t−1)ε

(k,b)2
i(s−1)

]
+

N0∑
i, j,i �= j

E
[
ε
(k,b)2
i(t−1)

] [
ε
(k,b)2
j (s−1)

]
,

which O(N/(ts)) and the first equality is due to independence of random variables
ε
(k,b)2
i(t−1). For the second inequality, we have applied Lemma 2 and the Cauchy-Schwarz

inequality as

∣∣E [ε(k,b)2i(t−1)ε
(k,b)2
i(s−1)

] ∣∣2 ≤
(
E
[
ε
(k,b)4
i(t−1)

]) (
E
[
ε
(k,b)4
i(t−1)

])
= O

(
1

t2

)
× O

(
1

s2

)
.

Thus we can take a positive constant C2 such that

1

N0T

T −1∑
s=1

2
T −1∑
t≥s

σ 2

T − s + 1

∣∣E [ε(k,b)′t−1

(
IN0 − M(b)

t

) (
IN0 − M(b)

s

)
ε
(k,b)
s−1

] ∣∣

≤ C2
N0

N0T

T −1∑
s=1

2
T −1∑
t≥s

1

T − s + 1

1√
t

1√
s

= O

(
(log T )

√
T

T

)
.

For the fourth term of (54), we have the same order by the similar arguments. Hence,
we find that Var[ϒ(k,b)11n ] = O((log T )/

√
T ).

Step 5: At this step, we drive the asymptotic covariance and bias of the limiting
distribution of the LIML estimator. First, we prepare the next lemma, which is useful
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for deriving the covariance formula for Case (a). The proof of Lemma 3 will be
provided in the online supplementary appendix.

Lemma 3 Let (μ(1)i , . . . , μ
(k)
i , . . . , μ

(G∗)
i )′ = μi = [

IG∗ − Π∗]−1
π∗

i and Mμ =[
μ1, . . . ,μN

]′
. Define the N × 1 error vectors of the linear projection of MμJ on

Z(a)t ,

E(a)t =
[
ε
(1,a)
t , . . . , ε

(K ,a)
t

]
= MμJ − Z(a)t

[
γ

∗(1,a)
t , . . . , γ

∗(K ,a)
t

]
, (55)

where for k = 1, . . . , K , h = 1, . . . , t we take each K∗t × 1 coefficient vector

γ
∗(k,a)
t = (γ

∗(k,a)′
t1 , . . . , γ

∗(k,a)′
th , . . . , γ

∗(k,a)′
t t )′ as γ ∗(k,a)

thl = 1/t (if l = k) and

γ
∗(k,a)
thl = 0, (if l �= k), and γ

∗(k,a)
th = (γ

∗(k,a)
th1 , . . . , γ

∗(k,a)
thl , . . . , γ

∗(k,a)
thK∗ )

′. Then,
for k = 1, . . . , K ,

E[ε(k,a)2i t ] = O

(
1

t

)
(56)

and

1

N T

T −1∑
t=1

J′W′
t−1M(a)

t Wt−1J
p→ J′E

[
wi(t−1)w′

i(t−1)

]
J = J′0J. (57)

For the LIML estimator, we can re-write (46) as

1√
n

D′
T −1∑
t=1

Z( f )′
t−1 Nt u

( f )
t + 1√

n

T −1∑
t=1

(
U(⊥, f )′

t
O

)
Nt u

( f )
t

= 1√
n

D′
T −1∑
t=1

J
′
W

′
t−1ut + 1√

n

T −1∑
t=1

(
U⊥′

t
O

)
Nt ut + O(1)+ op(1)

= a1n + a2n + O(1)+ op(1), (say, ) (58)

where O(1) is the associated terms of the asymptotic bias to be discussed below. The
first equality above is due to the result of Step 2 and the second equality follows from
Nt = IN − (1 + c∗)(IN − Mt ) and

Var

[
1√
n

T −1∑
t=1

e′
k J W

′
t−1(IN − Mt )ut

]
= E[u2

i t ]
n

T −1∑
t=1

E
[
ε(k,.)

′
(IN − Mt )ε

(k,.)
]

≤ σ 2

T

T −1∑
t=1

E
[
ε
(k,.)2
i t

]
= O(log T )

T
,
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where ε(k,.)i t = ε
(k,a)
i t (or ε(k,a)i t ), and we have used Lemmas 2 and 3. We notice

E
[
a1na

′
1n

]
= Et [u2

i t ]
n

D
′E
[

T −1∑
t=1

J
′
W

′
t−1Wt−1J

]
D −→ σ 2Φ∗. (59)

Using the i-th unit vector ei (i = 1, . . . , N ), we find

E
[
a1na

′
2n

]
=
(

1

n
D

′
T −1∑
t=1

E
[
J

′
W

′
t−1Et

[
ut u

′
t Nt U⊥

t

]]
,O

)

=
⎛
⎝1

n
D

′
T −1∑
t=1

E
⎡
⎣J

′
W

′
t−1

N∑
i=1

N∑
j=1

ei e
′
iEt

[
u2

i t Nt e j u⊥′
j t

]⎤⎦ ,O

⎞
⎠

=
(

1

n
D

′
T −1∑
t=1

E
[
J

′
W

′
t−1dt

]
E
[
u2

i t u
⊥′
i t

]( 1

1 − c

)
,O

)
,

since for any i, j, Et [u⊥
j t uit ] = 0 and E[W′

t−1c∗IN ] = 0. Furthermore, we use the
decomposition

E
[
J

′
G2

a2na
′
2nJG2

]
= 1

n

T −1∑
t=1

E
[
U⊥′

t Nt

[
σ 2IN + (ut u

′
t − σ 2IN )

]
Nt U⊥

t

]

and the first term converges (1/n)
∑T −1

t=1 tr(N2
t )σ

2E[u⊥
i t u⊥′

i t ] −→ c∗σ 2E[u⊥
i t u⊥′

i t ]
because we have N2

t = Mt + c2∗(IN − Mt ) and

1

n

T −1∑
t=1

tr(Mt )+ c2∗
1

n

T −1∑
t=2

tr(IN − Mt ) = rn

n
+ qn

n
c2∗ −→ c∗.

Then for any constant vector h, we write the second term as

h
′ 1

n

T −1∑
t=1

E
[
U⊥′

t Nt (ut u
′
t − σ 2IN )Nt U⊥

t

]
h

= 1

n

T −1∑
t=2

N∑
j=1

E
[
(e

′
j Nt e j )

2Et

[
(u2

i t − σ 2)(u⊥′
i t h)2

]]
.

Using the similar calculations as E[a1na
′
2n]. Then under the assumptions we

made, we need to evaluate the convergence of [1/(N T )]∑T −1
t=1 d(·)

′
t W

′
t−1 and

[1/(N T )]∑T −1
t=1 d(·)

′
t d(·)t . In each case, d(·)ti are bounded and (1/T )

∑T −1
t=2 wti con-

verges to zero in probability. Further in the case of (a) maxi dit converges to zero in
probability as N → ∞. Thus, the effects of third-order terms are negligible in the
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case of (a), while the effects of third-order terms may not be negligible in the case of
(b) since N can be fixed. In both cases, we have the effects of fourth-order terms in
the general case (see Condition (IV) of Anderson et al. 2010).

Next, we evaluate the asymptotic bias of LIML estimator. We notice E[ϒ(g,a)4n ] =
E[ϒ(g,b)4n ] = 0 in (47) using the fact that for any i, j, s, t, Et [u⊥

i t u js] = 0. Then in the

case of Mt = M(a)
t , we evaluate the asymptotic bias as

b(a)c = Φ∗−1D′ lim
N ,T →∞

1√
N T

T −1∑
t=1

E
[

Z( f )′
t−1

(
1

1 − ca

)(
M(a)

t − caIN

)
u( f )

t

]
. (60)

For the term
∑T −1

t=1 E[Z( f )′
t−1 u( f )

t ] = −(N/T )J
′E[W′

i(−1)ιT ι′T ui ], we have

E
[
W′

i(−1)ιT ι′T ui

]
=

T −1∑
h=1

T −1−h∑
j=0

Π∗ jE[v∗
i t uit ]

= T (IG∗ − Π∗)−1E[v∗
i t uit ]

−(IG∗ −Π∗)−1[IG∗ +Π∗(IG∗ −Π∗)−1(IG∗ −Π∗T −1)]E[v∗
i t uit ].

For the term
∑T −1

t=1 E[Z( f )′
t−1 M(a)

t u( f )
t ] = −∑T −1

t=1 J
′E[ct Ṽ

′
tT M(a)

t u( f )
t ], we can eval-

uate as

E
[
ct Ṽ

′
tT M(a)

t u( f )
t

]

= K∗t

T − t + 1

[
ΦT −tE[v∗

i t uit ] − 1

T − t
(ΦT −t−1 + · · · + Φ1)E[v∗

i t uit ]
]

= K∗t

T − t + 1
(IG∗ − Π∗)−1

[
(IG∗ − Π∗T −t )− IG∗

+
(

1

T − t

)
[IG∗ + Π∗(IG∗ − Π∗)−1(IG∗ − Π∗T −t−1)]

]
E[v∗

i t uit ] (61)

and then

T −1∑
t=1

E
[
Z( f )′

t−1 M(a)
t u( f )

t

]
= −K∗(IG∗ − Π∗)−2 [(T − 1)(IG∗ − Π∗)+ O(log T )

]

×E[v∗
i t uit ].
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Therefore, we obtain

b(a)c = − lim
N ,T →∞

(
K∗

1 − ca

T√
N T

− ca

1 − ca

N√
N T

)
Φ∗−1D′J′

(IG∗ −Π∗)−1E[v∗
i t uit ]

= − K∗
√

limn→∞(T/N )

2 − K∗ limn→∞(T/N )
Φ∗−1D′J′

(IG∗ − Π∗)−1E[v∗
i t uit ]. (62)

Similarly, we consider the case of Mt = M(b)
t and

T −1∑
t=1

E[Z( f )′
t−1 M(b)

t u( f )
t ] = −K J

′
(IG∗ − Π∗)−2

[
(IG∗ − Π∗)− (1/T )(IG∗ − Π∗T )

]

×E[v∗
i t uit ].

Then, regardless of whether N0 → ∞ or fixed, the asymptotic bias becomes

b(b)c = − lim
T →∞

(
K

1 − cb

1√
N0T

− cb

1 − cb

N0√
N0T

)
Φ∗−1D′J′

(IG∗ − Π∗)−1

×E[v∗
i t uit ] = 0.

Step 6: We now turn to consider the asymptotic covariance matrix and the bias of the
GMM estimator. The necessary arguments are basically the same as those in Step 3
for the LIML estimator. If c = 0, the normalized GMM estimator are asymptotically
equivalent to

√
n(θ̂G M − θ) = Φ∗−1

[
1√
n

D′
T −1∑
t=1

J
′
W

′
t−1ut + 1√

n

T −1∑
t=1

(
J′∗G2

V′
t

O

)
Mt ut

]
+op(1),

(63)

and J′∗G2
= [0,IG2 ]. For any constant vector h we write hG = JGh, and by Lemma 1

Var

[
1√
n

T −1∑
t=1

h′
GV′

t Mt ut

]
= 1

n

T −1∑
t=1

Var[h′
GV′

t Mt ut ] = O(c). (64)

Thus in each case, Mt = M(a)
t or M(b)

t , the asymptotic variance–covariance matrix
becomes Φ∗−1(σ 2Φ∗)Φ∗−1 =σ 2Φ∗−1. Also under the condition

∑T −1
t=1 tr(Mt )/(

√
n)

is bounded, the asymptotic bias becomes

b(.)0 = lim
N ,T →∞

[
1√
n

T −1∑
t=1

tr(Mt )

]
Φ∗−1

(
J′∗G2

E[vi t uit ]
0

)
. (65)
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Step 7: Finally, we consider the asymptotic normality of the LIML estimator (the
asymptotic normality of the GMM estimator can be proven as the special case of
α2t = 0 below). Define the (G2 + K1)× 1 martingale difference sequence by

αt = α1t + α2t = 1√
N

[
D′J′

N∑
i=1

wi(t−1)ut +
(

U⊥′
t

O

)
Nt ut

]
(say, ) (66)

and then a1n + a2n = (1/
√

T )
∑T −1

t=1 (α1t + α2t ).

In the present situation, we have the conditions (i) (1/n)
∑T −1

t=1 W′
t−1(Wt−1, ιN )

p→
(0, 0), and (i) the same evaluations as used for the asymptotic covariance evaluation,
for any constant vector h and any N (because uit is uncorrelated with Ft−1 and Ft−1
is the σ−field generated the random variables given at t − 1), we have

1

T

T −1∑
t=1

E [h′αtα
′
t h|Ft−1

] −→ plimT →∞
1

T

T −1∑
t=1

E [h′αtα
′
t h
]

(67)

and for some constant �′ and any t, N , E[[h′(α1t + α2t )]4] < �′ . It is because
E[[h′α1t ]4] < ∞ and E[[(c∗/

√
N )t′(U⊥′

(IN − Mt )ut )]4] < ∞ using the similar
arguments in the next Lemma 4 below. Then the Lyapounov conditions for the central
limit theorem hold for both cases when Mt = M(a)

t and M(b)
t .

Lemma 4 For any G2 ×1 constant vector h and any t, N, there is a positive constant
� such that

E
[[(

1√
N

)
h′U⊥′

t Mt ut

]4
]
< �. (68)

The proof of Lemma 4 will be provided in the online supplementary appendix.

7 Appendix: Some figures

In figures, the distribution functions of estimators are shown with the standard nor-
malization (the case of c = 0) and the large-K2 normalization (the case of c > 0).
The limiting distributions for LIML in the large-K asymptotics are N2(0, I2) and its
marginal distributions are N (0, 1), which are denoted as “o”. For the sake of compar-
isons, the distribution of GMM are normalized in the same way and our settings are
similar to those in Anderson et al. (2005, 2011) and Akashi and Kunitomo (2012).

See Figs. 1, 2, 3, 4, 5 and 6.
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Fig. 1 β2 : N = 100, T = 50, cb = 4
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Fig. 3 β2 : N = 100, T = 50, cb = 4
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